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ABSTRACT

A MEASUREMENT OF THE W/Z CROSS SECTION
RATIO AS A FUNCTION OF HADRONIC ACTIVITY

WITH THE ATLAS DETECTOR

MAY 2013

ANDREW MEADE

B.A., SWARTHMORE COLLEGE, SWARTHMORE, PA

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor Benjamin Brau

Hadronic collisions at the LHC at CERN probe particle interactions at the highest

energy scale of any experiment to date. We present a research program measuring

Rjet = σWBR(W→µν)
σZBR(Z→µµ)

as a function of a number of hadronic variables. The measure-

ments are performed with the ATLAS detector at the LHC, using the 2011 data set,

consisting of 4.64 fb−1 of pp collisions at a center of mass energy of 7 TeV. This mea-

surement is a robust way to test the Standard Model and the modeling of perturbative

QCD, and is sensitive to a wide variety of possible new physics in events with high jet

ET , including some variations of Supersymmetry. By taking the ratio of W/Z pro-

duction, a large number of systematic uncertainties cancel, including those associated

with luminosity, jet energy scale and resolution, and many theoretical uncertainties.

v



The measurement of Rjet is performed as a function of the pT and rapidity of the

1st-4th leading jet, ST , HT , and a number of dijet variables: invariant mass, ∆Rjj

and ∆φjj. The measurements are compared with NLO theoretical predictions from

BlackHat+Sherpa, as well as using leading order simulations from Alpgen and

Sherpa. Over most of the kinematic phase-space, there is good agreement between

the data and theoretical predictions. There is a significant deviation for exactly one

selected jet above 30 GeV, where BlackHat+Sherpa over-estimates the ratio Rjet

by 12%.
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INTRODUCTION

Experimental particle physics seeks to understand the most fundamental con-

stituents of matter and their interactions. A theme in this quest for understanding

has been unification, the idea that often seeming disparate phenomena can be ex-

plained by a single coherent framework. Physicists generally agree that this represents

a more fundamental understanding than disconnected explanations for phenomena as

diverse as optics, nuclear phenomena and contact interactions. The birth of physics

as a discipline is rooted in this idea. When Isaac Newton developed and published

his theories of universal gravitation and classical mechanics, they showed definitively

that the celestial sphere was governed by the same laws that we experience on earth.

The theme of unification has similarly been a driving force in modern particle

physics. The unification of the weak and electromagnetic theory was accomplished

in the 1960’s with the most notable contributions by Weinberg, Salam, and Glashow

[4, 5, 6]. The discovery of confined, fractionally charged quarks in the nucleus 1974

accompanied advances in non-abelian gauge theories to eventually lead to the devel-

opment of Quantum Chromodynamics. These two theories together represent the

crowning achievement of modern particle physics: the Standard Model, in which all

particles and forces come out of a specific gauge symmetry group SU(3) x SU(2) x

U(1), and describe all observed particle phenomena.

The Standard Model of particle physics has shown unparalleled success in de-

scribing the behavior of fundamental particles. In particular, the electroweak sector

has been carefully probed: the masses, cross sections and couplings of the W and Z

bosons have been very carefully measured at LEP, SLD and the Tevatron. Before
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the LHC, all but one of particles predicted by the Standard Model had been success-

fully measured, and all free parameters of the theory had been measured but one,

the mass of the Higgs boson. The existence of massive electroweak bosons (W,Z)

indicates that the theory’s SU(2) x U(1) symmetry must be broken somehow for the

Standard Model to retain its predictive power. The Higgs Mechanism is the current

favored model for how this occurs, and predicts the existence of a new particle, the

Higgs Boson. The lack of experimental evidence for the mechanism of electroweak

symmetry breaking was one of the primary motivations for constructing the Large

Hadron Collider (LHC).

Proton collisions at the LHC probe electroweak and hadronic interactions at a

new energy scale. Due to electroweak constraints on the Higgs mass, it was expected

that the explanation for electroweak symmetry breaking should be discovered by

the LHC. During the writing of this thesis, a particle has been discovered by the

the experiments at the LHC (ATLAS,CMS), with a mass of approximately 126 GeV,

consistent with the production and decay of the Standard Model Higgs Boson [1]. The

LHC will continue to measure this particle in order to further elucidate electroweak

symmetry breaking. In addition, the LHC hopes to address other problems inherent

to the Standard Model, such as the hierarchy problem, the strong CP problem, as

well as cosmological issues such as the source of dark matter and an explanation for

baryogenesis in the early universe.

Because of the importance of electroweak physics to the LHC’s mission, the doc-

toral research presented in this thesis centers around the measurement of W and Z

boson cross sections. Specifically this thesis seeks to measure the ratio of the pro-

duction cross sections times their branching fractions to leptons: Rjet = σWBR(W→`ν)
σZBR(Z→``)

as a function of the number of associated jets and other hadronic variables such as

their scalar sum of transverse energy ST =
∑

ETjets. In this case ` refers to muons

or electrons. This study builds on the 2010 measurement of Rjet as a function of lead
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jet pT [7], but is expanded in both scope and the amount of integrated luminosity.

At the Tevatron, running at a center of mass energy (
√
s) of 1.98 TeV and with pp̄

collisions, the inclusive ratio R was measured to be 10.82 [8]. This quantity is slightly

lower for pp collisions due to their different quark content, and is weakly dependent

on
√
s, as at higher values there is a higher proportion of virtual ū and d̄ quarks that

can interact to produce a Z boson.

In the high jet ET regime accessible by ATLAS, Rjet has not been probed previ-

ously experimentally, and is sensitive to many new physics models, including some

varieties of Supersymmetry. Because the measurement is not tailored to any partic-

ular model, it can be viewed as a type of model independent search. In addition,

the W/Z cross section ratio has further advantages as an early physics measurement,

as many systematic uncertainties associated with luminosity and detector effects are

canceled or reduced in the ratio. In addition, the W/Z boson characteristics have

been measured very precisely at LEP and the Tevatron. This gives the measurement

sound footing, as the low jet pT regime can be used to cross check results.

These measurements are performed in two separate channels: with the bosons de-

caying to muons, and with the bosons decaying into electrons, as these two channels

have differing reconstruction characteristics and systematics due to the different sig-

natures of electrons and muons in the ATLAS detector. This thesis will present the

results only for the muon channel, but future publications will include results from

both channels.

Chapter 1 examines the structure of the Standard Model, and its history, successes,

and shortfalls. Theoretical models which provide solutions for these shortfalls are

briefly discussed, with a focus on models which could alter the value of Rjet over

some kinematic range. The details of the Monte Carlo generators used to provide the

theoretical modeling in this thesis is also be covered. Chapter 2 describes the ATLAS

detector and the LHC at CERN, with a focus on the detector elements responsible
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for reconstruction of physics objects. This informs a discussion of the details of the

reconstruction of electrons, muons, Emiss
T , and jets, which in turn illuminates the

object definitions used in this thesis.

Chapter 3 summarizes the details of the measurement of Rjet using 4.64 fb−1 at

7 TeV center of mass energy, as a function of the following variables: the number of

jets, the pT and rapidity of the 1st-4th leading jets, and a number of other derived

hadronic quantities: ST , HT , dijet mass, ∆Rjj and ∆φjj. Cross checks, background

subtraction, acceptance and efficiency corrections, systematic uncertainty estimation

and theoretical predictions are discussed. Chapter 4 summarizes the results of the

research program and explores possible future directions for related research.
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CHAPTER 1

THEORETICAL BACKGROUND

The Standard Model (SM) is not only successful in describing particle phenom-

ena, but is also theoretically elegant, as it can be derived from the assumption of a

small number of symmetries and principles. The SM is built on the framework of

relativistic quantum field theory, which developed gradually in the 1930’s, and lead

to the prediction of anti-particles. All particle characteristics and dynamics predicted

by the Standard Model can be determined by requiring that the Lagrangian of the

theory obey a particular set of gauge symmetries: SU(3) for Quantum Chromody-

namics, and SU(2)xU(1) for Electroweak dynamics. A formal treatment of quantum

field theory can be found in Ref.[9], and a full treatment of the derivation of the

Standard Model can be found in Ref.[10].

This Chapter will briefly explain the dynamics of the Strong and Electroweak

sectors, and the mechanism of Electroweak Symmetry Breaking. Motivations for the

Rjet measurement in understanding the Standard Model will be discussed. Conceptual

problems with the Standard Model will then be explored. Supersymmetry will be

briefly explored as an example of a theory that goes beyond the Standard Model

and that could solve or illuminate these problems. Focus will be given to ways these

theories could contribute to an altered Rjet signal. The Chapter will conclude with

an overview of collider physics, and how this physics is modeled in the simulations

used in this thesis.
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1.1 The Standard Model and its Constituents

With the exception of the scalar Higgs Boson, all Standard Model particles can

be classified into one of two categories: spin 1/2 fermions, which due to the Pauli-

exclusion principle exhibit the sort of space occupying properties we associate with

“matter”, and spin 1 bosons, which due to their own quantum statistics, act not

as static matter, but as “force-carriers” that act as the quanta for field or wave

interactions.

Figure 1.1 shows all known fundamental particles in the Standard Model, and

their masses. Fermionic particles (matter) are divided into leptons, which are sub-

ject to only the electroweak interaction, and quarks, which are subject to both the

electroweak and strong interactions. Electrons and their neutrinos (leptons) and up

and down quarks are the lightest fermions, and represent the constituents of most

“ordinary”, stable matter that makes up the plants, animals and all other objects

with which we are familiar. Two more generations of quarks and leptons have been

discovered experimentally, with identical charges and spin as their more abundant

counterparts, but with greater mass. These particles are not stable, but are produced

in high energy collisions, and influence the characteristics of stable matter through

their existence as virtual particles.

Leptons: Each generation of leptons has a charged lepton with electric charge

e (1.60 ×10−19 C), and a corresponding electrically neutral neutrino. Electrons,

muons and taus (e,µ,τ) are the lightest, second lightest and heaviest charged leptons.

Their corresponding neutrinos are denoted νe, νµ, and ντ . Neutrinos were only re-

cently discovered to have mass; prior to the discovery of neutrino flavor oscillations

they were assumed to be massless. Cosmological limits using WMAP data and pho-

tometric red-shift surveys place the sum of the three neutrino masses at less than

0.3 eV [11]. Current laboratory experiments put weaker bounds on these masses,

m < 2 eV, 170 keV, 18 MeV for the electron, muon and tau, respectively (these mea-
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Figure 1.1. Constituent particles of the Standard Model, arranged according to
their masses and generations. The scalar Higgs boson, shown on this diagram, is a
hypothetical particle posited to explain mass generation and electroweak symmetry
breaking. A new particle consistent with the Higgs Boson has recently been discovered
at the LHC by ATLAS and CMS [1]. Image from Scientific American, used through
fair use [2].
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sure mass expectation values for the flavor eigenstates). It is also experimentally

unknown if neutrinos are their own anti-particles. These details do not substantially

alter collider physics, and for the purpose of this thesis neutrinos will be considered

massless, and as having anti-particles denoted by ν̄e, ν̄µ, and ν̄τ . All leptons are

subject to the weak force.

Quarks: Each generation of quarks has two types (or flavors) of quarks, with

fractional charges +2
3
e and −1

3
e. The positively (negatively) charged quarks are

whimsically named up (down), charm (strange), and top (bottom), in order of in-

creasing mass. Each of these possesses strong charge, which comes in three colors,

often denoted red, green, and blue. As with electric charge, each of these can be

positive or negative (negative color charge often referred to as anti-color). Bound

states of quarks are either baryons, containing equal amounts of all color charge (the

proton, made of two up quarks and a down quark), or mesons, containing a quark

and an anti-quark with the same color/anti-color, which leaves the composite with

zero net color. Quarks are also charged under weak and electromagnetic interactions.

Force Carriers: In quantum field theory, every force can be thought of as medi-

ated by the exchange of virtual force carrier bosons. Virtual particles have the same

characteristics as a usual particle, except that they have a mass that violates the

energy-momentum relationship of special relativity: E2 − p2c2 = m2c4. This is a con-

sequence of the energy momentum uncertainty principle, as the duration of existence

of the boson and its energy cannot both be known precisely. However, a complete

interaction does always conserve energy and momentum.

Evidence for the quantization of electromagnetic radiation, including the photo-

electric effect, lead to the discovery of the first known force carrier, the photon.

This in turn lead to the development of the first quantum field theory. Quantum

electrodynamics was considered a fantastic success due to its predictions of quantities

such as the anomalous magnetic moment of the electron. The photon is massless,
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which leads electromagnetism to be a long range force (like gravity). Most of the

forces we experience in our every day existence are electromagnetic in nature.

While the weak force is technically derived from the same symmetry group as

electromagnetism, it’s observable form is very different in nature. It has two charged

force carriers (W±) and a neutral force carrier (Z). The W (Z) boson has a mass of

80.39 (91.19) GeV. Due to this rest mass, the weak force is short range and rather

feeble at the accessible energies (hence its name). In fact, contributions to forces due

to the Z boson are very difficult to measure, because in most cases the interaction

is also mediated by the much more substantial strong and electromagnetic forces.

Neutrino scattering, which is notoriously difficult to detect, and resonant production

are the only realistic detection methods. The W± by contrast, has the unique ability

that it does not conserve the “flavor” of the fermion with which it interacts. This

produces the weak force’s most visible signature: nuclear beta decay, in which a

neutron decays into a proton, a neutrino, and an electron, as well as allowing quark

mixing and CP violation, discussed in sections 1.3 and 1.4.

The aptly named strong force is responsible for binding quarks into hadrons, and

its residual force in the nucleus binds together protons and neutrons. This force is

mediated by the gluon, which is massless like the photon, but unlike the photon,

is charged under color interactions. Due to this gluons interact with other gluons,

and in fact, interact with themselves, and this drastically changes the nature of their

interactions. Due to this self interaction, a calculational problem occurs. Typically,

perturbative calculations in quantum field theories are made by taking the simplest

transition from one state to another as the “lowest order” calculation, and corrections

are calculated by including diagrams with more interactions. However, in quantum

chromodynamics, these higher order corrections from these diagrams can in some

cases be just as large or larger than the lower order terms. The strength of the strong

force can only be calculated for small momentum transfer compared to the QCD scale
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(Λs):

αs(q
2) ∝ 1

ln(q2/Λ2
s)

(for |q2| � Λ2
s) , (1.1)

where q2 represents the square of the gluons momentum four vector, and αs is the

strong coupling constant. This equation captures two fundamental characteristics of

Quantum Chromodynamics: confinement and asymptotic freedom. At low momen-

tum (corresponding to large distance), the magnitude of the strong force increases

without bound. Therefore the amount of energy required to separate a quark from

a nucleon is larger than the amount required to produce a new quark anti-quark

pair, and so quarks can not be isolated from color neutral arrangements. This phe-

nomenon is termed confinement, as quarks do not exist in a “free” state. Conversely,

at high momentum and low distance, the strong force becomes very weak (asymptotic

freedom), and perturbation theory can be used in this regime. The computational

challenges associated with Quantum Chromodynamics will not be discussed in detail

in this dissertation, but its effect on simulation of the ATLAS experiment is discussed

in section 1.9.

1.2 Electroweak Symmetry Breaking: The Higgs Mechanism

Electroweak theory developed over many decades, with contributors including

Fermi, Lee and Yang, Feynman, and Gell-Mann, but it was put into its modern form

in the 1960’s by Abdus Salam, Sheldon Glashow and Steven Weinberg. In its unbroken

form, it is based on a U(1) weak hypercharge and SU(2) weak isospin symmetries, to

produce the following Lagrangian, separated into a gauge term and a fermionic term:
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LWS = LG + LF , (1.2)

LG = −1
4
F µν
i F i

µν − 1
4
BµνBµν , (1.3)

LF =
∑

ψL

ψ̄Li /DψL +
∑

ψR

ψ̄Ri /DψR, (1.4)

where F i
µν and Bµν are the SU(2) and U(1) field strengths:

F i
µν = ∂µW

i
ν − ∂νW

i
µ − g2ε

ijkW j
µW

k
ν , (1.5)

Bµν = ∂µBν − ∂νBµ, (1.6)

where Bµ and ~Wµ = (W 1
µ ,W

2
µ ,W

3
µ) represent the weak hypercharge and the weak

isospin fields, and Dµ is the covariant derivative of the theory:

Dµφ = (I(∂µ + i
g1

2
Bµ) + ig2

τ̃

2
· ~Wµ)φ. (1.7)

The covariant derivative is the ordinary derivative modified in such a way as

to make it behave like a true vector operator, so that equations written using the

covariant derivative preserve their physical properties under gauge transformations

defined by the symmetries underlying our theory. The subscripts L and R specify left

and right handed chiralities, as right handed chiral fermions do not couple to weak

isospin. The constants g1 and g2 are the U(1) and SU(2) coupling constants.

The trouble is, that this Lagrangian describes massless gauge bosons, as well as

massless fermions. Even during the development of electroweak theory, the weak

bosons were expected to be massive, due to the weakness of the force, and fermionic

masses had obviously been observed as well. Adding a boson mass term of the form

1
2
MBµB

µ leaves the theory no longer invariant under the gauge symmetries we based

our theory on. This is theoretically distasteful, as the original motivation for this ap-

proach was to describe the electroweak sector using a small number of symmetries; the
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Figure 1.2. The shape of the potential described by equation 1.8, for µ2 > 0 (a),
and µ2 < 0 (b). Image taken from Ref. [3].

original Lagrangian includes terms consistent with the gauge symmetry postulated,

and nothing more.

The typical solution to this conundrum involves the introduction of the Higgs

Mechanism [12], in which a complex scalar field, coupled to our theory, generates a

vacuum expectation value, leading to a ground state which is not symmetric under

our original symmetries, while still preserving the symmetries in the interactions of

the theory. The most general Lagrangian for a complex scalar φ that obeys our gauge

symmetries is the following:

L = (Dµφ)†(Dµφ) − V = (Dµφ)†(Dµφ) − µ2φ†φ− 1
4
(φ†φ) (1.8)

where the first term is a kinetic term, with Dµ is again the covariant derivative.

Figure 1.2 shows the form of the potential V(φ) for µ2 < 0 and µ2 > 0. As can be

seen, for µ2 < 0, φ has a ground state not at zero, and gains a vacuum expectation
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value. If one expands the Lagrangian around this expectation value, to first order,

the following term is observed:

Lm = 1
2
VµM

2V µ, (1.9)

where Vµ is the vector of the boson fields for isospin and hypercharge Vµ ≡ (W 1
µ ,W

2
µ ,W

3
µ , Bµ),

and M2 is a matrix which can be interpreted as the masses of those fields, with the

following terms:

M2 =
v2

4



















g2
2 0 0 0

0 g2
2 0 0

0 0 g2
2 −g1g2

0 0 −g1g2 g2
1



















(1.10)

When this mass matrix is diagonalized, it produces a massless electromagnetic boson,

and 3 massive weak bosons, as are observed in nature. This mixing of the bosons

produces different masses for the W± and Z electroweak bosons:

MW =
v

2
g2, MZ =

v

2

√

g2
1 + g2

2. (1.11)

The mixing between isospin and hypercharge sectors can be thought of as a rotation

of angle θW , which is an important input parameter to the Standard Model, and

defines the ratio of boson masses:

tan θW =
g1

g2

, cos θW =
MW

MZ

. (1.12)

In the Standard Model masses for the leptons and quarks are also produced by cou-

pling to the Higgs Field φ.
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Figure 1.3. Charged (left) and neutral (right) weak interaction Feynman diagrams.

1.3 Parity and Electroweak Interactions

While not all fermions have electromagnetic charge, all of them participate in

weak interactions. Figure 1.3 shows the basic charged (W ) and neutral (Z) weak

interactions for leptons. In leptonic interactions, lepton number is conserved for each

generation, where each neutrino carries the same lepton number as its corresponding

muon/electron/tau. A muon cannot simply decay into an electron and a Z boson.

In the 1950’s, the weak interaction was initially assumed to conserve parity, which

is equivalent to the invariance of the theory under spatial inversion. This inversion

switches the spin direction of all particles in an interaction. At this time the strong

and electromagnetic forces had been found to obey parity symmetries, so it was

suspected to be a universal symmetry. However, it was observed in 1956 that the K+

meson decayed to both an even parity state (π+π+π−) and an odd parity state (π+π0),

in violation of parity symmetry (Lee and Mills). Direct experiments on beta decay in

Cobalt-60 by C.S. Wu made a startling discovery. Not only does the weak interaction

violate parity, but it violates it “maximally”. Weak interactions only couple to left

handed fermions (and right handed anti-fermions). This interaction can be described

by the following current (for a muon transitioning to a muon neutrino and a W

boson):

Jµ = ψ̄µγ
µ(1 − γ5)ψν . (1.13)
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The combined symmetry of charge and parity inversion (CP), is much closer to

being a symmetry of the weak interaction, but is violated to a very small degree. CP

violation is very carefully studied, because it is often used to formulate theories by

which a matter/antimatter imbalance could occur in the early universe. Without this

violation, models predict the nearly complete annihilation of matter and antimatter,

leaving only radiation in our present day universe.

1.4 Quark Mixing and CP Violation

It is tempting to assume that weak interactions of quarks would not change fla-

vor, and that each generation of quarks would have its flavor individually conserved.

However, were this true, many observed decays of strange mesons, such as the decay

of the lambda (Λ → p+ + π−) would be forbidden. Instead it turns out that the

quark generations have a different eigenbasis under the weak interaction than they

have in the strong basis. Cabibbo first suggested this solution in 1963, and it was

later applied by Glashow, Illioopoulos and Maiani (GIM) and extended to three quark

generations by Kobayashi and Maskawa (KM).

We now know this mixing matrix as the CKM-matrix (Cabbibo, Kobayashi and

Maskawa):












d′

s′

b′













=













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

























d

s

b













(1.14)

in which the weak force couples the pairs (u,d’), (c,s’), and (t,b’), instead of the

eigenstates of the strong force, where d’,s’ and b’ are the weak eigenstates, and no

prime specifies the physical quarks. This matrix is mostly diagonal, but because off

diagonal elements are not zero, there are transitions between quark generations. The

elements of the CKM matrix are fundamental elements of the Standard Model, and

can only be determined from experiment.
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If two generations of quarks are assumed, the matrix allows no CP violating

phases. At the time of the development of the Standard Model, CP violation had

already been observed in neutral kaon decays in 1964. This observation lead to the

observation in 1973 by Kobayashi and Maskawa that there must be three generations

of quarks[13].

1.5 The Standard Model Lagrange Density

We now have all the pieces to present the full Standard Model Lagrange Density,

after electroweak symmetry breaking and including quark mixing. Fermion/boson

interactions, which were not treated in Section 1.2 are properly included here. The

Higgs field is not included explicitly.

LSM = LDirac + Lmass + Lgauge + Lint. (1.15)

Here,

LDirac = iēiL/∂e
i
L + iν̄iL/∂ν

i
L + iēiR/∂e

i
R + iūiL/∂u

i
L + id̄iL/∂d

i
L + iūiR/∂u

i
R + id̄iR/∂d

i
R; (1.16)

Lmass = −v(λieēiLeiR + λiuū
i
Lu

i
R + λidd̄

i
Ld

i
R + h.c.) −M2

WW
+
µ W

−µ − M2
W

2 cos2 θW
ZµZ

µ;

(1.17)

Lgauge = −1

4
(Ga

µν)
2 − 1

2
W+
µνW

−µν − 1

4
ZµνZ

µν − 1

4
FµνF

µν + LWZA, (1.18)

where

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − g3f

abcAbµA
c
ν (1.19)

W±
µν = ∂µW

±
ν − ∂νW

±
µ (1.20)

Zµν = ∂µZν − ∂νZµ (1.21)

Fµν = ∂µAν − ∂νAµ, (1.22)
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and

Lint = −g3A
a
µJ

µa

(3) − g2(W
+
µ J

µ

W+ +W−
µ J

µ

W−
+ ZµJ

µ
Z) − g1 cos θWAµJ

µ
A. (1.23)

The i denotes generation, with ei representing the field for one of electron/muon/tau.

Similarly ui represents up/charm/top and di represents down/strange/bottom. Re-

peated indices are summed over. The fields Ga
µν , W

±
µν , zµν , and Fµν are those associ-

ated with gluons, W± bosons, Z bosons, and the photon, which are then expressed

in terms of their potentials. The indices a/b/c represent a particular color, with

fabc representing the structure constants for SU(3), and g3 representing the coupling

constant for SU(3) (QCD). The term LWZA includes triple and quadruple gauge field

coupling terms, which are important for higher orders of perturbation theory, but will

not be discussed here.

The interaction term Lint is specified in terms of the following current densities

for each of the gauge fields:

Jµa(3) = ūiγµT a(3)u
i + d̄iγµT a(3)d

i (1.24)

Jµ
W+ =

1√
2
(ν̄iLγ

µeiL + V ijūiLγ
µdjL) (1.25)

Jµ
W−

= (Jµ
W+)∗ (1.26)

JµZ =
1

cos θW
[
1

2
ν̄iLγ

µνiL + (−1

2
+ sin2 θW )ēiLγ

µeiL + (sin2 θW )ēiRγ
µeiR (1.27)

+ (
1

2
− 2

3
sin2 θW )ūiLγ

µuiL + (−2

3
sin2 θW )ūiRγ

µuiR (1.28)

+ (−1

2
+

1

3
sin2 θW )d̄iLγ

µdiL + (
1

3
sin2 θW )d̄iRγ

µdiR] (1.29)

JµA = (−1)ēiγµei + (
2

3
)ūiγµui + (−1

3
)d̄iγµdi. (1.30)

(1.31)
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The matrices T a(3) represent the generators of the SU(3) group. As discussed in the

previous section the Vij are elements of the CKM matrix describing mixing between

different generations of quarks.

1.6 R as a Probe of the Standard Model

Measurement of R can be used to extract useful information about the Standard

Model. The inclusive R measurement can be written as:

R =
σW
σZ

Γ(W → `ν)

Γ(Z → ``)

Γ(Z)

Γ(W )
(1.32)

where Γ refers to decay width/rate, and σ to cross section. The overall cross sec-

tions can be predicted from the boson couplings combined with knowledge of pro-

ton structure. The decay widths of the Z boson have been carefully measured

at LEP [14]. This gives sufficient information to determine the branching ratio

BR(W → `ν) = Γ(W → `ν)/Γ(W ), which also allows an indirect measure of Γ(W ),

using the SM prediction for Γ(W → `ν). The W width depends on the quark cou-

plings, and can thus provide a constraint on these terms in the CKM Matrix. The

Tevatron has used this method to determine Vcs, which is the least well constrained

matrix element [8]. In addition, precise measurements at the higher energy of the

LHC can potentially provide constraints on Parton Distribution Functions, described

in Section 1.9

1.7 Open Physics Questions in the Standard Model Era

While the Standard Model has predicted experimented results with unprecedented

success, the theory suffers from some perplexing characteristics, for example, the

large unexplained difference between Electroweak Scale and the Gravitational Scale.

As discussed above, the explanation for electroweak symmetry breaking is the most
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important open question in the Standard Model, as the theory is incomplete without

its inclusion. The following are interesting questions that the Standard Model does

not adequately address:

The Hierarchy Problem: Intuitively, one would expect loop corrections to the

Higgs Boson to pull its mass towards the Plank scale, and fine tuning of parameters is

needed to keep that mass at the Electroweak scale. This problem relates to physicists’

desire to find a unified description of known forces and gravity, specifically General

Relativity. A computationally tractable theory that can unify gravity and the Stan-

dard Model has not been achieved, due to difficulties that arise in calculations at

small length scales and high energy densities.

Vacuum Expectation / Cosmological Constant: Computations of the quan-

tum vacuum in quantum field theory predict very large vacuum energy. For theoretical

reasons, this vacuum energy is often identified with the cosmological constant, a term

used to explain the increasing rate of expansion of the universe. This identification

produces a prediction for the vacuum that is many orders of magnitude too small. The

cosmological constant is also termed “Dark Energy” and describes an energy term for

the universe that does not dilute during an expanding universe. The Standard Model

gives no insight into this problem.

Dark Matter: As observed by Zwicky in the mid 1930’s, it has been clear that

the amount of gravitation mass in galaxies, predicted by the movements of their

constituents, does not match the amount of matter predicted from luminous matter

contained in stars, gas and dust [15]. The hypothesis of gravitationally interacting

but non-luminous matter has been termed “Dark Matter”. Even stronger evidence for

this unexplained form of matter has come from gravitational lensing, as dark matter

concentrations can be mapped by their effect of bending the light of distant stars. In

2006, gravitational lensing was used to track a collision of two galaxy clusters in the

Bullet Cluster. The luminous mass in the collision was shown to slow down, while
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the non-luminous matter was observed to pass through without this deceleration [16].

This is considered direct evidence for Dark Matter. Many hypotheses for dark matter

involve new weakly interacting particles that could be produced at particle colliders

such as the LHC. These would observed as unexplained “Missing Energy” in the

detector, which will be explained further in Section 2.3.4.

Other Questions: The Standard Model does not explain why there are three

generations of particles, or why these generations have the same hierarchical structure

for the quark and lepton sectors. It also does not explain why the strong force respects

CP symmetry, while the weak force does not. There is no theoretical explanation in

the Standard Model for the terms of the CKM matrix, the weak mixing angle, or

any of the other free parameters of the model, and many physicists would find it

satisfying to find a deeper physical explanation for their structure. These questions

are especially interesting because the input parameters of the Standard Model affect

both molecular structure and the formation of stars and solar systems, both necessary

for life as we know it. There are also cosmological questions about the observed

imbalance of particles and anti-particles in our universe, which is difficult to explain

with the very small CP violation present in the Standard Model.

1.8 Supersymmetry, and Rjet as a Probe for New Physics

Supersymmetry (SUSY) is a new physics theory that resolves hierarchy/fine-

tuning issues in the Standard Model, and provides a dark matter candidate, as well

as being a necessary component of a number of Grand Unified Theories(GUTs), such

as String Theory. SUSY is defined by an additional symmetry on top of the Standard

Model, specifically between bosonic and fermionic spin states. This symmetry leads

to the existence of a supersymmetric partner for every Standard Model particle, with

all characteristics identical except possessing the opposite type of spin statistics. Due

to the lack of experimental observation of these superpartners, the mass equivalence
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between superpartners must be disrupted by one of a variety of possible symmetry

breaking scenarios. Despite SUSY’s advantages, this symmetry breaking leaves un-

constrained SUSY models with a large number of free parameters. For example, the

Minimal Supersymmetric Standard Model (MSSM), when soft symmetry breaking

terms are included, has 150 free parameters.

Minimal Supergravity, or mSUGRA, is a variety of SUSY in which coupling to

gravity breaks the symmetry between supersymmetric partners. It makes two addi-

tional assumptions: first, soft supersymmetry breaking universality, which is moti-

vated by experimental constraints and requires among other things that no complex

phases are introduced by the symmetry breaking terms. The second is the unification

of forces at the Plank Scale. While these assumptions are only weakly justified, these

constraints reduce the theory to only five free parameters. This provides a useful way

to explore the phenomenology of SUSY without having to explicitly deal with 100’s

of parameters.

mSUGRA is presented here because it is typical of models which could differen-

tially affect W and Z measurement channels. In mSUGRA, as in most realizations of

SUSY, the lightest supersymmetric particle (LSP) must be chargeless, flavorless, and

stable (due to cosmological and other constraints). SUSY events at the LHC would

most likely involve cascade decays of up and down squarks into lighter sparticles (s

signifying a SUSY partner). The second lightest SUSY particle strongly influences

the phenomenology of the event. For example, a light stau could only decay into a

tau and an LSP, which would produce events in the lepton + MET + jets channel

[17]. The proposed measurement could be sensitive to any physics model which has

large jet
∑

|ET | and preferentially produces lepton + MET or dilepton signals, an

additional example being 4th generation quark models [18], though this has been

ruled out by the recent Higgs candidate measurement.
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Figure 1.4. Rjet as function of scalar sum pTof jets, for exactly two jets, shown for
theory, and reconstructed result including SU4 new physics signal. No selection is
made on the boson mass for the W or Z boson.

This section presents a very simple Monte Carlo study to show how new physics

could appear in the Rjet result. This study compares theoretical prediction for Rjet

with an “observed result” containing an SU4 signal, which is a specific set of mSUGRA

parameters representative of a phenomenology with a high branching fraction to lep-

tons. The study examines Rjet for exactly two 30 GeV jets, as a function of the scalar

sum of the pT of the two jets. The “observed result” is corrected back to the theoret-

ical level using a simple bin-by-bin acceptance correction. Only W and Z signal are

included, and no backgrounds are included. Obviously this is an idealized situation,

but gives a flavor of how a deviation in Rjet could appear. The study assumes 200

pb−1 of integrated luminosity at 10 TeVcenter of mass energy.

Two interesting questions present themselves when considering new physics in

Rjet:
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Figure 1.5. Rjet as function of scalar sum pTof jets, for exactly two jets, shown for
theory, and reconstructed result including SU4 new physics signal. An upper limit is
placed on the Z invariant mass, but no upper limit is placed on the transverse mass
of the W .
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Figure 1.6. Rjet as function of scalar sum pTof jets, for exactly two jets, shown for
theory, and reconstructed result including SU4 new physics signal. An upper mass
selection is applied to both the W and the Z boson.

1. If there is a deviation, how do we know it is from new physics, and not mis-

modeling of known physics?

2. Could new physics contribute to both the W and Z channels equally such as to

mask the signal in Rjet?

One tool to elucidate these questions is invariant and transverse mass cuts on

the bosons. Removing low mass events is required to reduce known backgrounds.

Selections rejecting high mass events in practice reduce the contribution from higher

energy processes, serving to cut out new physics. Figure 1.4 shows the Rjet comparison

between theory and observation in the case where no mass cuts are applied to the

bosons. In this case, there is little deviation of Rjet, due to signal presence in both

channels. As shown in figure 1.5, this can be remedied by applying an upper mass

selection on one or the other channel. In these studies, an upper mass selection

signifies restricting either the invariant mass or transverse mass to smaller than 100
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GeV. This strategy can also be used to validate a deviation seen, as if a deviation is

seen in Rjet, if it is really a new physics signal, applying an upper mass selection to

both the W and Z should reduce or eliminate this deviation, as shown in figure 1.6.

1.9 Collider Physics and Monte Carlo Simulation

While a proton can undoubtedly be thought of as a composite of three quarks

(uud), when two protons collide, the process is much more complex than this, due to

the nature of quantum field theory. Quarks are constantly radiating and reabsorbing

virtual particles, affecting the details of both their bound state and their collisions

with other particles. So not only do the valence (uud) quarks play a part in the

collision, but the “sea” of virtual quark/anti-quark pairs (qq̄) and gluons do as well. In

practice this is modeled by “Parton Distribution Functions” (PDFs) which model the

probability that a given “parton” will have a given fraction of the proton momentum.

These PDFs are a function of the momentum transfer in a given collision.

Factorization is the statement that the cross section of deep inelastic scattering

processes can be written as the product of a hard scattering cross section that can be

calculated perturbatively, and non-perturbative PDFs previously mentioned. Lower

energy internal gluon “ladder terms” are factored with corrections to the PDF, while

higher energy gluon terms contribute to cross section. The cutoff between these two

scales is termed the factorization scale. This and the renormalization scale are taken

as empirical parameters in most simulation programs. For a thorough treatment of

QCD in Deep Inelastic Scattering, including renormalization and theoretical tech-

niques associated with the “Improved Parton Model”, see Ref. [19].

Two main programs can be used by ATLAS to generate PDF sets: mstw (formerly

mrst) [20] and cteq [21]. These programs can both model the proton structure at

1st, 2nd and 3rd order in perturbation theory. These structures cannot be predicted
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from first principles, but instead are tuned based on data from deep inelastic scattering

experiments, as well as hadronic colliders such as the Tevatron and the LHC.

A proton-proton collision event is a very chaotic interaction. While the hard

scatter between two (or more) partons produces many of the high momentum objects

in a collision, modeling physics processes correctly requires understanding all of the

following aspects of particle collisions:

1. A hard scatter occurs between two of the partons in the collision, as determined

by their PDFs. Matrix elements are used to predict the cross section for a num-

ber of Feynman diagrams to a given order, such as leading order (LO) or to

next to leading order (NLO). Parton showering algorithms are often used to ap-

proximate the production of complex states that the matrix element calculation

does not include. In these cases, some type of matching or combination must

be performed between the matrix element and parton shower results.

2. If a short lived particle such as a W or Z boson is produced, conservation of

quantum numbers (such as spin correlations) must be preserved in the transition

from the production process to the decay stages.

3. Initial State Radiation (ISR): As a collision implies accelerated color and elec-

tromagnetic charges, Bremsstrahlung (deceleration radiation) can occur. This

process cannot be predicted from first principles, but can be approximated by

parton shower algorithms.

4. Final State Radiation (FSR): Interactions of outgoing particles can also produce

radiation, also often modeled using parton showers. ISR is typically modeled

with space-like parton showers, and FSR with time-like parton showers. Often

the distinction between ISR, FSR, and the hard scattering process is ambiguous.

5. Multiple Collisions: More than one parton pair can collide during a hard scatter,

each with its own ISR and FSR.
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6. Beam Remnants: The partons not involved in the collision carry off the energy

not lost to the hard scatter, mostly undeflected. These remnants also compen-

sate for the color taken away by the outgoing partons.

7. Color Fields: Due to the principle of the asymptotic freedom, shortly after the

collision when partons are close, they can be considered as free particles. How-

ever, as the partons recede from each other, this is no longer true. Because

quantum chromodynamics involve strongly coupled dynamics, we have no com-

putational description of this process based on first principles. Instead a variety

of phenomenological models are used.

8. Hadronization: As a part of this process the potential energy of these fields can

produce new quark anti-quark pairs, which then associate either to the remnants

or collision partons to form baryons and mesons. Two common models for color

interactions and hadronization exist:

• Color String Models: The quarks left after the parton showering are “strung”

together to form colorless states, which can either snap and produce more

quarks or remain as final underlying event particles.

• Cluster Models: Gluons are converted into quark anti-quark or diquark

anti-diquark pairs. The quarks are then grouped into colorless states based

on preconfinment, i.e. states with low mass and low spatial extent are

favored. These colorless groupings then have a series of phenomenological

rules to decay to SM particles.

9. Detector Response: Many of these hadrons are unstable and decay further, but

most do so on a time scale that is observable in our detector, and so at this

point the event generation framework must be linked to a detector simulation,

which models all details of further decay within the detector, and the detector’s
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response. This final step should produce output that can be reconstructed in

an identical way as detector data, to interpret what physical phenomenon was

happening in the given event. The interaction of decay products with detector

is modeled in ATLAS using the Geant4 [22] toolkit.

The Monte Carlo programs used to simulate these processes vary from very general

to very specific. Because of the breadth of the process to be modeled, the more specific

programs are often used as “plug-ins” by the more general programs, in order to for

example treat matrix elements of specific process or model the hadronization process.

The follow generators were used in this thesis:

• Alpgen [23] is the generator mostly widely used for signal samples in this the-

sis, as it uses exact tree level matrix calculations for the hard scattering process

involving a boson plus up to 5 additional partons in the event. Additional par-

tons must be modeled with a showering processes. Alpgen is significant for

its matching procedure, which weights the matrix element with Sudakov form

factors to suppress the result in regions of phase space where parton shower-

ing dominates, as well as employing an explicit veto of parton showering in

regions of phase space covered by the matrix element result. As Alpgen is

a somewhat specialized generator, it does not calculate parton showering and

hadronization, but instead uses Herwig to do so (see below). Jimmy is used

to model multi-parton interactions and the underlying event produced by the

beam remnant[24].

• Sherpa [25] is also used widely in this thesis, primarily as a cross check to

Alpgen, as both generators are tree level generators with the ability to model

the exact matrix elements of multi-parton interactions. A conceptually sim-

ilar matching scheme to Alpgen is used. Sherpa has internal modules for

parton showering, hadronization, and underlying event. Parton showering is
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done using a virtuality-ordered approach (particles farther off shell emit their

radiation first). Hadronization is performed using a phenomenological cluster-

hadronization model.

• BlackHat [26] is a tool kit for providing NLO QCD matrix element calcu-

lations. In our case it is used in conjunction with Sherpa which provides

the showering capabilities and matching scheme. BlackHat+Sherpa is used

in this thesis for our best theoretical prediction of Rjet distributions, as they

include one loop theoretical contributions (NLO), and include less tunable pa-

rameters, due to not relying on showering algorithms. These predictions are

only provided at born level (before radiation and hadronization). As described

later in Section 3.11, Alpgen is used to calculate the small correction factors

to take these effects into account and allow comparison to our measured result.

• Pythia [27] is a general event generator package that handles all hard scatter-

ing at leading-order, as well as computes parton showering and hadronization.

For W and Z production, it uses matrix element calculation for the computa-

tion of the boson plus up to one additional parton in the event. Pythia uses

parton showering for addition jet hadronic states. For this reason, Pythia is

not used for the predictions of this thesis, but is mentioned because of its use

in performance studies to determine quantities such as trigger and muon re-

construction efficiencies. For its showering, a momentum-ordered approach is

used (gluons and photons are emitted with softer and softer momentum as the

shower evolves).

Pythia uses a string model for hadronization. While Pythia also handles

ISR and FSR, for Drell Yan processes at ATLAS, FSR of photons is handled

by a separate package photos [28], which implements all leading-order QED

radiative corrections to Z/γ∗ decays.
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• The Herwig (Hadron Emission Reactions With Interfering Gluons) package [29]

is also a full event generator. The parton showering proceeds with an angular

ordering (this is similar but not identical to pT ordering, as higher momentum

radiation tends to be emitted at a larger angle).

• The Jimmy [24] package describes multi-parton interactions using cluster parton

showering.

• mc@nlo [30] generates hard scatters to NLO accuracy. The kinematic infor-

mation from the hard scatter is then fed to the Herwig program.

Further details of the simulation samples used in this thesis will be discussed in

Chapter 3.
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CHAPTER 2

THE ATLAS EXPERIMENT AT THE LHC

The Large Hadron Collider (LHC) [31, 32] is a synchrotron accelerator and hadron

collider operated by the European Organization for Nuclear Research (CERN). It is

the first collider to explore physics at the TeV scale, and has been producing proton-

proton collisions at a center of mass energy (
√
s) of 7 TeV in 2010-2011 and 8 TeV in

2012, with an ultimate design energy of
√
s = 14 TeV. The primary goals of the LHC

include Standard Model (SM) measurements, searches for the Higgs Boson to explain

Electroweak Symmetry Breaking, and searches for other novel physics motivated by

questions not addressed by the SM. The LHC also has a program of lead ion collisions

central to its mission but not discussed in this thesis. Four major experiments are

located along the LHC beam pipe: ATLAS (A Large Toroidal LHC ApparatuS) [33]

and CMS (Compact Muon Solenoid) are all-purpose detectors designed to be used for

a wide variety of SM measurements and new physics searches. ALICE (A Large Ion

Collision Experiment) is a detector designed to examine heavy ion collisions (pb-pb),

in order to study strongly interacting states of matter, most notably the quark-gluon

plasma. LHCb is a B-physics experiment studying CP-violation in the quark sector.

2.1 The Large Hadron Collider

The LHC synchrotron is located in the 26.7 km circumference tunnel formerly

used for the Large Electron Positron Collider (LEP) [34], housed in CERNs accel-

erator complex located at the Swiss-French border near Geneva [35] (Fig.2.1). The

acceleration is performed in several stages. Hydrogen atoms are ionized and the
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Figure 2.1. The CERN accelerator complex.

protons are separated using a duoplasmatron [36]. These protons are accelerated,

first using a linear accelerator and then they are injected sequentially into two syn-

chrotrons: the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS).

In the SPS the protons are accelerated to an energy of 450 GeV before they are in-

jected into the LHC ring, where the acceleration continues until the protons reach

their final energy (3.5 TeV for 2011 running). The beam line is equipped with 1232

superconducting dipole bending magnets each generating an 8 Tesla magnetic field.

Hundreds of additional magnets are installed to focus the beam.

The two proton beams collide at four interaction points along the LHC beam

line. The beams are produced with a bunch structure. Typical beam parameters for

the end of 2011 running are 1033 bunches with a 50 ns spacing between bunches.
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Figure 2.2. Cumulative luminosity versus day delivered to (green), and recorded by
ATLAS (yellow) during stable beams and for pp collisions at 7 TeV center-of-mass
energy in 2011. The delivered luminosity accounts for the luminosity delivered from
the start of stable beams until the LHC requests ATLAS to turn the sensitive detector
off to allow a beam dump or beam studies. Given is the luminosity as determined
from counting rates measured by the luminosity detectors.

The peak stable luminosity achieved by the LHC in 2011 was 3.65×1033 cm−2s−1.

It takes several hours to ramp up the energy of the proton beam, and the beam

is stored for roughly a day (called a fill), until the beam becomes unstable, or the

luminosity decays due to collisions and other escaping particles. Figure 2.2 shows

the integrated luminosity as a function of time in 2011. The regions of this plot that

are not increasing show experiment down-time. The plot also shows the increasing

luminosity over the course of 2011, due to improvements, including increasing the

number of bunches and number of protons per bunch.
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2.2 The ATLAS Detector

The ATLAS detector1 consists of a super-conducting solenoid surrounding a track-

ing spectrometer and vertexing detector (Inner Detector or ID), electromagnetic and

hadronic calorimeters, and three large super-conducting toroids arranged with an

eight-fold azimuthal symmetry providing the magnetic field for the large outer Muon

Spectrometer. The Inner Detector is composed of pixel detectors and a silicon micro-

strip tracker (SCT), covering |η| < 2.5, and a straw-tube Transition Radiation Tracker

(TRT) covering |η| < 2.0. The electromagnetic (EM) calorimeter provides electron

identification and uses lead absorber plates and an active liquid argon presampler.

The hadronic calorimeter is based on scintillating tiles in the barrel, and liquid argon

in the endcaps, and together with the electromagnetic calorimeter provides a mea-

surement of jet energy. The Muon Spectrometer provides muon identification and

momentum measurement, particularly at high pT , and is composed of 3 layers of pre-

cision chambers (Monitored Drift Tubes, supplemented by Cathode Strip Chambers

in the forward region), and trigger chambers (Thin Gap Chambers in the endcap and

Resistive Plate Chambers in the barrel).

A full description of the ATLAS and its material specifications can be found in

Ref. [37]. Expected performance can be found in Ref. [38].

2.2.1 Inner Detector

Surrounding the beam-pipe, the Inner Detector is designed to provide pattern

recognition, momentum measurements for charged tracks, and reconstruction of pri-

mary and secondary vertices. Due to the high interaction rate, the time resolution of

1The ATLAS detector uses a cylindrical coordinate system with the z axis along the beam pipe.

The transverse momentum pT =
√

p2
x + p2

y, and the pseudorapidity η = − ln(tan θ
2
) are used by

particle physicists to describe kinematics due to their behavior under Lorentz boosts along the
beamline (pT is invariant and η is additive). θ is the azimuthal angle measured from the z axis.
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Figure 2.3. Cutout showing the ATLAS Inner Detector and its components.

the detector is required to be smaller than 25 ns to reduce the number of tracks not

from the primary interaction.

Figure 2.3 shows a cutout of the ATLAS Inner Detector. The ID consists of three

independent sub-detectors, as is emphasized in Figure 2.4. Closest to the beam-pipe,

high resolution pattern recognition is provided by the discrete space point measure-

ments of the Pixel detector and from stereo pairs made by silicon microstrips (SCT)

just outside of the pixels. The TRT, located at larger radii, is a gaseous straw tube

tracker with many layers of tubes. It provides an average of 36 measurements per

track, continuous tracking over the range |η| < 2.0, and electron identification in-

formation complimentary to that provided by the ATLAS calorimeter system. The

entire system is enclosed in a solenoidal magnet providing a nominal field strength of 2

Tesla. The design momentum resolution for most tracks is ∆pT/pT = 0.04%×pT⊕2%

(pT in GeV) and an impact parameter resolution of 15 microns in the transverse plane.

The pixel detector is situated directly around the beam pipe. It has three layers

of which the first pixel layer is positioned at a radius of 4cm. The total system has 80
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Figure 2.4. Diagram illustrating the 3 tracker technologies passed by a charged
track of 10GeV pT in the barrel Inner Detector (η=0.3).

million pixels, each 50 µm in the r−φ plane and 400 µm along the z-axis. The three

track measurements determine the impact parameter resolution and are vital for ID

pattern recognition. The barrel SCT consists of four double layers of silicon strip

detectors with a strip pitch of 80 µm providing four accurate measurements in the

r − φ plane. The SCT end-caps both contain nine disks equipped with double layers

of silicon strip detectors. The strips are pointing towards the beam axis providing a

measurement in the r − φ plane. A small stereo angle between the strips in different

layers makes it possible to measure the 3rd coordinate of the hit.

The TRT was designed to achieve the balance between cost and performance,

providing a large number of space point measurements at low cost. This is achieved

by using Polyimide drift straws with a diameter of 4 mm and a maximum length of

150 cm. In the barrel the straws are oriented parallel to the beam axis providing

a measurement in the bending plane of the magnetic field. Following the design of

the SCT, the straws in the end-cap are pointing towards the beam axis. The TRT

can also detect transition radiation occurring when a relativistic particle crosses the
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boundary between two media with different electrical properties. The number of

transition radiation hits is a measure for the velocity of a particle. This allows the

separation of electrons and pions, and to a lesser extent the separation of kaons and

pions.

2.2.2 Calorimeters

The ATLAS calorimeter system consists of an electromagnetic calorimeter de-

signed to measure the energy of electrons and photons, located just outside of the

solenoid, and just outside of this, a hadronic calorimeter designed to absorb the re-

maining energy from strongly interacting particles (excluding muons). In the far

forward region, a radiation hard calorimeter is used, due to the large amount of par-

ticles produced near the beamline. This forward calorimeter has a coarser granularity.

The accordion shape of the calorimeter system provides continuous azimuthal cover-

age. The total thickness of the electromagnetic calorimeter is more than 24 radiation

lengths in the barrel and more than 26 radiation lengths in the end-cap. In addition

to providing good containment for showers, this serves to limit other charged parti-

cles passing through to the muon system, which would otherwise be a source of fake

muons. This excellent coverage also allows us to use conservation of momentum to

reconstruct an addition variable, the Missing Transverse Momentum or Emiss
T , which

is necessary to provide evidence for the presence of non-interacting particles. This

variable is defined and described in Section 2.3.4.

The calorimeter system is shown in Figure 2.5. The EM calorimeter is divided into

a barrel portion (from |η| < 1.475) and an endcap portion (from 1.375 < |η| < 3.2).

It is a lead-LAr detector with accordion-shaped kapton electrodes and lead absorber

plates over its entire coverage. The calorimeter is segmented into 3 sections in depth

over the region with Inner Detector coverage, where precision measurements can be

made (|η| < 2.5), and 2 sections over the rest of the detector. The lateral sections are

37



Figure 2.5. Diagram showing a cut out of the ATLAS Calorimeter system, including
the electromagnetic, hadronic, and forward calorimeters.

projective in η and φ, and have finer granularity in the precision region. The typical

energy resolution is ∆E/E = 11.5%/
√
E ⊕ 0.5% (E in GeV), the resolution on the

polar direction of a shower is δφ = 50 mrad/
√
E (E in GeV).

The hadronic calorimeters use three different technologies for the barrel, endcap,

and forward region. The barrel is covered by a tile calorimeter immediately outside

of the EM calorimeter. It has two disconnected sections, barrel (|η| < 1.0), and

extended barrel (|η| < 1.7). The tile calorimeter is a sampling calorimeter using steel

as the absorber and scintillating tiles used for the active material. The calorimeter

is segmented in three sections in depth and azimuthally into 64 modules, and is 0.97

meters thick, which corresponds to 9.7 interaction lengths at η = 0.

The hadronic endcap calorimeter is a LAr detector with copper plates as the

absorber. It consists of two wheels per endcap, and overlaps with both the endcap

and forward calorimeters (1.5 < |η| < 3.2). Each wheel has 32 wedge shaped modules,

38



and two sections in depth.The average jet energy resolution (over the whole detector)

is ∆E/E = 50%/
√
E ⊕ 3% (E in GeV).

The forward calorimeter uses a high density design due to space and other con-

straints. It consists of a copper layer optimized for electromagnetic measurements,

and two tungsten layers for measuring hadronic interactions. It covers the following

range: 3.1 < |η| < 4.75, and is approximately 10 radiation lengths.

2.2.3 Muon Spectrometer

The Muon Spectrometer (MS) is the outermost portion of the ATLAS detector,

and also the largest. It is designed to measure charged particles exiting the calorime-

ter, the vast majority of which will be muons, due to their large mass, lack of hadronic

interactions, and relative stability, which cause them to typically lose only a small

amount of ionization energy in the calorimeter systems. The MS is capable of stan-

dalone momentum measurement of charged tracks over the range |η| < 2.7, and is

capable of triggering on these tracks for |η| < 2.4. A specific design goal of AT-

LAS is to be able to measure the transverse momentum of 1 TeV muon tracks with

a resolution of approximately 10%. Given the average magnetic field strength, this

corresponds to a sagitta (defined as the depth of an arc) of approximately 500 µm,

therefore requiring a sagittal resolution of ≤ 50 µm. Muon momentum can be mea-

sured down to about 3 GeV by the spectrometer independently, this limitation due

to energy loss in the calorimeter.

The Muon Spectrometer is shown in Figure 2.6.The barrel tracking chambers are

located on and between the eight coils of the toroidal magnet system. The muon

system as a whole has an eight fold φ symmetry, matching that of the toroid. Each

octant is subdivided azimuthally into 2 sections, a small and large sector, with some

overlap region in φ, minimizing gaps in detector coverage. The barrel has 3 cylindrical

layers of chambers at radii of approximately 5 m, 7.5 m, 10 m. There is a gap in
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Figure 2.6. Diagrammatic cut out of the ATLAS Muon Spectrometer.
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Figure 2.7. Schematic of a muon drift tube.

acceptance at |η| ≈ 0, left open for services to the solenoid, calorimeter and Inner

Detector. In the endcap, the chambers are placed on large wheels orthogonal to the

z-axis, at roughly 7.4 m, 10.8 m, 14 m, and 21.5 m.

The precision momentum measurement is primarily performed by Monitored Drift

Tube (MDT) chambers, consisting of pressurized drift tubes with a radius of about

3 cm, operating with Ar/CO2 gas (93/7) at a pressure of 3 bar (Fig. 2.7). Ionization

from passing muons is collected at a central tungsten-rhenium wire, held at a potential

of 3080 V. Each chamber consists of 3 to 8 layers of drift tubes. The MDTs achieve

an average resolution of 80 µm per tube, or roughly 35 µm per chamber. The MDT

chambers have the advantage of mechanical precision and robustness, because a tube

failure does not affect the operation of the other tubes.

The measured pulse spectrum of of the collected ionization is measured each time

a tube is read out, as shown in Figure 2.8. The key characteristic of this distribution

is the time of the leading edge, often called the drift time. The figure also shows a

typical relationship between the drift time and distance of closest approach of the

anode of the MDT. This relationship is not found during the reconstruction of an
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Figure 2.8. A typical MDT measured pulse spectrum (left) and space-time (r-t)
relationship for MDT chambers (right).

event, but rather for each chamber using an iterative calibration procedure that uses

straight muon tracks as input.

In the forward region 2.0 < |η| < 2.7 the most inner precision tracking layer is

made up of Cathode-Strip Chambers (CSC). These have higher rate capability and

time resolution than the MDTs, and are therefore well suited to the high activity

region near the beamline. The CSCs are multi-wire proportional chambers capable

of measuring both coordinates from the induced charge distribution. CSC resolution

is 40 µm in the bending plane, and about 5mm non-bending plane.

The design goals of ATLAS require the locations of the MDT and CSC chambers

along a muon track to be known better than 30 µm. In order to achieve this, an

optical alignment system is used to monitor the positions and deformations of the

precision chambers. This is complemented by track-based alignment algorithms that

are used to provide independent confirmation of proper alignment.

The capability to trigger on muon tracks is provided by a system of fast trigger

chambers capable of relaying track information within 20 ns of a particles passage.

Resistive Plate Chambers (RPC) are used in the barrel region (|η| < 1.05), and Thin
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Figure 2.9. Schematic drawing of the muon trigger system.

Gap Chambers (TGC) are used in the endcap (1.05 < |η| < 2.4). The TGCs (RPCs)

have an intrinsic time resolution of 4 ns (1.5 ns). Design of these chambers require

the signal propagation and electronics times to also be small in order for reliable

beam-crossing identification with greater than 99% probability. Both chamber types

provide this, delivering signals with a spread of 15-25 ns. In addition to triggering,

each trigger chamber measures both coordinates of the track, one in the bending

(η) plane, and the other in the non-bending (φ) plane. The MDTs only measure

the coordinate of the track in the bending plane, and therefore the trigger chambers

coordinate is used as the second coordinate of the MDT measurement.

The RPC trigger chambers exist in three layers, as shown in Figure 2.9: two

sandwiching the middle layer of MDT chambers, and one placed on the outer MDT

chambers. The large lever arm between the inner and outer RPCs allows triggering

on tracks with small curvature (high pT trigger: 9-35 GeV). The two inner chambers
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provide for the low pT trigger: 6-9 GeV. The three chambers also allow redundancy,

which allows for the rejection of fake tracks from noise hits. The RPC is a gaseous

parallel electrode-plate detector. The two resistive plates spaced at a distance of

2mm, and the field of 4.9 kV/mm allows avalanches to form towards the anode, along

the muon tracks. The gas used is a mixture of C2H2F4/Iso-C4H10/SF6 (94.7/5/0.3).

The endcap has different trigger requirements than the barrel. Physics analysis

requires a trigger on pT, but the Muon Spectrometer measures the momentum. Cor-

respondingly, p is about 5.8 times larger than pT at |η| < 2.4, but the integrated field

strength is only about twice the value at |η| = 0. This requires an increased and η

dependent granularity in the endcap. Other challenges of the endcap trigger system

include higher rate and a complex field structure in the transition region. For all

these reasons a different technology was selected in the endcap (TGCs). The middle

layer of MDTs is accompanied by 7 layers of TGCs, while the inner layer only has

two TGC layers. Thin Gap Chambers operate on the same principle as multiple-wire

proportional chambers and have high rate capability and adjustable spatial resolution

(based on the readout channel granularity). The TGCs use a highly quenching gas

mixture of CO2 and n-C5H12 (n-pentane).

The air-core magnet concept of the Muon Spectrometer minimizes the amount of

material traversed by muon tracks after their exit from the calorimeters. However,

the muons must also pass other materials, such as support structures, vacuum vessels,

the toroid coils, and the muon chambers themselves. Figure 2.10 shows the material

distribution that the muon tracks cross as a function of η and φ. As shown in the

figure, there is a large increase in the radiative thickness above |η| ≈ 1.4. This is due

to the heavy mechanical structure of the endcap toroid, and the fact that the tracking

chambers and toroid have separate support structures in the endcap.
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Figure 2.10. Number of radiation lengths of material passed by a straight muon
track after exiting the calorimeter system.

2.2.4 Trigger, Data Acquisition, and Data Quality

The bunch crossing rate in 2011 was 20 MHz, and each event recorded produces

approximately 1.5 MB of data. Given this preponderance of data, and the fact that

the processes of interest occur at a much lower rate, it is unrealistic and unnecessary

to write every ATLAS event to disk. ATLAS uses a three level trigger and data

acquisition system to select events of interest and reduce the amount of data written

to disk.

The first level (L1) is a purely hardware based trigger system. This level of

event selection must be very fast in order to resolve events in time with the current

bunch crossing. Each bunch crossing has a design separation of 25 ns, and a trigger

decision must be made within 2.5 µs in order to achieve the necessary data reduction.

The L1 trigger uses a subset of detector elements to look for simple signatures such

as tracks with small curvature indicating a high momentum particle. The Central

Trigger Processor (CPT) organizes this information and defines one or more Regions

of Interest (ROI). This selection reduces the data stream from a rate of 20 MHz to

70 kHZ. This data is then passed to temporary data buffers and processed by the
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next two trigger layers, level two (L2), and the event filter (EF). These two trigger

selections are software based and collectively make up the High Level Trigger (HLT).

The L2 trigger is seeded by the regions of interests defined by the L1 trigger,

and uses all detector information within this region. Simplified reconstruction and

selection is performed on these objects, and the rate is further reduced from 100 kHz

to 3 kHz. Finally the EF performs full reconstruction on the remaining events, using

the same algorithms as the offline reconstruction, and the rate is further reduced to

roughly 200-400 Hz.

A large number of trigger selections (triggers) are defined to select different physics

signatures (muons, displaced vertices, Emiss
T ). Many of these processes are useful, but

occur at a rate that would overwhelm the data acquisition system. In this case, the

trigger corresponding to that process is prescaled, meaning that a certain proportion

of the events passing the trigger are not passed on to the next stage of data acquisition.

Selected events are written to tape where they are stored by run number, a run

being defined by a single fill and lasting approximately one day, and by Lumi Block

(LB) which are divisions based on time varying from run to run, roughly 2 minutes

long for current running. This data is separated by physics event streams based on

different object signatures. Conditions and data quality information are also stored

for each Lumi Block in a separate database.

For physics studies it is critical that the detector conditions be optimal, stable,

and well understood. Data quality flags are defined based on whether the detector was

capable of reading out (electronics, power-supplies, gas systems, etc. were functional),

and based on the results of an online data monitoring framework which compares a

number of data quality histograms to expected distributions. These quality criteria

are defined per Lumi Block, and are used to define “Good Run Lists” that define a

baseline of acceptable data for a particular analysis or working group. Data quality

requirements for this thesis are listed below:

46



• General: The ATLAS data has been evaluated and approved by the Data Qual-

ity group, the currents in the solenoid and toroid magnets are stable (and non-

zero), and the luminosity and forward detectors are operational and give reliable

luminosity measurements. A reliable beam spot measurement is also required.

• Muon Spectrometer: Each section of the MDT, RPC and TGC chambers must

have more than 90% of the system with High Voltage on and be collecting data.

There also must be at least 3 of 4 layers taking good quality data in all CSC

chambers.

• Inner Detector: The Pixel, SCT and TRT detectors are operating correctly,

there are no known problems with the data, software-level tracking is OK and

there are no synchronization or timing problems in the ID detector.

• Calorimeters: The EM and hadronic calorimeters are functional and reading

out, and the data and calibration are in agreement with the current under-

standing of the detector. The hadronic calorimeter must be timed in to within

2 bunch crossings, and no more 3 consecutive modules may be out of data

taking.

• Trigger: Muon triggers in both the barrel and the endcap have been on and

running with reasonable efficiency, and there were no timing, consistency, syn-

chronization or data problems.

• Muon Reconstruction: The software algorithms Staco and Muid were running

without problems.

• Jet/Emiss
T Reconstruction: Jets and Emiss

T variables must have smooth eta/phi

distributions (no unexpected peaks or depleted regions), no excess of events

with high pT jets or excessive Emiss
T , and reasonable symmetry in phi and in

positive/negative eta regions.
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2.3 Object Definitions and Reconstruction

This section describes the reconstruction of muons, electrons, jets, and Emiss
T in

collision events and how these objects are defined in this analysis. The Athena soft-

ware framework is used by ATLAS to simulate, digitize, and reconstruct collision

events, as well as for final physics analysis tools. This framework is coded in C++

and configured by python scripts. Release 17 of the framework was used for the

majority of this analysis.

2.3.1 Electron Reconstruction

Electron candidates are reconstructed by associating an EM calorimeter energy

deposit with a track in the Inner Detector. Energy deposits are first formed into

clusters using the “Sliding Window Clustering” method. First, the EM calorimeter is

divided into a grid of “towers” which are small rectangular divisions in η and φ. For

each tower, the energy of the cells is summed across all longitudinal layers. Then a

window of set size in η and φ is shifted across this grid of towers. When the summed

energy in these towers is above some threshold, a seed is formed. Cluster seeds then

undergo overlap removal and their center is calculated. Then the final cluster is

defined by a set size centered around the seed center, in our case clusters are 3 x 7

towers in η × φ.

These clusters are then used to seed the track matching procedure. For each

cluster, tracks with track parameters at the interaction point (IP) nearby the cluster

position (0.05 in η, 0.1 in φ), are loosely associated with the cluster. These tracks are

then extrapolated to the 2nd calorimeter sampling depth and ∆R =
√

(∆η)2 + (∆φ)2

is calculated between the cluster and the track. The track with the smallest ∆R is

matched to the cluster.

Electron candidates are distinguished from hadronic energy deposits through a

number of selection criteria. Electromagnetic showers, as compared to hadronic show-
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ers, are expected to have different distributions in the calorimeter system. Electron

candidates are required to satisfy lateral shower containment, shape and width cri-

teria, and minimal leakage into the hadronic calorimeter in order to be classified as

“medium”. In addition, medium electrons must pass the following hit criteria:

• at least nine precision hits (Pixel+SCT),

• at least two hits in the pixel layers, one of the hits being in the b-layer,

• a transverse impact parameter |d0| < 0.1 cm.

The impact parameter d0 is the transverse distance of the ID track from the “pri-

mary vertex” of the hard scatter. Primary vertices are reconstructed by extrapolating

all tracks to the interaction point, and fitting them to a single vertex. If multiple ver-

tices are reconstructed, the one with the largest scalar sum pT is associated with the

hard scattering process. The lateral impact parameter z0 is determined in the same

manner.

Consistency between track pT and cluster energy, as well as tighter hit require-

ments are additionally required to categorize an electron as “tight”. Electrons of many

interesting physical processes are also expected to be isolated from other hadronic

activity, however, this criterion is highly dependent on the physics channel being

investigated. In this analysis isolation was not required at the electron definition

level.

The electron energy is defined by the calorimeter cluster energy, which is more

precise at higher energies. The electron direction is given by the track parameters,

as the Inner Detector provides much better spatial resolution. In the case of a track

with fewer than 4 Silicon hits (pixel and/or SCT) the cluster η and φ are used for

the electron, as the TRT detector does not provide adequate angular information.

Cluster η is also used to bin all corrections involving the calorimeter: identification

efficiency, scale corrections, and rejection of regions with dead sensors.
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2.3.2 Muon Reconstruction

Two families of muon reconstruction algorithms exist for the ATLAS collabora-

tion, and there is currently a central effort to merge the best features of the two

algorithms. This thesis uses exclusively muons reconstructed by the Staco algorithm,

and the other algorithm Muid will not be discussed in depth.

The reconstruction of a muon begins by building the precision hits in the Muon

Spectrometer into segments, which are muon paths generally confined to a single muon

chamber. These segments define a position and direction in the precision plane for the

muon as it passes that chamber. These segments (typically three segments/chambers

traversed by the muon) are built into a track and combined with trigger chamber

information, providing information on the second position coordinate. This track is

extrapolated back to the interaction point, taking energy loss in the calorimeter into

account. All track parameters (q/pT, η, φ, d0 and z0) are then expressed with respect

to the primary reconstructed vertex. This track is referred to as a standalone muon,

for which no ID information is used. Standalone muons have excellent reconstruction

efficiency and momentum resolution, but suffer from high fake rates from cosmics,

decay in flight of pions, and other processes.

Combined muons are formed by combining the Muon Spectrometer track with an

Inner Detector track. The muon track is extrapolated to the interaction point, and

matched by ∆R to an Inner Detector track. The track parameters of the combined

muon are calculated using a statistical combination of the track parameters and error

matrices of the ID and MS track. In the case of multiple ID tracks matched to a MS

track, the pair with the lowest match-χ2 is chosen, given by:

χ2 = (P1 − P2)
T (C−1

1 + C−1
2 )−1(P1 − P2), (2.1)

where P1 and P2 are the track parameter vectors, and C1 and C2 are the covariance

matrices of the track parameters for the ID and MS, respectively. A minimum match-
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χ2 requirement is also placed on the final combined muon. Combined muons have

much lower fake rates than standalone muons. The following hit requirements are

also placed on combined muons:

• pixel hits + dead sensors traversed > 1

• SCT hits + dead sensors traversed > 5

• Missing Silicon Hits traversed by track < 3

• A successful TRT extension when within the TRT acceptance.

For the purposes of this analysis, a combined muon as described above is char-

acterized as having “medium” quality. In order for a muon to be considered “tight”

quality, the following further requirements are made on the particles impact param-

eters and isolation from other track activity:

• |d0| /σd0 < 3

• |z0| < 0.1 mm

• ΣpT−cone−0.2/pT < 0.1

Here d0 and z0 are the impact parameters of the ID track with respect to the

primary vertex, and σd0 is the uncertainty of the d0 measurement, due to the un-

certainty of both the track and the vertex. The last selection in the list is a track

isolation cut, as muons from electroweak boson decay will in most cases be isolated

from hadronic activity. Specifically ΣpT−cone−0.2 is the summed transverse momentum

of all ID tracks within a cone of 0.2 in ∆R.

2.3.3 Jet Reconstruction

The goal of jet reconstruction is to turn the signals from the 180,000 calorime-

ter cells read out by the ATLAS detector into “jets”, that is, aggregations of sec-

ondary decay particles roughly corresponding to the existence of original partons
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(gluons/quarks). Calorimeter cells are first grouped by one of two methods. The

tower method uses a projective fixed 2-dimensional grid in η and φ with a grid size

of 0.1. Alternatively, the topological clustering method uses the relationship between

neighboring cells and the significance of their energy content to form clusters that

closely model the actual energy deposition of incident particles. Both of these ap-

proaches can be used as inputs for jet reconstruction. Topological clustering is used

for all jet reconstruction in this thesis.

There are a large number of algorithms available for grouping energy deposits into

jets. The following features are desirable in a jet algorithm:

• The algorithm should work effectively at different levels, for example, using

decay products from a simulation as well as using energy deposits directly from

the detector.

• The number of final state jets and their energies should not be heavily dependent

upon the distribution of soft or collinear particles. Instability of this kind is

related to divergences in higher order perturbative calculations. This is the well

known Infrared Collinear Safe problem (IRC). Examples of algorithms that fail

this requirement include both “fixed cone” and “iterative cone” algorithms.

• Jets should have a somewhat regular shape that is not strongly dependent upon

the distribution of soft particles. Cone algorithms pass this requirement, while

many IRC safe algorithms, such as the kT algorithm [39], suffer from a more

flexible shape.

The anti-kT algorithm has all of these features, and is the default jet reconstruction

algorithm for ATLAS [40]. This algorithm is a sequential recombination algorithm,
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in which particles are recursively combined with the closest particle or “pseudo-jet”

based on a measure of distance defined by the following:

dij = min(k2p
ti , k

2p
tj )

∆2
ij

R2

diB = k2p
ip ,

where ∆2
ij = (yiyj)

2 + (φiφj)
2 and kti, yi and φi are respectively the transverse mo-

mentum, rapidity and azimuth of particle i. The variable R is a free parameter which

corresponds roughly to the preferred radius of the resulting jets, and diB is the dis-

tance to the beam. If the beam is the “closest” object to a pseudo-jet, it is removed

from the list of objects for comparison and defined as a jet. The type of recombi-

nation algorithm is defined by p, for p = 1 we have the inclusive kT algorithm, for

p = 0 we recover the inclusive Cambridge/Aachen algorithm [41], and for p = −1 we

recover our preferred algorithm, anti-kT . The major characteristic of this algorithm

is that soft particles will prefer to cluster with hard particles long before they cluster

with other soft particles, leading to the “soft resilient” boundary we find desirable.

Further description of how the beneficial characteristics of the algorithm follow from

its definition is beyond the scope of this dissertation.

The jets in this thesis use an R value of 0.4.

2.3.4 Emiss
T Reconstruction

Missing Transverse Momentum (Emiss
T ) is calculated as the sum of momenta of

all reconstructed objects, including muons, with an additional term for energy de-

posits unassociated with reconstructed objects. The term has the misleading vari-

able Emiss
T for historical reasons, as for older detectors where the reconstruction of jet

momenta was difficult, and the jet energies were instead used. This quantity, by

conservation of energy and momentum is expected to be zero if we assume all decay

products of the initial hard scatter are reconstructed. Therefore large Emiss
T indicates
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the presence of particles that do not interact with the detector elements, such as

neutrinos or new exotic particles.

The calibration of cell energy weights can be calculated a number of ways:

• H1-style Calibration: In this method, weights are a function of detector region

and energy density, and are optimized using jet events.

• Hadronic Calibration: The weights from the topocluster calibration are used,

and are optimized using single pions. (Section 2.3.3)

• Refined Calibration: Cells are given weights as a function of what reconstructed

objects they are matched to (electrons, photons, jets, etc).

In this study, Refined Calibration is used for Emiss
T , unless otherwise specified.

Noise suppression is applied to the cells by requiring |E| > 2σnoise where σnoise is the

RMS of the noise produced by a particular cell.

The muon portion of the calculation of Emiss
T is calculated primarily from Com-

bined Muons. Calorimeter cells traversed by these muons are removed from the

calculation to avoid double counting. Tagged muons are also included in the range

1.0 < |η| < 1.3 in order to recover efficiency in the transition region between the

barrel and the endcap. Standalone muons are used in the region 2.5 < |η| < 2.7 due

to the fact that the Inner Detector does not cover this region of the detector.
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CHAPTER 3

W/Z +JETS CROSS SECTION RATIO MEASUREMENT

As discussed in the Introduction, this thesis presents a measurement of the cross

section times branching fraction ratio between W and Z bosons:

Rjet =
σWBR(W → `ν)

σZBR(Z → ``)
. (3.1)

This quantity is measured as a function of the following distributions: the number

of selected jets, the pT and rapidity of the 1st, 2nd, 3rd and 4th leading jets, the

scalar sum pT of all selected jets ST =
∑

pTjets, and the scalar sum of all high-pT

selected objects in the event, including leptons, Emiss
T , and jets, referred to as HT . It

is also measured as a function of the following dijet variables: invariant mass, ∆Rjj

and ∆φjj

The measurement of Rjet is done using the 2011 ATLAS pp collision dataset, with

an integrated luminosity of 4.64 fb−1. This data passes the quality selection described

in Section 2.2.4. The measurement is made in two channels: with the boson decaying

to muon(s), and with the boson decaying to electron(s). The thesis presents the

results only for the muon channel, though future publications will include results for

both channels. The relevant equation for determining cross sections is the following:

σ =
N(1 − fb)

Aε
∫

Ldt , (3.2)

where N is the number of events passing event selection, fb is the background fraction,

A is the geometrical and kinematic acceptance of the detector to a W or Z event,
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ε is the overall selection efficiency, which includes both reconstruction and trigger

efficiencies, and efficiencies of selection requirements made to reduce backgrounds.

Finally
∫

Ldt is the integrated luminosity. This equation can be used directly for the

calculation of inclusive cross sections. When measuring a differential distribution such

as Rjet, applying this formula bin-by-bin can produce biased results if the migration

matrix from detector level to hadron level is significantly non-diagonal. This problem

and preferred correction procedures are discussed in Section 3.12.

The description of the measurement begins with the details of simulated samples

used in the analysis in Section 3.1, and the treatment of events overlapping the pri-

mary collision is covered in Section 3.2. Event selection for W/Z events is presented

in Sections 3.3 and 3.4. Electroweak (W ,Z,diboson) and top backgrounds are esti-

mated directly from MC samples, while hadronic backgrounds are estimated from

control samples in the data, due to the large uncertainties on their cross section, as

described in Section 3.6. Trigger and Reconstruction efficiencies for the leptons used

to measure the W/Z bosons are measured using tag-and-probe methods, described in

Sections 3.7 and 3.8. Event level selection efficiencies for W/Z events are determined

from MC, and are corrected using scale factor of measured over simulated efficiency

for both the trigger and the reconstruction.

Scale and resolution corrections to momenta are determined from data for both

jets and leptons. This is described in detail for the muon channel in Sections 3.9 and

for jets in 3.10. Changes in the lepton/jet momenta affect the calculation of Emiss
T ,

and as such, these corrections are propagated to the Emiss
T calculation, as are the

systematic uncertainties on these corrections.

Section 3.11 describes the uncertainties on the theoretical prediction for Rjet at

truth level. Section 3.12 describes the methods we use to determine hadron level cross-

sections from the measured distributions. Section 3.13 summarizes the systematic and

statistical uncertainties involved in the measurement, and Section 3.14 presents the
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final comparison of the unfolded measurements with current theoretical calculations.

Cross checks and control distributions are included in Section 3.5.

3.1 Monte Carlo Samples

Simulated event samples were used to correct signal yields for detector effects, for

some of the background estimates, and for comparison of the results to theoretical

expectations. This section gives the technical specifications of the MC generators

used in this thesis, for a more conceptual description, see Section 1.9.

Signal events (Z → µµ, Z → ee, W → µν, W → eν) are generated using Alp-

gen v2.13 [23] interfaced with Herwig v6.520 [29] for parton shower and fragmenta-

tion into particles and to Jimmy v4.31 [29] to model underlying event contributions,

using the Auet2-CTEQ6L1 tune [42]. For the Alpgen samples, CTEQ61L [43]

parton distribution functions (PDFs) are employed. Signal samples are also generated

with Sherpa v1.4.0 [25], using CTEQ10 [44] PDFs. The program Photos [28] is

used to simulate final state QED radiation in Alpgen and Pythia samples. Sherpa

uses a self designed parton shower algorithm [25]. Both Alpgen and Sherpa signal

samples are generated up to 5 partons.

Background samples from other W/Z final states are generated similarly to the

signal samples, using Alpgen with Herwig and Jimmy with CTEQ61L PDFs,

normalized to NNLO and NLO pQCD predictions, respectively. Top-pair samples are

produced in the same scheme. Single-top events are generated with AcerMC [45],

interfaced with Pythia. Diboson processes (WW , WZ and ZZ) are simulated with

Herwig using the Auet2-LO* tune [42].

The generated samples are passed through a full simulation of the ATLAS detector

and trigger, based on Geant4 [22]. The simulated events are then reconstructed and

analyzed with the same analysis chain as for the data, and the same trigger and event
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selection criteria. Uncertainties on the cross sections are of the order of 5%, except

for tt̄ cross sections, for which the uncertainty is about 10%.

3.2 Pileup

Due to the high luminosity at which the LHC is running, collision events overlap in

time. When an event is triggered by the production of some high pT object, typically

an addition 3-18 collisions are also occurring, each with its own vertex. Nearly all of

the additional collisions are not hard scatters, but very low energy collisions. These

collisions have been studied individually at low luminosity, using a trigger with very

minimal energy requirement, so as not to bias the topology of the collision. These

typical, low energy collisions are as such often termed minimum-bias events. The

additional minimum-bias events overlapping a high pT collision of interest are often

termed pileup.

The luminosity was still evolving at the time the MC samples were produced, so

they are reweighted to produce agreement between the number of interactions in the

MC samples and in the data. The amount of pileup increases with the luminosity,

and as such the pileup increased as the luminosity increased throughout 2011. In

addition, as described in the next section, jets originating from a pileup vertex are

also rejected from the analysis.

3.3 Object Selection

Selected leptons in this thesis will refer specifically to muons and electrons. Lep-

tons are selected if they have pT > 25 (20) GeV for the W (Z) channel, and are within

|η| of 2.4. Electrons are also rejected if they are within a crack in calorimeter coverage

1.37 < |η| < 1.53. Jets are selected if they have pT > 30 GeV and |y| < 4.4. For

unfolding of pT distributions, jets with pT down to 20 GeV are used in order to avoid

edge effects, even though final results are only reported for pT > 30 GeV. Object
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definitions, including lepton quality, are discussed in detail in Section 2.3. Jets are

rejected if they are within ∆R < 0.5 of a selected lepton.

The above selections are also applied at truth level predictions for jets (after

hadronization) and leptons. The truth level leptons are calculated as “dressed” lep-

tons, that is, they are calculated after initial and final state radiation, but with all

photons from the primary collision within a cone of ∆R < 0.1 added to the lepton

momentum 4-vector.

Jets at reconstruction level are also subject to a variety of quality criteria, in

order to remove jets that are likely to be from non-collision backgrounds, or from

noise in calorimeter electronics. These criteria are based on quality information from

individual clusters, shower shape information (for example that the shower should not

be concentrated in a particular layer), and timing information. Jets within |η| < 2.4

are also required to have JV F < 0.75, where JV F is defined as the fraction of energy

from tracks originating at the primary vertex. Jets failing this selection are real jets

of good quality, but are usually from pileup interactions overlapping the primary

collision.

3.4 W/Z Event Selection

Selection ofW and Z events requires a primary vertex consistent with the beamspot

and with at least 3 ID tracks. For runs 180614-185352, a detector element in the

EM calorimeter failed. The affected angular area was roughly −0.1 < η < 1.5 and

−0.9 < φ < −0.5. Events with a jet with pT > 20 GeV within the affected area are

rejected. Events with a jet failing quality criteria within pT > 20 GeV and |η| < 4.5

are also rejected. Single lepton triggers are required to be passed, and the trigger

must be matched to a selected lepton, as described in detail in Section 3.7.

Selection of W events requires exactly one “tight” lepton and no “medium” lep-

tons, as described in Sections 2.3.1 and 2.3.2. In addition the following requirements
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are imposed Emiss
T > 25 GeV and MT > 40 GeV where MT is the transverse mass:

MT =
√

2pµTE
miss
T (1 − cos ∆φ)), where ∆φ is the angle between the Emiss

T vector and

the muon pT vector. At hadron level, these same requirements are made, but with

the Emiss
T replaced by the pT of the neutrino.

Selection of Z events requires two medium electrons in the electron channel, or

one tight muon and one medium muon in the muon channel. Events with additional

medium leptons are rejected. The two selected leptons are required to have opposite

sign charge, and an invariant mass in the range: 66 GeV < |mµ+µ−| < 116 GeV. The

same requirements are made at hadron level.

The full details of W → µν and Z → µµ event selection are shown in Table 3.1.

3.5 Control Plots

Because a variety of MC corrections are performed on the jets, Emiss
T , and leptons

in these studies, a number of cross checks are performed to establish the consistency

of the measurement. The control plots in this section compare the detector level

measurement to the value predicted by the Alpgen simulation. The consistency of

these plots underpins our confidence in the measurement.

Figure 3.1 shows the detector level distributions for Emiss
T and MT in the W chan-

nel, and for mµ+µ− in the Z channel. Figure 3.2 shows the exclusive jet multiplicity at

detector level for each channel, and the experimental systematic uncertainties on this

measurement. Figure 3.3 shows the leading jet pT at detector level for each channel,

and the experimental systematic uncertainties on this measurement.

3.6 Backgrounds

Expected and measured muon channel events for signal and background are shown

in Tables 3.2 and 3.3, as a function of jet multiplicity. For W → µν, Z → µµ is a

relevant background, as a single muon missed due to inefficiency, or because the muon
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Pre-selection
Vertex ≥ 1 good vertex: Ntracks ≥ 3
remove events affected by LAr noise burst and data corruption (larError < 2)

Muon selection
Triggers EF mu18 MG (D-I), EF mu18 MG medium (J-M)
Lepton STACO combined muon

|η| < 2.4
pT > 20 GeV (25 GeV in the W Channel)

Quality B Layer Hits > 0 if track passes through B Layer
(Pixel Hits + Dead Pixel Sensors) > 1
(SCT Hits + Dead SCT Sensors) ≥ 6
(Missed Hits for Pixel/SCT) < 3
with N=(nTRTOutliers + nTRTHits)
if |η| < 1.9 then require N>5 && nTRTOutliers/N < 0.9
if |η| ≥ 1.9 && N>5 then require nTRTOutliers/N < 0.9

Isolation*
∑

pT(IDCone20)/pT < 0.1
Impact par* |d0| /σd0 < 3.0
*Isolation and impact parameter selections only applied to first selected muon.

Z → µµ event selection
W veto no third selected muon
Charge Opposite sign
Invariant Mass 66 < mµ+µ− < 116 GeV

W → µν event selection
Z veto no second selected muon
Emiss

T cleaning no jets from noise or beam halo
Missing energy Emiss

T > 25 GeV
Transverse mass MT > 40 GeV

Table 3.1. Event selection for the muon channel. Quality criterion for Emiss
T cleaning

are described in the text. Muon quality criteria are described further in Section 2.3.2.
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Figure 3.1. Muon channel detector level inclusive selection control plots. W selec-
tion: MT, Emiss

T , Z selection: mµ+µ− .
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Figure 3.2. Muon channel detector level exclusive jet multiplicity Njet in W and Z
selection and its experimental systematic uncertainty breakdown.
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Figure 3.3. Muon channel detector level leading jet transverse momentum in W
and Z selection and its experimental systematic uncertainty breakdown.
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is out of detector acceptance, will lead to fake Emiss
T in the event, as well as a single

lepton signature. This contributes roughly 4% background to W → µν. The multijet

background is dominated by heavy flavor events with decays to real muons, as the

isolation requirement rejects most other events. Multijet backgrounds are at the level

of 20% for one or more jets in the event. For high jet multiplicity, tt̄ is the dominant

background. Top quarks always decay to a W boson and a b quark, so if one of

those decays into leptons and the other to hadrons, four jets remain in the event.

Additional partons in the interaction, and the fact that a jet can be below threshold

lead top backgrounds to be significant for 3 or more jets.

Njet = 0 Njet = 1 Njet = 2 Njet = 3

W → µν 12118355 ± 659045 1370809 ± 109854 296325 ± 28034 59594 ± 7011

Z → µµ 445188 ± 24295 56014 ± 4712 12321 ± 1247 2593 ± 330

Tau, Diboson 263359 ± 13933 46015 ± 2805 13051 ± 1063 2885 ± 349

Top 1040 ± 143 6251 ± 573 15693 ± 1088 18798 ± 1355

Multijet (W) 548635 ± 1374 245664 ± 756 52434 ± 317 12537 ± 147

Total Predicted 13376577 ± 665426 1724753 ± 113996 389824 ± 29254 96407 ± 7636

Data Observed 12997597 1702937 389751 96021

Njet = 4 Njet = 5 Njet = 6 Njet = 7

W → µν 12137 ± 1791 2417 ± 425 452 ± 96 83 ± 17

Z → µµ 539 ± 85 109 ± 20 21.4 ± 4.8 3.3 ± 1.1

Tau, Diboson 583 ± 95 102 ± 19 15.2 ± 6.8 2.2 ± 1.3

Top 13009 ± 1192 5730 ± 690 1969 ± 310 540 ± 93

Multijet (W) 3189 ± 72 737 ± 34 185 ± 17 55.1 ± 9.2

Total Predicted 29456 ± 2694 9095 ± 1054 2642 ± 400 684 ± 107

Data Observed 29176 8902 2523 645

Table 3.2. Number of events expected from Monte Carlo simulation and observed
in data for several exclusive jet multiplicities for the W → µν selection. Multijet
predictions are from a data-driven estimation, as described in section 3.6.1. The
errors listed are the combined statistical and systematic uncertainties as described in
Sections 3.6 to 3.10.

For the Z → µµ channel, the backgrounds are very small, due to the requirement of

two combined muons. Z → ττ and diboson (WW ,WZ,ZZ) backgrounds contribute

a small but measurable background, around 1% and decreasing with jet multiplicity.
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Njet = 0 Njet = 1 Njet = 2 Njet = 3

Z → µµ 1365225 ± 70841 189596 ± 14029 41526 ± 3860 8508 ± 1004

W → µν 545 ± 46 242 ± 20 85 ± 11 20.7 ± 4.8

Tau, Diboson 1791 ± 75 1091 ± 45 579 ± 42 133 ± 15

Top 102 ± 13 613 ± 60 1027 ± 84 629 ± 53

Multijet (Z) 4632 ± 36 1060 ± 13 414.7 ± 8.9 78.8 ± 3.2

Total Predicted 1372295 ± 70858 192601 ± 14005 43633 ± 3887 9370 ± 1036

Data Observed 1412518 200935 44917 9758

Njet = 4 Njet = 5 Njet = 6 Njet = 7

Z → µµ 1688 ± 250 322 ± 56 56 ± 12 9.5 ± 3.0

W → µν 4.9 ± 1.7 0.99 ± 0.33 0.66 ± 0.54 0.00 ± 0.00

Tau, Diboson 23.3 ± 3.3 3.81 ± 0.88 0.31 ± 0.16 0.24 ± 0.13

Top 271 ± 30 88 ± 12 21.5 ± 3.8 4.8 ± 1.8

Multijet (Z) 23.0 ± 1.7 4.91 ± 0.80 2.59 ± 0.58 0.00 ± 0.00

Total Predicted 2011 ± 273 419 ± 67 81 ± 15 14.6 ± 4.1

Data Observed 2162 470 102 29

Table 3.3. Number of events expected from Monte Carlo simulation and observed
in data for several exclusive jet multiplicities for the Z → µµ selection. Multijet
predictions are from a data-driven estimation, as described in section 3.6.1. The
errors listed are the combined statistical and systematic uncertainties as described in
Sections 3.6 to 3.10.
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The multijet background is small in this case, around the level of 1% and again

decreasing with jet multiplicity. Top, particularly tt̄, is a significant background

for large jet multiplicities, though smaller than in the W channel due to the small

branching ratio for tt̄ to decay to two muons.

The following backgrounds are modeled by MC: Z → µµ, W → µν, Z → ττ ,

W → τν, diboson, tt̄. Systematic uncertainties on these samples include a 1.8%

luminosity uncertainty, uncertainty on the cross section of the sample, and uncertainty

based on the MC statistics available. The luminosity uncertainty cancels completely

when calculating Rjet.

3.6.1 Multijet Background Measurement

Large uncertainties are associated with the simulation of hadronic background,

both due to cross section uncertainties, and due to difficulties in modeling the rate

at which a jet, or a muon in a jet, will be reconstructed as an isolated muon. Due

to these uncertainties, we adopt a fully data driven template method to model this

background. Differences in shape between the Emiss
T distribution in multijet events and

in theW/Z signal are exploited to fit their relative fraction. A multijet control sample

is selected by selecting events in data that pass all W event selection requirements,

with the following exceptions: the Emiss
T requirement is relaxed (but MT > 40 is

still required), and selected muons are required to fail the d0 selection (d0/σd0 < 3),

where d0 is the radial impact parameter, in order to create a sample that is enriched

in multijet background, while having similar kinematic properties as events passing

W selection. The Emiss
T templates for signal, electroweak, and top backgrounds are

derived from MC. The data, with only the Emiss
T selection relaxed, is then fit to these

two distributions to determine their relative fraction. The fit is performed in the

range from 10 to 100 GeV.
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A similar method is employed for multijet estimation in the Z channel, with the

dilepton invariant mass used as the fitting variable instead, with a range from 45

to 120 GeV. Due to the lower statistics in the Z channel, the isolation selection is

reversed in this case instead of the d0 selection to define the multijet enriched sample.

In both channels, the fit is performed as a function of the number of jets in the event.

This fit is performed for exactly zero to two jets in the Z channel, and also for events

with three or more jets. In the W channel, the fit is performed for exactly zero to

four jets, and also for events with five or more jets.

Figure 3.4 shows the Emiss
T distribution in data, including the fit to the multijet and

signal contributions. This fit is repeated for each jet multiplicity. For the Z channel,

the plots have a strange shape below 40 GeV, this is because MC generator places a

cut on the invariant mass of 40 GeV. The shape of the multijet background for each

kinematic variable (jet pT, jet rapidity, etc) is estimated as follows: The distribution

is found by applying the multijet template selection in data, but requiring all other

event selection criteria (including Emiss
T or mµ+µ−). This distribution is then scaled

using the multijet scale factor found from the template fit, as a function of the jet

multiplicity.

Tables 3.4 and 3.5 show multijet fraction for each jet multiplicity, and the frac-

tional uncertainty from systematic variations. Systematic uncertainties are estimated

by varying the fit ranges, the choice of fit variable, and the selection of the multi-

jet control sample. The lower fit range is varied up and down by 5 GeV, and the

upper range is varied by 10 GeV. The alternate fit variable used is the angle ∆φ

between the leading lepton and the vector sum of all the selected jet momenta. Al-

ternate templates include an anti-d0 template (Z channel), an anti-isolation template

(W channel), relaxing the z0 requirement, and “restricted” anti-isolation, which is

defined by the following requirement: 0.1 < ΣpT−cone−0.2/pT < 0.5. As the system-
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Figure 3.4. Template fits to determine the multijet fraction for the W channel(top)
and Z channel(bottom). Fits shown are for exactly one jet (left) and exactly two
jets (right). The bottom portion of each plot shows the ratio of the data to the MC
prediction.
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QCD Fraction Njet = 0 Njet = 1 Njet = 2 Njet = 3 Njet = 4 Njet = 5

Nominal 0.0410 0.1424 0.1345 0.1301 0.1084 0.0806

Fractional Systematic Error on the QCD Fraction

Fit Range Up 0.0025 0.0008 0.0024 0.0068 0.0441 0.0159

Fit Range Down -0.0165 -0.0110 -0.0156 -0.0392 -0.0135 -0.0235

Alt Fit Variable 0.0000 -0.1014 -0.1728 -0.2648 -0.4682 -0.5283

Template Up 0.1215 0.0073 0.0101 0.0121 0.0153 0.0034

Template Down -0.4971 -0.1405 -0.1702 -0.1698 -0.2638 -0.2921

Total Systematic 0.4971 0.1405 0.1728 0.2648 0.4682 0.5283

Table 3.4. W channel QCD fractions and systematic uncertainties, derived from
varying the fit range, template selection, and fit variable.

Systematic Njet = 0 Njet = 1 Njet = 2 Njet = 3

Nominal 0.0034 0.0055 0.0095 0.0084

Fractional Systematic Error on the QCD Fraction

Fit Range Up 0.0750 0.0127 0.0108 0.0181

Fit Range Down -0.0040 -0.0037 0.0000 -0.1193

Alt Fit Variable 0.0445 0.0117 -0.6365 -0.9117

Template Up 0.0947 0.0000 0.0224 0.0423

Template Down -0.0029 -0.0089 -0.0946 -0.0471

Fit Stat Error 0.0585 0.1076 0.1556 0.4568

Total Systematic 0.0947 0.1076 0.6365 0.9117

Table 3.5. Z channel QCD fractions and systematic uncertainties, derived from
varying the fit range, template selection, and fit variable.

atic uncertainties evaluated by these variations are likely correlated, the symmetrized

envelope of variations is take as the systematic uncertainty on the multijet fraction.

3.7 Trigger Efficiency

The triggering and data acquisition system of ATLAS is described in detail in

Section 2.2.4. A single muon trigger was used for the whole data taking period. An

event filter (EF) trigger requiring a muon with pT greater than 18 GeV was used,

which had the title EF mu18 MG, until run 186729. Because of higher luminosity,

after this run, a more restrictive trigger was used: EF mu18 MG medium. The dif-

70



ference between these two triggers was the hardware-based (L1) trigger feeding them:

the first trigger requires a 10 GeV muon at L1, whereas the medium chain requires

an 11 GeV muon at L1.

Single muon trigger efficiency was measured from data using “tag-and-probe”

methods using Z → µµ events. The power of this method stems from the fact

that requiring two tracks inside the Z mass window, with one track belonging to a

combined “tag” muon, defines a sample of Z events with very high purity. Therefore,

the second track should also belong to a muon, and depending on the definition of

the second track, or “probe”, this allows for the measurement of the trigger efficiency,

ID track efficiency, or MS and track matching efficiency. In the case of determining

trigger efficiency, both the tag and the probe are required to be combined muons, and

the tag muon is required to fire the trigger. The probe muon is tested as to whether

it also fired the trigger in question, to determine the trigger efficiency.

Combined muon definitions for trigger studies match the tight muon description

in Section 2.3.2, with the exception that the d0 requirement is dropped. The probe

has the following additional requirements:

• opposite charge with respect to the tag

•
∣

∣M(tag−probe) −MZ

∣

∣ < 10 GeV

• ∆φ(tag − probe) > 2

• ∆z0(tag − probe) < 3 mm

• ∆d0(tag − probe) < 2 mm

The single-muon trigger efficiency is calculated for MC and data, and is calcu-

lated as a function of momentum and pseudorapidity. These efficiencies are used to

calculate event level scale factors that correct the trigger efficiency of the MC sam-

ples. Event level efficiencies for the W are just the single lepton efficiencies. For the

71



Z, the efficiency is equal to probability that either lepton triggered the event. The

resultant scale factors are applied to any distribution where a trigger requirement has

been made. Muon trigger efficiencies have been determined to be independent of jet

activity, except for the effects mediated by muon kinematics, which are taken into

account.

In order to pass the event selection, at least one selected lepton must be ∆R

matched to the trigger muon that fired the required trigger. This is in order to reject

events for which some other non-selected muon initiated the trigger, because these

events would not be reflected in efficiency studies. In practice, this is a very small

effect.

The following were varied when calculating the systematic uncertainties: the

pT range over which the efficiencies were calculated, the bin size, and the muon se-

lection criteria. The resulting uncertainty is approximately 1%. The systematic and

statistical uncertainty from the measurement are added in quadrature and are used to

define systematic variations of the muon trigger efficiency on the final measurement.

3.8 Muon Reconstruction Efficiency

The muon W/Z selection efficiency is corrected for the mismatch between recon-

struction efficiency in data and Monte Carlo simulation. Single muon reconstruction

efficiency is determined with tag-and-probe methods similar to those used to deter-

mine the trigger efficiency. Separate studies were done to determine the ID track

efficiency, and the Muon Reconstruction and track matching efficiency relative to

this.

To determine the ID efficiency for muons, the probe was defined as a standalone

muon track extrapolated to the primary vertex. The kinematic, isolation, impact

parameter, and other probe selection criteria are the same as those used trigger effi-

ciency studies. These probes are matched to ID tracks passing the same kinematic
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Figure 3.5. Measured inner detector muon reconstruction efficiency for muons with
pT > 20 GeV as a function of the muon’s pseudorapidity.

selections used to select muons from W and Z decays. The hit requirements specified

in Section 2.3.2 are not applied here to avoid double counting. Figure 3.5 shows a

measurement of the ID efficiency for muons as a function of η, for a subset of the

2011 data (193 pb−1).

To determine the combined muon efficiency relative to the ID efficiency (the muon

tracking efficiency and the matching efficiency), an ID track was used for the probe,

once again with the same kinematic, isolation, and impact parameter requirements.

These probes are matched to combined muons, including hit requirements. Systematic

uncertainties are determined by using muons identified by the calorimeter as the

probe for comparison, which have higher purity than ID tracks. A minimum of 0.1%

uncertainty is applied to all bins to cover very small variations that occur when

varying the tag and probe selections. Figure 3.6 shows the combined muon efficiency
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Figure 3.6. Combined muon reconstruction efficiency with respect to the inner
tracking efficiency as a function of the pseudorapidity of the muon for muons with
pT > 20 GeV. The panel at the bottom shows the ratio between the measured and
predicted efficiencies.

relative to the ID efficiency as a function of η, for a subset of the 2011 data (193

pb−1).

The reconstruction efficiency used in this analysis is divided into 10 bins using a

phenomenological scheme in η and φ corresponding to the different detector elements

traversed by a muon in that region of solid angle. The η − φ distribution of these is

shown in Figure 3.7. The Muon Spectrometer is described in detail in Section 2.2.3.

For each bin, the bin name and description of involved detector elements is listed

below:

• Barrel large: large barrel stations

• Barrel small: small barrel stations

• Barrel overlap: overlap between small and large barrel stations
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Figure 3.7. Coverage in η−φ of ten detector regions, used for binning muon efficiency
and resolution measurements.

• Feet: region of the feet supporting the detector (some chambers are missing in

this region which makes the muon reconstruction more difficult)

• Transition: transition region between the barrel part and the endcap wheels

• Endcap small: small endcap sectors, MDT chambers

• Endcap large: large endcap sectors, MDT chambers

• BEE: sectors containing barrel extended endcap chambers

• CSC small: small endcap sectors, CSC chambers, outside TRT acceptance

• CSC large: large endcap sectors, CSC chambers, outside TRT acceptance

Once again, the single muon efficiencies are used to determine event level scale

factors that are applied to the simulation samples. The systematic and statistical

uncertainty from the measurement are added in quadrature and are used to define

systematic variations of the muon reconstruction efficiency on the final measurement.

75



Figure 3.8. Dimuon invariant mass distribution for oppositely charged muon pairs
with transverse momentum above 20 GeV. Selection details are given in the text.

3.9 Muon Momentum Scale and Resolution

The resolution of muon momentum is not perfectly modeled by the simulation.

Therefore, before muon selection is performed in simulated samples, all muons have

their pT smeared and scaled by factors determined from Z dilepton invariant mass

measurements. These factors are chosen to reproduce the width and central position

of the invariant mass peak, and are measured as a function of pT and as a function the

broad bins in η and φ described in Figure 3.7, which follow variations in the structure

of the Muon Spectrometer detector elements. Muon spectrometer and Inner De-

tector momentum measurements each undergo this smearing/scaling procedure, and

the combined momentum is recalculated from these elements. Systematic variations

based on the statistical and systematic uncertainty of the resolution measurement are

performed on the final Rjet measurements.
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Figure 3.9. Dimuon mass resolution of combined muons in different pseudorapidity
regions.

Figure 3.8 shows the dimuon invariant mass distribution for oppositely charged

combined muon pairs with transverse momentum above 20 GeV. Both muons are

restricted to |η| < 2.5. Collision events are selected from event filter triggers of 20

GeV threshold. The measured dimuon mass is compared to Monte Carlo prediction

using Pythia generated Z → µµ events. Figure 3.9 shows the experimental resolution

compared to Monte Carlo predictions as a function of pseudorapidity.

3.10 Jet Energy Scale and Resolution

The reconstruction of jets using the anti-kt algorithm as described in Section 2.3.3

produces jets for which the energy contained in the charged particles in the showers
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is properly accounted for. The hadronic calorimeter is “non-compensating”, which

means it does not correct for non-interacting decay products which do not leave

their energy in the detector. Electromagnetic showers have their energy properly

accounted for, but hadronic showers do not. Therefore, it is preferable to use a jet

energy scale that more closely matches the energy of the gluon or quark from which

the jet originated. For this reason, an additional sequence of calibrations are applied:

• Pileup Correction: Minimum-bias interactions leave additional energy in the

detector. This energy is determined using minimum-bias events and subtracted

from jet energy.

• Particle Level Correction: This correction is determined from MC, using a

numerical inversion of the relationship between particle pT and reconstructed

jet pT.

• In-situ Correction: This is only applied to data, and is a residual correction

derived from the data as described below.

Measurements of this JES are validated by comparing the fraction of jet energy in

the EM calorimeter in data and in simulation. In addition, measurements of asymme-

try in jet events can be related to defects in calorimeter response. Within uncertainties

there is good agreement between data and MC, and these studies are used to derive

systematic uncertainties on the jet energy scale (JES), and to define the small in-situ

correction. The jet energy spectrum is also measured in dijet studies, and shows good

agreement between data and simulation, suggesting that no additional smearing of

the jets is needed. The measured uncertainty in the resolution measurement of jets is

used to create an over-smeared set of jets used to estimate the systematic uncertainty

associated with the jet energy resolution (JER).
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3.11 Monte Carlo Description and Systematics

Hadron level results used for unfolding come from Alpgen MC samples, as de-

scribed in Section 3.1. Truth level jets are defined using the same anti-kT clustering

algorithm described in Section 2.3.3, using all of the interacting particles originating

from the primary collision as inputs, with the exception of the W/Z decay products.

Truth leptons are defined as “dressed” leptons as follows: photons originating from

the boson, and within a cone of ∆R < 0.1, have their 4-momenta added to that of

the final state lepton. Because electrons are largely measured through the calorimeter

systems, this closely matches what is measured by the reconstructed electron. For

muons, energy lost in the calorimeter is taken into account when the combination

of Inner Detector and Muon Spectrometer tracks is performed, but in practice the

correspondence between dressed muons and detector muons is not as strong as in

the electron case. Dressed muons are still used in this case to keep methods parallel

between the muon and electron channel, and for theoretical clarity. As mentioned,

dressed level results make the same kinematic requirements on leptons, Emiss
T and jets

as at detector level.

Final theoretical predictions are provided by BlackHat, with Sherpa used for

showering. These predictions are given before the emission of any final state radiation,

often referred to as Born level. A small correction factor is derived from Alpgen MC

and applied to the BlackHat+Sherpa result to allow direct comparison with the

dressed level measured result. BlackHat+Sherpa also does not model hadroniza-

tion, nor does it model the evolution of beam remnants and of multiple interactions,

which together are termed “underlying event”. Corrections for these differences are

calculated using Alpgen signal samples with these effects turned on and off. The

underlying event (UE) correction is defined by (hadron level, UE on) / (hadron level,

UE off), where as the hadronization correction is defined by (hadron level, UE off)

/ (parton level, UE off). Examples of these corrections are shown in Figures 3.10
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and 3.11. Corrections derived with Sherpa are used to estimate the systematic un-

certainty. MC simulation and the involved theoretical calculations are described in

detail in Section 1.9.

Figure 3.10. Corrections applied to the BlackHat+Sherpa theory inputs:
hadronization (left), and underlying event (right). The black points for the top por-
tion of the plot are nominal correction values, with the red the corrections calculated
by Sherpa, used as a systematic uncertainty. The correction for high pT is calcu-
lated using a fit to a straight line. The bottom portion of the plot shows the ratio
between the calculated fit and the individual data points. The blue band represents
the statistical error, and the red band the systematic error.

Some systematic uncertainty on the theoretical predictions exists due the our

imperfect knowledge of the following parameters: PDF sets, renormalization scale,

factorization scale and αs, the strong coupling constant. To determine these uncer-

tainties, the BlackHat+Sherpa theoretical calculation can be repeated with each

parameter varied within their uncertainties. For technical reasons, the theorist pro-

viding these predictions was unable to provide these varied inputs within the current

time-frame, and as such they are not included in the current version of this thesis.

These parameters impact W and Z events in a nearly identical fashion, and as such,

the effect on the ratio Rjet is very small. The impact of all these effects on the 2010
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Figure 3.11. The FSR QED correction applied to the BlackHat+Sherpa theory
inputs. On the upper half, the black points are the correction for born to dressed
muons, whereas the red points are the correction from born to bare. The correction
for high pT is calculated using a fit to a straight line. The bottom portion of the plot
shows the ratio between the calculated fit and the individual data points. The blue
band represents the statistical error, and the red band the systematic error.

measurement as a function of lead jet pT [7], was a 5-7% uncertainty on the W and

Z cross sections, but only a 1-2% uncertainty on Rjet. As such, we expect these

uncertainties to be much smaller than our dominant uncertainties.

3.12 Unfolding Methods

We aim to determine the “true” theoretical distribution of Rjet from the mea-

sured distribution, which includes detector effects including imperfect resolution and

efficiency. The most straightforward solution to this is to apply what is termed a

“bin-by-bin” correction. The ratio of the measured to the true cross section for each

bin is determined individually, and this is used correct the measured cross-sections.

This approach, however, completely discounts migration between the different bins,

and for this reason is only valid if the migrations are small. The obvious solution

is to treat this as a matrix problem, solved by the inversion of the transformation

between truth and reconstructed quantities. This suffers from the problem that statis-

tical fluctuations in the migration matrix will be interpreted as real structure, which
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is a serious problem as we determine the migration matrix from MC with limited

statistics.

To solve this problem, we turn to Bayes’ Theorem, using the method proposed by

D’Agostini [46]. Bayes’ theorem is a statement of conditional probability, typically

written as:

P (A|B) =
P (B|A)P (A)

P (B)
. (3.3)

In our case, this theorem can be rewritten as:

P (Ti|Rj) =
P (Rj|Ti)P (Ti)

∑

` P (Rj|T`)P (T`)
, (3.4)

where Rj is the j-th bin of measured distribution in data, Ti is the i-th bin of the

truth distribution, so that P (Rj|Ti) is the conditional probability of measuring some

reconstructed value given a particular truth value. This matrix is measured from

MC and termed the migration matrix. P (T`) is the unknown truth distribution, but

as with other Bayesian procedures, we make a guess as to this distribution known

as a “prior”. We take the prior as the prediction from MC. This can be used to

calculate P (Ti|Rj), which can in turn be used to make a prediction for the truth

distribution, given the measured distribution. The procedure can now be iterated

using the recalculated P (Ti). The result converges to the true value with a small

number of iterations.

The migration matrices for the jet multiplicity distribution are shown in Figure

3.12. There is a trade off with the number of iterations, due to the fact that there is

a tendency for areas of phase space with low statistics to diverge with more iterations

due to a poorly defined migration matrix. We use two iterations as the default value.

We have also tested an approach using a number of iterations that is optimized

as follows: for each bin, the iterations are stopped when the statistical fluctuation is

larger than the nominal value for the last two iterations. The two approaches produce

similar results.
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Figure 3.12. Migration matrices for W (left) and Z (right) events for exclusive jet
multiplicity. Columns are normalized to the reconstruction efficiency for that truth
jet multiplicity.

Systematic uncertainties on the unfolding method are measured as follows. First,

estimates of the statistical uncertainty of the migration matrix are made by varying

the migration matrix within its uncertainties, repeating the unfolding, and taking the

maximum deviation for each bin. Second, an estimation of the uncertainty on the

modeling of the migration matrix is made by performing the unfolding using migra-

tion matrices from an alternative generator, Sherpa. Finally there are uncertainties

on the method itself. The number of iterations is an arbitrary value for this method:

in an ideal world the result converges with increasing iterations. In practice, the effect

of statistical fluctuations becomes enhanced as the iterations increase. For this reason

we take the difference between 2 and 3 iterations as a systematic uncertainty. For

the last systematic uncertainty on the unfolding, the bin-by-bin method of unfolding

is compared to the nominal result, and the difference is taken as a systematic uncer-

tainty. In most cases, while the bin-by-bin and Bayesian methods diverge somewhat
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for the individual W or Z channel, in the ratio, the methods agree fairly well due to

cancellation between the two channels.

3.13 Systematics Summary

In order to preserve correlations between the W and Z channels, for each sys-

tematic uncertainty, the variation is applied to simultaneously to both channels, and

Rjet is recalculated. This value is compared to the nominal value of Rjet to estimate

the uncertainty. Due to low statistics, after taking the ratio some uncertainties have

very large values in a few bins due to fluctuations in some regions of phase space.

Therefore, the corresponding deviations Dk(Oi) with respect to the nominal results

are smoothed using Gaussian kernels, where k identifies the systematic uncertainty

source,

O is a given variable, and i identifies a bin of the variable O:

D̃k(Oi) =

∑Nbins

j=1 Dk(Oj) · W(Oi, Oj)
∑Nbins

j=1 W(Oi, Oj)
,

W(Oi, Oj) = w(Oj) × Gaus

(

S(Oi) − S(Oj)

σO

)

, (3.5)

where D̃k(Oi) are the smoothed deviations, w(Oj) are a set of weights with
∑Nbins

j=1 w(Oj) = 1, Gaus(·) is a Gaussian with µ = 0 and σ = 1, S(·) is a func-

tion used to change the scale of O, and σO is the width of the Gaussian kernel for the

variable O. Weights w(Oj) are computed from the statistical uncertainties δσ(Oj)

on the nominal unfolded results:

w(Oj) =
1/(δσ(Oj))

2

∑Nbins

j=1 1/(δσ(Oj))2
. (3.6)

The S function is taken as the natural logarithm if the variable O is a pT-like variable:

S(O) = lnO/1 GeV. In the other cases, it is the identity. Values of σO are chosen
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for each variable such that the smoothing catch the shape of the deviations while

introducing a stability with respect to statistical fluctuations. These values vary

between 0.2 and 0.8.

Figure 3.13 shows the systematic uncertainties on the cross section as a function

of leading jet rapidity for the W channel, the Z channel, and for Rjet both before and

after smoothing. The jet uncertainty term includes both JES and JER contributions.

The muon term includes contributions from the trigger efficiency, reconstruction ef-

ficiency, muon resolution and muon scale. The Emiss
T term includes only the effect

of soft Emiss
T terms. The background term includes both cross section uncertainties

and the uncertainty associated with the data driven multijet estimate. Jet related

uncertainties are far higher than other uncertainties before taking the ratio. After

taking the ratio, it is significantly reduced.

Figure 3.14 shows the smoothed systematic uncertainties on Rjet as a function of

the jet rapidity for the 1st, 2nd, 3rd, and 4th leading jet. In each of these distributions,

the jet and unfolding related uncertainties are dominant at high rapidity. Muon and

background uncertainties are flat as a function of jet rapidity, and are significant in

the central region of the detector. The background uncertainty is higher for high jet

multiplicity. This is primarily because the tt̄ background is dramatically larger in

the W channel at high jet multiplicity, and correspondingly, the effect of the cross

section uncertainty becomes larger. In addition, the multijet estimation uncertainty

becomes larger at high jet multiplicity, but this has a smaller effect because of the

smaller overall size of the multijet background.

Figure 3.15 shows the smoothed systematic uncertainties on Rjet as a function of

the jet pT for the 1st, 2nd, 3rd, and 4th leading jet. In each of these distributions, the

jet and unfolding related uncertainties increase as a function of pT, and are dominant

at high pT. Muon and background uncertainties are more flat as a function of jet

pT. The background uncertainty increases and then levels out as pT increases. This
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Figure 3.13. Systematic uncertainty contributions to the unfolded cross sections
for W (top left), Z (top right), Rjet before smoothing (bottom left) and Rjet after
smoothing (bottom right). Calculation of systematic uncertainties is discussed in
detail in the text.

86



Figure 3.14. Systematic uncertainty contributions to Rjet for jet rapidity of the
1st (top left), 2nd (top right), 3rd (bottom left) and 4th (bottom right) leading jets.
Calculation of systematic uncertainties is discussed in detail in the text.
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is because the probability of additional jets above 30 GeV increases as pT increases,

and the the background uncertainty increases with multiplicity.

Figure 3.15. Systematic uncertainty contributions to Rjet for jet pT of the 1st
(top left), 2nd (top right), 3rd (bottom left) and 4th (bottom right) leading jets.
Calculation of systematic uncertainties is discussed in detail in the text.

Figure 3.16 shows the systematic uncertainties for the following dijet variables:

the dijet invariant mass, ∆Rjj and ∆φjj. The jet mass has a similar error structure

to jet pT, with jet and unfolding uncertainties dominant at high mass. For ∆Rjj, the

unfolding uncertainty blows up both at very high and very low values. The jet uncer-
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Figure 3.16. Systematic uncertainty contributions to Rjet as a function of dijet
variables: dijet mass (top left), ∆Rjj (top right), and ∆φjj (bottom left). Calculation
of systematic uncertainties is discussed in detail in the text.
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Figure 3.17. Systematic uncertainty contributions to Rjet as a function of ST (top
left), HT (top right), and jet multiplicity (bottom left). Calculation of systematic
uncertainties is discussed in detail in the text.
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tainties increase with increasing ∆Rjj, because large values correlate with at least one

jet with a high rapidity. Uncertainties are small and relatively flat for ∆φjj. Figure

3.17 shows the uncertainties for ST , HT , and jet multiplicity. A similar pattern of

uncertainties is seen with ST and HT as with other pT related variables. As mentioned

previously, for large jet multiplicity, the background estimation is the dominant sys-

tematic uncertainty, only here it is seen more clearly. Due to this uncertainty, while

for 0-3 jets Rjet gives us a very precise measurement, for higher multiplicities it doesn’t

give us much better precision than W or Z alone. For this reason, an area of future

research will be working to reduce this top background related uncertainty. Possible

ways of reducing this error include using data driven estimation methods, and taking

advantage of the partial correlation in theoretical cross section uncertainties between

top, the signal, and W/Z related backgrounds.

3.14 Results and Interpretation

The W and Z cross sections, and Rjet spectra are presented here corrected for

detector effects and unfolded to dressed particle level, as described in Section 3.12.

These results are compared with calculations from BlackHat+Sherpa, corrected

as described in Section 3.11, as well as with generator level results from Alpgen and

Sherpa. Each set of plots is presented with the measurement shown on top, and

with the ratios of data/theory for each generator shown below.

Figure 3.18 shows the unfolded measurement for the exclusive jet multiplicity.

Results for BlackHat+Sherpa are only calculated for 0-4 jets, due to theoretical

limitations of the program. The theoretical predictions for Alpgen and Sherpa

agree with the data within uncertainties for up to five jets. After this, there are sub-

stantial disagreements. This is expected as Alpgen only models up to five additional

partons, and uses showering algorithms for additional jets. The mild disagreement

in the five jet bin may be indicative of some mis-modeling in the generators. For W
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and Z cross sections, BlackHat+Sherpa does a good job at describing the data

within uncertainties, with the mild exception of the 1 jet bin for the W cross section.

However, in the ratio, the systematic uncertainties are much reduced, and the 12%

overestimate in this bin is a significant deviation. This is likely due to some difficulty

by BlackHat+Sherpa at modeling perturbative QCD, as Alpgen and Sherpa

do not show this issue.

As mentioned previously the Tevatron has only measured W/Z inclusively. The

previous ATLAS measurement of Rjet was a 2010 measurement of Rjet as a function of

jet pT for events with exactly one jet, and analyzed 33 pb−1of integrated luminosity

[7]. It found no significant discrepancy between the measurement and theoretical

models, but the statistic uncertainty was larger. Similar comments can be made

about the analogous CMS result, which presented Rjet as a function of jet multiplicity,

using an integrated luminosity of 36 pb−1of data gathered in 2010 [47]. This paper

also found that theory matched data in the 1 jet bin (and everywhere else), but

the statistical errors were of order 10%, and a different generator was use for the

theoretical comparison.

Figures 3.19, 3.20, 3.21, and 3.22 show the unfolded measurements as a function of

the pT of the 1st, 2nd, 3rd, and 4th leading jet. For the first leading jet, Alpgen and

Sherpa have a trend of overestimating the W cross sections at high jet pT. Within

uncertainties, BlackHat+Sherpa does a better job of reproducing the W cross

section at high pT. For the Z, Alpgen and Sherpa are better at reproducing the

data spectrum, and Sherpa underestimates it for high pT. These deviations are not

significant for the cross sections, but all generators show a significant overestimate of

Rjet, especially at low pT. The Rjet distribution shows disagreement between Black-

Hat+Sherpa and data at the level of 10-15%, outside the level of the systematic

uncertainty, consistent with what is seen in the 1 jet bin of the jet multiplicity dis-

tribution. Because this occurs at low jet pT as well as at high pT it is unlikely that
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Figure 3.18. Exclusive jet multiplicity for W → µν (top left), for Z → µµ (top
right), and for Rjet (bottom). Values are presented for data unfolded to the parti-
cle level, BlackHat+Sherpa corrected to the particle level and predictions for
from Alpgen and Sherpa. The figures show the cross sections and the ratios
data/BlackHat, data/Alpgen, and data/Sherpa.
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Figure 3.19. Leading jet pT for W → µν (top left), for Z → µµ (top right),
and for Rjet (bottom). Values are presented for data unfolded to the particle level,
BlackHat+Sherpa corrected to the particle level and predictions for from Alpgen

and Sherpa. The figures show the cross sections and the ratios data/BlackHat,
data/Alpgen, and data/Sherpa.
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Figure 3.20. Second leading jet pT for W → µν (top left), for Z → µµ (top right),
and for Rjet (bottom). Values are presented for data unfolded to the particle level,
BlackHat+Sherpa corrected to the particle level and predictions for from Alpgen

and Sherpa. The figures show the cross sections and the ratios data/BlackHat,
data/Alpgen, and data/Sherpa.
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Figure 3.21. Third leading jet pT for W → µν (top left), for Z → µµ (top right),
and for Rjet (bottom). Values are presented for data unfolded to the particle level,
BlackHat+Sherpa corrected to the particle level and predictions for from Alpgen

and Sherpa. The figures show the cross sections and the ratios data/BlackHat,
data/Alpgen, and data/Sherpa.
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Figure 3.22. Fourth leading jet pT for W → µν (top left), for Z → µµ (top right),
and for Rjet (bottom). Values are presented for data unfolded to the particle level,
BlackHat+Sherpa corrected to the particle level and predictions for from Alpgen

and Sherpa. The figures show the cross sections and the ratios data/BlackHat,
data/Alpgen, and data/Sherpa.
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this is an indication of new physics, rather it is likely that this is an indication of

BlackHat+Sherpa not modeling the ratio between W and Z bosons correctly for

this distribution. This distribution and the jet multiplicity distribution illustrate the

power of the Rjet method, as this discrepancy is not significant in the individual W

or Z channels.

For 2nd jet pT, Alpgen and Sherpa describe the cross sections well, but show

a slight overestimate of Rjet. The 2nd jet distributions are all described well by

BlackHat+Sherpa. All generators slightly overestimate the W cross section for

3rd jet pT around 160 GeV, but this deviation is only significant for Sherpa. The Z

cross section is well modeled by all the generators for 3rd jet pT. The picture for 4th

jet pT is similar, with W cross sections seeming to be overestimated, but in this case

the uncertainties are very large, even on the ratio, due to the tt̄ uncertainty.

Figures 3.23, 3.24, 3.25, and 3.26 show the unfolded measurements as a function

of the rapidity of the 1st, 2nd, 3rd, and 4th leading jet. For the leading jet, the

W and Z cross sections predicted by the generators agree reasonably well except

for at high rapidity, where Sherpa and BlackHat+Sherpa overestimate the cross

section. For the ratio, the shape of each distribution is more reasonable, but as seen

in other distributions, Rjet for one selected jet is lower in the data than predicted by

the generators, particularly when compared to BlackHat+Sherpa.

For the second and third jet rapidity distributions, the situation is very similar,

only with BlackHat+Sherpa doing a much better job modeling the central value

of Rjet. For the fourth jet rapidity, the statistics are worse, so it becomes more difficult

to make a definitive statement, within errors the generators agree with the data for

the cross sections. For Rjet, there is a slight excess for all generators, but it is still

within uncertainties for Alpgen and BlackHat+Sherpa, with Sherpa showing

a modest disagreement.
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Figure 3.23. Leading jet rapidity for W → µν (top left), for Z → µµ (top right),
and for Rjet (bottom). Values are presented for data unfolded to the particle level,
BlackHat+Sherpa corrected to the particle level and predictions for from Alpgen

and Sherpa. The figures show the cross sections and the ratios data/BlackHat,
data/Alpgen, and data/Sherpa.
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Figure 3.24. Second leading jet rapidity for W → µν (top left), for Z → µµ
(top right), and for Rjet (bottom). Values are presented for data unfolded to the
particle level, BlackHat+Sherpa corrected to the particle level and predictions
for from Alpgen and Sherpa. The figures show the cross sections and the ratios
data/BlackHat, data/Alpgen, and data/Sherpa.
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Figure 3.25. Third leading jet rapidity for W → µν (top left), for Z → µµ
(top right), and for Rjet (bottom). Values are presented for data unfolded to the
particle level, BlackHat+Sherpa corrected to the particle level and predictions
for from Alpgen and Sherpa. The figures show the cross sections and the ratios
data/BlackHat, data/Alpgen, and data/Sherpa.
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Figure 3.26. Fourth leading jet rapidity for W → µν (top left), for Z → µµ
(top right), and for Rjet (bottom). Values are presented for data unfolded to the
particle level, BlackHat+Sherpa corrected to the particle level and predictions
for from Alpgen and Sherpa. The figures show the cross sections and the ratios
data/BlackHat, data/Alpgen, and data/Sherpa.
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Figure 3.27. Dijet invariant mass for W → µν (top left), for Z → µµ (top right),
and for Rjet (bottom). Values are presented for data unfolded to the particle level,
BlackHat+Sherpa corrected to the particle level and predictions for from Alpgen

and Sherpa. The figures show the cross sections and the ratios data/BlackHat,
data/Alpgen, and data/Sherpa.
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Figure 3.28. Dijet ∆Rjj for W → µν (top left), for Z → µµ (top right), and
for Rjet (bottom). Values are presented for data unfolded to the particle level,
BlackHat+Sherpa corrected to the particle level and predictions for from Alpgen

and Sherpa. The figures show the cross sections and the ratios data/BlackHat,
data/Alpgen, and data/Sherpa.
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Figure 3.29. Dijet ∆φjj for W → µν (top left), for Z → µµ (top right), and
for Rjet (bottom). Values are presented for data unfolded to the particle level,
BlackHat+Sherpa corrected to the particle level and predictions for from Alpgen

and Sherpa. The figures show the cross sections and the ratios data/BlackHat,
data/Alpgen, and data/Sherpa.
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Figures 3.27, 3.28, and 3.29 show the unfolded cross sections as a function of the

following dijet variables: invariant mass, ∆Rjj, and ∆φjj. The dijet invariant mass

has good agreement between the generators and the data for both the cross sections

and for Rjet, though Sherpa slightly overestimates the value of Rjet. There is also

a slight underestimate of Alpgen of the W and Z cross sections, but this deviation

is within uncertainties, and disappears in the ratio. Measurements of the ∆Rjj show

similar excellent agreement, especially for BlackHat+Sherpa. For the W and Z,

the cross section predictions are low for Alpgen and high for Sherpa at very high

∆Rjj. As these trends are present in both W and Z cross sections, it does not appear

in the ratio. The ∆φjj distribution is well modeled by all the generators, though

there is a small over-estimation of Rjet by BlackHat+Sherpa.

Figures 3.30 and 3.31 show the unfolded cross sections as a function of the ST and

HT in the event. As defined at the beginning of the section, ST is the scalar sum of

the pT of selected jets, and HT is the same quantity with the pT of selected muons

and Emiss
T (for the W channel) added as well. At high values, these variables have

contributions from both a small number of high pT jets, and from a larger number of

lower pT jets. Due to this, this is a very rigorous test of a generator over a variety of

scales. There is good agreement between Alpgen, Sherpa, and the data for lower

ST and HT values. At higher momentums, Alpgen and Sherpa overestimate the

W cross section. This leads to a deviation in Rjet. This deviation is not large, but

appears to be statistically significant around 300-400 GeV. This is likely due to the

same cause as the deviation in the 1 jet pT, but this warrants further investigation.

There is very poor agreement between BlackHat+Sherpa and the data for ST

and HT at high momentum values. This indicates the weakness of strict fixed order

calculations: for the multiplicity of 1 or more jets, it calculates exactly one jet at NLO,

and then one additional jet at LO. This approach, as shown, fails to model the high

ST/HT region, where high jet multiplicity becomes very important. This contrasts
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Figure 3.30. Scalar sum pT of selected jets, ST , for W → µν (top left), for Z → µµ
(top right), and for Rjet (bottom). Values are presented for data unfolded to the
particle level, BlackHat+Sherpa corrected to the particle level and predictions
for from Alpgen and Sherpa. The figures show the cross sections and the ratios
data/BlackHat, data/Alpgen, and data/Sherpa.

107



Figure 3.31. Scalar sum pT of selected high pT objects, HT , for W → µν (top
left), for Z → µµ (top right), and for Rjet (bottom). Values are presented for data
unfolded to the particle level, BlackHat+Sherpa corrected to the particle level
and predictions for from Alpgen and Sherpa. The figures show the cross sections
and the ratios data/BlackHat, data/Alpgen, and data/Sherpa.
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with Alpgen and Sherpa, which both model these variables well, likely due to their

showering description and the well developed matching/overlap-removal procedure

between showering and matrix element calculations. Even this poor description of

cross sections, BlackHat+Sherpa does a reasonable job describing Rjet, as these

effects largely cancel in the ratio.
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CHAPTER 4

CONCLUSIONS

Since 7 TeV collisions began in 2010, the LHC has been at the forefront of the

high energy physics frontier. The prime motivation of the detector, the understanding

of electroweak symmetry breaking, has been bolstered by the discovery of a particle

consistent with the Higgs Boson. However, understanding the electroweak sector

remains critical, both for studies looking to characterize the Higgs Boson, and for

searches for other new phenomena. Specifically, understanding of W and Z boson

production is critical, as they are an important background to other searches, often

in concert with hadronic activity. Examining the ratio of W to Z production allows

for a very precise and robust measurement, as this allows the cancellation of many

experimental and theoretical systematics.

This thesis measures the W cross sections, Z cross section, and their ratio Rjet

as a function of a variety of kinematic variables. The measurement is compared to

results from three generators: Alpgen, Sherpa, and BlackHat+Sherpa. The

Rjet ratio agrees with the prediction from BlackHat+Sherpa over most of the

kinematic range. There is a roughly 10% overestimation of Rjet in the 1 jet bin at low

pT. While this mismatch is interesting and worthy of further study, the low pT nature

of this mismatch suggests a generator deficiency. There are also small deviations in

the ST and HT distributions that are likely related. In addition, for 5 or more jets,

there is an overestimate by Alpgen and Sherpa that increases with increasing jet

multiplicity. However, this is somewhat expected as jets produced from more than
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5 partons are produced in generators via showering algorithms not expected to have

the rigor of matrix level calculations.

The LHC will continue to study electroweak symmetry breaking and other high

pT phenomena for years to come. The results of this study of Rjet will inform theorists

and generator experts, improving both our simulations and our understanding of

perturbative QCD. It is hoped that these results will further the long term mission

of the LHC, and to contribute to probing some of the most fundamental questions

about the universe and its nature.
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APPENDIX

MUON RECONSTRUCTION SOFTWARE ROBUSTNESS

During the commissioning of the ATLAS detector, the muon reconstruction soft-

ware algorithms also went through intense commissioning. Every detector is built

with some degree of redundancy, but this redundancy depends not only on the detec-

tor elements themselves, but also on the flexibility of the software used to interpret

the data. An exhaustive investigation into the robustness of reconstruction algo-

rithms was performed before the beginning of collisions late in 2009 (using Athena

release 14). This series of studies examined the effects of chamber failure, misalign-

ment, miscalibration, magnetic-field deviations, and material mis-modeling on the

efficiency, resolution and fake rate of muon reconstruction algorithms. This appendix

focuses on the effect of the failure of an entire layer of precision chambers, as other

aspects were not found to have a large effect for reasonable deviations. For example,

the impact of the removal of entire trigger layers on reconstruction efficiency was

found to be negligible, and the effect of removing a single CSC gas gap (out of four)

was found to be very small.

The purpose of these robustness studies was twofold: to understand how perfor-

mance parameters would suffer under partial failure of the muon spectrometer, and

also to understand and to improve the flexibility of muon reconstruction algorithms.

This study is described in detail in an internal ATLAS note [48].
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Methodology

This study removed hit level information from the data-record of an event before it

was reconstructed. It focused on removal of either a single multi-layer, or both multi-

layers of one of the three station layers of precision chambers (Inner, Middle, and

Outer stations of MDTs and CSCs). This removal was made for all of the solid angle

range. While this is not a realistic failure, it is useful to simulate worst case scenarios,

and the failure of a Mezzanine card could produce the failure of a multi-layer over

some limited angular range.

The efficiency was studied using signal samples from several different processes

with different energy muons and hadronic signatures, but the results of this appendix

will focus on results from Z → µµ simulation files. Efficiency measures are estimated

from the truth record, with truth muons matched to reconstructed muons by hit

matching.

While only Staco combined muons are used in the bulk of this thesis, this study

considers all major muon reconstruction algorithms, with the exception of calorimeter

tagging algorithms, since these do no rely on the muon spectrometer. ATLAS sup-

ports two families of muon reconstruction algorithms: Moore and Muonboy. These

names typically refer to the reconstruction algorithms that use only muon spectrome-

ter information. Combined reconstruction algorithms allow muon spectrometer (MS)

information to be integrated with inner detector (ID) information. Muid and Staco

are the combined algorithms for Moore and Muonboy, respectively. These algorithms

back-extrapolate a muon spectrometer track to the beam line, match this track to the

corresponding ID track, and build the combined track from the MS and ID tracks.

Staco uses the error matrices of the ID and MS tracks to combine the tracks, while

Muid uses the ID and MS hits to perform a full track refit.

Tagging algorithms follow a different approach, starting from an inner detector

track and extrapolating outward into the muon spectrometer, associating one or more
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muon spectrometer segments with the inner detector track. The tagging algorithms

that exist differ somewhat in their approach. MuTag belongs to the Muonboy family,

and is designed explicitly to only fill in holes in acceptance. It only uses muon

spectrometer segments that are not used by Muonboy itself, and is restricted primarily

to the inner chamber-layer of MDTs (the newest version also incorporates middle

chamber-layer segments over a limited eta region). MuGirl performs its own pattern

recognition in the MS inside a road defined by an extrapolated ID track. It then

applies track building and fitting algorithms to the MS and ID hits. MuTagIMO

associates an extrapolated ID track with Moore MDT and CSC segments in any of

the chamber-layers: inner, middle, and outer.

Early Improvement in Robustness

During an early iteration of this study, the Muonboy algorithm was found to have

drastic drops in efficiency under removal of MDT multi-layers. This problem was

traced back to an unrealistically tight selection on the number of missed hits in tubes

traversed by the reconstructed muon track. This problem was eliminated in later

versions of the code, as is shown in Figure A.1

Results for Muon Spectrometer Reconstruction

Efficiency as a Function of Pseudorapidity

Figure A.2 shows both a pseudorapidity distribution for missed muons and the

nominal efficiency of muon spectrometer reconstruction (Moore) as a function of pseu-

dorapidity (no chambers removed). Efficiency is defined as the number of matched

reconstructed muons over the number of true muons. The drop in efficiency at η = 0

is due to a gap in detector coverage. The drop around η = 1.2 is similarly well un-

derstood, and is due to limited coverage, as the endcap outer chamber-layer does not

cover the range 1.0 < η < 1.4, and there are holes in the inner chamber-layer.
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Release 14.1.0 Release 14.2.20 

Figure A.1. Muon reconstruction efficiency for the Staco algorithm as a function of
pseudorapidity, under the removal of the middle chamber layer of MDTs, shown for
two different software releases.

Figure A.3 shows the same efficiency plot, but now removing all inner MDTs and

the CSCs. There are periodic losses of efficiency in the barrel region, likely due to

gaps in the middle MDTs, where the toroid ribs intersect the chamber-layer. There

are also large losses in the transition region, in which some muons may only cross two

chamber-layers of MDTs, including the removed inner layer.

The pattern of efficiency loss is quite similar for the removal of the middle chamber-

layer of MDTs. Figures A.4 and A.5 shows the efficiency for the removal of no, in-

ner, middle, and outer chamber-layer MDTs for Moore and Muonboy, respectively.

This efficiency is binned into large eta regions: barrel (0-1.0), transition(1.0-1.4),

endcap(1.4-2.0) and forward (2.0-2.5). The transition and forward regions correspond

to the region lacking outer layer coverage and the region covered by the CSCs, respec-

tively. The effect of the removal of the outer chamber-layer of MDTs is quite different

from the other two layers. Efficiency loss in the barrel is moderate, again, likely due to

gaps in the middle chamber-layer. However, there is little loss in the transition region,

or in the endcap. There are no gaps in the inner and middle chamber-layers in this eta
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Figure A.2. Pseudorapidity distribution for true muons that are not reconstructed
(left) and muon reconstruction efficiency as a function of pseudorapidity (right) for
the Moore algorithm.
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Figure A.3. Pseudorapidity distribution for true muons that are not reconstructed
(left) and muon reconstruction efficiency as a function of pseudorapidity (right) for
the Moore algorithm while removing the inner chamber-layer of MDTs.
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region. The toroid lies between these two chamber-layers, and therefore, the primary

field integral of a reconstructed muon is between these two layers. This is likely the

reason for the relative insensitivity to the removal of the outer chamber-layer.
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Figure A.4. Muon reconstruction efficiencies for various pseudorapidity ranges, as a
chamber-layer of precision chambers is removed (Moore). Pseudorapidity ranges are
chosen for the following reasons: 1.0 < η < 1.4 is the range between the end of the
barrel outer MDTs and the endcap outer MDTs, η = 2.0 represents the beginning of
the CSCs, and η = 2.5 represents the end of inner detector coverage.

Comparison of Reconstruction Algorithms

Any measure of muon reconstruction performance in ATLAS must recognize the

existence of two competing families of algorithms. It is difficult, however, to compare

these algorithms in an equivalent manner. There are two related reasons for this.

The first is that Muonboy applies tighter selection on tubes which are crossed by a

reconstructed track, but which have no signal (holes). This is done as a way to reduce

fake muons during reconstruction. However, this causes efficiency loss if the hole is
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Figure A.5. Muon reconstruction efficiencies for various pseudorapidity ranges, as
a chamber-layer of precision chambers is removed (Muonboy).
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due to hardware inefficiency. In current running, there is a database based service

to alert the algorithms as to which chambers are not functioning. However, at the

time this study was performed, Muonboy had only a “by hand” method to take into

account dead tubes (avoiding some loses due to rejection of events with holes), and

Moore had no way to take this information into account at all.

Figure A.6 compares Moore and Muonboy for each possible removal of a single

multi-layer or both multi-layers for a chamber-layer. CSCs are removed when the

inner chamber-layer is removed, but not when a single multi-layer is removed. Due

to difficulties in comparison, results for Muonboy are shown both with and without

knowledge of the chamber removal. In all cases, we see the following pattern: Muon-

boy with knowledge of the removal performs the best, but without knowledge of the

removal Moore outperforms Muonboy. This is especially true when only a single

multi-layer is removed. When an entire chamber-layer is removed, the performance

is more similar. Finally, Muonboy seems to struggle when the entire inner chamber-

layer is removed without its knowledge, although this is quite an unlikely scenario

from an instrumental viewpoint.

Momentum Resolution

Even when efficiency is not lost, any chamber failure will have some effect on the

muon momentum resolution. Figures A.7 and A.8 show the normalized transverse

momentum residual distribution for Muonboy and Moore when the middle chamber-

layer of MDTs is removed. Overflows are not included in the Gaussian fit. Figure

A.9 shows the width of the single Gaussian resolution fit for each set of chamber

removals. For removal of the inner chamber-layer, the plot shows separate results for

the barrel (η < 1) and the endcap (η > 1), due to the dramatic effects on reconstruc-

tion in the endcap for this case. The comparison between Moore and Muonboy is

not equivalent in this case. Muonboy applies a loose constraint based on the location
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Figure A.6. Muon reconstruction efficiency for Moore and Muonboy under various
sets of removed chambers.
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of the interaction point, while this is not done for Moore. For this reason, Moore

cannot determine the momentum in the endcap, because there is little magnetic field

between the middle and outer chamber-layers. This issue does not hamper the per-

formance of the Moore algorithm, as later stages of reconstruction (MuidStandalone)

include full extrapolation back to the interaction point, which provides a momentum

measurement.
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Figure A.7. Normalized transverse momentum residual distribution for Muonboy,
while removing the middle chamber-layer of MDTs. The fit is to a single Gaussian,
excluding overflow.

Results for Combined Muon Reconstruction

Efficiency and Resolution

As previously mentioned, the combined algorithms start with a muon spectrome-

ter track, and extrapolate into the inner detector. Small inefficiencies in matching ID
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Figure A.8. Normalized transverse momentum residual distribution for Moore, while
removing the middle chamber-layer of MDTs. The fit is to a single Gaussian, exclud-
ing overflow.
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Figure A.9. Width of the single Gaussian transverse momentum resolution fit, as
a function of removed chambers. For the removal of the inner chamber-layer, results
are listed separately for the barrel (η < 1) and the endcap (η > 1). For the endcap
in this case, there is not enough magnetic flux to make a momentum measurement.
Muonboy gets a momentum measurement by applying a weak IP constraint. Such
tracks do not have a momentum measurement for Moore, but are recovered in later
stages of reconstruction.
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and MS tracks lead to their efficiencies being slightly lower than the corresponding

muon spectrometer algorithms. Figure A.10 shows a comparison of the efficiency of

muon spectrometer and combined algorithms, as chambers are removed. The pat-

terns of efficiency loss due to the removals are nearly identical between the combined

algorithms and their MS only counterpart. Figures A.11, A.12 and A.13 show these

losses as a function of pseudorapidity for the removal of the inner, middle, and outer

chamber-layers, respectively.

Figure A.14 shows the momentum resolution as a function of removed chambers

for the combined algorithms. In the momentum range below about 50 GeV, the inner

detector resolution is better than that of the muon spectrometer, and thus dominates

the combined reconstruction. This means that for this case the impact of missing

muon spectrometer chambers on the combined momentum resolution is minimal.
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Figure A.10. Reconstruction efficiency for muon spectrometer and combined algo-
rithms, under the removal of precision chambers.

124



 |Eta| Range 

[0.0-2.5] [0.0-1.0] [1.0-1.4] [1.4-2.0] [2.0-2.5]

 E
ff

ic
ie

n
c

y
 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Combined Efficiency vs.|Eta| Ranges with Inner Layer Removed

Moore

Muid

Muonboy (w service)

Staco

Combined Efficiency vs.|Eta| Ranges with Inner Layer Removed

Figure A.11. Reconstruction efficiency for muon spectrometer and combined algo-
rithms, under the removal of the inner chamber-layer of MDTs and CSCs, for various
pseudorapidity ranges.

125



 |Eta| Range 

[0.0-2.5] [0.0-1.0] [1.0-1.4] [1.4-2.0] [2.0-2.5]

 E
ff

ic
ie

n
c

y
 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Combined Efficiency vs.|Eta| Ranges with Middle Layer Removed

Moore

Muid

Muonboy (w service)

Staco

Combined Efficiency vs.|Eta| Ranges with Middle Layer Removed

Figure A.12. Reconstruction efficiency for muon spectrometer and combined algo-
rithms, under the removal of the middle chamber-layer of MDTs, for various pseudo-
rapidity ranges.
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Figure A.13. Reconstruction efficiency for muon spectrometer and combined algo-
rithms, under the removal of the outer chamber-layer of MDTs, for various pseudo-
rapidity ranges.
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Figure A.14. Transverse momentum resolution for muon spectrometer and com-
bined algorithms, under the removal of precision chambers. Moore is omitted for
removal of the inner chamber-layer for reasons discussed in the text.
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Effect of Tagging Algorithms

Tagging algorithms aim to identify muons which only have one or two recon-

structed segments in the muon spectrometer, due to the fact that they begin with

an inner detector track and work outwards into the muon spectrometer. For this

reason, they are promising from the viewpoint of robustness. Figure A.15 shows the

effect of removed chambers on the AOD muon containers, which combine a muon

spectrometer only algorithm, a combined algorithm (Muid or Staco), and a tagging

algorithm. It is clear that these tagging algorithms improve insensitivity to chamber

failure. MuTag seems to be slightly less effective at improving robustness than the

other two algorithms. This is likely due to the fact that MuTag only uses inner cham-

bers to produce tagged muons (and middle stations over around a pseudorapidity of

1.2), while MuTagIMO and MuGirl can both produce tagged muons from a segment

in any chamber-layer.

Summary and Conclusion

Muon reconstruction algorithms Moore and Muonboy are found to have similar

robustness under chamber failure. Muonboy has an advantage of 5 to 10% over Moore

when a single multi-layer is removed, likely due to the fact that incorporates knowl-

edge of the loss of these chambers. In current versions of the ATLAS software a

dead-tube service alerts both algorithms of known dysfunctional detector elements.

Moore has a small advantage in robustness when Muonboy does not include knowl-

edge of chamber loss. Overall, this study suggests that ATLAS muon reconstruction

algorithms are very robust against all but the most dramatic failures of MDT or CSC

chambers. Even when an entire chamber-layer is removed, efficiency losses are on the

order of 5 to 15%, and momentum resolution by about 50%. The combined algorithms

show similar efficiency losses but little loss of resolution (though this is not expected

to be the case for samples with higher momentum). Efficiency losses due to chamber

129



 Cuts Applied 

Nominal Inner Chambers Middle Chambers Outer Chambers

 E
ff

ic
ie

n
c

y
 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Muon Efficiency with a Precision Layer Removed

Moore

Merged Moore w MuGirl

Merged Moore w MuonTagIMO

Muonboy (w service)

Merged Muonboy w MuTag

Muon Efficiency with a Precision Layer Removed

Figure A.15. Efficiency as a function of removed chambers for muon spectrom-
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(e.g.MuGirl).
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failure can be mostly recovered if tagging algorithms are used in reconstruction. This

study shows that the loss of efficiency of these algorithms under the removal of the

chamber-layer is only of the order of 1%.
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[27] Sjöstrand, T., Mrenna, S., and Skands, P. PYTHIA 6.4 physics and manual.
JHEP 05 (2006), 026.

[28] Golonka, P., and Was, Z. Next to Leading Logarithms and the PHOTOS Monte
Carlo. Eur.Phys.J. C50 (2007), 53–62.

[29] Corcella, G., et al. HERWIG 6.5: an event generator for Hadron Emission
Reactions With Interfering Gluons (including supersymmetric processes). JHEP
0101 (2001), 010.

133



[30] Frixione, Stafano, and Webber, Bryan R. The MC@NLO 3.3 Event Generator.
arXiv:hep-ph/0612272 (2006).

[31] L. Evans, and P. Bryant. LHC machine. JINST 3, 08 (2008), S08001.

[32] Virdee, T.S. The LHC project: The accelerator and the experiments.
Nucl.Instrum.Meth. A623 (2010), 1–10.

[33] The ATLAS Collaboration, G. Aad et al. The ATLAS Experiment at the CERN
Large Hadron Collider. JINST 3 (2008), S08003.

[34] S. Myers. The LEP collider from design to approval and commissioning (lecture).
http://sl-div.web.cern.ch/sl-div/history/lep doc.html.

[35] CERN, http://public.web.cern.ch/public/en/research/AccelComplex-en.html.

[36] A. A. Glazkov, N. R. Lobanov, I. S. Balikoev, V. T. Barchenko, and S. I. Za-
granichny. Duoplasmatron-type ion source with improved technical and opera-
tional performance for linear accelerator.

[37] Aad, G., et al. The ATLAS Experiment at the CERN Large Hadron Collider.
JINST 3 (2008), S08003.

[38] Aad, G. et al. Expected performance of the ATLAS experiment: detector, trigger
and physics. CERN, Geneva, 2009.

[39] S. Catani, Y. L. Dokshitzer, M. H. Seymour, and Webber, B. R. ”successive
combination jet algorithm for hadron collisions”. Nucl. Phys. B 406 (1993), 187.

[40] Cacciari, Matteo, Salam, Gavin P., and Soyez, Gregory. ”the anti-kt jet clustering
algorithm”. JHEP 04 (2008), 063.

[41] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and Webber, B. R. ”better jet clus-
tering algorithms”. JHEP 9708 (1997), 001.

[42] Aad, G. et al. New atlas event generator tunes to 2010 data. Tech. Rep. ATL-
PHYS-PUB-2011-008, CERN, Geneva, Apr 2011.

[43] Stump, Daniel, Huston, Joey, Pumplin, Jon, Tung, Wu-Ki, Lai, H.L., et al.
Inclusive jet production, parton distributions, and the search for new physics.
JHEP 0310 (2003), 046.

[44] Lai, Hung-Liang, Guzzi, Marco, Huston, Joey, Li, Zhao, Nadolsky, Pavel M.,
Pumplin, Jon, and Yuan, C.-P. New parton distributions for collider physics.
Phys.Rev. D82 (2010), 074024.

[45] Kersevan, B., and Richter-Wa, E. Eur. Phys. J. C 39 (2005), 439.

[46] D’Agostini, G. A Multidimensional unfolding method based on Bayes’ theorem.
Nucl.Instrum.Meth. A362 (1995), 487–498.

134



[47] Chatrchyan, Serguei, et al. Jet Production Rates in Association with W and Z
Bosons in pp Collisions at

√
s = 7 TeV. JHEP 1201 (2012), 010.

[48] Meade, A, and Willocq, S. Robustness of muon reconstruction algorithms under
partial mdt and csc chamber failures. Tech. Rep. ATL-MUON-INT-2009-003.
ATL-COM-MUON-2009-005, CERN, Geneva, Mar 2009.

135


	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	5-1-2013

	A Measurement of the W/Z Cross Section Ratio as a Function of Hadronic Activity with the ATLAS Detector
	Andrew Robert Meade
	Recommended Citation



