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We argue that the spin of the 750 GeV resonance can be determined at the 99.7% confidence level
in the di-photon channel with as few as 10 fb−1 of luminosity. This result is true if the resonance
is produced by gluon fusion (independently of the selection cuts) while an appropriate choice of
selection cuts is needed if quark production is sub-dominantly present—which is the case of the
Kaluza-Klein gravitational excitation under the hypothesis of a spin-2 resonance. A proportionally
larger luminosity is required if the model for the spin-2 resonance includes a dominant production
by quarks or in the absence of an efficient separation of the signal from the background.
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I. MOTIVATIONS AND SUMMARY

The presence of a new state—a resonance in the di-photon channel in the first run of the LHC at 13 TeV [1]—will
soon be either confirmed or disproved. Meanwhile, the mere possibility of its existence behoves us to look, first and
foremost, for the identification of its other properties beside the mass. Only starting from such a full description—
inclusive of mass, spin, parity and production and decay channels—it will be possible to begin to sift through the
many possibilities of physics beyond the Standard Model (SM) that might account for its existence.

In this paper, we focus on the determination of the spin of such a new particle after its discovery. This problem
has been discussed for the Higgs boson by both theorists [2] and experimentalists [3]. It is therefore only a matter of
adopting some of these analyses to the present case of a resonance with a mass of about 750 GeV. While a complete
study must be based on the simultaneous use of different decays, we restrict ourselves to the di-photon channel because
it is here that the resonance has been seen and will mostly likely be hunted down. In this channel, barring higher
spin values, only two possibilities, spin-0 and 2, need to be discussed [4].

While the significance required for a discovery has been set very high at the 5σ level to avoid the risk of spurious
results from even very unlikely background fluctuations, once the new particle discovery has been established, the
determination of its spin can be accepted at the more mundane value of 3σ (99.7% confidence level), as done, for
example, for the Higgs boson itself [3].

In general, the discrimination between different spin hypotheses improves if the background can be subtracted in
a reliable manner. We discuss sPlot [5]—a procedure that provides such a separation—and compare the significance
of the spin determination for the signal alone and together with the un-subtracted background.

We use and compare a log likelihood ratio (LLR) and a center-edge asymmetry [6] to discriminate between the
possible spin hypotheses. The main uncertainty arises from the systematic error in the definition of the spin-2 model
because of the different production mechanisms which have different angular distributions. If we assume that the
spin-2 particle is almost completely produced by gluon fusion, it will be possible not only to discovery the existence
of the new state but also fix its spin with as few as 10 fb−1 of luminosity in the di-photon channel. The number of
events required for spin discrimination depends on the selection cuts utilised when the spin-2 particle is assumed to be
significantly produced also from quarks. We discuss in detail the spin-2 model embodied by the lightest Kaluza-Klein
graviton excitation after implementing the current constrains of its couplings to gluon, quark and photons. In this case
an appropriated choice of selection cuts makes possible the spin identification again with only 10 fb−1 of luminosity.
A proportionally larger luminosity is required if the model for the spin-2 resonance includes a dominant production
by quarks or in the absence of an efficient separation of the signal from the background.

We conclude by reviewing the potential relevance of terms of interference between signal and background [7] because
they may play a role more important for the 750 GeV resonance than in the Higgs boson case.

Two analyses of the 750 di-photon resonance recently appeared in which the issue of the spin determination is
discussed. The authors of ref. [8] utilise a framework which cleverly exploits an encoding of the spin properties
and production modes in the cross sections. It is an analysis that is different from ours and that can be seen as
complementary. The authors of ref. [9] discuss how to characterise the new state by means of distributions of a
number of kinematical variables in various decay channels.
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II. FIT OF THE INVARIANT MASS DISTRIBUTION

The first step in the analysis consists in extracting from the di-photon invariant mass mγγ data the value of the
parameters of the models describing signal and background.

We use the most recently published data from the ATLAS collaboration [10] on the distribution of the di-photon
mass invariant to fit the parameters of the signal and the background. While comparable data are also available from
the CMS collaboration [11], we use those of the ATLAS collaboration because of the higher significance of the signal
and their inclusion of the angular distributions in the published results. These experimental angular distributions are
discussed in the appendix.

The signal is modelled by a Breit-Wigner distribution

fBW(mγγ) =
2NBW

π

[
Γ2
XM

2
X(

m2
γγ −M2

X

)2
+m4

γγΓ2
X/M

2
X

]
. (1)

At this level, models of the resonance with different spin differ only by the overall normalisation of their respective
signals and are not distinguishable. Fits of the invariant mass for different spins in the published data refer to
differences in the selection cuts. We use the data after the Higgs-like cuts: Eγ1

T > 40mγγ GeV, Eγ2
T > 30mγγ GeV.

The background is described by a family of nested functions with an increasing number of degrees of freedom

f(k)(x; b, ak) = NBG

(
1− x1/3

)b
x
∑k
j=0 aj(ln x)j , (2)

with x ≡ mγγ/
√
s and b, aj the parameters of the functions.

We perform a maximum likelihood (MLL) fit, the result of which is shown in fig. 1. It nicely agree with what
reported by the experimental collaboration. In table I we collect the best-fitted values and errors thereof.
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FIG. 1: The fit of the invariant mass distribution with selection cuts: Eγ1T > 40mγγ GeV, Eγ2T > 30mγγ GeV. Data digitally
extracted from [10].

A similar procedure can be followed in the case of the data after looser cuts (Eγ1
T and Eγ2

T > 55 GeV). We do not
attempt such a fit here because it depends on a non-analytic modelling of the background, and simply rely on the
experimental collaboration that gives 25 events for the signal and 45 for the background [10].

This MLL fit provides us with an estimate of the probability that given model B for the background and S for the
signal, the data are in agreement with the expectations of having such a signal on top of the background, P (data|S+B),
as opposed to the background alone, P (data|B). Such an estimate is an example of hypothesis testing and is usually
parametrised in terms of a likelihood ratio L = −2 logP (data|S +B)/P (data|B).

The ATLAS collaboration cites a significance of Z = 3.9 (Z = 3.6) for the fit in what they call “spin-0 (spin-2)
analysis” or, which is the same, the probability for the data to be a statistical fluctuation is, for both cases, of the
order of or less than 10−3. The different significances for the two analyses are due to the higher background entering
the selection in the case of the “spin-2 analysis”—which contains more events in the forward direction where we also
find most of the background.
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TABLE I: Result of the MLL fit in the invariant mass range from 700 to 840 GeV with selection cuts: Eγ1T > 40mγγ GeV,

Eγ2T > 30mγγ GeV. The number of events refers to the signal-plus-background fit.

Normalisation Mass [GeV] Width [GeV] Normalisation BG coeff. BG coeff.

log10(NBW) MX ΓX log10(NBG) a0 b

Fit 1.04± 0.24 745± 8 42± 27 −1.01± 0.07 −3.0± 0.5 11.2± 4.5

Signal Background

# events 18.0+13.3
−7.6 (σX = 5.6+4.2

−2.4 fb−1) 12.4+2.3
−1.9

III. THEORETICAL INPUTS

Since we look at the di-photon channel, the spin of the resonance cannot be 1 [4].1 We therefore need only discuss
the cases of spin-0 and 2.

A. Spin and angular distributions

Considering the di-photon decay XJ → γγ, informations about the spin J of the decaying resonance XJ can be
extracted from the distribution of the photon scattering angle in the Collins-Soper (CS) frame [15] (see fig. 2).

For a spin-0 resonance, we have

1

N spin−0
× dN spin−0

dz
=

1

2
, (3)

with z ≡ cos θ∗ the cosine of CS scattering angle defined as

cos θ∗ =
sinh ∆ηγγ√
1 +

(
pγγT
mγγ

)2

2pγ1T p
γ2
T

m2
γγ

. (4)

The photon pair transverse momentum is pγγT =
√

(pγ1T )2 + (pγ2T )2 + 2pγ1T p
γ2
T cos ∆ϕγγ , with ∆ϕγγ the azimuthal angle

between the two photons; ∆ηγγ is the pseudo-rapidity difference ηγ1 − ηγ2 .

FIG. 2: Pictorial representation of the CS frame. The CS frame is constructed by boosting the event to the resonance’s rest
frame, and defining the Z-axis as the inner bisector of the two partonic momenta P1 and −P2 (which are no longer collinear
in the resonance’s rest frame). The X-axis becomes the outer bisector. The photon scattering angle θ∗ is measured w.r.t. the
Z-axis.

1 To avoid this theorem one must add an epicycle and assume that the putative spin 1 resonance decays into a photon and a scalar state
which then decays into two almost collinear photons.
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For a spin-2 resonance the production mode affects the angular distribution of the final state photons and we have
two possibilities:

1

N spin−2
gg

×
dN spin−2

gg

dz
=

5

32

(
1 + 6z2 + z4

)
, (5)

1

N spin−2
qq

×
dN spin−2

qq

dz
=

5

8

(
1− z4

)
. (6)

In the presence of both production mechanisms the expected angular distribution is

1

N spin−2
× dN spin−2

dz
=

5

32

(
1 + 6z2 + z4

)
(1− fqq) +

5

8

(
1− z4

)
fqq , (7)

where fqq ≡ N spin−2
qq /N spin−2 is the relative weight of the production by quarks.

The two eqs. (5)–(6) show the main problem with any model of a spin-2 resonance: while the gluon production has
an angular distribution that is clearly distinguishable from that of spin-0, the case of quark production has an angular
distribution rather similar to the spin-0 case and therefore the separation between the two models is more difficult.

The angular distributions in eqs. (3, 5, 6) are strictly valid only considering parton-level events without showering
and detector simulation. They are considerably distorted once detector acceptances are included. It is therefore
important to investigate the angular distributions in a more complete framework.

The total cross section for the resonant process pp→ XJ → γγ is given, in full generality, by

σ(pp→ XJ → γγ) =
2J + 1

MXJΓXJ s

[∑
P
CPPΓ(XJ → PP)

]
Γ(XJ → γγ) , (8)

CPP are the dimensionless partonic integrals whose numerical values can be found, for instance, in [12]. Production
mechanism and decay modes depends on the microscopic interactions of the resonance.

We do not focus on any particular model and do not attempt to construct the most general effective field theory of
the resonance X. In this paper, we only look at those effective interactions that are relevant to determine the spin of
the resonance.

B. Spin-0

We assume the following effective interaction Lagrangian

Lspin−0 = − 1

4Λ

(
κX0WWW

A
µνW

Aµν + κX0γγAµνA
µν + κX0ggG

a
µνG

aµν
)
, (9)

where Aµν , WA
µν , and Gaµν are the field strength tensors for the SM gauge groups U(1)Q, SU(2)L, and SU(3)C ,

respectively. We do not introduce any interactions with SM quarks, since the angular distribution in eq. (3) does not
depend on the detail of the production mechanism. From eq. (9) we extract the following decay widths

Γ(X0 → γγ) =
κ2
X0γγ

M3
X0

64πΛ2
, Γ(X0 → gg) =

κ2
X0gg

M3
X0

8πΛ2
. (10)

We show the relevant parameter space in the left panel of fig. 3 in which we fixed Λ = 10 TeV. The regions shaded in
orange corresponds to σ(pp → X0 → γγ) = [4 − 10] fb at

√
s = 13 TeV, that is the value needed to fit the observed

excess. According to the result of the fit in section II, we set the total decay width ΓX0 = 42 GeV and we take
MX0 = 745 GeV for the mass. We also show in the left panel of fig. 3 the bounds from data at

√
s = 8 TeV. The

most relevant constraints come from di-jet and di-photon searches [12, 13].

C. Spin-2

We assume the following interaction effective Lagrangian

Lspin−2 = − 1

Λ

∑
f=q,l

κX2ff̄T
f
µνX

µν
2 −

1

Λ

∑
V=Z,W,γ,g

κX2V V T
V
µνX

µν
2 , (11)
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FIG. 3: Constraints on the parameters from data at 8 TeV [12]. The left (right) panel refers to the case of a spin-0 (spin-2)
resonance. The regions shaded in orange and red correspond to σ(pp → XJ → γγ) = [4 − 10] fb at

√
s = 13 TeV. The orange

diamond and red circle correspond to the specific values of the couplings used in section IV.

where the explicit expression for the various components of the energy-momentum tensor can be found in [16]. In
full generality we keep separate coupling parameters κX2ff̄ and κX2V V with SM fermions and gauge bosons. In the
minimal Randall-Sundrum scenario the couplings of the spin-2 particle—identified with the lightest Kaluza-Klein
(KK) graviton excitation—are universal [14].

The case of the KK graviton will be explored in section VI. In order to better illustrate our methodology, and
facilitate the comparison with the spin-0 case, we start our discussion from a very simple phenomenological toy model
in which all the interactions in eq. (11) but the couplings with photons and gluons are set to zero. In this setup the
relevant decay widths are the following

Γ(X2 → γγ) =
κ2
X2γγ

M3
X2

80πΛ2
, Γ(X2 → gg) =

κ2
X2gg

M3
X2

10πΛ2
. (12)

In this case we expect to reproduce the angular distribution given in eq. (5), and the differences between spin-0 and
spin-2 are therefore maximised.

We show the relevant parameter space in the right panel of fig. 3. As before, we impose for the total decay width
ΓX2

= 42 GeV and we take MX2
= 745 GeV.

The case of a narrow width is not excluded by current data. A resonance with mass MX and narrow width ΓX ,
in fact, inherits—at the level of detector simulation—an effective width comparable with the energy resolution of the
detector at invariant mass mγγ ≈ MX , that is roughly 8 GeV at mγγ ≈ 750 GeV. As we shall discuss in section VI,
the KK graviton falls into this class of models.

IV. METHODS

A. Background and signal

The irreducible background is comprised of tree-level non-resonant di-photon quark annihilation (diagram A in
fig. 4). Due to the t- and u-channel exchange of light quarks, this process is peaked in the forward direction in the
relevant invariant mass range. This is not true at lower invariant masses—like those for the analysis of the Higgs
boson—where the background shows a different angular distribution.

One-loop gluon fusion into di-photon final state (diagram E in fig. 4) also contributes to the irreducible background.
The gluon fusion process competes with the tree-level quark annihilation for photon pairs of invariant mass less than
200 GeV [17] where the loop suppression is compensated by (in order of importance) the large gluon luminosity, the
accidentally large value of the scattering amplitude, and the coherent sum of all quark flavors in the loop. In the
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invariant mass range mγγ = [700 − 840] GeV, on the contrary, the one-loop gluon fusion process turns out to be
suppressed with respect to the tree-level quark annihilation, and therefore largely subdominant for our purposes. We
come back to these loop diagrams in the appendix A.

The reducible background is mostly comprised of tree-level quark annihilation into one photon and one gluon
(diagram B in fig. 4) and two gluons (diagram C in fig. 4) in the final state. These processes mimic the di-photon
final state because of possible misidentification of gluons at the detector level.

In our simulations we focus only on the irreducible qq̄ → γγ background. As shown in detail in [10] the reducible
background component generated from the probability for a jet to fake a photon is subdominant with respect to the
genuine di-photon pair production in the whole invariant mass range mγγ = [200− 2000] GeV.

The signal is generated by s-channel resonant production of X (diagram D in fig. 4, in the case of spin-2 reso-
nance produced via gluon fusion) with subsequent di-photon decay. We implement the Lagrangian in eqs. (9,11) in
FeynRules [18] following the benchmark example of the Higgs characterisation model [19].

FIG. 4: Representative Feynman diagrams for background and signal.

We generate background, signal, and background-plus-signal samples by means of the matrix-element plus parton-
shower merging procedure. We use MadGraph5 aMC@NLO [20] (MG5 hereafter) supplemented by Pythia 6 [21] for
showering and Delphes [22] for detector simulations. We generate signal samples via pp → X0,2 → γγ, and we
add processes with additional 1 and 2 jets matching the correct parton multiplicity using the MLM algorithm. The
merging separation parameter is set to Qcut = 200 GeV. Irreducible background as well as signal-plus-background
samples are generated following the same procedure.

B. Selection cuts

Only events within the interval mγγ = [700-840] GeV are considered. A first cut is enforced on the rapidity and,
following [10], the region |η| > 2.37 as well as the window η = [1.37− 1.52] are excluded.

Mainly for historical reasons, the analysis of the spin has been presented by the experimental collaborations with
two different selection cuts in the transverse energy. In a perhaps misleading labelling, they have been referred to as
“spin-0” and “spin-2 analysis”. We rename them. The first one (tight cuts) are like those used for the study of the
Higgs boson. The other set (loose cuts) allow for lower values of pT and populate the forward region.

The two sets are

tight selection cuts: (Eγ1T > 0.4 mγγ , E
γ2
T > 0.3 mγγ) , (13)

and

loose selection cuts: (Eγ1T > 55 GeV, Eγ2T > 55 GeV) . (14)

The tight cuts remove most of the forward region, a region where acceptance effects are important. Moreover,
having the spin-0 case in mind, these cuts were devised to reduce the contribution of the the background which is
mostly in this region. Notice that the tight cuts have the additional nice feature of reducing the correlation between
the invariant mass and the angular distribution. On the other hand, the loose cuts were thought with the case of a
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spin-2 state in mind because of its angular distribution that, at least in the case of gluon production, peaks in the
forward direction.

We consider both selection cuts and compare their effectiveness.

C. Unfolding the data with sPlot

In our analysis we assume that an effective way of separating the signal from the background has been implemented.
This is a complicated problem with many subtle implications and different solutions. We illustrate this crucial step
by means of sPlot [5], a technique that makes it possible to unfold the data and isolate the signal. This technique
allows to reconstruct the distribution of a control variable by means of our knowledge of the discriminating variable
distribution. It is useful in those cases in which we know how to separate the signal from the background for the
discriminating variable better than for the control variable.
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FIG. 5: Pseudo-data of angular distribution of the signal after unfolding by means of sPlot compared with the Monte Carlo
generated spin-0 signals for a 10 fb−1 luminosity.
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FIG. 6: Pseudo-data of angular distribution of the signal after unfolding by means of sPlot compared with the the Monte Carlo
generated spin-2 signals for a 10 fb−1 luminosity.

The technique can be summarised as follows. Given a likelihood for Ne events in which the events for the signal
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NS and the background NB are mixed:

L =

Ne∑
k=1

ln [NS × pdfS(xk) +NB × pdfB(xk)]−NS −NB , (15)

one computes first the sWeights

sWn(xk) =
VS
n × pdfS(xk) + VB

n × pdfB(xk)

N̂S × pdfS(xk) + N̂B × pdfB(xk)
, (16)

where N̂S,B maximises the likelihood L and (VS,B
n )−1 = −∂2L/∂Nn∂NS,B . The discriminating variable xk is in our

case mγγ , the di-photon invariant mass.
The histograms for the control variable yk—in our case cos θ in the bin k—are then generated by computing

ȳn =
∑

|yk−ȳn|<δy
sWn(xk) , (17)

where δy and ȳk are, respectively, the width and central value of the control variable in the given bin. The histogram
constructed from this prescription is called the sPlot and provides us with the angular distribution of the signal
independently of the background events.

The method works best if control and discriminating variables are uncorrelated—as they mostly are in the case of
invariant mass and angular variables, with some dependence, as already discussed, on the selection cuts.

sPlot has been implemented within Root [23] and its use already championed in the case of the Higgs boson [2].
Figs. 5 and 6 show the pseudo-data of angular distribution of the signal after unfolding by means of sPlot compared
with the Monte Carlo generated spin-0 and spin-2 signals for a 10 fb−1 luminosity. The error bars and the reliability
of the technique improve for higher luminosities.

V. RESULTS

After generating background and signals, we can construct probability density functions (pdf) for both angular and
mass invariant distributions. The two spin hypotheses can then be discriminated by measuring either a LLR or an
asymmetry on randomly generating events weighted by the angular pdf.

A. Probability density functions

In fig. 7 (fig. 8) we show the pdf’s for the tight (loose) selection cuts. The left (right) panels refer to the spin-0
(spin-2) signal hypothesis. We focus on the signal region with invariant mass mγγ = [700−840] GeV, and we compare
angular distributions for signal (dotted lines), background (dashed lines) and signal-plus-background (solid lines)
simulated events.

As already discussed, the tight selection cuts have the effect of suppressing the forward region with | cos θ∗| & 0.7.
On the contrary, the loose selection cuts in eq. (14) populate the forward region. This is generally true for background
and signals alike irrespective of the spin of the signal. In other words, an enhanced number of events in the forward
direction is, by itself, only the effect of the loosening of the selection cuts and provides no indication about the spin.

B. Log likelihood ratio

The PDFs derived in section V A can be used to test the discriminative power of a LLR between the spin-0 and 2
distributions. For a given pdf describing the cos θ∗ distribution—either signal, background or a mixture of both—it
is possible to randomly generate Nobs events and compute the LLR

2 log
Lspin−0

Lspin−2
. (18)

By repeating this pseudo-experiment Nps times, it is possible to construct a sample that can be used to compute the
statistical distribution of a certain hypothesis.
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FIG. 7: Angular distributions (normalised to 1 in the interval cos θ∗ ∈ [−1, 1]) for the tight set of selection cuts for the spin-0
(left panel, orange) and spin-2 (right panel, red) analysis.
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FIG. 8: Angular distributions (normalised to 1 in the interval cos θ∗ ∈ [−1, 1]) for the loose set of selection cuts for the spin-0
(left panel, orange) and spin-2 (right panel, red) analysis.

Let us take N
(J)
obs spin-J signal events generated according to the corresponding pdf (discussed in section V A) as

well as N
(bkg)
obs events. Each event i is characterised by the value of the cosine of the CS scattering angle zi defined in

eq. (4). The likelihood function for the spin hypothesis J ′ is given by

Lspin−J′ = e−N
(J)
obs−N

(bkg)
obs

N
(J)
obs+N

(bkg)
obs∏

i=1

[
N

(J)
obs × pdfJ′(zi) +N

(bkg)
obs × pdfbkg(zi)

]
. (19)
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As mentioned above, by repeating this measurement Nps time is possible to construct a statistical sample for LJ′ .
We use Nps = 104.

We follow this prescription and compute the LLR in eq. (18) using the definition in eq. (19). For each of the cases
relevant for our analysis (see discussion below) we construct two statistical samples for the ratio 2 log(Lspin−0/Lspin−2):
the first one populated with events generated according to the spin-0 distribution, the second one with spin-2 events.
We expect the distribution of the ratio 2 log(Lspin−0/Lspin−2) to be peaked at positive values for events generated
according to the spin-0 pdf, since in average Lspin−0 > Lspin−2. We expect a distribution peaked towards negative
values for events generated according to the spin-2 pdf, since in this case Lspin−0 < Lspin−2.

We explore different cases:

◦ N (bkg)
obs = 0

In this case we consider only signal events. This ideal situation applies to the experimental data after background
subtraction. We already stressed in section IV C that this is a complicated task, and we proposed the sPlot
technique to tackle the issue. The result obtained in this case should be considered as the case in which the
signal has been separated from the background without any loss of information. It is an ideal case that gives
the best discrimination one can possibly achieve.

◦ N (J)
obs = N

(bkg)
obs

In this case we add to the signal events an equal number of background events. This case captures the impact of
the systematic error due to the contamination of the background in the signal sample, as well as the uncertainties
in the background modelling.

In each of these two cases we consider the analysis with both tight and loose selection cuts.

Log likelihood ratio (signal only)
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FIG. 9: LLR for N
(J)
obs = 40 events and Nps = 104 simulated pseudo-experiments. We show in the left panel (right panel) the

analysis with tight selections cuts (loose selection cuts). We included in our Monte Carlo simulation only the distributions for
the signal. The vertical grey line marks the point at which the two areas in red (with vertical meshes, for the spin-2 distribution)
and orange (with horizontal meshes, for the spin-0 distribution) are equal.

In fig. 9 (fig. 10) we show our results for the LLR analysis considering the case with only signal events (with
an equal number of signal and background events). The left (right) panel refers to tight (loose) section cuts. We

take N
(J)
obs = 40 (N

(J)
obs = N

(bkg)
obs = 40) for the analysis with only signal events (with an equal number of signal and

background events).
The LLR in figs. 9, 10 take the form of two distinct bell-shaped distributions when computed for the spin-0 and

spin-2 hypotheses. To quantify the difference in terms of statistical significance we first compute the point beyond
which the right-side tail of the left distribution and the left-side tail of the right one have equal areas. This point
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Log likelihood ratio (signal = background)
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FIG. 10: The same as in fig. 9 but with N
(J)
obs = N

(bkg)
obs = 40 events for both background and signal.

corresponds to a hypothesis test in which no preference for the spin of the resonance is assumed. We mark the
point with a vertical dotted grey line. The two equal areas correspond to a p-value which can be translated into a
significance Z as

Z = Φ−1(1− p) , (20)

where

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
. (21)

We use the value of Z to assign a statistical significance to the separation between the two LLR distributions. The
significance can be turned into Zσ, the number of σ’s, in the approximation in which the distribution is assumed to
be Gaussian.

When an actual experiment is performed, a particular value of LLR is obtained. The associated p-value can be
computed and the significance of the observation estimated according to the same procedure. For instance, in the right
side of fig. 10, the p-value P0 (P2) would correspond to a test of the spin-0 (spin-2) hypothesis after the experiment has
produced a value close to the corresponding medians. In the approximation of Gaussian distributions, the significance
of the given hypothesis corresponds to twice the Z of the separation.

In fig. 9 the analysis with only signal events allows for a clear separation between the two hypotheses, with the loose
selection cuts (right panel) performing slightly better. This is to be expected, since the loose cuts populate the forward
region, thus increasing the discriminating power between the two cases. If quantified in terms of the significance Z
introduced before, we find Z = 1.56 (Z = 1.67) for tight (loose) selection cuts. The inclusion of background events
reduces the statistical significance of the analysis, and we find Z = 1.23 (Z = 1.18) for tight (loose) selection cuts.

C. Center-edge asymmetry

We define the center-edge asymmetry [6]

ACE ≡
NC −NE
NC +NE

, (22)

where NC (NE) is the number of events with −z∗ 6 cos θ∗ 6 z∗ (| cos θ∗| > z∗). The parameter z∗ is a threshold
parameter that can be tuned to optimise the separation between the spin-0 and spin-2 cases.
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The analysis for the asymmetry proceed in close analogy with what discussed in the case of the LLR. As before,
using the pdf’s in section V A we construct two statistical samples for the center-edge asymmetry under the spin-0 and
spin-2 hypothesis. Case by case, we can assign a statistical significance using the separation Z defined in section V B.

Center-edge (signal only)
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FIG. 11: Central-edge asymmetry distributions for N
(J)
obs = 40 events and Nps = 104 simulated pseudo-experiments. We show

in the left panel (right panel) the analysis with tight selections cuts (loose selection cuts). We included in our Monte Carlo
simulation only the distributions for the signal. The vertical grey line marks the point at which the two areas in red (with
vertical meshes, for the spin-2 distribution) and orange (with horizontal meshes, for the spin-0 distribution) are equal.

Center-edge (signal = background)
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FIG. 12: The same as in fig. 11 but with N
(J)
obs = N

(bkg)
obs = 40 events for both background and signal.

We present our results in fig. 11 (fig. 12) for the case with N
(J)
obs = 40 signal events (with an equal number of signal
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and background events, N
(J)
obs = N

(bkg)
obs = 40). As before, the left (right) panel refers to the analysis with tight (loose)

cuts. Furthermore, we find that the value z? = 0.4 is best suited for tight cuts while z? = 0.5 allows for a better
separation if loose cuts. are imposed.

The medians of the probability distributions in fig. 12 (and the similar ones below) do not correspond to their
values at the partonic level—as computed by means of eq. (3) and eqs. (5)–(6)—because of the distortions introduced
by the detector.

Considering only signal events, we find the significance Z = 1.20 (Z = 1.41) for tight (loose) selection cuts. Loose
selection cuts allow for a better separation between the two spin hypotheses. We notice that the increase in significance
gained going from tight to loose cuts is larger for the asymmetry if compared with what found for the LLR. This is
because the asymmetry is, by definition, more sensitive to the way in which the events are arranged as a function of
the CS angle.

The significance Z decreases as a consequence of the inclusion of background events, and we find Z = 0.80
(Z = 0.98) for tight (loose) selection cuts. Notice that for loose selection cuts the inclusion of background events
shifts the central value of the spin-0 distribution towards negative values. This is because the background, dominated
by photon pairs produced in qq̄ annihilation, is peaked in the forward region as a consequence of t− and u-channel
quark exchange (see figs. 7, 8, right panels). As a result, a large background contamination of the spin-0 signal sample
distorts the distribution towards the forward region, and eventually leads to negative values for the central-edge
asymmetry—especially if loose cuts are imposed.

D. Significance vs. number of events
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FIG. 13: Significance Z for the LLR and the center-edge asymmetry as a function of the number of events. In the model
for the spin-2 resonance, the production mechanism is taken to be gluon fusion only. In this figure the significance does not
refer to one particular spin hypothesis but to the separation between the two distributions (eq. (20) computed with the p-value
representing the area equally shared between the two LLRs—see caption of fig. 11). The significance of one particular spin
hypothesis—eq. (20) computed with the p-value representing one of the two regions, P0 or P2, in fig. 10—is larger by a factor
of 2. This case is discussed in section VI when the spin-2 hypothesis of the KK graviton will be tested.

All the results presented and discussed so far were based on a fixed value of observed events. From a more general
perspective, the most valuable information that can be extracted from the analysis is the number of events necessary
to reach a certain level of significance Z in separating the different spin hypotheses This number is shown in fig. 13
for the two cases, signal only and signal plus background, under discussion. From fig. 13 we see that starting with
60 events and a significance around 2 for the case of LLR on the signal only, we can reach a significance around 3 by
simply doubling the number of events. A similar improvement in significance can be seen in the other, less optimal,
cases.

Even though a comparison of the two approaches shows (as it should be expected [24]) that the LLR performs
roughly 20% better than the central-edge asymmetry, one might bear in mind that the asymmetry is more robust
against possible unknown uncertainties and provides a clearer physical picture.

Let us stress that the significance in fig. 13 refers to the separation between the two distributions, and it was
computed by means of eq. (20) with the p-value representing the area equally shared between the two LLRs (defined
by the gray dashed vertical line in figs. 9-12). The plot in fig. 13 can be used to directly test the two spin hypotheses
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by multiplying by a factor of 2 the significance. Assuming an efficient background subtraction and a production of
the spin-2 dominated by gluon fusion, roughly 40 events are necessary to reach a significance Z = 3 by means of the
LLR. This value is mostly independent of the selection cuts used. Given the cross section value obtained by the fit on
the invariant mass distribution in section II—this number of events corresponds to a luminosity of around 5 (7) fb−1

after loose (tight) selection cuts. Therefore a luminosity of 10 fb−1 will make it possible to determine the spin of the
new resonance. This is also a luminosity for which the 5σ significance threshold for a discovery has been comfortably
crossed.

VI. THE CASE OF THE LIGHTEST KALUZA-KLEIN GRAVITON EXCITATION

Scenarios with extra dimensions generically predict the existence of massive spin-2 particles (G∗ hereafter), corre-
sponding to the KK excitations of the graviton. A possible signature of these models (in particular in the presence
of strongly-warped extra dimensions at the TeV scale) could be the discovery of a single resonance—the lightest
excitation in the KK tower G∗ mentioned above—whose phenomenology can be effectively described by its mass and
its universal coupling with the SM energy-momentum tensor (see eq. (11)).

The validity of this setup in the light of the 750 GeV excess was discussed in [25] (see also [26] for related works).
The situation is summarised in fig. 14 where we show the allowed parameter space (see caption for details). For
MG∗ = 750 GeV the representative di-photon cross-section σ(pp → G∗ → γγ) = [4 − 10] fb at

√
s = 13 TeV—

necessary to fit the observed excess—implies Λ ≈ [47−74] TeV. The corresponding total decay width is ΓG∗ ≈ [7−18]
MeV. The strongest bound on the model comes from di-lepton data at

√
s = 13 TeV [27]. These bounds refer to
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FIG. 14: Parameter space for the lightest KK spin-2 graviton excitation G∗. We show in red the di-photon cross-section
σ(pp → G∗ → γγ) at

√
s = 13 TeV as a function of the effective scale Λ. The vertical dashed lines mark the regions excluded

at
√
s = 8 TeV. The vertical solid line corresponds to the CMS bound from e+e− final state at

√
s = 13 TeV [25]. The green

band reproduces the cross-section σ(pp→ G∗ → γγ) = [4− 10] fb.

searches for di-lepton decay of a spin-1 resonance but they can be recast for the case of the KK graviton as shown
in [25]. The e+e− di-lepton final state in CMS put the constraint Λ > 76 TeV. The latter shows some tension with
the signal strength needed to fit the di-photon excess at

√
s = 13 TeV.

Given the current uncertainties in the actual value of the signal strength needed to reproduced the observed excess,
no strong conclusions can be derived from these bounds. 2 Nevertheless, it goes without saying that if the di-photon
excess will be confirmed in the next future, the explanation in terms of the lightest KK graviton excitation can be

2 In [1] the CMS collaboration presented a combined fit of di-photon data at at
√
s = 8 and

√
s = 13 TeV, and the reported best-fit value

is σ(pp → G∗ → γγ) = 4.5+1.9
−1.7 fb (Λ = 86+20

−17 TeV) that is compatible with the di-lepton bound. Notice that our analysis does not
depend on the specific value of Λ assumed, since it cancels out from the normalised pdf of the signal.
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ruled out in the absence of a corresponding bump in the di-lepton spectrum. Keeping this discussion in mind, in the
rest of this section we explore the KK graviton an example for our spin-2 analysis.

As far as the production mechanism is concerned, we find that gluon fusion accounts for about 85% of the total
rate while qq̄ annihilation is responsible for the remaining 15%. This is an important point, since it means that the
angular distribution in eq. (5) is contaminated by the one in eq. (6). The results presented in section V—strictly
valid only in the case of production via gluon fusion—are therefore non longer applicable to a KK graviton, and a
dedicated analysis is needed.
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FIG. 15: Comparison between the angular distribution for the signal events. Dot-dashed orange: spin-0 resonance; solid red:
spin-2 resonance produced via gluon fusion; dashed green: spin-2 resonance mostly produced via qq̄; dotted magenta: spin-2
KK graviton with universal couplings. We show the case with tight selection cuts in the left panel, and the analysis with loose
selection cuts in the right one.

Following the same framework of section IV and V, we show in fig. 15 the angular distributions for the signal
samples corresponding to tight cuts (left panel) and loose cuts (right panel). In addition to the spin-2 resonance
produced via gluon fusion (solid red) and the spin-0 case (dot-dashed orange) discussed in section V, we show in
dotted magenta the angular distribution for the KK graviton and in dashed green the case of a spin-2 resonance
mostly produced by qq̄ annihilation (we shall discuss this case in more detail in the next section). These angular
distributions reflect what already expected from our general discussion. The 15% qq̄ contamination for a KK graviton
sizeably alters the pdf generated by gluon fusion. As evident from the comparison with the dashed green line, the
larger the qq̄ contamination the closer the result to the spin-0 case. It is now important to quantify this effect in
terms of significance.

In fig. 16 we show our results for the center-edge asymmetry. For the sake of simplicity we consider only signal
events. We compare the distributions for the four cases proposed in fig. 15. For both tight (left panel) and loose (right
panel) cuts the KK graviton distribution shifts towards the spin-0 one if compared with the results of section V. The
reduced distance between the two cases corresponds to a lower separation in terms of statistical significance. Similar
results can be obtained by means of the LLR.

The main result of this section is summarised in fig. 17. We show the significance Z as a function of the collected
number of events. As in fig. 13 we compare the results obtained using the LLR and the center-edge/dartboard
asymmetry (see caption and labels for details).

On the qualitative level our findings are similar to those already discussed in section V. Loose cuts perform slightly
better than tight ones, and the LLR gives better result than the center-edge asymmetry. Considering only signal events

(left panel in fig. 17) and loose cuts a significance of Z ' 3 (Z ' 4) can be reached with N
(J)
obs = 20 (N

(J)
obs = 100)

events, and slightly worse results—significance of Z ' 2 (Z ' 3) with N
(J)
obs = 20 (N

(J)
obs = 100) events—are possible by

imposing tight selection cuts. The inclusion of background events reduces the expected significance. In the extreme
case in which we include in our simulated samples an equal number of signal and background events (right panel in
fig. 17) we expect at most a Z ' 3 significance for the spin-2 KK graviton hypothesis with loose selection cuts and

N
(J)
obs = N

(bkg)
obs = 100.

The significance Z = 3 threshold is reached for 70 (140) events for the signal with loose (tight) selection cuts. The
situation is therefore different from before for the case of a spin-2 resonance produced only by gluon fusion. The
choice of selection cuts makes a difference and a luminosity of about 9 fb−1 is necessary in the case of the loose cuts
whereas a larger luminosity of 25 fb−1 is required by the tight selection cuts.
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Center-edge (signal only)
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FIG. 16: The same as in fig. 12 but including also the central-edge asymmetry for the KK graviton (dotted magenta) and the
case of a spin-2 resonance mostly produced via qq̄ (dashed green).
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FIG. 17: Significance Z for the LLR and the center-edge asymmetry as a function of the number of events. The significance
refers to the spin-2 hypothesis in the case of a KK graviton with universal couplings.

A. Estimating the model-dependent systematic uncertainty

The presence of the qq̄ production mechanism reduces the discriminating power of the angular distributions. For
the case of the KK gravitons, we find a reduction of the significance Z of the order of 10%-30% (depending on the
analysis) with respect to the case in which the spin-2 resonance is produced only via gluon fusion.

A more significant reduction takes place if the qq̄ production mechanism becomes more important. Fig. 16 shows
the reduced discrimination power as the qq̄ production becomes the dominant one. This reduction in significance is
due to a systematic error intrinsic to the definition of the model behind the spin-2 hypothesis in so far as the angular
distribution depends on the production mechanism.

The case in which the qq̄ production mechanism is dominant requires a larger number of events in order to tell the
two spin possibilities apart. Fig. 18 shows the significance in the extreme case (still compatible with other experimental
constraints) of qq̄ accounting for 80% of the production.

In this case, it is not possible to reach the Z = 3 level with a reasonable number of events and one must include
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FIG. 18: Significance Z for the LLR as a function of the number of events. In the model for the spin-2 resonance, the production
mechanism is taken to be dominated by qq̄ production.

in the analysis other decay channels. For the case of the Higgs boson, it has been shown [3] that the decay channel
into two W gauge bosons enjoys an angular variable that is less sensitive to the production mechanism. This channel,
together with that into two Z bosons, can also be used to distinguish the parity of the resonance. We postpone such
an analysis to a time after the existence of the resonance has been ascertained.

Finally, one must bear in mind that many other systematic errors—for example, those on the integrated luminosity
and selection efficiency or those on the photon identification—are lurking around different steps of the analysis. Their
impact could in principle be estimated by incorporating the uncertainties into the likelihoods or convoluting the
pdf with the corresponding nuisance parameters. We have not attempted such a procedure here because a realistic
estimate of these uncertainties can only be done by the experimental collaborations.
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Appendix A: Comparison with the ATLAS results

The ATLAS collaboration presented two analysis: the first one—dubbed “spin-0 analysis” in [10], and shown in
the left panel of fig. 19—is optimised for a spin-0 resonance search while the second one—dubbed “spin-2 analysis”
in [10], and shown in the right panel of fig. 19—is optimised for a spin-2 resonance search. In this paper, the analysis
with tight (loose) selection cuts corresponds to the “spin-0 analysis” (“spin-2 analysis”) in [10]. In both cases we
superimpose to the experimental data (representing the full data set, without any background subtraction) the pdfs
for the signal-plus-background events generated in section V for both the spin-0 and spin-2 case. For the “spin-0
analysis” (“spin-2 analysis”) resonance search, 31 (70) data events are observed with mγγ = [700− 840] GeV [10].

Let us start considering the “spin-0 analysis”. The fit of the mass-invariant spectrum is shown in fig. 1, and from

our best-fit values in table I we find N
(J)
obs = 18.0 signal and N

(bkg)
obs = 12.4 background events—in agreement with

the total value of 31 events quoted by the ATLAS collaboration. We therefore apply the LLR analysis outlined in

section V B, simulating Nps = 104 pseudo-experiments with N
(J)
obs = 18 signal and N

(bkg)
obs = 12 background events. We

use tight selection cuts since they are equivalent—as stated above—to the “spin-0 analysis”. We show our results in
fig. 20 where we compare the spin-0 hypothesis with both the spin-2 produced via gluon fusion and the KK graviton
(respectively, in the left and right panel).

Even though it is not possible to derive any definite conclusions from these very preliminary results, it is interesting
to try an hypothesis testing. Assuming the spin-0 nature of the resonance—that is sitting on the median of the
corresponding distribution, see fig. 20—we can estimate the statistical significance of this choice by computing the
probability to accept the spin-0 hypothesis when it is wrong (that is, an error of Type I represented by the red and
magenta regions in fig. 20). Alternatively, one can do the opposite assuming the spin-2 nature of the resonance. As far
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FIG. 19: Distribution of | cos θ∗| for events in the mass interval mγγ = [700 − 840] GeV. Data points are digitalised from the
ATLAS reference in [10]. We superimpose the distributions for the signal-plus-background events generated in section V for

both the spin-0 and spin-2 case. Signal and background distributions are weighted in such a way to reproduce N
(J)
obs = 18 signal

and N
(bkg)
obs = 12 background events for the “spin-0 analysis” (left panel) and N

(J)
obs = 25 signal and N

(bkg)
obs = 45 background

events for the “spin-2 analysis” (right panel).
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FIG. 20: LLR analysis for N
(J)
obs = 18 signal and N

(bkg)
obs = 12 background events. In the left (right) panel we compare the spin-2

produced via gluon fusion (KK graviton) and spin-0 hypotheses. The vertical dashed lines represent the medians of the two
distributions (see also caption of fig. 11).

as the case with the KK graviton is concerned, as clear from the right panel of fig. 20 it is not possible to derive any
conclusion since the two hypothesis are equally preferred by the LLR analysis. Considering the left panel of fig. 20,
on the contrary, we find the p-value P2 ' 0.048 for the spin-0 hypothesis, corresponding to the statistical significance
Z ' 1.66. Assuming the spin-2 hypothesis, we find the p-value P0 ' 0.028, corresponding to the statistical significance

Z ' 1.89. We find similar results taking into account the “spin-2 analysis” with N
(J)
obs = 25 signal and N

(bkg)
obs = 45

background events (we do not show the corresponding distributions, qualitatively equivalent to the one shown in
fig. 20). Considering the case with the spin-2 resonance produced via gluon fusion, we find the p-value P2 ' 0.047 for
the spin-0 hypothesis, corresponding to the statistical significance Z ' 1.67. Assuming the spin-2 hypothesis, we find
the p-value P0 ' 0.033, corresponding to the statistical significance Z ' 1.83.

Finally, by looking at the result of the “spin-2 analysis” in the right panel of fig. 19, the presence of a discrepancy
in the last few bins catches the eye. As far as the analysis with loose selection cuts (or, equivalently, the “spin-2
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analysis” in [10]) is concerned, we do not find any particular peak in the forward region with | cos θ∗| > 0.8 even in the
presence of a spin-2 signal compatible in strength with the observed excess. This is expected, since the forward region
is depleted by limited detector acceptances. Of course one may argue that our phenomenological analysis cannot
reproduce the same accuracy in photon identification and isolation reached by the experimental analysis; despite
being this objection very true, the presence of similar discrepancies in the forward region also in the sidebands with
mγγ = [600 − 700] GeV and mγγ = [840 −∞] GeV (see the corresponding plots in [10]) seems to point towards the
existence of some uncontrolled systematics.

Bearing all this in mind, let us entertain the possibility that the discrepancy in the forward region is actually due to
the presence of a spin-2 signal. It follows that this effect, if real, should be related to something that is not captured
by the simulated signal-plus-background events. One intriguing possibility is represented by non-trivial interference
effects between the spin-2 signal and the SM background. We discuss this case in the next sub-section.

1. Resonance-continuum interference for a spin-2 state

The interference between resonance and continuum—that is the interference between diagrams D and E in fig. 4—
cannot be neglected in the di-photon Higgs signal at the LHC, as pointed out in [7]. In [28] the analysis was extended
for the di-photon excess at 750 GeV but only in the case of a scalar resonance. Let us focus on the relevant points
of the computation. We consider production via gluon fusion of a resonance with mass MX and width ΓX . At the
parton level with center of mass ŝ the amplitude is

Agg→γγ = − Agg→XAX→γγ
ŝ−M2

X + iMXΓX
+Acont , (A1)

where Acont is the amplitude for the background process generated by gluon fusion while Agg→X and AX→γγ are
the amplitude for the production of X and the subsequent di-photon decay. In the SM the amplitude Acont arises at
one-loop level (see fig. 4). The interference term is [7]

δσ̂gg→X→γγ = −2
(
ŝ−M2

X

) Re (Agg→XAX→γγA∗cont)

(ŝ−M2
X)

2
+M2

XΓ2
X

− 2MXΓX
Im (Agg→XAX→γγA∗cont)

(ŝ−M2
X)

2
+M2

XΓ2
X

, (A2)

and the corresponding contribution at the hadron level is

δσpp→X→γγ =

∫
dŝ

ŝ

dLgg
dŝ

δσ̂gg→X→γγ , (A3)

with dLgg/dŝ the gluon luminosity function. We start briefly discussing the case of the Higgs boson. The first term in
eq. (A2) turns out to be zero in the narrow-width approximation when integrated over an invariant-mass bin centered
on the resonance. The second term in eq. (A2) needs a large imaginary part to give a sizeably contribution. For
the Higgs, the largest imaginary contribution arises at two-loop level from the background gg → γγ amplitude (at
one loop the spin-0 nature of the Higgs boson selects, as a consequence of helicity conservation, only the like-helicity
states g±g± and γ±γ± whose amplitudes are suppressed by the factor m2

q/m
2
H [17]). Despite the two-loop suppression,

for a Higgs boson the resonance-continuum interference generates non-negligible effects in particular in the forward
direction.

Motivated by this observation, it would be interesting—if the di-photon excess will be confirmed in the near future
with a persisting discrepancy in the forward direction—to generalise the analysis to the case of a spin-2 resonance.
In the following we only list some differences with respect to the case of the spin-0 Higgs:

• If the hint in favor of a broad resonance (ΓX ∼ 6%MX) will be confirmed, the narrow-width approximation is
no longer applicable to the first term in eq. (A2). As discussed in [28], the net effect of this term is a distortion
of the shape of the resonance.

• The term proportional to the imaginary part in eq. (A2) is proportional to the width ΓX , and it is enhanced in the
large-width scenario. Furthermore, contrary to the Higgs case, a large imaginary part in Agg→XAX→γγA∗cont

may be generated in Agg→X and AX→γγ if MX > 2MV , where MV generically denotes the mass of the
particles—either SM, like the W or the top, or new vector-like states—running in the loop.

• As far as the imaginary part coming from A∗cont is concerned, as mentioned before in the case of a spin-0
resonance one is forced to consider only amplitudes with like-helicity states g±g± and γ±γ± that are purely
real. In the case of a spin-2 particle, on the contrary, this selection rule is no longer valid since all possible
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helicity combinations are allowed. One may therefore get a large contribution already at one loop by overcoming
the mass suppression m2

q/m
2
H characteristic of the scalar Higgs case.

The helicity structure of the one-loop process gg → γγ was studied in [17]. There are 16 helicity structures
Aλ1λ2→λ3λ4

(s, t, u) contributing to Acont, where λ1,2 and λ3,4 denote, respectively, the helicities of the incoming
gluons and outgoing photons, and s, t, u are the usual Mandelstam variables for the scattering process gg → γγ.
Only three of them are really needed to reconstruct the full amplitude, since all the remaining ones can be
derived using crossing relations, parity and permutation symmetry.

Following [17], we focus on A++→++(s, t, u), A++→+−(s, t, u), and A++→−−(s, t, u). In the massless limit
for the quarks running in the box diagram, the only imaginary part with like-helicity states—relevant for the
interference with a spin-0 resonance—is [17]

Im [A++→++(s, t, u)] = −π[ϑ(t)− ϑ(u)]×
[
t− u
s

+
t2 + u2

s2
log

∣∣∣∣ tu
∣∣∣∣] , (A4)

that however vanishes since t = −(s/2)(1− cos θ) < 0, u = −(s/2)(1 + cos θ) < 0, with θ the scattering angle in
the center of mass frame.

In the presence of a spin-2 resonance, the interference involves amplitudes with different helicities in the initial
and final state. Using crossing symmetry, we find

Im [A+−→+−(s, t, u)] = −π[ϑ(t)− ϑ(s)]×
[
t− s
u

+
t2 + s2

u2
log

∣∣∣∣ ts
∣∣∣∣] , (A5)

Im [A+−→−+(s, t, u)] = −π[ϑ(s)− ϑ(u)]×
[
s− u
t

+
s2 + u2

t2
log
∣∣∣ s
u

∣∣∣] ., (A6)

This very simple computation shows that in the presence of a spin-2 resonance large imaginary contributions
from the continuum part in the second term of eq. (A2) are possible: they are described by the amplitudes in
eqs. (A5, A6), and they are not suppressed by the quark masses.

• Finally, it is important to keep in mind another important difference with respect to the Higgs case. Let us
consider the various diagrams participating in the definition of the irreducible SM background, depicted in
fig. 4. In the invariant mass range mγγ = [100−200] GeV—relevant for di-photon Higgs searches— the one-loop
amplitude gg → γγ is comparable in size with the tree-level non-resonant di-photon process qq̄ → γγ. This is
no longer true in the mass range mγγ = [700−840] GeV where the one-loop amplitude gg → γγ turns out to be
one order of magnitude smaller than the tree-level process qq̄ → γγ, as shown in fig. 21. As a result, resonant-
continuum interference involving the one-loop amplitude gg → γγ has to overcome this large suppression in
order to give a sizeable correction to the di-photon signal rate.
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FIG. 21: Comparison between the tree level cross-section qq̄ → γγ (red) and the one loop process gg → γγ (blue) at the LHC
with

√
s = 13 TeV. We show in the left panel the differential cross-section dσ/dmγγ as a function of the di-photon invariant

mass, and in the right panel the differential cross-section dσ/d|cosθ∗| as a function of the scattering angle in the CS frame (see
fig. 2). In the right panel we include only events with mγγ = [700− 840] GeV.
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