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Resume

In this Thesis, advanced methods and techniques of monitoring, fault diagnostics,

and predictive maintenance for cryogenic processes and systems are described. In

particular, in Chapter 1, mainstreams in research on measurement systems for cryo-

genic processes are reviewed with the aim of defining key current trends and possible

future evolutions. Then, in Chapter 2, several innovative methods are proposed. A

transducer based on a virtual flow meter is presented for monitoring helium distribu-

tion and consumption in cryogenic systems for particle accelerators [1]. Furthermore,

a comprehensive metrological analysis of the proposed transducer for verifying the

metrological performance and pointing out most critical uncertainty sources is de-

scribed [2]. A model-based method for fault detection and early-stage isolation, able

to work with few records of Frequency Response Function (FRF) on an unfaulty com-

pressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic proce-

dure, based on a micro-genetic algorithm for transducer networks monitoring complex

physics systems, is shown [4]. Finally, a GEO algorithm for predictive maintenance

scheduling problems, already proposed in our Research Group [5] and compared to

GA with encouraging but only preliminary results, is extended to complex plants such

as large experimental cryogenic systems. In Chapter 3, the numerical characteriza-

tion of the proposed methods is reported. Finally, in Chapter 4 the experimental

validation for the presented techniques is illustrated.
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Introduction

Temperature affects material properties and industrial processes more than any other

variable, such as pressure, magnetic field or electric field [6]. Several studies in this

field were conducted, and in particular, since the 19th century, scientists have ex-

ploited extremely low temperature to enhance mechanical and physical properties of

materials [7]. The science of very low temperature is called cryogenics, and even if it

is not specifically defined in literature, in general, all temperatures below 120 K are

considered cryogenic [8]. The typical cryogens used to reach these low temperatures

are: liquid nitrogen, oxygen, helium, methane, ethane, and argon. The treatment at

cryogenic temperature of a wide variety of materials, such as metals, alloys, and poly-

mers, aimed at enhancing their structural properties, is defined as a cryogenic process.

These processes are more and more exploited in several application fields, from scien-

tific research to medicine. As an example, in large scale experimental physics facilities

such as the Large Hadron Collider (LHC) at CERN, cryogenics enables the super-

conducting operation of accelerating or beam-positioning devices [9]. In particular,

superconductor’s performance is boosted owing to heat transfer properties offered by

superfluid helium through a cryogenic cooling system down to 1.9 K.

In all these application fields, a prominent role is played by the measurement

systems necessary for qualifying, monitoring or controlling the cryogenic processes.

Despite their importance, a comprehensive state of the art of the most common tech-

niques and technologies used in the various cryogenic systems is still missing. In the

first part of this Thesis, mainstreams in research on measurement systems for cryo-

genic processes are reviewed with the aim of defining key current trends and possible

future evolutions.

Monitoring systems for cryogenic facilities are more and more important. Even

if complex and suitable techniques are used commonly in industrial monitoring, ow-

ing to technical and economical reasons, not always sensors can be installed in all
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the required measurement points of a plant. To face this problem, virtual sensors

are penetrating many research fields in recent years, including nature and building

monitoring [10, 11], vehicles [12, 13], people health care [14, 15] and process control

[16, 17, 18, 19, 20]. Virtual sensors are a subclass of virtual instruments, i.e. software

programs used in measurement automation for interfacing actual instrumentation. In

a virtual sensor, the user interface is minimal or not existing at all [21]. Further-

more, differently from physical sensors, a non easily measurable quantity is assessed

indirectly by combining data sensed by a group of heterogeneous sensors.

One of the most challenging and productive application fields of virtual sensors is

flow measurement, owing to the complexity and the cost of the physical flow meters,

as well as the difficulty of placing them in the plant. This problem in complex systems

such as the helium cryogenic system implemented for the LHC at CERN is even more

evident. In cryogenic applications, virtual sensors have already been implemented.

As an example, a preliminary virtual flow meter application, only for liquid helium,

was developed at CERN to estimate the mass flow through some Large Hadron Col-

lider (LHC) cryogenic control valves [22]. Two methods, typically used in cryogenics,

proposed by the valve companies Samson AG [23] and Sereg-Schlumberger Inc. [24]

were applied [22] for helium liquid phase only. However, for this virtual flow me-

ter, a comprehensive test campaign together with a metrological assessment in both

gaseous and liquid state phases of helium is missing. In this Thesis, a transducer

based on a virtual flow meter is proposed for monitoring helium distribution and

consumption in cryogenic systems for particle accelerators. Furthermore,a compre-

hensive metrological analysis of the proposed transducer is also proposed by defining

an uncertainty behavioral model, as well as a sensitivity analysis based on statistical

experiment design and analysis of variance[25],[26]. The characterization aims at veri-

fying the metrological performance and pointing out most critical uncertainty sources.

Nowadays, diagnostic functions (fault detection, fault isolation and fault diagno-

sis) in sensitive or complex facilities are an outstanding requirement. In particular,

embedded early-stage fault isolation, capable to detect and identify multiple faults

promptly, becomes more and more important [4]. At CERN, owing to the dimensions

of the Large Hadron Collider, an effective refrigeration in the range of kW is achieved

through combined cycles, making use of sub-atmospheric cryogenic compressors and

heat exchangers included in eight refrigeration units [27]. These 1.9 K refrigeration

units showed up as the most sensitive to process instabilities or transient phases. In

particular, the cold compressors equipped with active magnetic bearings (AMB) were
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detected as their most critical components. In literature, rotating machinery diagnos-

tics is an important and well-documented field of study. Frequency-domain analysis

of vibration data, in particular, wavelet transforms [28, 29, 30, 31, 32, 33, 34, 35], and

support vector machines [36, 37, 38], are common approaches.

The active magnetic bearings’ design allows the measurement of several quantities

in time or frequency domain, without additional sensors. Moreover, the contact-free

rotor support makes vibrations and sound levels measurements, essentials for the

aforementioned techniques, not as important as for the rotating machinery equipped

with different bearing technologies. Several techniques for fault detection for sys-

tems with active magnetic bearing have been proposed. For example, in Ref. [39], a

multi purpose real-time system for early-stage fault isolation and error correction is

described, but historical fault data were needed.

Few compressors based on AMB are available, thus testing and running main-

tenance on such machines is an expensive task, owing to inactivity cost and long

preparation times. One of the main issue for their maintenance is the availability

of several measurement records to perform a deep characterization of the nominal

condition. In this Thesis, a model-based method for fault detection and early-stage

isolation, able to work with few records of Frequency Response Function (FRF) on

an unfaulty compressor, is proposed.

In monitoring large experimental systems, such as particle accelerators, gravi-

tational wave detectors, optical and radio telescopes, or nuclear fusion facilities, a

large number of distributed sensing and processing nodes is employed [40, 41]. An

effective real-time system, capable of handling massive data, detecting anomalous de-

viations from nominal behavior, and diagnosing the corresponding causes promptly,

is required. Resource distribution, communications limitations, poor scaling to con-

figuration changes, and possible node/link faults create several design challenges to

centralized diagnostic paradigms [42]. Alternative approaches can be classified in de-

centralized or distributed, according to the corresponding level of information sharing

among the processors [43, 44]. In decentralized solutions, significant knowledge about

the system to be diagnosed is shared among the processors. In distributed solutions,

processors host well-separated processes, by fitting better the requirements of com-

plex systems [40, 41, 42]. In literature, some distributed solutions aim at increasing

the computational efficiency, [43, 45, 46] while others are mainly focused on working

locally,[43, 44, 47] by involving other subsystems only when additionally information

or hardware resources are needed. However, all these approaches introduce ad hoc di-
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agnostic architectures, devoted to specific problems. Thus, a generic and application-

independent approach, as the Multiple Faults Diagnostic (MFD) problem in Ref. [48],

seems to be still missing for a distributed system. MFD has been approached success-

fully as a combinatorial optimization problem, whose solution is a set of faults best ex-

plaining the detected anomalies. Nevertheless, for interconnected large experimental

systems, fault identification is a non-polynomial-complexity combinatorial problem.

Natureinspired meta-heuristic algorithms (e.g., Genetic Algorithms, Particle Swarm

Computation, Ant Colony Optimization, and so on) [49, 50] proved to have capabili-

ties of both overcoming local optima through parallel exploration of the solution space

and driving the search towards the most promising solutions. However, their need

for powerful computing resources severely restricts their applications in distributed

transducers networks. By considering these assumptions, proper metaheuristic algo-

rithms with very-low computational load and satisfying optimization performance are

Micro-Genetic Algorithms (MGA), [51] a variant of Genetic Algorithms for small pop-

ulation sizes. They substantially reduce the number of total evaluations for achieving

the optimal solution and prevent working memory from overloads. Applications in

experimental physics are not rare, especially in nonlinear optics.[52, 53] In particular,

in Ref. [52], a MGA allows the optimum frequency, maximizing atomic effect stabi-

lization by high-intensity laser fields, to be found. The fitness is computed by solving

a time-dependent Schrodinger equation at different laser field intensities, on parallel

processors communicating through Message Passing Interface (MPI), a widely used

standard protocol [54]. In this Thesis, a distributed diagnostic procedure based on a

micro-genetic algorithm for transducer networks monitoring complex physics systems

is proposed. The well-settled evolutionary approach of centralized multiple-faults

diagnostics is extended to distributed transducer networks monitoring large experi-

mental systems.

In the framework of large experimental systems [55], e.g. nuclear power plants, or

transmission networks, another crucial problem is the predictive maintenance schedul-

ing problem. In such a context, the large number of components, often without simple

interconnections, makes the problem analytically intractable. The maintenance opti-

mization in multi-component systems is extensively studied in literature and compo-

nents’ interactions have been classified [56, 57]: structural, stochastic, and economic.

Combining two or more models makes them too complicated to be analysed and

for this reason, only the economic dependency is to be considered. As previously

said, meta-heuristic techniques were extensively used for optimization problems and
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in particular the nature-inspired methods: Simulated Annealing (SA) [58], Genetic

Algorithms (GA) [59], Particle Swarm Optimization (PSO) [60], and Ant Colony

Optimization (ACO) [61]. A different meta-heuristic technique called Generalized

Extremal Optimization (GEO) has also been applied for this class of problems. This

method was developed by De Sousa and Ramos in 2002 [62] as a variation of the Ex-

tremal Optimization (EO) proposed by Boettcher adn Percus in 2001 [63], and since

than has been applied to some complex optimization problems: e.g. De Sousa et al.

applied GEO for an optimal heat pipe design [64] first, and later to an inverse ra-

diative transfer problem [65]. Recently, in an effective multiprocessor scheduling [66],

the above mentioned method was solved by Switalski and Seredynski. In all these

works, GEO algorithm demonstrated satisfying results compared to the most popular

algorithms.

Other versions of GEO’s algorithm were also developed and applied for optimiza-

tion problems, Guo et al. proposed a modified GEO (MGEO) for a quay crane

scheduling problem [67]. The modification was introduced because of the various in-

terference constraints imposed by this kind of problem. Also an hybrid GEO (HGEO)

was proposed by D. Xie et al. that combines genetic and GEO algorithm [68].

They first developed a population-based GEO (PGEO) in order to accelerate con-

vergence speed and than they integrated this new solution in HGEO showing better

performances than classical GAs on an optimal power consumption for semi-track

air-cushion vehicle. In this Thesis, a standard GEO algorithm already proposed for

predictive maintenance scheduling problems by the Authors [5] and compared to GA

with encouraging preliminary results is extended to complex plants such as large

experimental systems.

Therefore in this Thesis, in Chapter 1, the current trends and possible future

developments of the measurement systems for cryogenic processes are presented. In

Chapter 2, the proposal for an advanced monitoring, fault diagnostics, and mainte-

nance of cryogenic systems is described. Consequently, in Chapter 3 the numerical

characterization of the proposed methods is showed. Finally in Chapter 4 the ex-

perimental validation for the presented innovative techniques is illustrated.
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Chapter 1

Cryogenics monitoring: state

of the art

In this chapter, mainstreams in research on measurement systems for cryogenic pro-

cesses are reviewed with the aim of defining key current trends and possible future

evolutions. In particular, in Section 1.1, main advanced measurement systems for

cryogenics are classified according to the measurand. Section 1.2 deals with a brief

description of systems for liquid level measurements. A review of current flow meter

technologies is reported in Section 1.3. Section 1.4 describes research methods used

for pressure measurements in processes at cryogenic temperatures. A classification of

research temperature measurement systems is reported in Section 1.5. Section 1.6 de-

scribes other measurement systems for cryogenics processes. A last section of synthesis

discussion about current research trends and possible future evolutions concludes the

paper.
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Cryogenics monitoring: state of the art

1.1 Measurements for cryogenics

Nowadays, cryogenics is exploited in several application fields [69] (see Fig. ??): (i)

chemical reactions, in order to produce active ingredients for popular drugs (medical

applications), (ii) cooling systems for chemical reactors, (iii) freezing of foods and

biotechnology products (vaccines), (iv) cryogenic fuels, oxygen and hydrogen, used for

spacecraft, and (v) several physics experiments, such as gravitational wave detectors

and superconducting particle accelerators and colliders. In the industry, cryogenics

is used for: (i) freezing food, (ii) pressurization of plastic bottles and aluminum cans

containing drinks, (iii) maintenance of pipelines by freezing the liquid on both side

of the leak, (iv) ground freezing, to allow tunneling operation in wet unstable soils,

(v) heat treatment of metals, (vi) freezing of explosives to make them temporarily

harmless, and (vii) cryo-cleaning.

In biological and medical fields, cryogenics is used to enable biological material

to be frozen and stored, especially for semen, thin tissues and blood. Furthermore,

the use of superconducting magnets allows detecting abnormalities of various tissues

of the body, using magnetic resonance imaging techniques. Liquid hydrogen is used

together with liquid oxygen as fuel for space vehicles.

All the processes performed in these application fields need for measurements: (i)

for monitoring the physical properties of materials during the cryogenic process, or

(ii) as feedback in the control systems of that processes. These measurements are

performed by systems that work: (i) at cryogenic temperatures, if they are applied

directly inside the cryostat, (ii) at environmental temperature, when they measure

physical quantities related to the cryogenic process out of the cryostat, or (iii) at both

environmental and cryogenic temperatures, when they are used for measurements in a

wide range of temperatures, e. g., during the cryostat freezing. In this paper, a review

of the research state of the art in these measurement system typologies is reported.

At this aim, these measurements systems have been classified according to the

physical quantities to be measured (Fig. 1.1): (i) liquid level measurement systems,

(ii) flow meters, (iii) pressure measurement systems, (iv) thermometers, (v) current

measurement systems, (vi) mechanical loss measurement systems, and so on.

In the followings sections, a brief review of measurement systems, for each of these

quantities, is reported and described.
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1.2. Measurement of liquid level at cryogenic temperature

Figure 1.1: Classification of measurements for cryogenics based on measurand.

1.2 Measurement of liquid level at cryogenic tem-

perature

Liquid level measurements are required for cryogenic propellant tanks in space ap-

plications. For these applications, several extreme conditions should be analyzed: (i)

the extreme cold, which makes many sensors inoperable due to the reduction of the

carriers conductivity, (ii) mechanical stress, and (iii) undesirable device heat genera-

tion. For these reasons, in scientific literature, several sensor technologies based on

different physical principles have been analyzed with the purpose of designing liquid

level sensors operating at cryogenic temperature.

In this section, a level sensor classification, based on the different physical prin-

ciples, is reported: (i) Pressure-Volume-Temperature (PVT) sensors, (ii) capacitive

sensors, (iii) optical fibers, and (iv) Surface Acoustic Wave (SAW) sensors.

1.2.1 PVT liquid level sensors

Cryogenic liquid propellant engines are mostly used for modern rocket propulsion

systems [70]. In this case, an accurate prediction of the fuel that will be used for

the flight is very difficult [70]. For this reason, level measurements of the remaining

propellant in the tank are necessary. During the rocket launch there is a time period

where the tank containing the fuel is under low gravity condition. In this case, it is

difficult to measure the level of the remaining cryogenic liquid in the tank. One of the

most important method used in this environmental condition is the Pressure-Volume-

Temperature (PVT) method. In this case temperature sensors, pressure sensor and

the flow-meter should operate at cryogenic temperatures. In Ref. [70], the authors

investigate the use of PVT method for liquid level measurements of a helium tank at

19



Cryogenics monitoring: state of the art

cryogenic temperatures. The PVT is an indirect method. It is possible to measure

the cryogenic liquid level measuring the temperature and pressure of both a supply

bottle and a propellant tank, in order to evaluate the amount of propellant remaining

in the tank (see Fig. 1.2).

The authors have analyzed the system in a 1.8 m diameter and 3.0 m high vac-

uum chamber. The test tank is 0.5 m in diameter and 0.9 m in overall length and is

suspended from the vacuum chamber lid. For the tests, the helium was supplied at

approximately constant pressure and ambient temperature from the supply bottle.

Fluid temperatures are measured by a vertical array of 10 silicon diode sensors with

a reported accuracy of 0.25 K. A second group of silicon diode sensors was placed in

three clusters separated by 0.64 cm vertical spacing at nominal fill level location of

20 %, 50 % and 80 % fill. This second group of sensors detects the presence of liquid

of vapor at the given level. These liquid level point sensors had very repeatable and

reliable behavior, but the switch point of each sensor had to be individually deter-

mined and was found to vary with temperature. These sensors have been used as

reference system of the PVT measurements.

Other temperature sensors have been placed on the top, side and bottom of the

tank to monitor tank wall heating and cooling during helium inflow and pump oper-

ation. Two pressure gauges are placed into the vent line for measuring tank pressure.

One gauge is limited to 0.7 MPa, the second one has a full scale of 2.1 MPa and their

accuracy are 0.11 % and 0.073 % of full scale, respectively. Helium flow rates have

been measured by two thermal flow meters. The authors have performed two tests.

The first one consists in reducing the fill level from 80 % to 50 %, the second one

from 50 % to 20 %. The authors provide measurement uncertainty values of the PVT

method of 1 % at 20 % of liquid level, 1.5 % at 50 % and 2 % at 80 %.

Another analysis of PVT method for liquid volume estimation is presented in

Ref. [71]. The authors obtained an accuracy of 4.6 % for high liquid-fill [72, 80] % and

of 3.4 % for low fill levels [27, 30] %.

1.2.2 Capacitive sensors for liquid level measurements

In Ref. [72], the authors propose a level meter based on capacitive transducer for

cryogenic liquids. The measurement principle of the level meter operation is based

on phase-locked loop (PLL) technique.

The physical principle of level measurements using capacitive transducers is based

on the difference in the value of the dielectric constant for gas and liquid state [73, 74].

The capacitive transducer is usually designed in the form of two coaxial tubes isolated
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Figure 1.2: General architecture of a PVT measurement system [70].

from each other. The capacity of such transducer is given by the following equation:

C =
2πε0εr

ln(Dd )
H (1.1)

where ε0 is the dielectric constant of vacuum, εr is the dielectric constant of the

material between the electrodes, D and d are diameters of outer and inner electrodes,

respectively, and H is the height of the transducer.

If the transducer is filled up to height hs by the cryogenic liquid, the capacity

variation is given by:

∆C =
2πε0(εrl − εrg)

ln(Dd )
h (1.2)

where εrl and εrg are the dielectric constants of the liquid and gas, respectively. The

accuracy and precision of level measurements depend on the transducers and the used

electronics for capacitive measurements [75].

Due to the low temperatures, the displacement of the liquid surface generates

low changes in the capacitance value. Thus, the large stray capacitance combined

with the capacitance of the lead wires can cover the transducer variations. For this

reason, normally a third tube, which surrounds the other and forming a three terminal

capacitor, is used to remove the lead wires capacitance effects [75].

In order to increase the transducer sensitivity, the radii of the concentric plates

must decrease (1.2). In Ref. [73], another solution to increase the transducer sensitiv-

ity is presented. In this work, multi-parallel plates consisting of eight capacitor plates

separated with polyacetal spacers is proposed.
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Several methods and techniques can be used for capacity measurement, such as

ac bridges, pulse methods, etc. The PLL method for capacity measurement has

been explored in Ref. [72]. The standard scheme of a PLL-detector consists of a

phase comparator, a low-pass filter and a Voltage-Controlled Oscillator (VCO). In

the locked condition, the frequency of VCO follows the frequency changes of the

input signal because feedback loop hold zero–phase difference between the frequency

of VCO and the input signal frequency. In this way, the VCO voltage is proportional

to the frequency change of the input signal.

In order to measure the capacitance, the authors have modified the PLL scheme.

A waveform generator issues a sinusoidal wave at a reference frequency on the input

of PLL. Furthermore, the capacitive transducer is connected to the VCO circuit.

The VCO frequency depends on both the controlled voltage and the capacity of the

transducer. In order to hold zero–phase difference between the reference frequency

and VCO frequency, the VCO changes linearly with the capacity value. The authors

have evaluated that the sensitivity of the proposed level meter is 171 mV/pF and that

the stability of the output voltage is 1 mV.

1.2.3 Distributed liquid level sensors using optical fibers

In Ref. [76], the authors designed a liquid level sensing system for cryogenic fluids

with millimeter spatial resolution. This liquid level measurement system is based on

fiber optic.

Fiber optic based sensors offer several advantages over electrical sensors because

they are: (i) immune to electromagnetic interference, (ii) spark-free, (iii) and chem-

ically inert. Furthermore, a large number of sensors can be placed on a single fiber.

So, it is possible to reduce the cost and implementation efforts for distributed sensing.

Liquid level sensors can be classified into two categories: (i) discrete level sensors,

and (ii) continuous level sensors. Discrete level sensors detect the liquid level at a

single location and provide binary information related to whatever the liquid is present

at that level. Several discrete level sensors can be placed along an optical fiber. The

spatial density of sensors on the fiber limits the level resolution [77]. On the other

hand, continuous level sensors provide level measurements in the sensing range.

Continuous fiber level sensors are based mainly on the theoretical discrimination

between refractive index (RI) of liquid and gas states. Due to the RI contrast between

liquid and gas, the optical proprieties of sensing light , such as transmission loss, Bragg

wavelength, and spectral interference, change. The continuous fiber level sensors are

able to provide sub-millimeter spatial resolution with very fast response time. The
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sensing distance is fundamentally limited by the evanescent field ([100, 200] mm). The

other limitation is that for cryogenic fluids, such as liquid hydrogen and liquid helium,

the RI values are very close to their gaseous forms. This makes the RI discrimination

impossible.

In Ref. [76], the authors propose a continuous liquid level sensor based on self-

heated fibers as sensing devices (see Fig. 1.3). It is based on Optical Frequency

Domain Reflectometry (OFDR) measurement of in-fiber Rayleigh scattering. The

OFDR measurement system consists of a coherent tunable light source, a fiber inter-

ferometer, and a photo-detector. Light from the laser is linearly swept and coupled

into the fiber interferometer. The fiber interferometer splits the light into measure-

ment and reference arms. The measurement arm of the interferometer is connected

to the heated fiber placed in the tank using a fiber recirculator. The probe light is

reflected back to the OFDR system through the fiber recirculator and combined with

the reference arm light onto the photo detectors. The time delay between reference

arm path and measurement arm is proportional to the liquid level.

The authors have tested the measurement system for temperature lower than 4 K

and for cryogenic liquids. The system exhibits a sensing range up to 70 m with a sub

millimeter spatial sensing resolution.

Figure 1.3: General architecture of a in-Rayleigh scattering method based on optical frequency do-

main reflectometry [76].
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1.2.4 SAW liquid level sensors

Acoustic devices can successfully operate at extremely low temperatures, without

performance degradation. In Ref. [78], the authors analyze the use of surface acoustic

wave (SAW) devices to cryogenic liquid level sensing. The SAW device works as

switch; when a liquid is immersed in the tank, the wave energy is damped by the liquid.

The tested SAW devices are commercial SAW lithium niobate and quartz filters with

the lids removed. The authors have tested the SAW device at cryogenic temperatures

and demonstrate how this sensor can operate under those thermal circumstances for

both quartz and lithium niobate materials.

1.3 Flow meters for cryogenic systems

The study of fluid in cryogenic systems is an important issue in several applications

because it allows to know how the fluid is distributed in the cryostat, and if the flow

is laminar or turbulent. For example, slush hydrogen is a cryogenic fluid consisting

of solid hydrogen particles in liquid hydrogen. This liquid is used in several applica-

tions, such as fuel for reusable space shuttles, coolant for cold neutron generation and

transport and storage of hydrogen as a clean energy source. As a matter of fact, the

accuracy of flow measurements affects directly the failure detection of these industrial

systems. In case of cryogenic turbo-machinery, an abrupt change in fluid quality can

lead to over-speed, causing catastrophic failure.

For this reason, flow measurements are a standard task for any application in-

volving fluid. Several methods have been explored for the measurement of fluid flow

in pipes: differential pressure, vortex, ultrasonic, Coriolis and thermal flow mea-

surements. In this section, the followings methods are reported: (i) capacitive, (ii)

microwave, (iii) thermal, (iv) Coriolis,, (v) optical based and (vi) virtual flow-meters.

1.3.1 Capacitive flow meters

In Ref. [79], the authors present a capacitive mass flow rate measurement system

based on density measurements applied to slush hydrogen. For density measurements,

several techniques can be used: (i) measurement of the attenuation of beta or gamma

ray, (ii) measurement of the propagation speed of ultrasonic waves, (iii) measurement

of phase shift of microwaves, and (iv) capacitive measurements.

The beta/gamma ray method cannot be used in presence of radioactive substances,

while the ultrasonic wave method is affected by solid particles in fluid. On the other

24



1.3. Flow meters for cryogenic systems

hand, capacitive densimeters allow high-precision density measurements.

The structure of capacitive densimeter consists of a double cylinder or parallel

plates. By considering the variation of dielectric constant according to the slush

hydrogen state (liquid or solid), it is possible to measure the hydrogen density. The

substance under test can easily leak into the gap between the capacitor electrodes.

By expanding the area of electrodes and reducing the distance between them, it is

possible to improve the measurement accuracy. Considering the specific properties of

slush hydrogen, the authors have adopted a cylinder structure with a flat plate. This

structure reaches high accuracy values and solves the problem of entry of solid particles

between the electrodes. For the capacitive densimeter, the measurement accuracy is

of about 0.5 %. The authors have implemented a mass flow rate measurement system

using two of these capacitive densimeter placed at two locations along the piped flow.

The flow velocity is evaluated from the densimeter distance and the delay time when

the cross correlation function of the two density signals has the maximum. For the

capacitance flowmeter, the difference between the flow velocities measured by the

flowmeter and that calculated from the liquid-level change in the tank is of about

10 %.

In Ref. [80], the authors propose a capacitive-based measurement approach, which

consists of eleven ring-shaped electrodes mounted on the outer surface of a pipe,

for measuring the flow velocity and the mean density of liquid hydrogen flows. A

disadvantage of these capacitive based flow meters is the time-dependent drift of the

dielectric constant.

1.3.2 Microwave flowmeters

In Ref. [79], the authors presented a microwave mass flow rate measurement system

based on density measurements applied to slush hydrogen. Microwave densimeter

exploits the phase shift of a microwave due to variation of the dielectric constant of

a fluid. The measurement system consists of microwave transmitter and receiver and

a network analyzer. The dielectric constant of the slush hydrogen changes with the

average density of fluid. By using the network analyzer, it is possible to evaluate

the phase shift between the transmitted and the received microwaves and so the fluid

density. As described above, the flow velocity is evaluated through cross-correlation

method. The authors provide an error of about 5 % obtained with the microwave

flowmeter.
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1.3.3 Thermal flow measurement

Thermal flow measurement systems are based on two electrically heated elements

placed consecutively along the flow direction. An element generally consists of a

platinum wire, to which an electrical current is applied for heating and where the

voltage drop is evaluated for temperature measurement. If both the elements are

heated with the same electrical current and the fluid stands still, then the temperature

difference between the elements should be zero. In case of fluid flow, the temperature

profile is shifted in flow direction and the mass flow rate can be measured being

proportional to the temperature difference (see Fig. 1.4).

In such thermal systems, the correlation between temperature difference and the

mass flow rate depends on several parameters: distance between elements, tube size,

materials and shape of heat exchangers.

A large number of calibration procedures that aim to minimize the error effects

have been developed. Otherwise, in case of cryogenic applications, no flow meter can

be found as serial product on the market, mainly because a manufacturer calibration

at low-temperature helium or hydrogen are unfeasible in terms of cost and effort. In

Ref. [81], the authors propose a method for flow measurement with the ability for

intrinsic calibration that can be executed during operation of a cryogenic installa-

tion. The intrinsic calibration is based on the evaluation of two independent analytic

expressions for the flow rate from the same measurement readings (input parame-

ters). If the input parameters are error-free, the two expressions provide identical

results. This can be formalized with a goal function in a minimization routine that

compensates these systematic errors. The calibration procedure needs that the flow

is stationary for some seconds during calibration. Furthermore, after the calibration,

the authors have obtained a measurement uncertainty of 1 %.

Another analysis of thermal flow measurement system is presented in Ref. [82].

In this paper, the authors analyze the physical characteristic of a hot film probe at

cryogenic temperature. The transducer consists of a 10 µm× 10 µm hot film probe

used in a 6 cm helium gas wind tunnel. A ring of bronze with two stainless steel wires

supports the sensor. Furthermore, two wires are placed and electrically isolated from

the bronze ring. A 10µm quartz fiber is epoxied across the wires and the sensor is

located at the center of the fiber. The device is made by depositing a thin film Au-Ge

on the central portion of the fiber. The material shows a nearly power law dependence

of resistivity on temperature over a wide range. Furthermore, the cryogenic hot film

probe has a fast response time.
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Figure 1.4: General measurement principle overview of thermal flow meter [81].

Figure 1.5: Architecture of a Coriolis flow meter [83].

1.3.4 Mass flow meters based on the Coriolis acceleration

Cryogenic systems are used for accelerator and fusion superconducting devices (cav-

ities, magnets, power lines and current leads). For these systems, it is important to

monitor accurately thermal performance and the distribution of cooling power. Cori-

olis mass flow meters have been successfully used to measure flow of fluid and gases

at ambient temperatures with a good accuracy and long-term reproducibility.

The advantages of Coriolis meters are: (i) they do not suffer from time-dependent

drift (capacitance flow meter), (ii) they are manufactured of stainless steel, and (iii)

they respond directly to mass flow, eliminating the need for density compensation.

Coriolis meter consists of: an in-line sensing element and two electromagnetic

transducers. The sensing element consists of a collector (manifold) that splits the
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flow into two parallel tubes. The tubes are vibrated at a resonant frequency. The

fluid momentum coupled with the oscillatory motion, created by the vibration, in-

duces a Coriolis force along the length of the tubes. Two electromagnetic transducers

are located on opposite legs of the flow tubes; the vibration of the tubes generates

sinusoidal signals that are shifted in phase due to the Coriolis force. By measuring

the phase shift, it is possible to calculate the mass flow rate.

For temperature below ambient, the Young modulus increases and so does the

stiffness of the tube. For this reason, a Pt 100 (RTD) is placed on the tubes for

compensating the temperature effects.

In Ref. [83], the authors have tested a Coriolis meter at cryogenic temperature

(see Fig. 1.5). As described above, a typical Coriolis meter needs to temperature

measurements, for compensating the vibration characteristics of the sensing element.

Those vibrations are related to the changing of the elasticity modulus, which is well

characterized at different temperatures. The elasticity modulus is constant with a

value of 207.5 GPa below 20 K; so the authors have evaluated the correction factor

with respect to the ambient temperature of 20 ◦C.

The authors have tested the Coriolis flowmeter and found that it achieves a mea-

surement accuracy of 0.5 % in liquid, superfluid and supercritical helium, between

1.7 K and 20 K.

1.3.5 Optical techniques for mass flow rate measurements

A cryogenic flow sensor (CFS) for determining mass flow of cryogenic fluids has been

developed in Ref. [84]. The proposed CFS exploits optical properties of the fluid

under test with two techniques, optical absorption/scatter and acoustic-optic signal

processing, for determining quality of the fluid and the mass flow rate (see Fig. 1.6).

In order to quantify the quality of the fluid, the CFS measures the light attenuation

due to a change in reflectance in a liquid flow environment and the absorption coef-

ficient. A laser diode generates a Plane-Of-Light (POL) in the propellant plumbing

where the fluid crosses. The POL intensity is continuously monitored, thus a chang-

ing of light transmittance due to non-uniformity of the flow can be detected. The

light source is capable of generating light at different wavelengths; furthermore, the

light is uniformly distributed in the propellant plumbing through optical equipment.

The sensing part consists of two photo-detectors, one for measuring light attenuation

and one for measuring the reflected light. The authors have tested the system with

different known particulates in the flow under test (e.g. vapor bubble).

For measuring the mass flow rate, the authors developed a system based on
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acousto-optic principles. The system consists of an acoustic transducer for induc-

ing a pressure along the flow direction to change the refractive index grating. The

apparent frequency of the acoustic wave changes according to the flow rate. This

change is detected using a collimated laser beam and position sensitive detector to

measure the degree of Bragg diffraction from the grating. In particular, the angular

position of the laser beam passing trough the grating will diffract the laser beam into

an angular position, which is linearly proportional to the acoustic frequency.

Figure 1.6: The acoustic-optic flow measurement system proposed in Ref. [84].

1.3.6 Virtual flowmeters

A virtual sensor consists of a model that allows the indirect measurement of a quan-

tity by combining data sensed by a group of heterogeneous sensors [1]. These sensors

are used for large-scale physics experiments, such as a particle accelerator, to mon-

itor and to control cryogenics superconducting operations. In Ref. [1], the authors

present a helium virtual flow meter based on the measurements of the pressure and

the temperature at the input and the output of the LHC cryogenic control valve.

The authors have analyzed two different models, Samson and Sereg-Schlumberger,

for virtual helium flow meter implementation. For both the models the RMSE values

have been estimated: 7.50 % for Samson and 7.00 % for Sereg-Schlumberger.
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1.4 Pressure sensors for cryogenic systems

Another important parameter to monitor in cryogenic applications is the pressure of

the fluid in a tank. In this section, the following methods for pressure measurements

are reported: (i) capacitive differential pressure sensors, and (ii) inductive gauge

pressure sensors.

1.4.1 Capacitive differential pressure sensors

A capacitive differential pressure sensor based on the measurement of deflection on

a membrane is presented in Ref. [82]. The small deflection of membrane changes the

distance between two electrodes of a capacitor, as depicted in Fig. 1.7. The capaci-

tance is measured through an ac capacitance bridge. The minimum resolution of the

proposed sensor is around 2× 10−6 pF/Hz1/2, which corresponds to 0.02 Pa/Hz1/2

and depends on the frequency used for the generator in the ac bridge. Furthermore,

the sensor operates over a broad range of temperatures with changing of less than

10 % from 300 K to 4.2 K. The largest measurement effect is the temperature depen-

dence of the elastic modulus, E. Since E depends nearly linearly on temperature, the

calibration in terms of temperature has been done at room temperature and 4 K. An-

other transducer lack is due to the extreme sensitivity of the device. Even microscopic

strains can cover pressure variations. For this reason, the capacitor is made almost

entirely out of a single material, copper beryllium, to minimize thermal stresses. An-

other problem is the capacitance dielectric constant drift. To overcome this limit, as

a further improvement, the authors propose a device based on two capacitors in inti-

mate contact. The former capacitor senses the differential pressure, while the latter

Figure 1.7: Architecture of the proposed pressure sensor [82].
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one does not. The second capacitor will be used as a reference capacitor in one leg of

the ac bridge. In this case, if the dielectric constant drifts, it would drift identically

in both capacitors so that the ratio of the capacities would not be affected by drift.

Another high precision capacitance for low pressure gauge at cryogenic temperature is

presented in Ref. [85]. The authors have tested the measurement system in the tem-

perature range of [77, 370] K for the pressure range of [0, 50] bar. The measurement

system has an accuracy of 1 %.

1.4.2 Inductive gauge pressure sensor

In Ref. [86], the authors have developed a high resolution superconducting pressure

gauge and controller system to stabilize pressure within 1× 10−8 bar in the range of

[0, 30] bar at temperatures below 6 K. The transducer is based on inductive sensing of

the position of a diaphragm using superconducting techniques [87]. A rod attached to

the center of diaphragm supports a superconducting plate, which is in close proximity

to a spiral-superconducting coil. The coil is supplied by a 1 A current and coupled

to a dc magnetometer. A magnetometer measures the magnetic field changing due

to pressure variations. The authors achieve an uncertainty value of 1× 10−8 in a

pressure range of [1, 25] bar. The lack of this system is the low immunity to external

magnetic fields.

1.5 Temperature measurements for cryogenics

Cryogenic temperature measurements are needed in several applications: (i) deep-

space exploration, (ii) particle physics accelerators, (iii) material characterization,

(iv) laser cooling and trapping, (v) medical systems, and (vi) superconductors sys-

tem. Thermometry at low temperature is a hard task due to low thermal conductance

and low thermal capacity of materials. For this reasons, over the years, several re-

searches have been focused to design cryogenic temperature measurement systems.

In this section, a brief survey of temperature measurement systems for cryogenics

is reported and all the methods are classified on the basis of the physical principle

as follows: (i) metallic resistance thermometers and thermocouples, (ii) optic ther-

mometers, (iii) semiconductor thermometers, and (iv) magnetic thermometers. In

Tab. 1.1, a comparison of these temperature sensors based on measurement range,

measurement features, electric and magnetic field immunity and response time, is

reported.
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1.5.1 Metallic resistance thermometer and thermocouple

Superconductors achieve their unique properties at very low temperatures, less than

20 K. For these applications, temperature measurements must be fast both to control

the operations and to detect emergency situations.

Temperature measurements in cryogenic conditions can be made by contact method,

i.e. the sensor is directly connected to the Device Under Test (DUT). In this case

the main uncertainty sources are due to: (i) the temperature distribution around

the point of contact of the sensors with the DUT, (ii) the thermal resistance of the

connection between the sensor and the DUT, and (iii) the feedthrough that causes a

heat leak to the cooled space.

Resistive temperature detector (RTD), thermocouples and semiconductor diodes

are the most common cryogenic sensors used in the temperature range of [1, 100] K.

Resistive sensors with a positive temperature coefficient (PTC) are made of pure

metals (such as platinum and copper) or pure metals with small impurities (platinum-

cobalt). Negative temperature coefficient (NTC) sensors are made of germanium,

carbon glass, zirconium oxynitride, etc. Platinum sensors are the most commonly used

RTDs due to high measurement accuracy for a wide temperature range of [15, 725] K.

Unfortunately, these sensors are large and show a long response time. For this

reasons, they are made with thin film resistors deposited on a ceramic or glass for

cryogenics applications. In this way, they show a lower stability, a smaller temperature

range, a significant hysteresis, a fast response time and a lower immunity to external

magnetic and electric fields.

In Ref. [88], the authors analyze the use of Pt 1000 for measurements at cryogenic

temperature. Thin film platinum resistance consists of depositing the resistance struc-

ture on a ceramic substrate. The authors have tested 21 samples of Pt 1000 sensors

for several temperature ranges. The sensitivity is constant and equal to 3.9 Ω/K until

60 K. Below 60 K it decreases quickly. Furthermore, it is possible to discriminate tem-

perature variation until 20 K. The authors have provided a 6-th order polynomial,

which fits the results between the reference temperature values and the measured

values.

The measurement uncertainty at 30 K is of 0.061 K and at 78 K is of 0.018 K. The

authors have evaluated the sensors stability performing several calibration procedures.

The sensors stability is within the range of measurement uncertainty of the calibration

cryostat. As last test, the authors have evaluated the effect of magnetic field on the

temperature measurements. From this test, they have carried out a 3-rd order curve

to compensate magnetic field effects.
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Another temperature measurement system based on RTD is proposed in Ref. [89].

The measurement system consists of a Pt 500 RTD. The authors have obtained a

measurement uncertainty of 0.087 K at 30 K, and compensated the effect of magnetic

field with in-situ calibration procedures. From the reported works, the main problem

of RTD sensors is the magnetic and electric field immunity.

CrN (Chromium nitride) has received considerable interest due to its high poten-

tial for applications in hard, wear and corrosion resistant coatings and for its small

magnetoresistance. In Ref. [90], the authors investigate the use of CrN thin film

for temperature sensors in cryogenic applications. The sensor exhibits a negative

temperature coefficient resistance below 300 K, a resolution of 1 mK, a good thermal

stability and the sensor is insensitive to the magnetic field. The temperature shift

due to magnetoresistance in a magnetic field of 9 T is less than 5 mK at 4 K and 2 K.

For this reason, the authors demonstrate that CrN can be an excellent material for

cryogenic temperature sensors under high magnitude magnetic field conditions.

Furthermore, for space applications, another parameter to take into account is the

effect of radiation of several particles. In Ref. [91], the authors developed a single and

dual element resistance thermometer based on Ge-on-GaAs films. Ge-onGaAs film

resistance thermometers are based on the deposition of a Ge film onto a semi-isolating

GaAs substrate. By controlling the Ge film growth, it is possible to produce ther-

mometers having different sensitivity characteristics over the cryogenic temperature

range. In Fig. 1.8, it is possible to see the resistance vs. temperature characteristics

for the following Ge-on-GaAs thermometer models: TTR-D [0.03, 300] K; TTR-G

[0.3, 300] K and TTR-M [4.2, 400] K. The authors have investigated the effect of neu-

trons, gamma-rays, electrons and bremsstrahlung photons on Ge films. The results

show a high radiation tolerance up to integral doses of 1 MGy.

Another temperature sensor that can work at cryogenic temperature is the ther-

mocouple. The most important advantages of thermocouples are: small dimensions of

the junction, small heat capacity, short response time, repeatable temperature char-

acteristics and negligible self-heating effect. Unfortunately, thermocouples require

the use of complicated conditioning circuits. Thermocouples of type E (chromel-

constantan), type T (copper-constantan) and type K (chromel-alumel) are the most

popular in cryogenic applications.

In Ref. [92], the authors present the results obtained from dynamic tests of the

most popular sensors used at low temperatures, Pt 100 and thermocouples E and T.

The reference object used for dynamic test is a heat exchanger in the form of a cop-

per disk cooled by a helium cryocooler ARS DE-210AF. The temperature controller
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Lakeshore 331 controls the temperature of the heat exchanger. For the thermocou-

ples, the authors have obtained good dynamic properties and good accuracy. On the

other hand, the thin layer Pt 100 exhibits a low repeatability of characteristics below

100 K, which excludes its use in cryogenic systems.

Figure 1.8: Resistance vs temperature curves for different models of Ge-film thermometer [91].

1.5.2 Optic thermometers

Thermal sensors based on fiber optics have the following advantages: (i) fast response

time, (ii) high accuracy, and (iii) high electric and magnetic field immunity. On the

other hand, the use of these sensors at cryogenic temperature less than 77 K is very

hard because, at these temperatures, the fiber thermal expansion coefficient decreases.

In Ref. [93], the authors investigate the use of fiber optic thermal sensors in the

very low temperature region of [4.2, 30] K. The thermal sensor consists of a fiber

optic with hot-imprinted Bragg grating. By illuminating the fiber with a broadband

light source, a wave at the Bragg wavelength is reflected by the imprinting grating.

The wavelength value depends on the environmental temperature. Furthermore, by

imprinting along the fiber several grating at different positions, a quasi-distributed

temperature measurement system can be realized [94]. In Ref. [93], three different
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sensors have been tested: (i) bare sensor, which consists of an uncoated fiber with im-

printed a Bragg grating, (ii) zinc-coated sensor, and (iii) copper electroplated sensor.

In the temperature range of [6, 270] K, the coated sensors exhibit higher sensitivity

values than the bar one. The Zn-coated sensor shows the highest sensitivity along the

whole temperature range. On the other hand, the copper electroplated sensor shows

an acceptable sensitivity and repeatability in the [6, 20] K temperature range. The re-

sponse time for both coated sensors is larger than the bar one. Another measurement

characterization of a fiber-grating sensor is proposed in Ref. [95]. The authors have

evaluated the temperature sensitive coefficient, the strain sensitive coefficient and the

cross-sensitivity coefficient of the sensor. Furthermore, a three-order polynomial has

been evaluated to convert wavelength shift in temperature.

Another optics technique is proposed in Ref.[96]. The authors have designed an

optical fiber sensor based on the temperature-dependent emission characteristics of

erbium-doped fiber pumped by a 1480 nm laser diode with an amplitude modulation

of the driver current. The authors have obtained a measurement resolution of 0.4 K

at room temperature and of 0.07 K for liquid nitrogen temperature.

As described until now, it is possible to say that optical sensors are immune to

electromagnetic interference. Nevertheless, all fiber-optical sensors are wired devices

requiring special interface packaging for the cryogenic zone. In Ref. [97], the authors

propose a hybrid design optical sensor. This sensor consists of a 6H-SiC chip placed in

a cryogenic vacuum temperature chamber with a glass window for optical laser beam

access. A circular polarization light is targeted on the SiC chip. The light reflected

by the chip is measured by a photodetector. By measuring the optical power with

the photodetector, it was possible to measure the cryostat temperature.

1.5.3 Semiconductor thermometers

Semiconductor thermometers can be classified in: p-n junction devices and semicon-

ductor resistance thermometers. In the former case, the p-n junction forward voltage

drop is proportional to the environmental temperature; in the latter case, the ther-

mometer consists of a resistor made of semiconductor material. For these sensors, the

unique disadvantage is the low immunity to magnetic and electric field, as described

in Ref. [98].
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P-n junction devices

One of promising on-chip thermometer for cryogenic applications is a superconductor-

insulator-normal (SIN) metal junction thermometer. Current-voltage characteristic of

the junction is non-linear near the gap voltage. High temperature sensitivity for SIN

thermometer can be reached with a LC resonance circuit with a high frequency and

low noise amplifier. However, the system sensitivity is limited by the signal to noise

ratio of the amplifier. For this reason, in Ref. [99], the authors propose a temperature

measurement system based on a series of SIN thermometers. In this way, it is possible

to increase the system sensitivity and overcome the noise due to the external amplifier.

Semiconductor resistance thermometers

Space is a hard environment for any electronic component. The components must op-

erate at extreme low temperature, in vacuum and high radiation doses. Furthermore,

the components should resist to mechanical shock, vibration, and acceleration during

launch. Depending on criticality, failure of a single component can cause failure of a

portion of mission or of the entire mission. For these reasons, any component must

meet rigorous screening before to be chosen for space applications. In Ref. [100], the

author proposes a standard for aerospace screening and qualification test for Cernox

resistance thermometer. The two most common types of cryogenic thermometers used

in space applications are based on resistance or on the p-n junction voltage drop of a

diode. Diode temperature sensors have low radiation immunity and a fixed response

time. On the other hands, the material composition of resistance thermometers can be

manipulated to create a family of response curves for a given application temperature

range. Cernox resistance thermometers are into this category. These devices are made

via reactive sputtering to create a conducting zirconium nitride material embedded

in a non-conducting zirconium oxide matrix. By regulating the nitrogen-to-oxygen

gas composition, it is possible to change the temperature measurement range and the

sensitivity of the sensor.

Another application of semiconductor resistance thermometer is proposed in Ref. [101].

The next generation of LHC (Large Hadron Collider) superconducting magnets must

operate in hard conditions: high radiation doses ([10, 50] MGy), high voltage en-

vironment ([1, 5] kV) during the quench, dynamic high magnetic field up to 12 T,

dynamic temperature range ([1.8, 300] K in 0.6 s). For this system, it is important to

study dynamic thermal effects with high sampling rate above 200 Hz, such as the heat

flux through the magnet structure and the hot spot in conductors during a magnet

quench. In Ref. [101], the authors propose a high-voltage thin film thermal anchor
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for a carbon ceramic sensor, in order to measure the temperature directly on the

superconductor cable under the conditions described previously. The temperature

measurement system exhibits a time response within the interval of [3, 5] ms at 4.5 K.

1.5.4 Magnetic thermometers

Layered magnetic metallic structure can be used as temperature sensors. The gi-

ant magnetoresistance (GMR) increases with the decrease of the temperature. In

Ref. [102], the authors propose a Fe/Cr magnetoresistive sensor that exploits the

increasing of GMR effect at low temperature. The temperature dependence of the

sensor resistivity has been measured in a temperature range of [0.1, 300] K and the

authors found that the resistivity becomes constant at temperature below 2 K with

an accuracy better than 0.1 %.

1.6 Other measurements

The topologies of measurement performed at cryogenic conditions are continuously

growing in different application fields. In this section, a collection of new measure-

ments for cryogenic processes is reported: (i) optical absorption measurements, (ii)

viscosity measurements, (iii) hydrogen concentration measurements, (iv) displacement

measurements, (v) current measurements, and (vi) mechanical loss measurements.

1.6.1 Optical absorption measurements

Two experimental techniques can be used to measure the optical absorption of a

material at cryogenics temperatures: (i) the photo thermal deflection technique, and

(ii) the calorimetric measurement.

The first one is based on the mirage effect. The system consists of two lasers: (i)

a high power laser, called pump laser, and (ii) a low power laser. The pump laser

is focused on the material and so its light is partially absorbed by the sample. The

absorbed optical power creates a gradient of temperature on the sample. The probe

beam is aligned to intersect the pump beam in the sample and is deflected by the

gradient of the refractive index, which changes with the temperature gradient. The

deviation of the beam is detected by a quadrant photodetector and it is directly pro-

portional to the amount of power absorbed in the sample. In Ref. [103], the authors

measure the optical absorption of doped crystalline silicone, which is a candidate ma-

terial for the low temperature interferometer of the Einstein Telescope. The authors
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observe, using the photo thermal deflection technique, a nearly constant absorption

from room temperature down to cryogenic temperatures for two silicon samples both

crystals doped with boron.

On the other hand, calorimetric measurements are based on a laser beam passed

through a sample and measuring the increase in temperature directly with a temper-

ature sensor.

1.6.2 Viscosity measurements

In Ref. [104], a pressurized gravitational capillary (PGC) viscometer has been devel-

oped for sub-cooled liquified gases, such as oxygen, nitrogen, hydrogen and methane.

The proposed system provides absolute viscosity measurements with uncertainty of

1 %, necessary for the demands of aerospace engineering. The PGC viscometer cell

consists of two reservoirs having the same height. A coiled capillary of electroformed

nickel hydraulically connects the two reservoirs. Using helium gas to drive liquid from

a third supply reservoir, a level difference is created between the first two reservoirs.

Helium gas is then used to pressurize the first two reservoirs equally. Each reser-

voir holds a capacitive liquid-level sensor that measure the flow induced by gravity

through the capillary. The viscosity of the liquid is determined by the relationship of

the pressure gradient with the flow rate of the liquid, this relationship parameterized

by the geometry of the capillary cross-section.

1.6.3 Hydrogen concentration measurements

In Ref. [105], the authors propose a silica optical fiber sensors coated by different

sensitive material to perform gaseous hydrogen detection at cryogenic temperature.

The proposed optical sensor is based on the deposition of properly chosen sensitive

materials (carbon nanotubes) as nanoscale films on the end of a silica optical fiber.

The sensor physical principle is based on the dependence of the reflectance on the

optical and geometric properties of the sensitive material. A certain analyte (in

that work hydrogen) induces a consequent change in the fiber reflectance. So the

concentration of hydrogen can be measured through reflectance measurements.

1.6.4 Displacement measurements

Displacement sensors are employed in superconducting dipoles to steer particles. For

correct collimation, the beam must be placed inside the magnetic field with sub-

millimeter accuracy. Thus the shrinkage and the expansion of the magnets during
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their operations and positioning or aligning of them play important roles in several

experiments, such as KATRIN (KArlsruhe TRItium Neutrino experiment) and LHC.

Another application for displacement sensor is in the inlet valve of torus cryogenic

pump, where the opening and closing of the valve is controlled by the displacement

of the valve shaft. Mechanical displacement sensors cannot be used for this kind of

applications, because of moving parts failure due to low temperature. On the other

hand, electrical and magnetic displacement sensors are quite useful for cryogenic mea-

surements, but they cannot be used in environment with high intensity electrical and

magnetic fields. In order to overcome the described lack, the authors in Ref. [106]

propose an optical-based displacement measurement system to measure displacement.

The authors designed a fiber Bragg grating (FBG) based displacement sensor. This

sensor consists of two gratings with two different spatial periods. The former grating

is attached to one end of the spring that causes the strain of the sensor due to the

displacement of the spring. The latter grating is not affected by strain and measure

the temperature during measurement. The grating periods of the two gratings change

according to the strain and to the temperature, respectively. The temperature mea-

surements are used to compensate the temperature effects on strain measurement of

the first grating. In this way, the temperature-compensated strain data are correlated

to displacement. The authors have tested the proposed sensor at temperature around

77 K and the sensor has shown a long-range displacement of 550 mm with an accuracy

of 0.142 mm.

1.6.5 Current measurements

Dc current transformers are used in several application fields, such as monitoring of

power grid, intensity measurements of particle beam in physics accelerator, control

system for power supply, and so on. All these applications operate at room tempera-

ture. The increasing interest to the use of superconductors needs the development of

dc current transformer for cryogenic temperatures. In Ref. [107], the authors propose

a sensor to measure current of a superconducting dc current transformer working for

a nominal current of 20 kA at 4.2 K. The sensor shows a precision of 0.05 % with a

nonlinearity of 0.05 %.

1.6.6 Mechanical loss measurements

For several experiments, it is important to measure the mechanical loss of materi-

als at cryogenic temperature. For example, in the cryogenic interferometer Kamioka

40



1.6. Other measurements

Gravitational Wave Detector (KAGRA), it is an important issue to characterize the

thermal noise of material of fibers used to suspend the interferometer mirrors. This

fiber should have low thermal noise, which is proportional to temperature and me-

chanical loss. For this reason, mechanical loss measurement for several materials

at cryogenic temperature is an important issue. In Ref. [108], the authors propose

an automated measurement system to measure mechanical loss of a tungsten wire

at cryogenic temperature. The measurement is based on a ring-down technique. An

electro-static plate excites the resonant vibration of the wire. A laser beam is directed

on the wire and the wire vibrations are measured with a photodiode. By measuring

the ring-down time and the resonant frequencies, the authors evaluate the mechanical

loss.
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Chapter 2

Proposal

In this chapter, the proposed solutions for the monitoring, fault detection and early

stage isolation, fault diagnosis and predictive maintenance of several cryogenic sys-

tems, are presented. In particular, for the monitoring system, in section 2.1.1, the

basic idea and two alternative models for helium virtual flow meters are illustrated.

Consequently, the alternative helium flow-meters and the operation and uncertainty

models are described in sections 2.1.2 and 2.1.3, respectively. Then, the fault detection

system, is described: In section 2.2.1, after outlining the proposal concepts, the model

definition and identification (2.2.2), as well as the noise power estimation (2.2.3), are

described together with the proposed fault detection and diagnostics (2.2.4). The

multiple fault diagnosis is formalized in 2.3.1, while in section 2.3.2, the distributed

micro-genetic algorithm for multiple-fault diagnostics is presented. Finally, the pre-

dictive maintenance problem 2.4.1 is then introduced, by illustrating in section 2.4.2

the proposed predictive maintenance solution.
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2.1 ADVANCED MONITORING: Helium virtual

flow-meter

2.1.1 Basic Idea

From a conceptual point of view, the transducer (defined as physical sensing elements

and other processing units) measures the mass flow ṁ indirectly, by processing suit-

ably the physical measurements of the pressure and the temperature at the input

and the output of the valve. In particular, a-priori knowledge about the valve and

the actual helium behaviours is combined with a-posteriori modelling (virtual flow-

meter), in order to assess the mass flow through the valve. In Fig. 2.1, the transducer

with the corresponding three models (actual helium, valve, and virtual flow-meter)

integrated in its structure are highlighted. In particular, at the inlet and outlet of a

cryogenic valve, the helium pressure and temperature (Pin, Pout, Tin, Tout) are mea-

sured by means of appropriate transducers (PT and TT, correspondingly).

Figure 2.1: Architecture of the virtual flow meter-based transducer (pressure -PT- and temperature

-TT- transducers)

The knowledge of the helium thermo-physical properties, namely density ρ and

heat capacity ratio γ, is also required at the valve inlet. Particular attention must be

paid to the parameter γ, defined as the ratio between the heat capacity at constant

pressure, cp, and the heat capacity at constant volume, cv. In literature, when the

helium is in gaseous phase and far away from the critical point, γ is generally approx-
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imated to a constant value (1.66) [109, 110]. However, in cryogenic applications, the

helium temperature and pressure conditions vary widely, and for this reason, the heat

capacity at constant pressure and the heat capacity at constant volume are calculated

at both the inlet and the outlet of the valve, by obtaining γ as:

γ =
cp,average
cv,average

(2.1)

where:

cp,average =
cpin+cpout

2 and cv,average = cvin+cvout
2 .

Some additional phenomena affecting the flow in a valve, such as the stream

constriction, have to be taken into account. The parameters mainly influencing the

mass flow through a valve are: the pressure drop over the valve, the density, and of

course the valve opening. In particular, the valve relative opening l (0 ≤ l ≤ 1) refers

to the valve plug position with respect to its closed state. The relationships between

the valve opening and the flow rate for the most common valves are illustrated in

Fig. 2.2 [111].

Figure 2.2: Characteristics opening vs flow rate for most common valve types

The flow through the valve is expressed according to the reverse valves sizing

problem, described in the international standard IEC 60534-2-1 [112] (flow behaviors

mostly laminar or transitional):

• For the liquid phase:

Q = N1FRKv(l)

√
ρw
ρ

∆P (2.2)

45



Proposal

• For the gas phase:

Q = N22FRKv(l)

√
∆P (Pin + Pout)

MTin
(2.3)

where Q is the volumetric flow rate (m3/h), N1 and N22 numerical constants, FR

the Reynolds number factor, ∆P the pressure drop (Pout-Pin) across the valve, ρw

the density of the water, and ρ and M are the mass density and the molecular mass

(kg/kmol), respectively, of the flowing fluid. Kv is the valve coefficient, and it is

sometimes also referred to as Cv (where Cv = 1.156 Kv). The valve coefficient Kv in

(2.2), (2.3) is a function of the valve opening l [113]:

• Fast opening: Kv/Kvmax = l
1
α , α > 0

• Linear: Kv/Kvmax = l

• Equal percentage: Kv/Kvmax = Rl−1

where Kvmax is the coefficient at maximum opening, while R and α are parameters

provided by the manufacturer.

Finally, the transducer dimensions (specifically, delimited by the pressure and

temperature sensor’s positions) have to be sufficiently larger than the valve turbulence

region. Therefore, in the following, the use of the Bernoulli equation is assumed

as reasonable. (This assumption was also validated experimentally: conditions of

turbulent flow were never surveyed in all the test points during the experiments of

this case study at CERN.)

2.1.2 Alternative virtual flow meters

Both the models of Samson and Sereg-Schlumberger are derived from the Bernoulli

equation. In this section, for both the methods, two different formulations are pre-

sented according to the gaseous or liquid phases of the helium. In the following, for

the sake of simplicity, in cryogenics conditions the fluid is assumed as purely liquid

when the temperature is below 5 K.
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• Gasified helium Samson

A(pin, pout) =


1; if pout

pin
≤ ( 2

γ+1 )
γ
γ−1

otherwise

1.379 ·
√

2γ
γ−1 (poutpin

)
2
γ · (1− pout

pin
)
γ−1
γ

(2.4)

ṁ(p, T ) = 14.2 ·A(pin, pout) ·Kv ·
√
ρ · pin (2.5)

• Liquefied helium Samson

ṁ(p, T ) = 31.62 ·Kv ·
√
ρ · (pin − pout) (2.6)

• Gasified helium Sereg-Schlumberger

pv = 1.25; pc = pin · (
2

γ + 1
)

γ
γ−1 (2.7)

psc = (0.96− 0.28 ·
√
pv
pc

) · pv (2.8)

Km =
pin − pc
pin − psc

(2.9)

Xc = 0.6 · γ ·Km; X =
pin − pout

pin
(2.10)

Y (pin, pout) =

 2
3 if X ≤ Xc

1− X
3Xc

otherwise
(2.11)

ṁ(p, T ) = 23.6 ·Kv · Y (pin, pout) ·
√
X · ρ · pin (2.12)

• Liquefied helium Sereg-Schlumberger

ṁ(p, T ) = 23.3 ·Kv ·
√
ρ · (pin − pout) (2.13)

where Kv is in both the cases the valve coefficient describing the valve characteristics.

2.1.3 Model of the Virtual Flowmeter-based Transducer

In the following, (i) the operation model and (ii) the uncertainty model of the virtual

flowmeter-based transducer are illustrated.
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Operation model

The virtual flow meter-based transducer measures the mass flow ṁ of cryogenic helium

through a valve by an indirect method [114]. A-priori knowledge about the valve and

the actual helium behaviors is combined with measured pressure and temperature at

the input and the output of the valve, as well as with an a-posteriori modeling, in

order to assess the mass flow.

In Fig. 2.1 [114], the operation model of the transducer with the three models of

the actual helium, the valve, and the virtual flow-meter integrated in its structure, are

highlighted. Further details about the transducer operation principle can be found

in [114].

Uncertainty model

In order to perform the uncertainty characterization of the transducer, a model of

its actual behaviour was defined (Fig. 2.3). At this aim, the functions and the main

uncertainty sources of the transducer were analysed. Pressure pin, temperature Tin,

and nominal mass flow ṁ are input to the valve model. The valve behaviour is char-

acterized by its coefficient Kv, corresponding to a defined aperture l affected by the

associated uncertainty u (l). On this basis, the valve model determines the output

pressure pout and temperature Tout. Input and output values of pressure and tem-

perature are measured by means a set of four sensors, pointed out in Fig. 2.3 as PS

and TS for pressure and temperature, respectively). The actual behaviours of the

sensors are modeled by considering their measurement relative uncertainties up and

uT . Measured temperature (T ′in, T ′out) and pressure (p′in, p′out) are input to both the

Helium and the virtual flowmeter models. The former model is mandated to simulate

the thermo-physical behaviour of the helium when expanding through the valve, thus

estimating its density ρ and the ratio γ between the heat capacity at constant pressure

and the volume. ρ and γ (affected by the corresponding relative uncertainties, uρ and

uγ) along with the estimated value of Kv are input to the virtual flowmeter model,

based on the Sereg-Schlumberger equations [24]. This model estimates the desired

mass flow, with an uncertainty umodel assessed through the experimental campaign

reported in [114].

1. Model parameters

The uncertainty model of the transducer is defined in order to single out the

dependency of the metrological performance P = (P1, ..., Pk) at the model output over
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Figure 2.3: Behavioral model of the virtual flowmeter-based transducer for the uncertainty analysis

its operating domain D=(i, s, c, u) (Fig. 2.3), defined by the following parameters:

(i) Measurands i = (i1, ..., im), the array of quantities to be measured at the model

input; namely, for the transducer, the mass flow ṁ through the valve to be

assessed indirectly by starting from the direct measurements of helium temper-

ature and pressure at the input and output of the valve;

(ii) Settings s = (s1, ..., sz), the control parameters defined by the operator, namely

the valve opening l, considered owing to its direct action on the transducer

behavior;

(iii) Operating conditions c = (c1, ..., cn), the parameters characterizing the external

environment where the transducer is operating, namely pressure and tempera-

ture at valve input and output pin, Tin, pout and Tout, respectively, expressing

the main working conditions for the cryogenic helium;

(iv) Uncertainty sources u = (u1, ..., uq) (detailed in the next subsection), affecting

the transducer performance, expressing the non-ideal behaviours of components

and the unknown influence of environment.
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2. Uncertainty sources

In the flowmeter-based transducer, the main significant non-ideality sources u =

(u1, ..., uq) were identified in:

(i) the uncertainty uT , affecting both the input and output temperature transduc-

ers, and assessed as the instrumental uncertainty;

(ii) the uncertainty up, affecting both the input and output pressure transducers,

again defined as the instrument uncertainty;

(iii) the uncertainty uρ, affecting the Helium density provided by the fluid model,

and assessed as the model uncertainty;

(iv) the uncertainty uγ , affecting the Helium heat capacity ratio provided by the gas

model, again assessed as the model uncertainty;

(v) the uncertainty ul, associated to the knowledge of the valve opening l (in fact,

l determines the value of the coefficient Kv, and thus affects the mass flow

estimate), assessed in terms of the precision of the determination of the opening

level;

(vi) and the mean percentage error umodel associated to the Sereg model, ad assessed

in the experimental campaign reported in [114].

Main twofold scopes of the metrological analysis are to determine if the influence of

these uncertainty sources is significant, and to rank their impact on the metrological

performance detailed in the next subsection.

3. Metrological performance

In the uncertainty model of the virtual flow-meter-based transducer, the metro-

logical performance P = (P1, ..., Pk) is expressed in terms of the differences between

estimated ṁ and reference ṁref mass flow, in different, defined measurement condi-

tions (i.e. for combinations of the model parameters values varying in defined, limited

sets). In particular, the transducer overall error e is expressed as percentage of the

reference:

e =
ṁ− ṁref

ṁref
· 100. (2.14)

e is processed to determine the following metrological performance indexes:
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• the deterministic error, assessed as the average over the N error samples ek

observed in each kth configuration,

ē =
1

N

N∑
k=1

ek, (2.15)

• the uncertainty, assessed as the associated standard deviation,

σe =

√√√√ 1

N − 1

N∑
k=1

(ek − ē)2, (2.16)

• and the total metrological performance, combining both deterministic error and

uncertainty, and assessed as the decomposition of the error sum of squares [115]:

η = ē2 +
N − 1

N
σ2
e . (2.17)

Valve model

The uncertainty model of the transducer includes a 3D model of a cryogenic valve by

WEKA [116], with two parts: the body and the valve plug (Fig. 2.4). The cryogenic

Figure 2.4: 3D CAD model of the cryogenic valve: plug (grey) and body (light grey)
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flow behavior has been modeled through Computational Fluid Dynamics (CFD) anal-

ysis. In particular, the software package ANSYS R© Fluent, included in the platform

WorkbenchTM ANSYS R©, was used to run the CFD simulations. The fluid domain,

corresponding to the valve volume, was meshed. An optimum number of elements

and nodes, in order to create a grid independent system, was found after several tests.

A pipe 10 times longer than the diameter was added to the 3D model to provide a

fully developed flow at the valve inlet.

Furthermore, the following boundary conditions were set: (i) the turbulence in-

tensity at valve inlet and output equal to 1% and 2%, respectively; (ii) a mass flow

normal to the valve inlet surface; (iii) a no-slip condition on the valve and pipe walls;

and (iv) an adiabatic simulation.

The CFD software solved the Reynolds-averaged Navier-Stokes equation and the

Shear Stress Transport (SST) k-ω [117] was chosen as turbulence model. Among all

the tested turbulence models, the SST k-ω yielded the best fit with the experimental

data. In the pressure-based solver, the coupled configuration was chosen to solve

the governing equations of the steady-time problem. Finally, a second-order upwind

scheme was used for the spatial discretization in all the equations, being more precise

than the first-order scheme, and the most accurate for this kind of problem with mesh

configuration.

The above-described configuration was chosen according to the knowledge of the

experimental conditions (experimental data, cryogenic system setup, and so on), and

the information provided by WEKA. For running the model, the knowledge of valve

parameters, i.e. its coefficient (Kv) and opening (Op), are needed.

2.2 FAULT DETECTION: cryogenic cold compres-

sors with Active Magnetic Bearings

2.2.1 Basic concepts

The key idea, underlying the proposed method, is to exploit the uncertainty inside a

single record of the nominal condition, to characterize its natural variability. There-

fore, few records of the nominal conditions are needed to statistically characterize

its behavior. In details, in a former stage, when the system is guaranteed to work

properly, few records are acquired and the nominal condition is characterized. Then,

at a later stage, maintenance campaigns are conducted on the same system, with the

aim of checking if a faulty condition has occurred. Moreover, some information about
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fault isolation can be obtained by analyzing the distance between the values of the

chosen figure of merit in the two considered cases and its sensitivity to the model

parameters. The method is intended to be used during maintenance tests, where the

main influence parameters, such as temperature and rotational speed of the compres-

sor, can be controlled, thus the uncertainty of the unfaulty condition is assumed to

be dominated by the noise overlapped on few FRF records.

In particular, the proposed early-stage fault isolation consists of four phases:

• Modeling the unfaulty condition: A model based on the FRF representing the

nominal behavior is defined and identified from few actual records of mea-

surements taken from a compressor in unfaulty condition. In particular, few

frequency-domain records are extracted from the system working in unfaulty

condition, and, from such data, a parametric model is identified, using a Total

Least Squares approach. The use of a parametric model allows the significant

behavior of the faulty condition to be described and to be separated from the

overlapped noise.

• Characterization of the unfaulty condition:

Then, the noise power on the records is assessed together with its variance, by

evaluating the residuals between the records and the model. The variance of

the noise power represents the effect of variation of the estimated parameter

due to the noise overlapped to the acquired records. In the paper, (i) the ac-

quired records are considered as corrupted by white Gaussian noise, and (ii) the

variance of the remaining noise on the record, filtered by the model applica-

tion, is assumed much lower than that of the noise on the original records. For

the purpose of the fault detection, the evaluated variance is taken into account

in order to characterize the variability range of the unfaulty behavior, and to

classify not significant changes in the system behavior.

• Fault detection: During the maintenance tests, the FRF of the system under test

is measured. A statistical test detects an eventual faulty condition by pointing

out a significant deviation of the noise power assessed during the maintenance

test from the reference noise in the unfaulty condition. In particular, the sta-

tistical test evaluates the variance of the noise power.

• Early-stage fault isolation: A sensitivity analysis is carried out on the model,

in order to (i) identify the most influencing parameters, and (ii) determine the

ranges of variation of the most influencing parameters, that cause significant

53



Proposal

alteration in the noise power estimate. The method does not allow a complete

fault isolation. However, by considering the results of the sensitivity analysis,

and evaluating the deviation in the values of the figure of merit, evaluated during

the maintenance test and in the unfaulty condition, the set of parameters, whose

variations have caused the faults, can be identified with high probability.

In the following subsections, each step of the proposed method is detailed.

2.2.2 Modelling the nominal system

The model of the system is obtained from the measured frequency response, as de-

scribed in Ref. [118]. The frequency response can be written from the system transfer

function:

h(f,θ) =
n(f,θ)

d(f,θ)
(2.18)

where, f is the frequency in the set [f1, f2, . . . , fN ], θ is the vector of the coefficients

of the numerator and denominator polynomials θ =
[
θn θd

]
, n(f,θ) and d(f,θ) are

the numerator and denominator polynomials, respectively, defined as:

n(f,θ) =

n∑
j

θnjωj ; d(f,θ) =

n∑
j

θdjωj (2.19)

with θnj and θdj the j-th elements of θn and θd, respectively, and ωj = e−i2πfjTs ,

being Ts the sampling period.

In general, the polynomial order n of the denominator and numerator can differ. The

linearized (weighted) Least-Squares (LS) equation error εk is obtained by rewriting

(2.18) with the samples hk of the measured frequency response function and multi-

plying with the denominator polynomial d(f,θ):

εk(ωf , θ) = Wknk(f,θ)− hkdk(f,θ) ≈ 0 (2.20)

where, Wk is a frequency-dependent weighting function which can be used to improve

the estimator.

As (2.20) is linear-in-the-parameters and in the Fourier data, it can be reformulated

as:

ε = Jθ ≈ 0 (2.21)

where:

J =
[
Γ Φ

]
, (2.22)

54



2.2. FAULT DETECTION: cryogenic cold compressors with Active Magnetic
Bearings

with:

Γ =


Γ1

Γ2

...

ΓN

 , Φ =


Φ1

Φ2

...

ΦN

 , (2.23)

Γk = Wkω, ω = [ω1, ω2, . . . , ωn] (2.24)

Φk = −Γkhk (2.25)

It should be noted that the matrix J is independent on the parameter θ to be esti-

mated, as (2.20) is linear-in-the-parameters. Therefore, the size of J can be reduced

by formulating the normal equations:

JHJθ =

[
R S

SH T

]
θ ≈ 0 (2.26)

with R = ΓHΓ, S = ΓHΦ and T = ΦHΦ.

These matrices have a Toeplitz structure and can be constructed in a fast way. Elim-

ination of the numerator coefficients from (2.26) by substitution of

θn = R−1Sθd (2.27)

results in the so-called reduced normal equations:[
T − SHR−1S

]
θd = Mθd ≈ 0 (2.28)

It has been proven in Ref. [118] that the LS or TLS solutions for θd obtained by solv-

ing the compact problem (2.28) are the same as obtained by solving the full problem

(2.26) with the same constraint. Once the denominator coefficients are determined,

back substitution in (2.27) is used to derive the numerator coefficients.

2.2.3 Noise power estimation

Once the model has been obtained, a record, representing the nominal behavior

cleaned of the noise, can be obtained from (2.18), where the coefficients of the numer-

ator and the denominator, obtained from (2.28) and (2.27), have been substituted.

Assuming that the acquired records are corrupted by white Gaussian noise, with vari-

ance σ2
w, and that the variance of the remaining noise on the record, filtered by the
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model application is much lower than that of the noise on the original records, an

estimate of the noise power can be obtained from the residuals:

r = h− ĥ (2.29)

In particular, indicating with P̄r the mean squared value of r:

P̄r =
1

N

N∑
i=1

r2i , (2.30)

under the assumption that ri are Gaussian distributed with null mean and variance

σ2
w, it follows that P̄rN/σ

2
w is chi-squared distributed with N degrees of freedom[?].

Therefore, taking the mean value leads to:

E

{
P̄rN

σ2
w

}
= N. (2.31)

An estimate of σ2
w is then obtained directly evaluating P̄r:

σ̂2
w = P̄r (2.32)

Taking the variance of P̄rN/σ
2
w leads to:

Var

{
P̄rN

σ2
w

}
= 2N, (2.33)

and:

Var
{
P̄r
}

= Var
{
σ̂2
w

}
=

2

N
σ4
w. (2.34)

For large N , the noise power estimate can be approximated as being Gaussian dis-

tributed with mean σ2
w and variance 2

N σ
4
w.

2.2.4 Fault detection

Having characterized the nominal condition, a binary hypothesis test can be defined to

detect the fault on newly acquired records. As mentioned in the previous subsection,

the power of residuals, computed on the original records PREF , acquired in nominal

condition, is a Gaussian distributed random variable, with mean σ2
w and variance

2
N σ

4
w. Instead, the power of residuals computed from the records of the system under

test PSUT , is also a random variable, but its distribution depends on the presence of
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the fault.

Therefore, the following hypothesis can be defined:

H0 : a fault has not occurred

H1 : a fault has occurred

Under the hypothesis H0, the power of residuals computed on a record acquired during

the maintenance test is also Gaussian distributed with the same mean and variance

of the record in unfaulty condition.

Under the hypothesis H1, instead, the power of residuals can be still approximated as

Gaussian distributed, however, it has a nonzero mean. The difference PSUT −PREF ,

under the hypothesis H0, is also Gaussian distributed with null mean and variance

equal to 2 Var{PREF } = 4
N σ

4
w.

Therefore, the following test can be defined to discriminate between a non-faulty and

a faulty condition, respectively:

if PSUT − PREF ≥ τ then reject H0

if PSUT − PREF < τ then do not reject H0

where τ is a threshold that can be obtained from the Gaussian distribution by fixing

a certain probability of false alarms.

In details, indicating with Pfa the probability of false alarm, the threshold τ is ob-

tained from:

τ = 2
√

Var{PREF } · erf−1(2(1− Pfa)− 1), (2.35)

where erf(·) is the error function.

2.2.5 Early-stage fault isolation

A sensitivity analysis allows the most influencing model parameters to be identified

and their influence on the estimated noise power to be assessed. In particular, the

analysis consists of two subsequent steps: (i) parameters ranking, and (ii) faulty

parameter identification.

Parameters ranking

An analysis of variance (ANOVA) is carried out on the model parameters, using as

figure of merit the estimated noise power. Such an analysis allows the most influencing

parameters among all the coefficients of the model to be identified. This is carried out

by assessing the noise power variation versus the variation of the model parameters.
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Considering the set S of the most influencing parameters, let indicate by R
and C, the subsets of the real poles and of the complex poles, respectively, and

be p the cardinality of R and q the cardinality of C. In particular, variations are

introduced on the real poles, the damping ratios and the frequencies, thus giv-

ing a vector u =
[
u1 u2 . . . up+2q

]
, where

[
u1 u2 . . . up

]
are variations of

the real poles,
[
up+1 up+2 . . . up+q

]
are variations of the damping ratios, and[

up+q+1 up+q+2 . . . up+2q

]
are variations of the frequencies. Then, on this basis,

the significance of the impact of each model parameter on the figure of merit (noise

power Pn) is assessed.

In Ref. [26], a method for determining the optimum set of experiments, in terms of

subspace points of the operating domain and minimum number of tests, for performing

the desired analysis within a prefixed significance is defined. This is a well-known

approach of design of experiments, mainly based on the basic idea of exploring only

the points related to the desired information.

At this aim, a plan of experiments[119] is adopted for its capability of investi-

gating combinatorial spaces generated by several multi-levels discrete parameters. In

particular, for the i-th parameter, the nominal value pi plus/minus the variability

range is chosen. This range is defined according to the actual system knowledge.

The probability that the variation associated with the considered parameter does not

influence the corresponding performance factor is indicated according to a multi-way

ANOVA and the traditional Fisher-Snedecor statistical test.

Faulty parameter identification

The most influencing parameters are analyzed with the aim of finding a quadratic

model approximating the influence of such parameters on the noise power estimation.

In this way, the sensitivity of the figure of merit to the different model parameters can

be assessed, and the values that the model parameters can assume in case of fault can

be identified. In particular, once the most influencing parameters are identified by the

ANOVA, new experiments are performed using the Box-Behnken design [25].The Box-

Behnken design (BBd) is an independent quadratic design because does not contain

an embedded or fractional factorial design. In this design, the treatment combina-

tions are at the midpoints of edges of the process space and at the center. These

designs are rotatable (or near rotatable) and require 3 levels of each factor. When the

analysis is relatively close to the optimum, a second-order model is usually required

to approximate the response because of curvature in the true response surface [120].
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Therefore, the results obtained from the experiments selected by the BBd allows

the following second-order model, representing the behavior of the noise power versus

the variation of the model parameters, to be fitted:

f(ui1 , . . . , uiL) = β0 +

L∑
l=1

βluil +

L∑
l=1

βllu
2
il

+
∑
l<m

∑
βlmuiluim (2.36)

where L is the number of parameters
[
ui1 ui2 . . . uiL

]
selected by means of the

ANOVA. Suitable variations are chosen for the model parameters. Considering these

factors, a corresponding number of runs is performed for the BBd. The noise power

Pn is then evaluated for each run, and used to estimate, with the least square method,

the coefficients β0, βl, βll, βlm. The intersection with the plane corresponding to the

threshold value highlights the locus of the intersecting points. In this way, the sub-

space of the model parameters that will cause a faulty condition is identified.

2.3 FAULT DIAGNOSIS: Decentralized diagnostics

for large experimental systems

2.3.1 Multiple fault diagnosis

In monitoring complex experimental systems, the most challenging problem of finding

the causes of several simultaneous anomalies (Multiple-Fault Diagnosis) [40] is stated

as an adductive problem [41]: the hypothesis, i.e., the set of causes, best explaining

the observed anomalies, is to be found. Combinatorially, it can be stated as [41]:

given a graph with N nodes numbered from 1 to N , an accurate permutation of N

elements among 2N in the worst case verifying a specified rule has to be found. This

problem is classified as a hard combinatorial optimization, here formalized as:

• the 4-tuple 〈D,M,C,M+〉 , where D is a finite nonempty set of faults d, M is a

finite set of anomalies (symptoms) m, C is a relation defined as a subset of DM ,

pairing faults with the corresponding anomalies, and M+ = {m1,m2, · · · ,mu}
is a subset of M identifying the observed anomalies. Namely, (d,m)∈C means

that the fault d may cause the anomaly m.

• the diagnosis DI is the solution of the problem, defined as the subset of D

identifying the faults eventually responsible for the anomalies in M+.
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• an a priori probability pj is associated to each fault dj in the set of faults D.

Values are assumed to exist and faults in D are assumed to be statistically

independent.

• moreover, the relation C, pairing faults with the corresponding anomalies, is

assumed to be a matrix of causal strength cij , (such that 0 < cij < 1), repre-

senting how frequently a fault dj causes the anomaly mi. Formally, the causal

strength cij is expressed as the conditional probability P (dj causes mi|dj), i.e.,

the fault dj causes the anomaly mi.

Symbolic, causal, and numeric probabilistic knowledge is exploited to generate and

assess plausible hypotheses about DI. At this aim, a relationship for calculating the

relative likelihood, denoted as L(DI,M+), of a diagnosis DI, given the observable

anomalies M+, can be derived. The likelihood is the product of three factors:

L(DI,M+) = L1L2L3 = ∏
mi∈M+

1−
∏

dj∈DI
(1− cij)

×
×

 ∏
dj∈DI

 ∏
ml∈effects(dj)−M+

(1− cij)

×
×

 ∏
dj∈DI

[
pj

(1− pj)

] .

(2.37)

where

• L1 is the likelihood that faults in DI cause the anomalies in M+. For a diagnosis

not covering M+, L1 evaluates to 0, thus forcing L to 0.

• L2 is the likelihood that faults in DI do not cause anomalies outside of M+.

Ideally, L2 values close to 1 are preferred.

• L3 is the likelihood that a highly probable fault dj contributes significantly in

the overall likelihood of a diagnosis DI containing dj .

L in (2.37) has to be maximized in order to find the most probable causes (faults)

determining the observed anomalies.
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2.3.2 Distributed micro-genetic algorithm

In this section, the concept design, the working principle, and the procedure of the

distributed micro-genetic algorithm for multiple-fault diagnostics are illustrated.

Concept design

The architecture of the proposed distributed system for automatic monitoring and

multiple-fault diagnostics of large experimental systems is depicted in Fig. 2.5. Two

distributed functions are integrated at physical level on a network of smart transduc-

ers: (i) monitoring and fault detection (continuous line in Fig. 2.5), for measuring and

processing the main parameters of the system, as well as detecting possible anomalies,

and (ii) diagnostics (dashed line), for finding the corresponding faulty causes. When

one or more transducers (Monitoring Units in Fig. 2.5) detect a set of anomalies M+,

the monitoring system expands its capabilities and a diagnostic process is triggered.

Figure 2.5: Architecture of the distributed monitoring and multiple-fault diagnostics.
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Each smart transducer acts as an isolated processor (Diagnostic Unit in Fig. 2.5)

executing a local independent task in order to determine the final diagnosis DI. This

multiple-fault diagnostics function is based on a distributed Micro-Genetic Algorithm

(dMGA). Different algorithm instances, allocated on the transducers of the monitoring

network, evolve independently in parallel [121]. At each T generations (immigration

interval), the adjacent processes exchange their best individuals synchronously, ac-

cording to the elitist stepping-stone migration model with a bi-directional ring topol-

ogy [122]. This topology is based on a classical coarse-grained approach [121]: each

instance on the Diagnostic Units is connected locally to other two instances, in order

to exchange best individuals during the migration phase (bidirectional gray arrows in

Fig. 2.5). For distributed networks monitoring large systems, this topology has sev-

eral advantages: (i) improved efficiency owing to the parallel process, shortening time

execution, and fostering population diversity; (ii) broadcast communication network

emulated via point-to-point connections; (iii) extension up to geographical distances;

(iv) increased reliability and easy network re-modulation in case of a faulty node,

because only the transducers in other subnets sending messages to the faulty node

are affected; and (v) very-low cost of implementation and maintenance.

dMGA communications exploit the message passing interface (MPI) concept [54],

widely adopted to develop portable parallel programming. Most important fea-

tures are: essential virtual topology, synchronization and communication function

among a set of processes mapping network nodes in a language-independent way,

with language-specific syntax (bindings), plus a few language-specific features.

In the concept design of the dMGA, the difficulty of integrating the diagnos-

tic knowledge into a unique representation for a complex, dynamic, and distributed

system is solved by twofold distribution mechanisms [123]: (i) spatial, where the

knowledge is integrated from different local diagnostic processes placed in different

subsystems and (ii) semantic, where the knowledge is integrated from different fields

of expertise, related to the system physics, structure, and so on.

In the architecture of Fig. 2.5, the diagnostic process is decentralized (non-distributed)

because each spatially de-localized processor shares the same information about the

relationships anomaly-faults. In particular, a processor not only has detailed knowl-

edge about its monitored sub-system but also an abstract view of the neighbouring

subsystems and of the system as a whole. Cooperating processors diagnose faults

affecting more than one subsystem. A node triggers the cooperation process locally,

when it realizes that the anomalies cannot be explained only within its subsystem.

The cooperation process is driven by a small amount of topological information. The
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Remote Supervision Station (RSS in Fig. 2.5) is not involved in such a diagnostic pro-

cess and acts mainly as a final user interface. This decreases diagnostic response time

dramatically for large experimental systems. Conversely, for a centralized diagnostics,

the size of the system description is linear in the processor number and execution time

will usually be even worse than linear [124]. Moreover, all observations have to be

transmitted to the central diagnosis machine, causing a large communication over-

head.

The diagnostic process so conceived turns out to be global, because the nodes ex-

change continuously information about all the anomalies and the same information

about the relationships anomaly-faults. Conversely, the dMGA computing for the

solution search is distributed, because each processor scans the solution space inde-

pendently from the others. The unique information shared among evolutions allocated

on different processors is the best solution.

Working principle

The working principle of the dMGA is highlighted by referring to its main design

issues: (i) the initialization, (ii) the knowledge coding, (iii) the fitness, and (iv) the

operators.

1. Initialization

At the beginning, for each dMGA instance situated on the node of the transducer

network, each population of N individuals is sampled randomly through a pseudo-

random generator with different seeds. Consequently, each instance starts its search

from a different place of the solution space.

2. Knowledge coding

Given a set of relieved anomalies M+ = {m1,m2, · · · ,mu} as input, the dMGA re-

turns the solution diagnosis as a sequence of multiple faults DIbest = {d1, d2, · · · , dv}.
The individuals are designed as binary strings with length v equal to the cardinality of

DI. At each generation, evolutionary operators update the individuals by modifying

their own genes (bits).

Each gene corresponds to one and only one fault in DI, thus each individual rep-

resents a potential multiple-fault diagnosis causing the anomalies M+. The gene is

expressed, i.e., the bit value is 1, if the corresponding fault is present in the diagnosis

as a probable cause in the solution. Conversely, it is 0. Each individual, corresponding

to a diagnosis DI, is assessed through the fitness for checking its attitude to represent
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the sequence of faults causing M+.

3. Fitness

Each individual, representing a potential diagnosis DI, is assessed by means of (2.37)

for estimating the correspondence between the diagnosis it encodes and the most likely

sequence of faults causing M+ found until now. The likelihood L(DI,M+) is assessed

by exploiting the matrix C reporting the uv causal strengths anomalies/faults. Dur-

ing the evolution, an individual is selected as the best until the diagnosis it encodes

has the greatest likelihood.

4. Operators

On each node of the transducer network, the dMGA instances initialize their

own populations composed of N individuals and perform the optimization process

by applying, at each generation, for a maximum number Gmax, the following six

evolutionary operators:

1. Elitism: Memory about the best solution achieved so far is kept by introducing

the survival of the best individual. Elitism reserves a place in the offspring for

the individual of the current generation with highest fitness, by avoiding that

other evolutionary operators affect its genome [125].

2. Tournament selection: Individuals are selected for participating to a mating

pool in order to generate the offspring for the next generation. The selection

relies on several tournaments among groups composed of a number of individu-

als (the tournament size parameter, equal to N/2 in dMGA) randomly selected

without replacement from the population. In each tournament, the individ-

ual with higher fitness wins and becomes an element of the parent population

for reproduction. Generally, the needed tournaments number is equal to the

population size, but in dMGA it is equal to N − 1 owing to the elitism.

3. One-point crossover : It is a very common crossover variant for GAs. Initially, a

unique genome point is randomly chosen with a probability PC for two parent

individuals. Subsequently, the part of the individuals genome situated after

the point is swapped between the parent individuals, by reproducing two child

individuals.

4. Bit-flip mutation: Usually, mutation is not used in MGA because the diversifi-

cation of the population relies on re-initialization operator. However, in dMGA,

it results very useful to increase population and thus the solution diversity. At
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this aim, the genome bits of the child individual are flipped according to a prob-

ability PM . In practice, a bit is probabilistically inverted in its complementary.

5. Re-initialization: This is a peculiar operator of MGAs.12 Its dMGA application

supports the exploration phase, otherwise penalized by the small size of the pop-

ulation. At each generation, the re-initialization operator checks if the genome

of the highest-fitness individual has a bit number less than a given percentage

Hmicro from the other population elements. In this case, a nominal conver-

gence is relieved and the operator applies a new initialization. Otherwise, the

re-initialization operator is applied when evolutionary process reaches a number

of inner generations (or micro-cycle) equal to Gmicro.

6. Migration: Solutions achieved in different evolutionary algorithms running in

parallel can be exchanged by means of the migration operator. This permits

single executions to share their search spaces by generating, as a consequence,

a global search process involving the distributed algorithm as a whole. The

dMGA migration operator is based on the above mentioned classical elitist

stepping-stone migration [122]. Specifically, at every fixed generation interval

T , the copies of the best local individuals migrate between neighbouring node

processors DU. Once reached a neighbouring processor, the copy replaces an

individual randomly selected among the individuals of the host population but

differing from the local best one.

Procedure

dMGA consists of a set of MGAs instances assigned to different smart transducers

and provided with the above operators. These instances run in parallel in a folded

bi-directional ring topology with a process casually set as master. The master process

acts as an interface to the user, e.g., the Remote Supervision Station (RSS of Fig. 2.5):

it collects the current local best solutions of the slave processes and saves the best

element at each generation. Moreover, it compares this latter solution to the best

found so far, saves the best among them, and transmits them to RSS. The dMGA

procedure includes the following steps (Fig. 2.6):

1. For each MGA instance allocated on the DU of a smart transducer, a small-size

population is initialized.

2. For each individual of the instance, the fitness value is assessed.
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Figure 2.6: Procedure of dMGA.

3. For each instance, if the nominal convergence subsists or a micro-cycle halts,

the local best individual is cloned via the elitism operator and the rest of the

local population is re-initialized. Afterword, the procedure comes back to step2.
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4. In each local population of an instance, the best local individual is cloned by

elitism and added to the local offspring.

5. Locally, for each instance, individuals are chosen by means of the selection

operator for reproduction.

6. Both crossover and mutation operators are applied to each group of reproductive

individuals selected in the different dMGA instances in order to generate local

offspring.

7. The fitness of the new individuals belonging to every local offspring is evaluated.

8. In each dMGA instance, the local best individual is sent to the neighbouring

instances.

9. Each dMGA instance receives the copies of the best individuals sent by the

neighbouring instances.

10. In each local population, the received individuals replace other ones randomly

chosen but different from the local best individual.

11. If a halting condition is satisfied (number max of generations, reached con-

vergence, and so on), the corresponding dMGA instance halts; otherwise, the

procedure returns to step 3.

2.4 PREDICTIVE MAINTENANCE

2.4.1 Problem statement

The main idea of this work is to evaluate GEO’s algorithm performance on large

experimental systems.

In this section, a function that takes into account the cost associated to the mainte-

nance action (for example, the replacement or the calibration of a given component),

and the cost associated to the system operating in the normal state (as monitor-

ing, inspection and so on) is defined. Thanks to that, the effects of whatever given

maintenance operation can be assessed.

Let N be the available resources to maintenance operation, and mi (for i=1,..., M)

the ith system component that must be maintained (for a total of M components).
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The function C, representing the total cost of planned maintenance, can be expressed

as:

C =

T∑
t=1

[
∑
i∈Gt

(ai + pi(t) ·Bi) +
∑
j∈Ht

(kj + bj)] (2.38)

where:

-T finite time horizon of planned maintenance;

-t for t = 1, ..., T, the t− th instant of the time horizon T;

-ai the operating cost of the i− th component;

-kj the replacement cost for the j − th component;

-bj maintenance cost of the j − th component;

-pi(t) probability of failure of the i− th component at the time t;

-Bi cost of breakdown of the i− th component;

-Gt the set of every component not maintained at the time t;

-Ht the set of every maintained component at the time t.

Moreover, each given planned maintenance evaluated by means of (2.38) is subject

to the following constraints:

i) Each mi can be served (maintained) by only one of the N available resources at

any time t;

ii) Each mi has to be served at least one time instant t during the total time

horizon T.

Finally, the probability of failure pi at the time t could be derived from various

deterioration models, depending on the type of monitored component, and from the

nature of information or acquired signals.

2.4.2 The proposed method

In the present work, each maintenance schedule S (called sequence, in the following)

assessed by (2.38) is expressed through a binary string representation as:

S = [s11, s12, ..., s1M ; .....; sT1, sT2, ...sTM ] (2.39)

where the single sTM is the value of the corresponding bit. For example, s23 =1

means that the third component is maintained at the time instant t =2. The sequence

representation in (2.39) is suitable for the proposed GEO approach. The maintenance

problem is hard to solve even for apparently simple cases [126], as the time required

for computing an optimal solution increases rapidly with the size of the study case.
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Generalized extremal optimization

The goal of the proposed method is to find the best sequence, expressed as in (2.39),

that minimizes the objective function (2.38) for the above problem. Let us consider a

sequence (i.e., a maintenance schedule); a sequence can be encoded in a binary string,

denoted by S of length (M · T ) by means of the representation shown in (2.39). This

sequence expression is particularly suitable to be faced through a GEO. Indeed, in

analogy to what EO algorithm does, GEO works on a population (configuration) by

muting, generation after generation, a single species (component) and by estimating

the obtained candidate solution, for reaching the optimum. Thus, if each representa-

tion bit encodes a single species, then an entire population can be expressed by means

of a binary string, hence by a sequence in the form (2.39) too. For the above reasons,

a GEO algorithm can straightly work on a sequence S by evaluating the candidate

solution to the considered maintenance problem through the cost function (2.38).

This means that the lesser is the cost of the sequence the better is the scheduling.

At each bit (species) is assigned a fitness value proportional to the decrease of the

function (2.38) computed for the sequence with that bit flipped (i.e., mutated from

1 to 0 or vice versa). Then, each bit is ranked, such that: to the one with the least

fitness is assigned rank 1, while to the one with the best fitness rank N. Subsequently,

a new sequence is generated by flipping a bit chosen according the probability law:

P (k) ≈ k−τ , 1 ≤ k ≤ N (2.40)

where τ is a positive setting parameter.

A candidate solution in our GEO approach is a sequence S (assessed by (2.38)),

composed of (M · T ) bits, as defined in (2.39). An example of the GEO encoding

consists of N design variables of 6 bits. Each bit is considered as a species [62]. In

this example, M=6 components are maintained by N=3 resources in the time horizon

T. This iterative process halts after a prefixed number of generation, and it returns

the best sequence Sbest which minimizes the objective function (2.38). The proposed

procedure is described by the following pseudo-code:

1. Initialize a bit sequence S (with size M ·T ) randomly and evaluate the objective

function C (as in (2.38));

2. Set: Sbest = S and Cbest = C(S);

3. For each generation:

(a) For each bit i of S:
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• Change the bit i (from 1 to 0, or vice versa) and evaluate the cost

C(Si)(as in (2.38))for Si;

• Assess the fitness of bit i as ∆C(Si) = C(Si)− Cbest
• Restore the bit i to its previous value.

(b) Sort ∆C(Si) in ascending way;

(c) Choose the bit to change with probability (2.40);

(d) Set S = Si and C = C(Si);

(e) If C < Cbest then set Cbest = C, and Sbest = S;

4. Return Sbest and Cbest.

As regard to the traditional evolutionary algorithms (GA, SA and so on), the

present procedure has twofold advantages: (i) there is only one adjustable parameter

τ , by simplifying the setting, and (ii) the entire evolution is made on one configu-

ration solution S at the time, unlike the traditional evolutionary population-based

algorithms, with lower computational costs and a better memory management.
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Chapter 3

Numerical case studies

In this chapter, the numerical case studies for the proposed methods, together with

their results, are presented. In particular, the main design solutions related to the

virtual flow meter and to the transducer calibration function are characterized in 3.1.

The results of the metrological analysis of the transducer, assessing the effect of the

main uncertainty sources on its metrological performance, are presented and discussed

in 3.1.4. Furthermore, a numerical characterization of the proposed fault detection

method for the AMB is illustrated in 3.2. Finally, in section 3.3, efficiency and

accuracy performance of the decentralized diagnostic procedure is highlighted by a

simulation case studies related to the diagnostics of the cold box for the cryogenic

system of the Large Hadron Collider at CERN.
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3.1 ADVANCED MONITORING: transducer de-

sign

In this section, the virtual flow meter characterization (3.1) is reported. In particular,

the transducer calibration function (3.1.2), the valve model validation (3.1.3), and the

transducer uncertainty analysis results (3.1.4) are detailed.

3.1.1 Virtual flow meter characterization

The models Samson and Sereg-Schlumberger were characterized initially at CERN [127]

only under certain conditions (fixed pressure drop and temperature). In the follow-

ing, the behaviour of the methods is investigated by simulation, by avoiding superfluid

and two-phase states (liquid-gas), for a temperature range from 3.5 to 295 K and for

different pressure drops from 0.00 to 2.48 bar is investigated by simulation. Once the

valve parameters Kvmax and R are defined, the mass flow is calculated for both the

helium gas and liquid phases.

For the gas phase, as an example, in Fig. 3.1, the gas mass flow calculated by

both the Samson and Sereg-Schlumbeger methods and the (2.3) (reverse sizing valve

problem, IEC 60534-2-1 [112]) are reported for a temperature range between 15 and

295 K and for a variable pressure drop. In Fig. 3.2, the methods are compared for a

fixed temperature of 270 K at different pressure drop values. In Figs. 3.1 and 3.2, it

is possible to notice that the Samson method, compared to the standard IEC 60534,

overestimate the mass flow for small pressure drops, while the Sereg-Schlumbeger

method overestimate the mass flow for high pressure drops.

For the liquid phase, eqs. (2.6) and (2.13) are expressed analogously for both the

Samson and Sereg-Schlumberger methods:

ṁliquid = const ·
√
ρ · (pin − pout) (3.1)

provided that the value of const is different. For this reason, a difference in the

calculated flow much lower than in the gasified phase is achieved.

Such as usual in metrology, the quality of the proposed transducer has been as-

sessed with respect to a certified reference (metrological traceability). In this case,

the standard IEC 60534 is assumed as a widely-shared reference in order to assess the

performance of the proposed transducer conventionally. In particular, the methods’

performance is compared by assessing the percentage difference vs the reference of

the standard IEC 60534-2-1:
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Figure 3.1: Gas helium mass flow vs. temperature and pressure drop by Samson (blue line), Sereg-

Schlumbeger (red), and IEC 60534 (green).

eSam =
|ṁSam − ṁIEC |

ṁIEC
· 100 (3.2)

eSer =
|ṁSer − ṁIEC |

ṁIEC
· 100 (3.3)

In the gas helium phase, mean percentage errors of 66.7 % and 16.4 % were

observed, for the Samson and the Sereg-Schlumberger method, respectively. For liquid

helium, as already pre-announced, the mean percentage error is much lower: 0.09 %

for Samson and 1.00 % for Sereg-Schlumberger.

The direct use of the IEC approach to predict the flow needs for the knowledge of

some physical information about the valve and the pipes under test. Such information

could turn out hard to find, especially in old installations. Conversely, Samson and

Sereg-Schlumberger models do not require the a-priori knowledge of these physical

parameters, and therefore they are considered as more generally applicable.

In synthesis, for the virtual flow meter design, the Samson method, for the helium

liquid phase, performs better than the Sereg-Schlumberger; conversely, for the gaseous

phase.
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Figure 3.2: Gas helium mass flow vs. pressure drop by Samson (dashed line), Sereg-Schlumbeger

(dotted), and IEC 60534 (continuous).

3.1.2 Transducer calibration function

Another important point of the design is the definition of the calibration function of

the transducer. This function expresses analytically the inverse model of the mea-

surement process (calibration model) by relating the transducer output (measured

flow ṁmeas) to the measurand (reference flow ṁref ). The data trends in Fig. 2.2

point out a nonlinear relationship between valve opening and flow rate. Furthermore,

thermodynamic constraints on the process lead to approximate the valve character-

istic as piece-wise linear. For this reason, in the transducer calibration, a classical

segmented linear regression [128] is exploited. For each i-th segment, the relation

between reference and measured flow is expressed as:

ṁref = βi · ṁmeas + εi (3.4)

In particular, using the Ordinary Least Square (OLS) regression, the coefficients

array θ = [β; ε] is calculated as:

θ = (MT
measMmeas)

−1MT
measMref (3.5)

where Mmeas and Mref represents the array of ṁmeas and ṁref , respectively.

The approach of fitting the ”valve opening curves” (namely, flow vs. opening) was

not adopted, but conversely the flow is fitted as a function of time, in order to have

a model including all the effects as a whole. Moreover, the flow is dependent also on

the opening and thus this aspect is considered also.
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3.1.3 Valve model validation

In the simulation, the helium mass flow ṁref , the fluid temperature (at the inlet T ′in
and the outlet T ′out of the valve), and the valve outlet pressure p′out were input to the

model by obtaining as output the inlet valve pressure psim. Such a simulated result

was compared with the actual pressure p′in, measured at the inlet of an actual valve

on a hot-gas line of the Long Station by a sensor by WIKA[129]. In particular, the

percentage difference between simulated psim and measured pressure p′in was assessed:

error% =
|psim − p′in|

p′in
· 100 (3.6)

A set of 21 measurements were performed at the valve inlet with an opening range

between 50 and 80 %. In Fig. 3.3, the percentage error vs the valve opening (%) is

presented.

Figure 3.3: Percentage error of the valve model vs opening (dotted line: average).

The mean percentage error is equal to 0.15 %, and for this reason, the use of a

simulated valve for the uncertainty analysis was considered as an acceptable assump-

tion.

3.1.4 Uncertainty analysis

The uncertainty analysis of the transducer is carried out according to a sensitivity

analysis approach [130]: the parameters expressing the uncertainty sources are varied
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inside their typical tolerance interval. aimed at computing the metrological perfor-

mance η, as well as its components of uncertainty σe (random error) and deterministic

error ē, over the operating domain D=(l, pin, Tin, pout, Tout, ṁ, uT , up, uρ, uγ , ul, umodel):

• in different setting configurations of valve opening l,

• at varying the operating conditions of input and output pressure and tempera-

ture pin, Tin, and pout Tout, respectively,

• over the measurand input range of mass flow ṁ as a whole,

• under the action of the above mentioned uncertainty sources u = (uT , up, uρ, uγ ,

ul, umodel), namely arising from direct measurement uncertainty of the pressure

and temperature sensors, nonideal valve opening, actual helium behavior, and

uncertainity of the virtual flow-meter.

Then, on this basis, the significance of the impact of each uncertainty source on the

metrological performance has to be assessed. Finally, the impact on the metrological

performance is to be ranked in order to classify the importance of the uncertainty

sources for the transducer operation.

In the following, the main steps of the uncertainty analysis, namely the metrologi-

cal performance assessment, the uncertainity source significance, and the uncertainty

ranking, are described.

Metrological performance assessment

An important point of the uncertainty analysis is assuring a comprehensive investiga-

tion of the transducers operating domain D=(l, pin, Tin, pout, Tout, ṁ, uT , up, uρ, uγ , ul,

umodel) with a reduced operative burden.

In [26, 25], a method for determining the optimum set of experiments, in terms

of subspace points of the operating domain D and minimum number of tests, for

performing the desired analysis within a prefixed significance is defined. This is a

well-known approach of design of experiments, mainly based on the basic idea of ex-

ploring only the points related to the desired information.

According to this approach, D has been sampled through two different and com-

bined (”nested”) schemes (Fig. 3.4) defined according to the parameters typology.

As a matter of fact, D includes 4 subdomains related to the measurand input

range, the settings, the operating conditions, and the uncertainty. At the sampling

aim, these subdomains have been grouped in two typologies, related to inner and

outer model working: (i) settings and uncertainty, and (ii) measurand input range
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Figure 3.4: Nested procedure for sampling the operating domain D =

(l, pin, Tin, pout, Tout, ṁ, uT , up, uρ, uγ , ul, umodel) of the virtual flow-meter-based transducer

and computing the metrological performance components of uncertainty σe (random error) and

deterministic error ē

and operating conditions.
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1. Sampling setting and uncertainty subdomains

For the first subdomain of settings and uncertainty parameters, the optimum sam-

pling subset is determined according to: (i) the number of values to be investigated for

each parameter, and (i) the desired level of knowledge about the parameters covari-

ance (usually referred to as resolution [26]). For appreciating at least the curvature

of each interval of the setting and uncertainty parameters, three levels were selected

(Tab.3.1). In particular, for the valve aperture setting, three equally spaced values of

l have been considered from 50 % to 100 %. For the uncertainty parameters, the sen-

sitivity analysis approach yields to consider, for the i-th parameter, the nominal value

xnom plus/minus the uncertainty band ui: (xnom − ui), xnom, (xnom + ui). In syn-

thesis, this yields to a total of seven 3-levels discrete parameters, one for the settings

and six for the uncertainty sources.

On this basis, a standard Taguchi plan L18 [119] is adopted for its capability of

investigating combinatorial spaces generated by up to seven 3-levels and one 2-level

discrete parameters.

Table 3.1: Levels of setting and uncertainty parameters (in p.u.).

Parameter
Level

1 2 3

l 0.50 0.75 1.00

uT -0.001 0.000 0.001

up -0.001 0.000 0.001

ul -0.01 0.000 0.01

uγ -0.03 0.00 0.03

uρ -0.005 0.000 0.005

umodel -0.045 0.000 0.045

2. Measurand input range and operating conditions subdomain sampling

The measurand input range and operating conditions subspace is discretized uni-

formly by means of the strategy 3D Central Composite Rotatable Design (3D CCRD) [120].

Originally conceived for surface-response techniques [119], CCRD turned out to be ef-

ficient to explore large multidimensional domains for pointing out most of the desired

information. According to this sampling scheme, the points in the 3D subdomain
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SD(ṁ, Tin, pin) are disposed symmetrically by concentric rings (Fig. 3.5). The re-

Figure 3.5: 3D CCRD experimental plan for sampling the subdomain of measurand ṁ and operating

conditions Tin,pin

sulting sampled points are reported in Tab.3.2. Each point corresponds to a specific

Table 3.2: Values of measurand ṁ and operating conditions Tin,pin sampled according to 3D-CCRD.

Mass flow [g/s] Pressure [kPa] Temperature [K]

0.00 100 100.0

2.98 595 166.4

5.00 1000 211.5

7.98 1595 277.9

10.00 2000 323.0

combination of measurand and operating conditions values: As an example, the point

3 in Fig. 3.5 determines the test configuration characterized by 5 g/s, 1000 kPa, and

211.5 oC.

3. Error components computation

The final nested test procedure consists of the following steps:

a) A specific configuration of setting and uncertainty parameters (indicated as L18g,

with g=1,..,18, in Fig. 3.4) is set for the gth row of the matrix L18;
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b) Once determined the gth test configuration, the mass flows ṁg,r, with r=1,..,

15, measured by the virtual flowmeter-based transducer in the measurand and

operating conditions parameters subset defined by the 3D-CCRD, is determined

by means of the uncertainty model of Fig. 2.3;

c) The set of differences er, with r=1,.., 15, between measured and reference mass

flows, is computed;

d) A corresponding estimate of the metrological performance factors, ēg, σeg, and ηg

is achieved.

e) Steps from a) to d) are repeated until all the rows of L18 matrix have been con-

sidered, and a set of 18 values of ē, σe, and η is obtained.

The results of the metrological performance factors ē, σe, and η are reported in

Tab.3.3.

Uncertainity source significance

The significance of the influence of an uncertainty source on the metrological per-

formance is evaluated through the analysis of variance (ANOVA). In particular, the

model uncertainty is assessed as the error variance:

M∑
g=1

ε2g =

M∑
g=1

P 2
g −M ·m2

P −
nq+nz∑
i=1

nr∑
j=1

nij · (mij −mP )2 (3.7)

where εg is the error computed for the gth test configuration; M is the number of the

experiments (in this case 18); Pg is the generic metrological performance factor at the

gth test configuration; mP is the average of the performance factor considering all the

L18 matrix rows; nq is the number of uncertainty sources; nz is the number of setting

configurations; nr is the number of parameters levels; nij the repetition number, i.e.

the times the ith parameter is set at jth level; and finally mij is the average of the

performance computed with the ith parameter at the jth level.

The variance ratio Fi (usually referred to also as F -statistic [120]) has been com-

puted as the ratio between the variance due to the ith uncertainty source and the

variance of the model error:

Fi =
σ2
i

σ2
ε

(3.8)

The significance of an uncertainty source is evaluated by means of a Fisher-

Snedecor statistical test with a confidence level of 70%. This relevant level of α
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Table 3.3: Results for the metrological performance η and its components of uncertainty σe (random

error) and deterministic error ē.

Trial η ē σe

1 10.093 -3.527 9.789

2 9.403 0.929 9.685

3 11.109 5.401 10.048

4 9.146 5.213 7.779

5 20.626 1.501 21.293

6 15.922 -3.275 16.128

7 13.443 2.145 13.737

8 30.610 2.223 31.601

9 10.295 -2.618 10.306

10 9.989 -3.331 9.748

11 9.487 1.214 9.739

12 10.440 4.919 9.532

13 8.441 0.417 8.727

14 6.250 3.769 5.162

15 8.173 -4.204 7.255

16 21.098 0.562 21.831

17 15.491 3.129 15.705

18 13.907 -4.714 13.543

allows all the uncertainty sources having a relevance at least double than the analysis

error (Fi>2) to be highlighted.

The corresponding results for ē, σe and η are shown in Tab. 3.4, 4.4 and 3.6,

respectively. (For the sake of completeness also the action of the valve openings l is

assessed.) In particular, each table provides: (i) the sum of the squares SS, (ii) the

related degrees of freedom DF, (iii) the contribution MS of the parameter to the

overall variance, assessed as the ratio between the corresponding SS and DF, and

(iv) the variance ratio Fi related to the ith uncertainty source.

The following results are achieved:

• the setting of valve opening l do not have a significant influence on the determin-

istic error ē, but on σe and, consequently, also on the metrological performance

η;
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Table 3.4: ANOVA results for ē.

SS DF MS Fi

l 1.991 2 0.9954 0.91

u(T ) 25.598 2 12.799 11.73

u(P ) 4.088 2 2.0442 1.87

u(l) 16.794 2 8.397 7.7

u(γ) 4.627 2 2.3137 2.12

u(ρ) 17.65 2 8.8248 8.09

umodel 120.864 2 60.4318 55.38

Error 3.273 3 1.0911

Table 3.5: ANOVA results for σe.

SS DF MS Fi

l 222.922 2 111.461 3.34

u(T ) 65.783 2 32.892 0.99

u(P ) 96.14 2 48.07 1.44

u(l) 32.438 2 16.219 0.49

u(γ) 114.83 2 57.415 1.72

u(ρ) 7.148 2 3.574 0.11

umodel 81.619 2 40.809 1.22

Error 99.975 3 33.325

• all the uncertainty sources have significant influence on the deterministic error

ē, but no one on σe, and consequently not even on η.

These results confirm, at a relevant level of α (30%), the quality of the metrological

design of the current transducer release.

Discussion

The sources impact was ranked according to their capability of influencing the perfor-

mance assessed by Fi. For the sake of completeness, all the sources were considered

(again with the valve opening l), independently on their absolute significance, in order

to have a deeper insight on the uncertainty of the transducer, as well as indications for

further improvements. At this aim, only a relative 5% of the cumulative distribution

of Fi was neglected, by considering the first 95% as interesting.
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Table 3.6: ANOVA results for η.

SS DF MS Fi

l 185.878 2 92.9388 3.12

u(T ) 48.723 2 24.3615 0.82

u(P ) 87.637 2 43.8184 1.47

u(l) 33.589 2 16.7943 0.56

u(γ) 94.260 2 47.1301 1.58

u(ρ) 8.976 2 4.4881 0.15

umodel 65.874 2 32.9371 1.11

Error 89.416 3 29.8052

For the deterministic error ē, the histogram of Fig. 3.6 (Pareto diagram[120]) high-

lights that the uncertainty affecting the Sereg model is the most influencing source,

followed in order by the temperature sensor, the valve opening, and the Helium den-

sity.

For the transducer uncertainty σe and the overall metrological performance η, the

impact is more leveled (the uncertainty sources have no impact), and only the valve

opening plays a mayor role, owing to its capability of ”modulating” the uncertainty

impact (Fig. 3.7).

The results of the metrological analysis highlight the quality of the metrological

design of the current transducer release. Furthermore, the possibility of exploiting

cheap pressure sensors is pointed out: sensors with 0.1% relative uncertainty turned

out to be uselessly outperforming. Conversely, the uncertainties characterizing the

temperature and pressure measurement, the valve opening, the helium density heat

capacity and the flowmeter model produce a deterministic error on the mass flow

measurement to be corrected.
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Figure 3.6: Ranking of uncertainty source impact on the transducer deterministic error ē

Figure 3.7: Effect of the function slope for the equal percentage valve on the uncertainty propagation

of the source ul on uṁ

3.2 FAULT DETECTION: characterization of the

proposed method

The proposed method of fault detection was characterized in simulation, in order

to verify its capability of estimating the noise power and its variance, as well as to
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identify the faulty condition with a certain false alarm rate. In particular, for noise

power estimation, starting from a record of measurements, obtained from the nominal

condition, the model was identified and its frequency response evaluated. Then, the

frequency response magnitude was corrupted by white Gaussian noise with null mean

and variance equal to 1.0× 10−4. The proposed method for estimating the noise

power and its variance was executed on 10 000 simulation trials in the GNU/Octave

environment. Finally, for each trial, the noise power and its variance were estimated.

In Fig. 3.8, the normalized histogram of the estimated values of noise power is

reported, together with the Gaussian probability density function (pdf). It was eval-

uated with (i) a mean value equal to the average of the estimated noise power values,

and (ii) a variance equal to the average of the estimated variances. The figure high-

lights a significant agreement between the experimental histogram and the Gaussian

pdf, assessed by a chi-square test, for a significance level of 1× 10−3.
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Figure 3.8: Normalized histogram of the estimated values of noise power (blue bars) and Gaussian

probability density function (red line), having mean equal to the average of the estimated noise

powers, and variance equal to the average of the estimated variances.

Further simulations were carried out to verify the fault detection performance in

terms of false alarms. In this case, 10 000 couples of reference and under-test records

were generated. The records obtained by the model were corrupted by white Gaussian

noise with null mean and variance equal to 1.0× 10−4. In this way, an unfaulty system

was emulated by assessing the false alarm rate.
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In Fig. 3.9, the results of such simulations are shown. In the figure, the histogram
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Figure 3.9: Normalized histogram of PSUT −PREF (blue) and Gaussian probability density function,

evaluated with a mean value equal to 0 and a variance equal to twice the average of the estimated

variance of PREF (red line). The black line highlights the threshold τ , corresponding to a Pfa = 0.01.

of the measured PSUT − PREF has been reported, together with the Gaussian pdf,

having null mean and variance equal to twice the average of the estimated values of the

variance of PREF . Even in this case, the figure highlights a not significant difference

between the experimental data and the Gaussian distribution, for a significance level

of 1× 10−3, assessed by a chi square test.

As mentioned in Sec. 2.2.4, the threshold τ can be chosen such to have a certain

probability of false alarm. In this case, by fixing the probability of false alarm Pfa =

0.01, and substituting it in (2.35), a value of τ equal to 7.27× 10−4 is found. A black

line corresponding to such value has been reported in the figure. With this value of

the threshold, it has been obtained from the simulations a false alarm rate of 0.0103,

which is very close to the imposed value of Pfa.
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3.3 FAULT DIAGNOSIS: LHC cryogenics diagnos-

tics developments

The dMGA proposed in the previous chapter was applied at CERN to a first case

study for analyzing possible future developments in the cryogenic equipment for 1.8 K

refrigeration units. The cooling capacity below 2.0 K for the superconducting mag-

nets of the Large Hadron Collider is provided by 8 refrigeration units of 2.4 kW by

IHI-Linde and Air Liquide.

Figure 3.10: Architecture of the 1.8 K refrigeration unit by IHI-Linde.

This case study is devoted to the diagnostics of one refrigeration unit by IHI-Linde

composed by (Fig. 3.10) [131]: (i) a warm compression station (WCpS), including an

oil lubricated screw compressor (WCp), with the associated oil removal system (ORS);

(ii) a cold compressor box (CCB), including mainly a train of cold compressors (CC1-

4), 2 heat exchangers (Hx1-2), a phase separator (Ph. Sep.), and 2 turboexpanders

(Tu1-2); (iii) the interfaces with the LHC (header B); and (iv) a 4.5 K refrigerator

(headers C and D).

3.3.1 Diagnostics problem

In the current situation at CERN, the refrigeration unit is handled by a monitor-

ing and control system. Several sensors are linked to the PLCs, used to control the

devices and to send the measured values to the general CERN monitoring system.

This simulation case study is aimed at assessing the performance of a future ad-

vanced diagnostic function to be integrated in the monitoring system to support the
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operators [132]. Most critical devices in the refrigeration unit are: (i) in the warm

compression station, the oil removal system, and (ii) in the cold compressor box, the

compressors CC1-4 and the cryogenic turbines Tu1-2. The WCp is a screw com-

pressor, using a particular oil (Breox) to increase the tightness of the entire process.

Before sending the compressed helium to the cold compressor box, all the possible

traces of oil have to be removed up to a residual of only few ppb. The cold com-

pressors installed in the box are critical because they are complex systems relying on

active magnetic bearings for shaft levitation. Particular attention must be paid also

to the cryogenic turbines, because they cannot correctly run in presence of impurities

in the helium flow (Breox, water or nitrogen). Furthermore, it is important to prop-

erly regulate the break system, aimed at dissipating the mechanical energy produced

by the expansion process.

The distributed diagnostic system (Fig. 3.11) was conceived to carry out the diag-

nostic task locally. The achieved diagnosis response is sent to the CERN monitoring

system (acting as Remote Supervision Station), while the PLCs are still used for the

control process.

3.3.2 dMGA configuration

For this case study, dMGA instances, logically connected in a stepping-stone bi-

directional ring topology, were realized. The dMGA was implemented in language C

and was executed on 3 virtual machines (64 bit architecture, 2 cores, 2GB RAM).

The Linux library Message Passing Interface was used for passing messages by Secure

Shell protocol between the machines.

The following parameters configuration was used: number of machines: 3; number

of runs: 10; population size: 15; migration rate: 10; crossover probability: 0.8; muta-

tion probability: 0.05; maximum number of generations: 100; and maximum number

of micro-generations: 10. A centralized brute force algorithm was also implemented in

MATLAB and executed on a pc with i7 processor (3.40 GHz) with 8 GB RAM. This

algorithm consists of systematically enumerating all the candidates for the solution

and searching for the maximum likelihood.

3.3.3 Proof-of-principle scenario

The anomalies and faults vectors (Tables 3.7 and 3.8, respectively), compiled accord-

ing to the plant engineer’s experience and requirements, include 80 anomalies and

55 faults. In these tables, low pressure side and high pressure sides are respectively

88



3.3. FAULT DIAGNOSIS: LHC cryogenics diagnostics developments

Figure 3.11: Architecture of distributed monitoring and multiple-fault diagnostics proposed for LHC

cryogenics at CERN.

indicated as L.P. and H.P.

The a priori probabilities pj and the causal strengths cij were identified from a

statistical analysis based on engineers and operators knowledge and historical faults.

All the faults of Table 3.8 are critical because they definitely lead to system failures

(permanent interruptions). An interruption for a single refrigeration unit means a

stop for the LHC as a whole. Moreover, also from a technical point of view, this case

study is a hard combinatorial optimization problem [41]: 55 faults give rise to 255

possible solutions of the MFD problem. For this reason, it turns out to be intractable

with a brute-force algorithm. To give an idea, after 10 days of continuous running,

the algorithm was capable to assess only 7.3642× 109 possible solutions on a total of

3.6029× 1016.

According to the literature about evolutionary algorithms [133], main performance

indexes are effectiveness (a measure of the quality solution within a given computa-

tional limit) and efficiency (a measure of the amount of computing needed to achieve

a satisfactory solution). In this paper, the effectiveness was calculated as the average
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Table 3.7: Anomalies vector.
Anomalies

Water flow low A1 Bearings currents high CC2 A41

Air pressure low A2 No sensors signal CC2 A42

Voltage low A3 Axial force high CC2 A43

Vacuum pressure high A4 Unbalance level bearing A high CC2 A44

Water contamination A5 Unbalance level bearing B high CC2 A45

Nitrogen contamination A6 Motor currents high CC2 A46

Breox contamination A7 Motor temperature high CC2 A47

Temperature brake circuit Tu1 high A8 Motor voltages high CC2 A48

Temperature brake circuit Tu2 high A9 Levitation lost CC3 A49

Pressure brake circuit Tu1 high A10 Bearings currents high CC3 A50

Pressure brake circuit Tu2 high A11 No sensors signal CC3 A51

Pressure Tu1 bearings low A12 Axial force high CC3 A52

Pressure Tu2 bearings low A13 Unbalance level bearing A high CC3 A53

Temperature Tu1 bearings low A14 Unbalance level bearing B high CC3 A54

Temperature Tu2 bearings low A15 Motor currents high CC3 A55

Inlet pressure Tu1 low A16 Motor temperature high CC3 A56

Inlet pressure Tu2 low A17 Motor voltages high CC3 A57

Inlet T1 mass flow low A18 Levitation lost CC4 A58

Overspeed Tu1 A19 Bearings currents high CC4 A59

Overspeed Tu2 A20 No sensors signal CC4 A60

Inlet temperature Tu1 low A21 Axial force high CC4 A61

Inlet temperature Tu2 low A22 Unbalance level bearing A high CC4 A62

Out temperature Tu2 low A23 Unbalance level bearing B high CC4 A63

Inlet cold box mass flow low A24 Motor currents high CC4 A64

Pressure (L.P.) high A25 Motor temperature high CC4 A65

Pressure (L.P.) low A26 Motor voltages high CC4 A66

Pressure (H.P.) high A27 Helium mass flow low A67

Pressure (H.P.) low A28 Pressure (WCS L.P.) high A68

Dewar helium level high A29 Pressure (WCS L.P.) low A69

Inlet pressure CC1 high A30 Pressure (WCS H.P.) high A70

Levitation lost CC1 A31 Helium temperature (WCS H.P.) high A71

Bearings currents high CC1 A32 Oil temperature high A72

No sensors signal CC1 A33 Oil mass flow low A73

Axial force high CC1 A34 Compressor vibrations level high A74

Unbalance level bearing A high CC1 A35 Pump currents high A75

Unbalance level bearing B high CC1 A36 ∆P on filters high A76

Motor currents high CC1 A37 Oil contamination on absorber system A77

Motor temperature high CC1 A38 Motor currents high A78

Motor voltages high CC1 A39 Bearings temperature high A79

Levitation lost CC2 A40 Motor temperature high A80
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Table 3.8: Faults vector.
Faults

Water cooling system fault F1 Compressor motor faults CC2 F29

Valves air system fault F2 Controller faults CC3 F30

Power supply system fault F3 Position sensor failure CC3 F31

Vacuum pumps fault F4 Magnetic bearing coil fault CC3 F32

Cold box leakage F5 Compressor shaft faults CC3 F33

Connections leakage F6 Compressor motor faults CC3 F34

Tu1 inlet valve fault F7 Controller faults CC4 F35

Filter Tu1 fault F8 Position sensor failure CC4 F36

Filter Tu2 fault F9 Magnetic bearing coil fault CC4 F37

Cryostat fault F10 Compressor shaft faults CC4 F38

Joule Thomson valves fault F11 Compressor motor faults CC4 F39

Break system 1 fault F12 Bypass valve failure F40

Break system 2 fault F13 Buffer system fault F41

Helium pollution F14 Hand valve failure (L.P.) F42

Gas analyzer fault F15 Discharge valve failure F43

Bearing pressure regulator 1 fault F16 Heat exchanger fault F44

Bearing pressure regulator 2 fault F17 Hand valve failure (H.P.) F45

Dewar level sensor fault F18 Oil filter faults F46

Dewar level circuit fault F19 Circuit leakage F47

Controller faults CC1 F20 Oil level sensors faults F48

Position sensor failure CC1 F21 Oil pump faults F49

Magnetic bearing coil fault CC1 F22 Oil valves faults F50

Compressor shaft faults CC1 F23 Absorbers filters faults F51

Compressor motor faults CC1 F24 Compressor bearings faults F52

Controller faults CC2 F25 Gearbox failures F53

Position sensor failure CC2 F26 Compressor shaft faults F54

Magnetic bearing coil fault CC2 F27 Motor faults F55

Compressor shaft faults CC2 F28

likelihood of the best in run solutions, while the efficiency as the average of the gen-

erations number corresponding to the best likelihood solution.

The dMGA was tested on 4 different cases, consisting of different scenarios up to 5

simultaneous faults: (i) two cases, related to the cold compressors (CC1-4) with mag-

netic bearings, owing to past reliability problems; and (ii) two related to the warm

compression station and to the cold box.
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3.3.4 Simulation results

The dMGA was executed to evaluate the best solution in terms of the faults with

their occurrence probability. In effectiveness and efficiency tests, the dMGA worked

according to configuration described in Sec. 3.3.2. The results for the 10 most signif-

icant scenarios are reported in Table 3.9. The anomalies and the faults are encoded

as arrays of binary chromosomes, thus, in Table 3.9, the array locations where the

bit 1 is present are indicated. The solutions correspond to reasonablefaults. As an

example, in test case 2, if the low voltage anomaly (A3) is detected, the power supply

system fault (F3) is diagnosed. The average likelihood (3.502× 10−2) is quite close to

the best one (3.890× 10−2) and the average generation’s number is reasonable (61).

The results of Table 3.9 highlight how the dMGA is capable of reaching the best

likelihood solution in a fairly good number of generations and the average likelihood

is close to the best likelihood. As an example, in test case 4, the average likelihood is

equal to the best likelihood: 3.189× 10−4, and the algorithm reaches the best solution

in an average generation’s number of 56, with a standard deviation of 17, over 10 test

repetitions.
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Table 3.9: Anomalies and corresponding faults with related likelihood and indexes determined by

the dMGA.
Test Anomalies Faults Best likelihood AVG likelihood AVG gen. num.

1 A4 F4 3.890× 10−2 (3.502± 1.167)10−2 (61± 20)

2 A3 F3 3.890× 10−2 (3.516± 1.123)10−2 (51± 15)

3

A5, A6, A7, A12,

F10, F14 8.289× 10−10 (7.460± 2.487)10−10 (64± 21)A13, A19, A20, A21,

A22, A23, A30

4 A4, A76, A77 F4, F51 3.189× 10−4 (3.189± 0.000)10−4 (56± 17)

5

A1, A8, A9, A16,

F1, F7, F11 9.026× 10−10 (6.494± 3.873)10−10 (56± 18)A17, A18, A19, A21,

A22, A23

6

A34, A35, A36, A49,

F23, F31, F39 5.202× 10−8 (4.805± 1.192)10−8 (64± 17)A50, A51, A64, A65,

A66

7
A3, A4, A67, A68,

F3, F4, F41, F51 4.139× 10−9 (2.942± 1.829)10−9 (64± 17)
A69, A70, A76, A77

8

A1, A8, A9, A16,

F1, F7, F11, F55 1.131× 10−11 (8.065± 4.960)10−12 (64± 17)A17, A18, A19, A21,

A22, A23, A78, A80

9

A4, A64, A65, A66,

F4, F39, F41, F49, F51 1.169× 10−12 (8.313± 5.161)10−13 (69± 16)
A67, A68, A69, A70,

A73, A74, A75, A76,

A77

10

A3, A5, A6, A7,

F3, F10, F14, F19, F47 3.300× 10−15 (1.540± 1.226)10−15 (62± 21)
A12, A13, A19, A20,

A21, A22, A23, A29,

A30, A67, A73

93





Chapter 4

Experimental case studies

In this chapter, the experimental case studies for the proposed methods, together

with their results, are described. All the methods, except for the fault diagnosis

technique, were validated on CERN facilities. In particular, the proof of principle

of the alternative virtual flow meters for the helium gaseous state, carried out on

the test station for superconducting magnets in the test facility SM18, are presented

in 4.1. Furthermore, in section 4.2, the experimental results of the fault detection

proof-of-principle demonstration for a case study on AMB-based cold compressors of

the LHC are reported. In section 4.3, the efficiency and accuracy performance of

the dMGA procedure is highlighted by a case study related to diagnosing the main

edifices systems (e.g., anti-theft/anti-intrusion, air conditioning, and so on) in remote

building automation. Finally, the preventive maintenance experimental results of a

case study on the CERN liquid helium storage system are reported in section 4.4.
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4.1 ADVANCED MONITORING: proof of princi-

ple

A validation case study for the helium gaseous state, carried out at CERN on the

test station for superconducting magnets in the laboratory SM18 [134, 135, 136], is

reported. The models of Samson and Sereg-Schlumberger were identified and vali-

dated experimentally. Predicted and experimental helium mass flows were compared

in order to assess the models performance and to validate the design of the helium

flow transducer.

In the following, (4.1.1) the helium flow in long-magnet test bench of the test facili-

ties SM18, (4.1.2) the experimental setup, the virtual flow meter (4.1.3) identification

and (4.1.4) validation are illustrated.

4.1.1 Helium flow in long-magnet test bench

The laboratory SM18 [136] is the cryogenic facility where all the main components of

LHC were tested before final installation in the tunnel. In particular, the flow meter

experiments were carried out in the cryogenics supervisory system of the test station

for superconducting magnets in vertical position, called the ’Long Station’.

Figure 4.1 shows the synoptic of the Long Station. The helium flow for the cryostat

is controlled by the valves (CV ): (i) CV 810, for the flow of liquid helium inlet; (ii)

CV 813, CV 823, CV 833, and CV 843, for the flow of the outgoing hot gaseous helium

from the cryostat; and (iii) CV 812, for the flow of the cold gaseous helium outlet.

Each outgoing hot gaseous helium line has a flow-meter already installed. Conversely,

on the liquid inlet and cold gas outlet lines, flow-meters are not installed. Inside the

cryostat, a heater varies the helium bath temperature. The flow motion is caused

by the pressure differential between the cryostat (shown in Fig. 4.1) and the helium

circuit without operating machinery (e.g. pumps).

4.1.2 Experimental setup

The virtual sensor effectiveness was validated by multiple experiments (cross-validation).

The valves working conditions, and thereby the helium flow, were measured on the

test station of the magnets in a vertical position (Fig. 4.1). The gaseous-state mod-

els (2.1.2) underlying the virtual flow-meters were identified, and validated on the

control valve lines 813. In the corresponding hot-gas line, also an actual flow-meter

transducer by Brooks [137] is installed. This transducer was assumed as a reference
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Figure 4.1: Long station synoptic at CERN test facility SM18

for comparing modelled and measured data in all the tests reported in this section.

At this aim, both the models were implemented on an equal percentage valve (813,

for the flow of the outgoing hot gaseous helium from the cryostat), with a Kvmax of

5.8 m3/h and a rangeability of 1:50. The temperature at the valve inlet and outlet

is considered constant, and for this reason, only the inlet temperature was measured

(sensor TT813). The valve inlet pressure was measured by the sensor PT820c, while

the valve outlet pressure by the PT240. The flow rate was changed by increasing the

temperature and opening the valve, at constant pressure, inside the cryostat. The

Reynolds numbers observed during the experimental tests are in the range (90, 4275).

Looking at the ∆P variations, the flow is in the laminar and in the transient regime.

The tests were carried out in a large experimental facility at CERN by setting the

flow behaviour as demanded by the cryogenic process need.
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4.1.3 Virtual flow meter identification

At CERN, the process variable measurements (pressure, temperature, liquid level,

and so on) for monitoring and control purposes are stored in a database. Due to

the data size and the high number of sensors, the sampling time of stored data is not

uniform. The sampled data are stored either when the sensor input varies significantly

or after a suitable prefixed sampling time. On these basis, in the following figures, the

samples of the various data sets are fitted to a common time base by the supervision

software.

For the identification and validation experiments, after choosing a suitable time

window, e.g. 30 minutes, the sensors measurements were remotely extracted from

the supervision station database. The helium parameters, i.e. density ρ, and heat

capacity (both at constant pressure cp and constant volume cv), were then calculated

using the software package HePak by Cryodata [138].

The Samson and Sereg-Schlumberger models were implemented in Matlab and the

flow was first estimated for gaseous helium.

Figure 4.2: Gaseous helium flow through the valve CV813

In Fig. 4.2, as expected, the overall model trends follow the measured flow only

qualitatively. As a matter of fact, modelled and actual values have a significant local

difference (especially Samson). Therefore, the segmented linear regression (3.4) was

applied. The best model identification is achieved by 3 breakpoints, therefore the

valve opening range was divided in 4 intervals, and the models were identified piece

wise for each of them. Correspondingly, the offset and proportional coefficients βi and
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Table 4.1: Offset and proportional coefficients for Samson and Sereg-Schlumberger models

Coefficient
Valve opening (%)

0-33 % 33-46 % 46-70 % 70-100 %

βSam 5.96 3.72 3.39 2.87

εSam -0.29 0.03 0.13 0.44

βSer 33.6 21.2 17.4 15.7

εSer -0.28 0.02 0.21 0.44

εi were determined (Tab. 4.1), by minimizing the mean square error between mea-

sured and modelled values. In particular, for the model identification, the coefficients

were computed as averages on 19 independent acquisitions, while the validation is

highlighted on a further independent data set.

4.1.4 Virtual flow meter validation

In Fig. 4.3, modeled and experimental flow values are compared for both the modified

models. In Fig. 4.4, the percentage error is assessed for both the methods.

Figure 4.3: Comparison between modified Samson and Sereg modeled and measured flows

The high percentage error fluctuations for the first samples (Fig. 4.4), depends

from the low number of the available data used as reference in that opening range.

In Figs. 4.5 and 4.6, the calibration functions (predicted and measured flow) are

presented for both the modified Samson and Sereg methods, respectively. The red line
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Figure 4.4: Samson and Sereg models percentage errors

represents the ideal condition where the models have null error (i.e. ideal prediction).

The model predicts how the various parameters interplay (i.e. pressure drop, valve

opening, temperature); while the reference data might not cover the parameter space

as a whole. In Tab. 4.2, the percentage root-mean-square error (RMSE), and the

mean percentage error (er%) are assessed for both the model. However, both the

models underestimate the actual flow; specifically, the Sereg-Schlumberger performs

better than the Samson model.

Table 4.2: Models errors summary

Models RMSE % er %

Samson 7.50 -8.75

Sereg-Schlumberger 7.00 -4.45
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Figure 4.5: Transducer calibration function version based on Samson model

Figure 4.6: Transducer calibration function version based on Sereg-Schlumberger model

4.2 FAULT DETECTION: proof of principle

An experimental analysis has been carried out on 4 cold compressors at CERN, in

order to verify the method capability of detecting faults in actual cases. Records have

therefore acquired on all the compressors both in unfaulty conditions and during

maintenance tests.

4.2.1 Case study

In 1998, the industrial procurement of the eight 1.9 K refrigeration units for the LHC

sectors was launched and the contracts were adjudicated to Air Liquide (France) and

a consortium of IHI (Japan) and Linde Kryotechnik (Switzerland) for the delivery
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and installation of four units each [27].

During the first LHC run, the IHI-Linde system presented some problems in terms

of reliability. In particular, the cold compressors were identified as the cause of several

process interruptions. The general purpose technique described in Section 2.2.4, is

devoted in this paper, to the fault detection for cold compressors installed in the

IHI-Linde refrigeration unit. In this cold box, four AMB cold compressors stages are

installed. A generic rotating machinery with active magnetic bearing (Fig.4.7[139])

is composed by: position sensors; a controller unit necessary to stabilize the suspense

state of the rotor; power amplifiers; actuators (radial and axial bearings) responsible

for rotor levitation, and, finally, the rotating machinery rotor and impeller.

Figure 4.7: Active magnetic bearing system architecture.[139]

The four cold compressor systems under test, have two radial bearings and one

axial bearing; 2 pulse sensors; 10 position sensors; 10 power amplifiers and a controller

board. The power amplifiers and the controller board are included in one external

module provided by MECOS [140]. To control the rotational speed, a three-phases

induction motor, together with a variable frequency driver, is used. As already afore-

mentioned, active magnetic bearings systems allow to perform several measurements

without additional devices or sensors. Time-domain signals (shaft position and bear-

ing excitation current) and frequency-domain signals (controller sensitivity and the

FRF) can be acquired. In particular, for the proposed fault detection technique, the

system FRF is measured.
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4.2.2 Measurements setup

During the LHC Long-Shutdown 1 (LS1) some tests on the IHI-Linde cold box were

performed. The necessity of these tests arise from the fact that a new hardware setup

(new cables configuration, new MECOS controller unit, etc.) was settled in the frame-

work of the radiations to electronics (R2E) project [141]. In particular, to validate the

fault detection technique, FRF compressor measurements were performed for a fixed

rotational speed, low helium mass flow levels and at different process temperatures:

at ambient temperature (∼300 K) and at 30 K. The compressors rotational speeds

during the measurements were: 15 Hz for compressor stage 1, 20 Hz for compressor

stage 2, 30 Hz for compressor stage 3 and 40 Hz for compressor stage 4.

4.2.3 Fault detection results

For the fault detection experimental validation, all the four compressors in the IHI-

Linde cold box were tested. First, the system identification was carried out on records

acquired on the same considered compressors in unfaulty conditions. Therefore, fol-

lowing the steps described in Section 2.2.4, the reference noise power PREF and its

variance Var{PREF } has been calculated. Based on engineers experience, the prob-

ability of false alarm Pfa has been set equal to 0.01. Then, the thresholds τ have

been calculated for each compressor. They have been reported in the second column

of Table 4.3.

Furthermore, the noise power has been evaluated on new records, acquired during

maintenance tests. As an example, in Fig. 4.8 the reference record (reference), the

identified track (model) and the record from the system under test (SUT ) are shown

for compressor stage 2. It can be observed that the parametric model allows the main

features of the reference record to be captured. A small variation, probably due to

the specific conditions when the record was acquired, is filtered by the model. Finally,

the differences PSUT − PREF for the four compressors have been assessed, and they

Table 4.3: Values of the threshold τ and of the distance PSUT − PREF for each of the compressors

under test.

Compressor τ PSUT − PREF
CCS1 0.025 44.5

CCS2 0.146 -0.24

CCS3 0.004 -0.01

CCS4 0.028 -0.04

103



Experimental case studies

101 102 103
−60

−40

−20

0

20

Frequency [Hz]

G
ai
n
[d
B
]

model
reference
SUT

Figure 4.8: Cold compressor system 2 frequency response function in nominal conditions (reference),

the identified records (model), and the frequency response of the system under test (SUT ).

are reported in the third column of Table 4.3.

For the compressor stage 2, 3 and 4, no faults have been detected, because the

difference PSUT −PREF was under the corresponding τ . For cold compressor stage 1,

instead, a faulty condition has been detected. In Fig. 4.9 and Fig. 4.10 the nominal

condition identification and the comparison between the identified record (black) and

the SUT record (red), for compressor stage 1, are respectively shown.

Thanks to the proposed technique, a fault was then detected, and the faulty

compressor was sent back to manufacturer. The IHI-Linde company confirmed that

some minor mechanical problems were found.

4.2.4 Early-stage fault isolation results

In the following, the results of the two steps of early-stage fault isolation are reported

for the above case study for the cold compressor system stage 1, with the twofold aims

of identifying the most influencing model parameters and evaluating their influence

on the estimated noise power.
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(a) Reference record (reference)
and identified record (model).
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record and identified record.

Figure 4.9: Identification of the nominal condition for compressor 1.

Parameters ranking

At this aim, a standard Taguchi plan L27 [119] has been adopted for its capability

of investigating combinatorial spaces generated by up to thirteen 3-levels discrete

parameters. In particular, for the i-th parameter, the nominal value pi plus/minus

the variability range has been chosen. This variability range has been defined based

on the real system knowledge and it has been set equal to 1 % for the real poles and

the damping ratio, while for the frequencies, it has been chosen equal to 20 Hz. In

Tab. 4.4 the ANOVA results are reported.
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Figure 4.10: Comparison between identified record (black) and SUT record (red) for compressor 1.

In particular, in the column MS, the contribution of the parameter to the overall

variance, assessed as the ratio between the sum of the squares (column SS) and the

related degrees of freedom (column DF), is reported. In the column Fi, the variance

ratio related to the i − th parameter is shown. In the last column, the so-called P -

parameter, i.e. the probability, expressed in relative terms, that the variation associ-

ated with the considered parameter does not influence the corresponding performance

factor, according to the traditional Fisher-Snedecor statistical test is indicated.
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Table 4.4: ANOVA results.

SS DF MS Fi P

Pole1 0.06794 2 0.03397 134.14 0.0000

Pole2 0.00011 2 0.00005 0.21 0.8156

Pole3 0.00010 2 0.00005 0.20 0.8259

Pole4 0.00010 2 0.00005 0.20 0.8204

DR1 0.00044 2 0.00022 0.88 0.4633

DR2 0.00054 2 0.00027 1.07 0.4019

DR3 0.00053 2 0.00027 1.05 0.4055

Freq1 0.01845 2 0.00922 36.42 0.0004

Freq2 0.02849 2 0.01425 56.26 0.0001

Freq3 0.08587 2 0.04293 169.54 0.0000

Error 0.00152 6 0.00025

Parameter identification

Once the most influencing parameters were identified by ANOVA, the BBd method,

described in 2.2.5, was performed, in order to evaluate the effects of the variation of

the most influencing parameters on the figure of merit. For this test, a variability

range was defined and 27 runs were performed. In particular, on the basis of historical

knowledge of the actual system, the following variability ranges were chosen: 2 % for

the real pole (p1), and 10 Hz for the frequencies (p2, p3 and p4). The coefficients

β0, βl, βll, and βlm in Tab. 4.5 were then identified with the least-square method.

Finally, the second-order model (2.36), representing the behavior of the noise power

versus the variation of the model parameters, was fitted.

In Fig. 4.11a, a plot of the fitted surface is reported when the parameter p2 and

p3 have been varied and the parameter p1 and p4 have been left to their nominal

values. The intersection with the plane corresponding to the threshold value for that

compressor is shown, too. It is easy to see that the locus of the intersecting points is

the ellipse shown in Fig. 4.11b and it is possible to note that the points of the plane

inside the ellipse are below the threshold, while those outside the ellipse are above

the threshold. In this way, the subspace of the model parameters that cause a faulty

condition is identified.

By analyzing the deviations of the model parameters for the compressor that has

been identified as faulty, displacements of −53 Hz and −51 Hz have been found for

parameters p2 and p3, respectively. in Fig. 4.11b, the corresponding point on the
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Table 4.5: Coefficient vector identification

Coefficient Value

β̂0 0.000× 10−5

β̂1 −1.467× 10−4

β̂2 3.141× 10−4

β̂3 −3.292× 10−4

β̂4 8.915× 10−5

β̂11 7.343× 10−3

β̂22 1.435× 10−4

β̂33 1.013× 10−4

β̂44 3.594× 10−5

β̂12 2.235× 10−4

β̂13 2.165× 10−4

β̂14 1.282× 10−4

β̂23 1.473× 10−4

β̂24 5.119× 10−5

β̂34 6.015× 10−5

plane reporting p2 and p3 has been marked. It can be seen that the marked point is

far outside the ellipse.

4.3 FAULT DIAGNOSIS: Diagnostics of buildings

The dMGA was validated experimentally in an application in the framework of the

project MONDIEVOB [142]. Several smart transducers are installed in an edifice for

monitoring and diagnosing automatically the main building systems: anti-theft/anti-

intrusion, air conditioning, electrical system, elevators and lifts, fire system, and so

on. In the dMGA validation, the following edifice subsystems were monitored owing

to their criticalities, by installing a network of smart transducers with the correspond-

ing diagnostic units (Fig. 4.12): (i) Lift and elevators (LDU), by measuring all the

parameters of the related electromechanical plant, as well as what is needed for the

compliance with EU safety standards (e.g., UNI-EN 81.28) and directives; (ii) Heat-

ing plant (HDU), a classical primary-secondary pumping system, by monitoring the

thermo-fluid-dynamic quantities such as water temperature and pressure in primary

(generator to the storage tank) and secondary (storage tank to users) heating circuits
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Figure 4.11: Response surface evaluated from the sensitivity analysis applied on compressor 1.

(HDU); (iii) Air handling (ADU), by monitoring the parameters (air temperature in

the main circuit and in the heat recovery circuit) of the unit for air treatment, as

well as of its humidifier and heat recovery circuit; (iv) Electrical/ Alarm (EDU), by

monitoring all the quantities of electrical, fire, and anti-theft plants; and (v) (DDU)

Domotic, by measuring room temperature, humidity, comfort parameters, and so on.

Finally, the Remote Supervision Station (RSS) is a software-structured user interface,
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for providing a remote view of all the monitored plants and the diagnostics output

for data storage and maintenance.

Figure 4.12: Architecture of distributed monitoring and multiple-fault diagnostics for buildings.

4.3.1 Diagnostics problem

For each of the above subsystems, main faults have to be diagnosed on the basis of

the corresponding anomalies. As an example (Table 4.6): (i) for the electrical system

(A1-13, F1-4), a power electrical black out, or a fault to the line transformer have to

be diagnosed by starting from the detection of problems on the voltage lines R,S,T vs

the neutral N, or a too low power factor cos(ϕ); (ii) for the heating plant (A14- 21,

F5-14), a failure to the hydraulic separator between primary and secondary circuits

is to be diagnosed when an overheating is detected on the primary circuit in summer

position; (iii) for the air treatment (A22-25, F15-24), a faulty humidistat or a drift in

the water temperature sensor of the secondary circuit have to be explained by starting

by an apparent overheating in the heat recovery air.

4.3.2 Experimental setup

Each smart transducer includes (Fig. 4.13): (i) analog and digital output and inter-

faces for sensors data acquisition; (ii) ARM9/Unix OS-based single board computer

platform (ARM 9, 200 MHz, 32 MB RAM); (iii) wireless peripheral for local network

interface; and (iii) modem interface for remote GPRS channel communication.

In Fig. 4.14, a particular of the smart transducer hosting the Domotic Diagnos-
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Table 4.6: Anomalies and faults vectors (RST: electrical phases, N: neutral, cos(ϕ): power factor,

ATU: air treatment unit).

Anomalies Faults

Current break phase RN A1 Electrical power black out F1

Current break phase SN A2 Electrical overload F2

Current break phase TN A3 Transformer fault F3

High voltage phase RN A4 Loads with power factor correction F4

High voltage phase SN A5 Pressure reducer fault F5

High voltage phase TN A6 Water losses F6

Low voltage phase RN A7 Air in heating circuit F7

Low voltage phase SN A8 Heat pump fault F8

Low voltage phase TN A9 Hydraulic separator failure F9

Low cos(ϕ) phase RN A10 Fault valve secondary circuit F10

Low cos(ϕ) phase SN A11 Circulation pump primary circuit failure F11

Low cos(ϕ) phase TN A12 Fault pump secondary circuit F12

High overbalance electrical loads A13 Dirty filters primary circuit F13

High pressure primary circuit A14 Dirty filters secondary circuit F14

Low pressure primary circuit A15 Fault thermoregulation ATU F15

High pressure secondary circuit A16 Faulty valve ATU F16

Low pressure secondary circuit A17 No water supply F17

High temp. primary circ. - summer A18 Pump failure humidification F18

Low temp. primary circ. - summer A19 Battery failure humidification F19

High temp. primary circ. - winter A20 Faulty humidistat F20

Low temp. primary circ. - winter A21 Water temp. sensor fault primary circuit F21

High temp. air fan ATU A22 Water temp. sensor fault secondary circuit F22

Low temp. air fan ATU A23 Air temperature sensor fault recovery F23

High temp. recovery air ATU A24 Supply air temp. sensor fault F24

Low temp. recovery air ATU A25

tic Unit, with a fan-coil actuator based on a transistor ULN2003A and a connector

DB25 for temperature and solar radiation sensors, is highlighted. The dMGA was

implemented in language C.

The following parameters configuration was used: number of machines: 3; number

of runs: 10; population size: 24; migration rate: 10; crossover probability: 0.8; muta-

tion probability: 0.2; maximum number of generations: 50; and maximum number of

micro-generations: 5.

The centralized brute force algorithm was also in this case study implemented in

MATLAB and executed on a pc.

In Fig. 4.15, the finite state automaton for the monitoring unit of lifts and elevators

plants is illustrated.
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Figure 4.13: Smart transducer with embedded ARM9 TS7200, interface PC104 auxiliary board, and

DB25 connector for analog and digital I/O.

Figure 4.14: Domotic Diagnostic Unit with fan-coil actuator based on transistor ULN2003A with

DB25 connector for temperature and solar radiation sensors.

4.3.3 Proof-of-principle scenario

Also in this case, the matrices for the relationships anomalies/faults C and a priori

probabilities M of the possible faults P were based on engineering experience and

requirements. In particular, most of the faults were focused on electrical, thermal,

and air treatment units.

In Table 4.6, the considered 24 faults and the 25 anomalies are reported. The ma-
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4.3. FAULT DIAGNOSIS: Diagnostics of buildings

Figure 4.15: Finite state automaton for the monitoring unit of electrical, fire, and anti-theft systems.

trix C is large and sparse, with dimension D×M = 24×25, i.e., 224 possible solutions

of the diagnostic problem. An anomalous transition of a parameter triggers the start

of the dMGA algorithm. The master unit (DDU) is responsible for vector transition

detection, triggering the dMGA, and fault results encoding and transmission to RSS.

4.3.4 Experimental results

For a complete validation, single and multi-fault test cases were selected on different

diagnostics problems of various dimensions.

As an example of single-fault diagnosis, in the test case 3 on the building electri-

cal system (Table 4.7), the anomalies of an over-voltage line R vs neutral N with a

simultaneous too low power factor cos(ϕ) (A4-A10) were detected.

The dMGA diagnosed as the solution with best likelihood (1.742× 10−4), a fault

on the line transformer (F3), confirmed also by the brute force algorithm. As multi-

fault example, in the Air Handling Unit, a too low pressure level on both the primary

(A15) and the secondary circuits (A17), as well as a too low temperature level both

on the fan (A23) and recovery (A25) air were detected.

The dMGA algorithm diagnosed as the fault with best likelihood (3.118× 10−3)

the simultaneous presence of both water losses (F6) and thermoregulation (F15) faults

in the Air Handling Unit. This diagnosis was also confirmed by the brute force algo-

rithm.

As a matter of fact, for each test case, the brute force algorithm assessed the best

solution in terms of fault vector and likelihood. The dMGA was run on (i) 1, 2, and
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3 DUs in parallel with 100, 50, and 30 generations number; (ii) with 20 runs; and

(iii) with population size 24, 15, 10, and 7. Table 4.7 reports the best dGMA result

for the 5 test cases. The successful comparison between brute force and the dMGA

likelihood values points out a satisfying validation.

In Table 4.8, for the above 5 test cases, the percentage of success on 20 runs is

highlighted at varying the number of the involved diagnostic units, the number of

generations, and the population size. The success condition is considered as the oc-

currence of the first run where the maximum likelihood value provided by the brute

force algorithm is achieved. Results show how a decrease in the unit number up to

30 % (e.g., owing to failures of 2 smart transducers on 3) can be taken into account

preventively in the design by selecting 100 generations and a population size of 24.

In fact, owing to this dMGA configuration, diagnostics success turns out to be

robust to processors loss, because dMGA over-sizing counterbalances the loss. Ob-

viously, in this extreme case, the parallelism is spent completely in redundancy, and

thus only in reliability, without saving computing resources. Conversely, a decrease

in the population size up to 30 % degrades drastically the performance, whatever the

number of units and generations.

Table 4.7: Single and multi-fault test results.

Test Anomalies Faults Likelihood

1 A1, A2, A3
Brute Force F1 1.770× 10−2

dMGA F1 1.766× 10−2

2 A10
Brute Force F4 2.600× 10−3

dMGA F4 2.572× 10−3

3 A4, A10
Brute Force F3 1.742× 10−4

dMGA F3 1.742× 10−4

4 A15
Brute Force F6 5.860× 10−2

dMGA F6 5.860× 10−2

5 A15, A17, A23, A25
Brute Force F6,F15 3.100× 10−3

dMGA F6,F15 3.118× 10−3
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Table 4.8: Success percentage at varying number of units, generations, and population size (lack of

convergence in bold).

Test No. of units No. of generations
Population size

24 15 10 7

1

1 100 90 90 45 15

2 50 95 80 60 10

3 30 95 80 40 15

2

1 100 85 50 40 10

2 50 85 45 40 40

3 30 90 75 30 10

3

1 100 95 80 25 10

2 50 95 80 40 25

3 30 95 75 55 25

4

1 100 30 35 40 15

2 50 55 45 25 15

3 30 60 45 20 5

5

1 100 35 30 30 20

2 50 35 20 15 5

3 30 45 15 20 5

4.4 PREDICTIVE MAINTENANCE: Helium stor-

age system

4.4.1 Application scenario

In this section, a case study on the liquid helium storage system installed at CERN is

described and then some preliminary results of the proposed algorithm validation are

presented. At this aim, the system configuration will be firstly described and then a

comparison with GA will be reported, by analyzing the effectiveness (a measure of the

quality solution within a given computational limit) and the efficiency (a measure of

the amount of computing needed to achieve a satisfactory solution). The effectiveness

is calculated as the best in run solutions, while the efficiency as the average of the

iteration’s number corresponding to the optimal solution.

Helium storage system

The cryogenic system of the Large Hadron Collider (LHC) under operation at CERN

has a total helium inventory of 140 t [143] . Up to 50 t can be stored in gas storage

tanks and the remaining inventory will be stored in a liquid helium storage system

consisting of six 15 t of liquid helium tanks in 4 locations. In Fig. 4.16, the general
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architecture of the system is shown.

Figure 4.16: Helium storage system architecture.

The formulation proposed in this paper is aimed at solving the maintenance

scheduling problem for only one of the LHC’s installations, and for the sake of the sim-

plicity, one its subset. A view of the 50 t liquid helium storage system located at LHC

Point 1.8 is shown in Fig. 4.17. It is composed by (i) two tanks, combined cryogenic

line, which allows the transfer from the LHC to the tanks (saturated liquid helium)

and back (gaseous helium at 5 K), (ii) bayonets to transfer helium from or to mobile

containers to adjust the inventory when required [143], and (iii) a liquid nitrogen tank

with a semi-rigid line, used to refill the thermal shield. All the low temperature parts

are vacuum insulated and thermally protected by multilayer insulation.

In Fig. 4.17, each tank is equipped with a level meter (L1-L2), a pressure sensor

(P1-P2), and a temperature sensor, installed on helium outlet shield line (T1-T2);

as for the helium, the nitrogen tank is equipped with a pressure sensor (P3) and a

level meter (L3); the distribution box is equipped with a thermometer (T) installed

in the helium gas return line and the low-pressure line is equipped with a flow-meter

(F) to measure the heat consumption of the tanks. All these sensors allow to manage
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Figure 4.17: Simplified scheme of LHC’s point 1.8 storage system.

the entire system and the measured values are sent to a dedicated PLC and a data

acquisition system [144].

The preventive maintenance scheduling for such a system is carried out by classi-

fying all the components in different categories and by defining a task list including

the correspondent costs for all the possible actions to carry out. As an example, me-

chanical elements are separated from sensors and from electrical equipment; for each

category, all the possible components are identified and a list of tasks (inspection,

replacement, cleaning, etc.) is drafted. The maintenance time horizon for each task

is defined by experience. As a consequence, the drawback of this solution is that no

intelligent scheduling for preventive maintenance is performed.

In this paper, an alternative solution to the above mentioned problem is presented

exploiting the GEO algorithm in order to find the optimal sequence for maintenance

operations which minimizes the costs.

4.4.2 System configuration

The system used to test the proposed methodology is the liquid helium storage de-

scribed in section 4.4.1 and in particular the one represented in Fig. 4.17. The com-

ponents to be maintained can be classified in: control valves (CV), pneumatic valves

(PV), analog sensors, digital sensors, hand valves (HV), safety valves (SV) and the

breaking disks. For this case study, the GEO algorithm was implemented in Matlab
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and it was compared to a standard GA. For both the algorithms, a maximum number

of iterations was fixed to 104. In GEO algorithm, the parameter τ was set to 0.75. As

for GA algorithm, the following parameters configuration was used: number of runs:

10; population size: equal to the product M · T , crossover probability: 0.8; crossover

mechanism: single point; mutation mechanism: uniform; and selection mechanism:

roulette.

4.4.3 Experimental results

Scheduling problems with increasing dimensions were used to perform preliminary

experimental tests in order to validate the effectiveness and the efficiency. In Table 4.9,

the problem settings are presented.

Table 4.9: Problem Settings

Test n. M T N Solution length (n. of bits)

1 14 14 2 196

2 14 14 5 196

3 14 14 7 196

4 21 21 3 441

5 21 21 5 441

6 21 21 11 441

7 35 35 5 1225

8 35 35 10 1225

9 35 35 19 1225

10 42 42 5 1764

11 42 42 15 1764

12 42 42 23 1764

The proposed GEO works only on 1 individual and performs a number of evalu-

ations as the solution length; therefore, in order to be compared with the GA, the

population size of the last algorithm has been set equal to the solution length: 196

for the tests n.1-3, 441 for the test n.4-6, 1225 for the test n.7-9, and 1764 for the test

n.10-12.

For a fixed number of maximum iterations, the GEO algorithm at each run con-

verges to the same best solution cost with the same number of iterations. The same

behaviour for the best solution in standard GA was observed, while a variable itera-

tions number was noticed.

In Tabs. 4.10 and 4.11, preliminary experimental results were reported.

For a small number of resources (N) in the time horizon (T), some problems to fulfil
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Table 4.10: Best solution cost
Test n. GEO Solution GA Solution

1 784.964 –

2 805.404 –

3 802.484 784.964

4 1683.000 –

5 1716.701 –

6 1723.202 1650.240

7 4585.503 –

8 4597.201 –

9 4606.703 4326.38

10 6442.101 –

11 6561.102 –

12 6568.604 6137.244

the constraints in GA algorithm were reported. The smallest value of N to avoid this

problem, tests n.3, n.6, n.9, and n.12, is reported, but in these cases, the effectiveness

(Table 4.10) achieved for GEO and GA are very different, and, in particular, GA

performs better than GEO. N represents the number of available resources and, in

practical applications, this value is always very limited. In Table 4.11, the efficiency

expressed in terms of number of iterations is presented, and the difference between

the GEO algorithm and GA is shown.

Table 4.11: Number of iterations
Test n. GEO Iter. GA Iter. Mean GA St. Dev.

1 3146 – –

2 3483 – –

3 9286 111.44 13.06

4 2963 – –

5 8960 – –

6 9218 234.33 19.55

7 4077 – –

8 9763 – –

9 9440 642.01 25.34

10 3995 – –

11 9182 – –

12 9517 960.50 31.78
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Conclusions

In this Thesis, advanced methods and techniques have been proposed for monitoring,

fault diagnostics, and predictive maintenance of cryogenic processes and systems.

In particular, the design and the proof-of-principle demonstration of a transducer

based on a virtual flow-meter for helium monitoring in cryogenic systems for particle

accelerators were presented. Two alternative different models (Samson and Sereg-

Schlumberger) for virtual helium flow-meter design were used. During the experimen-

tal validation for the gaseous state on the test station for superconducting magnets in

the SM18 test facilities at CERN, the experiments proved that the modified Samson

and Sereg-Schlumberger models (after the calibration) can be used in laminar and

transient regime. The model validation under turbulent conditions is an interesting

point for future investigations. Both the models underestimated the measured mass

flow, the RMSE values for Samson and Sereg-Sclumberger methods are respectively

7.50 % and 7.00 %, but specifically the Sereg-Schlumberger performed better than the

Samson model. From these results, the Sereg-Schlumberger method will be preferred

in future applications at CERN for gaseous helium.

The next step is to analyze more comprehensively the dependence on all param-

eters, as well as the metrological performance by means of an uncertainty analysis.

A further future step will be to optimize both the methods specifically for the liquid

state. As a matter of fact, higher attention to the physical properties of helium is to

be paid because, along the saturation condition, a working region where the helium

shows both gas and liquid properties simultaneously is to be considered.

Furthermore, the uncertainty analysis of the proposed virtual flow-meter-based

transducer for monitoring helium flow in cryogenic conditions has been presented.

The analysis exploits an uncertainty model of the transducer, considering its main

uncertainty sources, setting parameter, and operating conditions. The uncertainty

model is based also on a state-of-the-art model of the helium, and an ad-hoc de-

veloped model at finite-elements of the valve. Both these models were validated at
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CERN in the laboratory SM18 under actual cryogenic conditions. The uncertainty

has been analysed by combining statistical experiment design and ANOVA to verify

both the metrological design of the prototype and to point out the most influencing

uncertainty sources for further improvements. This analysis has been carried out both

on an overall metrological performance and on its main components of uncertainty

and deterministic error.

From a computational point of view, 270 trials, each lasting 30 minutes (5.6 days),

were conducted, over the 5145 trials (107 days) required in a Monte-Carlo approach.

The results highlight the quality of the metrological design of the current transducer

release. Better metrological performance can be achieved if the deterministic er-

ror, arising from the uncertainty associated with the flow-meter model, temperature

measurement, valve opening, and helium properties, is corrected. Conversely, the

uncertainty of pressure measurement turns out to be too low, thus allowing the use

of cheap sensors in the next release of the virtual flow-meter-based transducer.

A fault detection and early-stage isolation technique for cold compressors based on

AMB has been also proposed. The method is intended to be used during maintenance

tests, where the main influence parameters, such as temperature and rotational speed

of the compressor, can be controlled, thus the uncertainty of the unfaulty condition

is assumed to be dominated by the noise overlapped on few FRF records. In these

conditions, the technique is applicable even in the case few records of measurements,

acquired in a non-faulty condition, are available.

The proposed method has been applied to 4 compressors installed in the LHC and,

thanks to it, a fault has been identified in one of such compressors. A sensitivity anal-

ysis of the proposed method has been also presented on the measurement taken from

one of the compressors, in order to show the influence of the model parameters on the

values of the figure of merit used to detect the fault. In this way, further information

about the most probable parameter determining the fault can be extracted.

Further work goes in the direction of the extension of the proposed method in

order to complete the fault isolation, by providing a complete determination of the

kind, size and location of the fault (isolation), thus arriving to a comprehensive fault

diagnosis.

A diagnostic procedure, based on a distributed microgenetic algorithm for trans-

ducer networks monitoring complex systems, has also been proposed. The well-settled

evolutionary approach of centralized multiple-faults diagnostics is extended to dis-



tributed networks.

The approach was tested at first in simulation at CERN for LHC cryogenic system

diagnostics developments and then on the field for the main systems of a building.

Experiments proved the following main innovations of the distributed microgenetic

algorithm: (i) improved efficiency by parallel process, shorter time execution, and

higher population diversity; (ii) increased reliability and easy network re-modulation

in case of a faulty node; and (iii) higher effectiveness and efficiency of the dMGA in

comparison with brute force algorithm.

Finally, in the present thesis, a standard Generalized Extremal Optimization

(GEO) based algorithm for a predictive maintenance scheduling problem on large

experimental systems has been presented. In these preliminary tests on a set of high

dimension scheduling problems, an independence from N value for the GEO algo-

rithm, compared to a standard GA, was highlighted. In particular, the proposed

GEO is successful for each N value. However, by increasing N, the standard GA

reaches better solutions with a lower number of iterations. Based on these results,

a comparison with an evolutionary algorithm having the same feature, or new tests,

implementing modified GEO algorithms, should be carried out in the future research.
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for decentralized qualitative model-based diagnosis. In IJCAI, pages 286–291,

2007.

[125] Mitsuo Gen and Runwei Cheng. Genetic algorithms and engineering optimiza-

tion, volume 7. John Wiley & Sons, 2000.

[126] Rudolph Frederick Stapelberg. Handbook of reliability, availability, maintain-

ability and safety in engineering design. Springer Science & Business Media,

2009.

[127] E Odlund. Virtual instrumentation: Introduction of virtual flow meters in the

LHC cryogenics control system. PhD thesis, MSc thesis, Linköpings Universitet,
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ṁ and operating conditions Tin,pin . . . . . . . . . . . . . . . . . . . . 79

3.6 Ranking of uncertainty source impact on the transducer deterministic
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