
A
TL

-S
O

FT
-P

R
O

C
-2

01
6-

00
5

31
M

ar
ch

20
16

Multi-threaded software framework development for1

the ATLAS experiment2

G A Stewart1, J Baines2, T Bold3, P Calafiura4, A Dotti5,3

S A Farrell4, C Leggett4, D Malon6, E Ritsch7, S Snyder8, V Tsulaia4,4

P Van Gemmeren6, B M Wynne9 for the ATLAS Experiment5

1University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland6
2Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, United Kingdom7
3AGH University of Science and Technology, 30-059 Kraków, Poland8
4Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States9
5SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, CA 94025, United States10
6Argonne National Laboratory, 9700 Cass Ave, Lemont, IL 60439, United States11
7European Organization for Nuclear Research (CERN), CH-1211 Geneva 23, Switzerland12
8Brookhaven National Laboratory, Upton, New York, United States13
9University of Edinburgh, Edinburgh EH9 3FD, Scotland14

E-mail: graeme.andrew.stewart@cern.ch15

Abstract.16

ATLAS’s current software framework, Gaudi/Athena, has been very successful for the17

experiment in LHC Runs 1 and 2. However, its single-threaded design has been recognised18

for some time to be increasingly problematic as CPUs have increased core counts and decreased19

available memory per core. Even the multi-process version of Athena, AthenaMP, will not scale20

to the range of architectures we expect to use beyond Run2.21

ATLAS examined the requirements on an updated multi-threaded framework and laid out22

plans for a new framework, including better support for High Level Trigger use cases, in 2014.23

In this paper we report on our progress in developing the new multi-threaded task parallel24

extension of Athena, AthenaMT.25

Implementing AthenaMT has required many significant code changes. Progress has been26

made in updating key concepts of the framework, allowing different levels of thread safety in27

algorithmic code. Substantial advances have also been made in implementing a data flow centric28

design, as well as on the development of the new ‘event views’ infrastructure. These event views29

support partial event processing and are an essential component to support the High Level30

Trigger’s processing of certain regions of interest. A major effort has also been invested to have31

an early version of AthenaMT that can run simulation on many core architectures, which has32

augmented the understanding gained from work on earlier ATLAS demonstrators.33

1. Introduction34

Recent developments in microprocessor technology have underlined the trends that have been35

identified since the mid-2000s: that while the density of trasnsistors on CPUs has continued to36

rise more or less exponentially (Moore’s Law[1]), clock speeds have stalled (Figure 1).37

The fundamental limitations of clock speed, which are thermal in origin, underline that the38

next challenges for computing are almost entirely based around power efficiency. This drives new39

generations of CPU designs, which are both low power and have low memory per CPU core.40

Moore's
Law

Clock
Speed

Charles Leggett, LBL

Figure 1. Scaling of key characteristcs of microprocessors since 1970 [2].

In addition to the challenges posed by these constraints, increasing application performance41

today means taking advantage of advanced CPU features, such as multi-cores and wide vector42

registers.43

In this paper we describe how ATLAS experiment [3] at CERN is adapting to the software44

challenges from this technological evolution.45

2. The Athena Framework46

The ATLAS software framework, Athena[4], which is based on the Gaudi framework[5], was47

designed in the early 2000s. Thus it predates the stall of single core clock speed and is firmly48

based on a serial processing model. In spite of that, it has successfully processed billions49

simulated and collider events and played a key role in the discovery of the Higgs Boson[6]50

and hundreds of other ATLAS observations made during LHC Run1, from 2009 to 2012.51

During LHC Run2, 2015 to 2018, increasingly difficult processing conditions have been52

overcome with the deployment of a multi-process version of Athena, AthenaMP[7]. This uses a53

multi-process model, where after initialisation multiple AthenaMP worker processes are forked54

to run the event loop. This allows the sharing of the memory pages allocated for large static55

structures, such as detector geometry and magnetic field, between worker processes, taking56

advantage of the Linux kernel’s copy on write feature. However, there are limitations to how57

much memory can be saved in this fashion – the change of a single bit will result in an entire58

memory page being unshared, and C++’s memory model does not allow for fine control over59

which data objects are assigned to which physical pages. In addition, the further evolution60

of the LHC machine will increase the complexity of the events that ATLAS will observe and61

the physics goals of ATLAS necessitate in increase in the data taking rate of the experiment.62

This increase in event complexity and event rate will be a huge challenge for the experiment, in63

regards to the memory and CPU requirements of reconstructing events.64

3. Future Framework Requirements65

Aware of these challenges ATLAS launched a study group, the Future Framework Requirements66

Task Force in 2014. This group’s report summarised the main requirements and67

recommendations of the software processing framework that ATLAS would deploy for Run3,68

2021 to 2023:69

• The increasingly difficult memory per core environments in the future would require ATLAS70

to develop a multi-threaded framework, in order to maximise memory savings.71

• That such a framework should endeavour to provide advanced capabilities, such as event72

processing in partial regions of the detector, so that the ATLAS online and offline73

frameworks could share code and development effort even more than was possible in Runs74

1 and 2.75

• That a continued development of multi-threading in the Athena framework offered the best76

chance of success, as, for a running experiment, continuity of operations had to be ensured77

and disruptive breaks in code continuity would be prohibitively expensive in development78

and validation effort.79

• That in order to be able to exploit the largest range of practical memory and processor80

options the future framework should foresee exploiting parallelism both at the event level81

(multiple events processed at once) and the sub-event level. The sub-event parallelism is82

further divided into inter-algorithm parallelism, directly managed by the framework when83

algorithms can run independently; and intra-algorithm parallelism, where an algorithm84

itself exploits opportunities for concurrency.85

4. AthenaMT86

In the wake of the future frameworks report, the collaboration launched a development effort87

towards its future framework, which has been christened AthenaMT (Athena Multi-Threaded).88

Here we report on some of the main design discussions and conclusions that have been reached89

on the framework, as well as on early performance tests.90

4.1. Underlying Components91

As AthenaMT envisages exploiting parallelism at many levels, including triggered by an92

algorithm itself, it is important that threading is therefore coordinated across the execution93

of a program. If each component started its own thread pool the machine’s resources would94

easily become over-contended, affecting memory footprint and throughput. Such a problem is95

far better suited to a task-based library model than one where thread control is delegated to96

components. It is also more suited to task queues than loop based parallelism, as much of the97

available parallelism is from unrelated tasks executing on different events or parts of an event.98

For the moment the choice has been made to base our threading on the Intel Threaded Building99

Block library[8].100

4.2. Framework Components101

Gaudi’s original component model and state engine included a number of features that were102

used heavily in ATLAS software, but prove to be problematic in a multi-threaded environment.103

One of these was the concept of a public tool, which was a single Tool instance shared by multiple104

algorithms. Such tools in ATLAS were frequently used to store data locally, which would be105

passed between algorithms, which worked fine when the algorithm execution order was fixed106

and events were processed sequentially. However, in the multi-threaded case, when algorithms107

may be processing different events, such a design pattern breaks down. In addition a data108

dependency between these algorithms has been hidden from the scheduler, which may execute109

algorithms in the wrong order.110

In order to overcome this problem, public tools will be removed from the framework. All111

tools will be private to algorithms and communication between algorithms must go via the event112

store service. It is worth pointing out that services in multi-threaded Gaudi will be event context113

aware, where as algorithms and tools will be only aware of the event that they are currently114

processing. Then, developers will be required to migrate public tools to private tools or to115

services, which ever is more appropriate.116

A model of how AthenaMT components process within a single event is shown in Figure 2.117

Services
Services

Services

Alg

Initialisation
Services

Alg

Alg

Alg

Alg

Tool
Tool

Tool

Tool

Finalisation

Tool

Schedulable
Incident

Schedulable
Incident

Scheduler

Parallel
Alg

Alg

Figure 2. Framework elements involved
in the processing of a single event in
AthenaMT.

Figure 3. Event throughput and memory
scaling comparing AthenaMP (multi-process) and
AthenaMT (multi-threaded) approaches for ATLAS
simulation.

4.3. Cloneable and Re-entrant Algorithms118

For algorithms themselves we now envisage three classes, expressing different levels of thread119

safety:120

Legacy A legacy algorithm can only have one instance and can only process one event at a121

time; if more than one event wishes to use a legacy algorithm the scheduler is forced to122

pause them.123

Cloneable A cloneable algorithm can have multiple instances, each one of which can be used124

to process a different event; however, as each clone is a separate instance, memory usage is125

increased for cloneable algorithms.126

Re-entrant A re-entrant algorithm has a single instance, but can be used to process multiple127

events simultaneously; such algorithms are ideal for both lowering memory consumption128

and for increasing throughput, but are the most difficult to program as their execution has129

to be thread safe.130

Re-entrant algorithms also put design requirements onto the data handle implementation131

(data handles declare data dependencies and provide access to event store data), as the132

algorithm’s execute method has to be const.133

4.4. Event Views134

In order to support the requirement of the ATLAS High Level Trigger, which selects events in135

the online system, it is necessary to process only certain regions of interest, which have been136

flagged by the ATLAS level 1 trigger. To do this, AthenaMT will support Event Views, which137

encapsulate only part of the event data. Development of these views is ongoing, but early138

prototypes supported the idea of the views themselves being objects within the main event139

store. Further, the prototype views interface has been made the same as any other ATLAS data140

proxy, thus algorithms can be made to use a view without any special coding required. Thus the141

goal, to share algorithmic code between online and offline systems is well on the way to being142

accomplished. Proper integration with the scheduler is underway.143

4.5. Time Varying Data144

Time varying data, such as detector conditions, currently relies heavily on Gaudi incidents,145

which trigger the retrieval of data when the algorithm or tool that requires some conditions146

data finds it is processing an event which is out of the current interval of validity (IOV). This147

blocks a thread while such data is retrieved and does not work well when events being processed148

may themselves cross IOV boundaries. In AthenaMT, conditions data will be considered as a149

normal data input to an algorithm, albeit using a different store, supporting multiple IOVs at150

once. Then conditions data will always be present before an algorithm that needs it is allowed151

to execute.152

5. AtlasG4 Multi-Threaded153

Although many pieces of AthenaMT are still under design and development, many simpler154

test cases and prototypes have been evaluated in order to validate the approach that has155

been adopted. This started with GaudiHive[9] prototypes, which demonstrated good scaling156

with limited LHCb reconstruction. An ongoing ATLAS prototype aims at developing a multi-157

threaded version of ATLAS simulation, suitable for running on Intel’s Xeon Phi architecture,158

where memory is severely constrained. Results from these tests, shown in Figure 3, demonstrate159

both excellent throughput and memory scaling.160

6. Summary and Conclusions161

To face the challenges of future computing, with severe power and memory limitations, ATLAS162

has started to develop a new multi-threaded processing framework, AthenaMT. As well as163

supporting multi-threading, partial event processing in regions of interest will support HLT use164

cases better. Prototypes of this framework have already demonstrated excellent throughput and165

memory scaling. Many other aspects of the framework are being prototyped and implemented166

now. However, a huge migration effort will be required to port ATLAS’s 3 million lines of C++167

code to the new framework in time for Run3, and for this a substantial training effort and design168

review will also be required.169

References170

[1] Moore G E 1965 Electronics 38171

[2] Calafiura P, Lampl W, Leggett C, Malon D, Stewart G and Wynne B 2015 Journal of Physics: Conference172

Series 664 072031 URL http://stacks.iop.org/1742-6596/664/i=7/a=072031173

[3] ATLAS Collaboration 2008 Journal of Instrumentation 3 S08003 URL174

http://stacks.iop.org/1748-0221/3/i=08/a=S08003175

[4] Calafiura P, Lavrijsen W, Leggett C, Marino M and Quarrie D 2005 The athena control framework in176

production, new developments and lessons learned Computing in high energy physics and nuclear physics.177

Proceedings, Conference, CHEP’04, Interlaken, Switzerland, September 27-October 1, 2004 pp 456–458178

URL http://doc.cern.ch/yellowrep/2005/2005-002/p456.pdf179

[5] Barrand G et al. 2000 GAUDI - The software architecture and framework for building LHCb data processing180

applications Proceedings, 11th International Conference on Computing in High-Energy and Nuclear181

Physics (CHEP 2000) pp 92–95 URL182

http://lhcb-comp.web.cern.ch/lhcb-comp/General/Publications/longpap-a152.pdf183

[6] Aad G et al. (ATLAS) 2012 Phys. Lett. B716 1–29 (Preprint 1207.7214)184

[7] Binet S, Calafiura P, Jha M K, Lavrijsen W, Leggett C, Lesny D, Severini H, Smith D, Snyder S,185

Tatarkhanov M, Tsulaia V, VanGemmeren P and Washbrook A 2012 Journal of Physics: Conference186

Series 368 012018 URL http://stacks.iop.org/1742-6596/368/i=1/a=012018187

[8] Intel Threaded Building Blocks URL https://www.threadingbuildingblocks.org/188

[9] Clemencic M, Hegner B, Mato P and Piparo D 2014 Journal of Physics: Conference Series 513 052028 URL189

http://stacks.iop.org/1742-6596/513/i=5/a=052028190

