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ABSTRACT: By combining the LHC Beam Loss Monitoring (BLM) system with the LHC experiments, a 
powerful search machine for new physics beyond the standard model can be realised. The pair of final 
state protons in the central production process, pp → p + X + p, exit the LHC beam vacuum chamber at 
locations determined by their fractional momentum losses and will be detected by the BLM detectors. By 
mapping out the coincident pairs of the BLM identified proton candidates around the four LHC 
interaction regions, a scan for centrally produced particle states can be made independently of their decay 
modes. 
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1. Introduction 

1.1 Central exclusive production of heavy particle states  
 

The Central Exclusive Production (CEP)  of particle states, X, is described by:  
 

pp → p + X + p       (1) 
 

where the + signs indicate rapidity gaps. The CEP processes (1) can be produced by the initial 
states: (a) gluons ("double pomeron exchange"), (b) photons, or by (c) gluons and photons 
("photoproduction" or "photon-pomeron" interaction). The respective cross sections for these 
processes (a-c) are calculated as the convolutions of the effective luminosities L(ggℙ ℙ ), L(γγ), 
or L(γgℙ ), and the square of the matrix element of the corresponding subprocess [1,2].  

 
The relatively small cross sections of the exclusive reactions (1a-c) are compensated by a 

number of advantageous properties compared to inclusive production. 
 

• The masses and widths of the centrally produced X-particles are correlated with the 
fractional (longitudinal) momentum losses, ξ1,2 =1− pf1,2 / pi , of the final state protons (f1,2) 

and the intial beam proton (i), as:  
 
  MX

2 ≈ ξ1ξ2s ,        (2)    
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where s is the centre-of-mass energy squared. A measurement of the invariant mass of the decay 
products would be required to match the missing mass condition available by the measurement 
of the pair of final state proton fractional momentum losses [3,4]. 

 
• In case of the Standard Model type Higgs-like decay branching ratios, CEP process (1a) is 

favoured since the leading order bØ QCD background is suppressed by the P-even Jz=0 
selection rule [3]. The exclusive CEP events are experimentally clean since the soft 
background is strongly suppressed, and a Higgs-like boson can be observed via the main 
decay mode H → bØ. By studying the azimuthal angle distribution of the tagged leading 
protons, the quantum numbers of the central state (in particular, the C- and P-parities) can 
be analysed [3]. 

 
• At higher central masses, MX ≥ 150 GeV, the photon-photon process dominates, and it is 

expected [5], that the excess of events at the γγ invariant mass of 750 GeV recently seen by 
the ATLAS and CMS experiments [6,7] is generated by the photon-photon interactions. 
 
 

1.2 ATLAS and CMS di-photon state at 750 GeV as a bench-mark 
 
The recently observed excess in the di-photon invariant mass region around 750 GeV by 

the ATLAS and CMS experiments at 13 TeV represents some N=20 events for the combined 
integrated luminosity of L=5.8 fb-1 [6-7]. The observed signal strength corresponds to a 13 TeV 
inclusive production cross section of an X-particle decaying into a pair of photons of 6 - 10 fb, 
where a 40% detection efficiency is given by the CMS  collaboration [7]. 

 
For the year 2016, an integrated luminosity of L13TeV = 26-31 fb-1 is projected [8] yielding 

of the order of 200 inclusive events of the type registered by ATLAS and CMS experiments 
during Run 2 at 750 GeV   

 
 

1.3 Present CEP tagging approaches at the LHC 
 
The CEP process (1) can be employed for particle searches provided that the CEP event 

candidates are triggered with sufficient efficiency and purity at the luminosities relevant for the 
search. For collecting the planned ≈ 30 fb-1, an average pile-up rate of 50 events per bunch 
crossing is expected [8].  For the bench-mark particle production, a trigger efficiency of 40% 
would be required for reaching a total of 200 event candidates with a pair of final state photons. 

 
With the event pile-up conditions foreseen at ATLAS and CMS experiments, the rapidity 

gap signature of process (1) has, in practice, survival probability of zero. It is, therefore, a major 
challenge to trigger on the CEP event candidates in the conventional manner. An estimated 
minimum time resolution of the order of 3 ps would be required1 to separate the z-coordinates 

                                                             
1 To separate 50 interaction vertices within Δz = 5 cm luminous region a minimum distance sensitivity of 
1 cm is assumed [8]. 
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(along the beam direction) of the proton-proton interaction vertices [9]. No such performance is 
available for any of the leading proton detection systems deployed by the LHC experiments. 

 
In the following, an alternative scenario that exploits the LHC machine infrastructure, is 

proposed for searches of  CEP produced massive particle states. 
 

2. Scanning for new massive particles 

2.1 CEP protons exiting the LHC ring 

The final state protons from CEP process (1), are injected into the LHC beam vacuum 
chamber and are subjected to the LHC beam optics conditions. In LHC collider's perspective, 
these protons represent "off-momentum" protons with momentum components that differ from 
those of the beam particles circulating along the optimal closed orbit. The CEP protons are 
eventually lost, either by the LHC cleaning-collimator system, or they exit the beam vacuum 
chamber at a distance, z, dictated by the fractional momentum loss ξ. Concerning the 
functioning of the LHC, these particle losses are of critical importance, and they are 
continuously monitored.  

 
By tracing CEP protons of different ξ-values through the LHC accelerator lattice [10], a 

relation between the CEP proton exit points and the ξ-values of the final state protons is 
established. In the present study, only low-pt protons are considered as would be expected, for 
example, in photon-photon interactions (1b). Further study is being carried out for more general 
cases. 

   
Figure 1: The proton exit point, z, in CEP: pp → p + X + p, as a function of the fractional 

momentum loss, ξ (solid line). The exit points of the leading protons out from the beam vacuum chamber 
are given in meters from IP5, the shaded band reflects smearing in proton transverse momentum2. 

                                                             
2 The proton transverse momentum is smeared by 50 MeV, which would be in accord with dσ/dpt∝exp(-20pt). 
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In Figure 1, the proton exit points, shown as a function of their fractional momentum loss, 
ξ, are produced by the GEANT and proton tracing codes [10]. Through equation (2), the 
measured proton exit locations can then be used for an MX mass scan of the centrally produced 
systems (figure 2). The band widths reflect smearing in proton transverse momentum, pt.  

 
In principle, all CEP events producing massive new particles, independent of their decay 

modes, can be tagged by detecting the proton pairs exiting the LHC beam vacuum pipe. 
Assuming a branching ratio of Brγγ = 4% for the hypothetical new particle state with mass of 750 
GeV [5], a total of 5000 events would be expected in 2016. 

Figure 2: The proton exit point combinations in CEP: pp → p + X + p, as a function of the central mass, 
MX (the grey bands). The exit points of the leading protons out from the beam vacuum chamber are given 
in meters from the Interaction Point 5 (IP5), the symmetric cases (ξ1 ≈  ξ2) have z1 ≈ z2 (dashed diagonal 
line). The rapidity span of the centrally produced decay products scales as Δy ∝ ln(MX

2) (solid lines with 
the rapidity scale), rapidity of the centrally produced state is given as yX = 0.5ln(ξ1/ξ2). 
 

For the symmetric case (ξ1 ≈  ξ2) in process  pp → p + X(750 GeV) + p, a pair of  6125 
GeV final state protons exits the LHC beam vacuum chamber, and generates showers within the 
machine components. The showers generated by the exiting CEP protons can be described by 
the GEANT4 simulation package, where detailed CAD drawings are used for detailed 
descriptions of the LHC machine components. The azimuthal angular (φ) distribution of the 
cores of the proton showers may be used to identify the interaction process (1a-c) in question 
[5]. 
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2.2 Tagging massive new particle states in CEP events 

By using the extensive BLM detector system around the LHC ring, massive particle states 
produced in the Central Exclusive Process can be detected independently of their decay modes. 
The following analysis approach is foreseen: 
 
• Scan for the candidate CEP events by locating pairs of coincident proton exits on the 

opposite sides of the interaction point (IP) in question (figure 2). 
• Correlate the tagged events with the LHC beam collisions (BCOs) within the time window 

for the chosen IP. 
• Analyse the tagged LHC BCOs as candidates for CEP events with central masses, MX, 

which would correspond to a registered pair of exit points (figure 2). 
 
Depending on the experimental lay-out, all types of CEP processes (1a-c) could be detected. 
 

2.3 The LHC Beam Loss Monitoring System 

When the final state protons in the CEP process exit the beam vacuum chamber they will 
produce showers of secondary particles. These are detected by the Beam Loss Monitoring 
(BLM) system of the LHC. The LHC BLM system has almost 4000 detectors, mostly ionization 
chambers, spread around the ring. The main purpose of the system is to protect the machine 
components from critical beam losses by a beam abort when the measured dose in the chambers 
exceeds a threshold value [11].   

In the BLM system, the signals from the detectors are digitized with a current to frequency 
converter; the pulses are counted over a period of 40 µs. The number of counts is passed every 
40 µs to the surface electronics [12]. The surface electronics then combine the counts and 
creates integration windows by cascading multiple moving windows. In total, 12 time windows 
that span from 40 µs to 84 seconds are produced [13].  

The recorded data are sampled by selecting the maximum value over one second and stored 
in a measurement database for a period of three months. These values are then resampled by 
storing only the ones which have changed from their previous readings [14].  

2.4 Further prospects 

The current LHC Beam Loss Monitoring system is specified for a continuous monitoring 
of potential risks to the machine operation. An improved time trigger is proposed to correlate 
the measured BLM loss to the event seen in each IP. As a straightforward upgrade to the present 
system, optical fibre connections are proposed for the locations of primary interest. In addition 
to providing a trigger for the CEP scans - independently of the decay modes3 - the fibre 
connections facilitate independent Beam Loss Monitors, thereby improving the Machine 
Protection System (MPS) of the LHC. 
 

Considering the different optical set-ups of the LHC interaction points, tailored BLM 
tagging based physics scenarios can be devised for each experiment. These will depend on the 

                                                             
3 Further studies concerning the invisible decay modes are ongoing. 
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luminosities and detector lay-outs available, and can cover a wide range of standard model and 
beyond-the-standard model physics. 

3. Summary 

The extensive radiation detector system of the LHC collider can be used to turn the LHC 
into a new physics search machine. By tagging the Central Exclusive Production processes, 
heavy particle states can be scanned as a function of their masses by detecting the exit points of 
the final state proton pairs. With minimal additions to the existing Beam Loss Monitoring 
system, an on-line trigger for new particle states could be provided. 
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