
Cosmological constraints on Dark Matter models for

collider searches

Tristan du Preeb Kristian Hahna Philip Harrisb Christos Roskasc

aNorthwestern University, Evanston IL, USA
bCERN, CH-1211 Geneva 23, Switzerland
cNikhef, Science Park Amsterdam, Netherlands

E-mail: tristan.dupree@cern.ch, kristian.hahn@northwestern.edu,

philip.coleman.harris@cern.ch, croskas@nikhef.nl

Abstract: Searches for Dark Matter at the LHC are commonly described in terms of

simplified models with scalar, pseudo-scalar, vector and axial-vector mediators. In this work

we explore the constraints imposed on such models from the observed Dark Matter relic

abundance. We present these constraints over a range of mediator masses relevant for the

LHC and for future, higher energy colliders. We additionally compute bounds from a photon

line search for the decay of a pseudo-scalar mediator to di-photons that includes the mediator

mass region near 750 GeV. Finally, we compare cosmological constraints with the reach of a

possible future 100 TeV circular hadron collider, indirect, and direct detection experiments.
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1 Introduction

Data collected by the Planck mission [1] confirms that dark matter (DM) constitutes nearly

85% of the total matter content in the universe, corresponding to Ωc × h2 = 0.12. Under the

assumption that both dark and visible matter in the universe are fundamental, DM should

be described by a microscopic particle theory1. The standard model of particle physics (SM)

does not contain a viable DM candidate, therefore DM production must be associated with

new physics. The discovery of this physics is among the most important goals in the field.

For a large class of models, DM phenomenology can be reduced to a set of well-defined

DM-SM interactions. These interactions proceed through a mediator that connects dark

matter to the particles of standard model. At the Large Hadron Collider (LHC), DM searches

are performed using models that describe mediator-based interactions between DM particles

and SM partons. These interactions can be classified by the types of messenger fields involved:

scalar, pseudo-scalar, vector and axial-vector. Benchmark models for DM searches at the LHC

typically have mediator couplings to the DM of gDM = 1 [3, 4] and to the SM of gq = 0.25 for

vector and axial-vector mediators and gq = 1 for scalar pseudoscalar mediators [3, 4]. For the

center-of-mass energies produced at the LHC, sensitivity to the masses of the mediators and

of the DM particles is generally O(TeV) for these couplings. Mediators potentially produced

at the LHC are capable of probing a large variety of predicted models, including cosmological

predictions of the relic density.

Cosmological constraints on these benchmark models can be understood in terms of the

reach required to cover the full production phase space of the observed relic density. The

1for a review see e.g. [2]
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scale of the underlying new physics may be out of reach of the LHC, in which case a hadron

collider with higher collision energy is needed. Many recent studies have explored the physics

potential of a future circular collider (FCC) with a center-of-mass energy of 100 TeV [5–

9]. We extend our studies of cosmological constraints to DM searches performed with this

machine.

We additionally consider the expected bounds of other DM experiments relative to those

of the LHC and FCC. The ultimate reach of direct detection experiments is expected to

extend to the so-called “neutrino wall”[10–15]. We consider the bounds that direct detection

experiments with such sensitivity may place on the simplified model framework used in collider

searches. For the case of pseudo-scalar mediators, we consider the impact of projected bounds

of indirect detection and photon line searches.

Our work contributes to the emerging program of DM studies at future colliders in the

100 TeV range [16–20]. Related studies using simplified models for constraining dark sectors

at the LHC include Refs. [21–30]. We also refer readers to the recent summaries [3, 31] and

references therein.

2 Simplified Models

DM searches at hadron colliders typically assume that DM particles are pair-produced from

the collisions of visible sector particles – the SM quarks and gluons. In the scenarios studied

here there are no direct interactions between the SM sector and the DM particles of the dark

sector. Instead, DM-SM interactions are mediated by an intermediate degree of freedom –

the mediator field. In general, four types of mediators (scalar S, pseudo-scalar P , vector Z ′

or axial-vector Z ′′) may be involved. The four corresponding classes of simplified models that

describe the elementary interactions of these mediators with the SM quarks and DM particles

(χ) are

Lscalar ⊃ −
1

2
M2

MedS
2 − gDMS χ̄χ−

∑
q

gqSMS q̄q −mDMχ̄χ , (2.1)

Lpseudo−scalar ⊃ −
1

2
M2

MedP
2 − igDMP χ̄γ

5χ−
∑
q

igqSMP q̄γ
5q −MDMχ̄χ , (2.2)

Lvector ⊃
1

2
M2

MedZ
′
µZ
′µ − gDMZ

′
µχ̄γ

µχ−
∑
q

gqSMZ
′
µq̄γ

µq −MDMχ̄χ , (2.3)

Laxial ⊃
1

2
M2

MedZ
′′
µZ
′′µ − gDMZ

′′
µχ̄γ

µγ5χ−
∑
q

gqSMZ
′′
µ q̄γ

µγ5q −MDMχ̄χ . (2.4)

The coupling constant gDM characterizes the interactions of the messengers with the dark

sector particles, which for simplicity we take to be Dirac fermions (χ and χ̄). The case of

scalar DM particles is a straightforward extension of these results.
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The coupling constants linking the messengers to the SM quarks are collectively described

by gqSM,

scalar & pseudo− scalar messengers : gqSM ≡ gq yq = gq
Mq

v
, (2.5)

vector & axial− vector messengers : gqSM = gSM . (2.6)

For scalar and pseudo-scalar mediators, the couplings to quarks are taken to be proportional

to the corresponding Higgs Yukawa couplings (yq), as in models with minimal flavour viola-

tion [32]. The gq scaling factors are assumed to be flavour-universal for all quarks. For vector

and axial-vector mediators, gSM is a gauge coupling in the dark sector, which we also take

to be flavour universal. The coupling parameters varied are thus gDM and either gq or gSM,

depending on the messenger.

In general, the simplified model description of the dark sector requires five parameters:

the mediator mass MMed, the mediator width ΓMed, the dark particle mass MDM, and the

mediator-SM and the mediator-DM couplings, gSM, gDM. Our estimate of the mediator width,

ΓMed, uses the assumption that the DM particles and the mediator are the only additions to

the SM particle content; this is known as the minimal width assumption.

3 Cosmological Constraints for Searches at the LHC

The MadDM tool [33] is used to compute the relic density. MadDM calculates the expected relic

DM density in terms of Ωc × h2 for any MadGraph model provided [34]. The tool gives a

numerical estimate of the expected relic density based on the standard model of cosmology

for any model containing a DM candidate. The estimate is primarily based on the calculation

of the cross-section of the χχ → qq process, i.e. the annihilation of a DM pair into SM

particles. For the four mediators explored in this study (generically, Φ), this leads to the

annihilation process χχ→ Φ→ qq.

The expected values of Ωc × h2 are shown in Fig. 1 for the mass ranges reachable by the

LHC in Run-1 for couplings gDM = gSM = 1. The expected Ωc grows rapidly for Mχ < Mt,

which results from a reduced cross section for the χχ→ SM annihilation process. This feature

is particularly strong for models with (pseudo-)scalar mediator due to the enhanced Yukawa

couplings to heavy quarks. The expected Ωc also decreases in the region MMed ∼ 2×MDM ,

which results from a resonant enhancement in the annihilation cross section.

The pink curves in Fig. 1 correspond to Ωc×h2 = 0.12, which is the best fit from Planck

satellite observations [35]. These curves appear (for gq = gSM = 1) in searches by the CMS

Collaboration [36, 37]. The regions closer to the line MMed ∼ 2×MDM have lower values of

Ωc×h2 and correspond hence to under-abundant DM production. The regions away from the

line MMed ∼ 2×MDM have higher values of Ωc × h2 and correspond to DM overabundance.

Fig. 2 shows the predicted values of Ωc for gSM = 0.25 (labelled gq = 0.25). These

coupling values are currently recommended by the LHC DM WG [3, 4] and are used in a recent

13 TeV DM search by the ATLAS Collaboration [38]. The behavior of gSM = 0.25 results are
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similar to those of gSM = 1: annihilation is enhanced for MMed ∼ 2×MDM and suppressed

for MDM < Mt. The expected relic density is smaller than that for g = gq = gSM = gDM = 1

due to the decrease in annihilation cross section.

Compared to the constraints for the (axial-)vector mediators, the constraints for the

(pseudo-)scalar mediators are, for low mass, closer to the line MMed ∼ 2 ×MDM . This is

attributed to the relatively narrow width of the (pseudo-)scalar mediators, and the Yukawa

nature of its couplings to the SM particles. The behavior at MMed ∼ 800 GeV for the axial

mediator is due to double-mediator production, which occurs when MDM ≥MMed [39].

The results have also been cross-checked against an independent analytical estimate of

the relic density and the results were found in agreement [25].

4 Cosmological Constraints for a 100 TeV Collider

A (hadron) collider with higher collision energy and mass reach would be needed if the scale

of the new physics underlying DM production lies beyond the reach of the LHC [5]. At such

collision energy, the sensitivity to MMed typically extends up to few TeV (for the scalar and

pseudo-scalar types) or > 15 TeV (for the vector and axial-vector types) [40].

The predicted relic DM density is shown in Fig. 3 for g = 1 over a wide mass range

characteristic of the FCC. The region with small predicted values of Ωc × h2 lie mostly

around the diagonal MMed ∼ 2×MDM . This is because resonant annihilation of χχ→ SM is

preferred for MMed ∼ 2×MDM . Moreover, the constraint tends to align more closely to the

diagonal for (pseudo-)scalar mediators than for (axial-)vector mediators, due to the narrower

widths of the former.

In general, the results for these models indicate a cosmologically preferred region of masses

up to MMed < 7− 10 TeV (for scalar and axial-vector mediators) and MMed < 40− 65 TeV

(for vector and pseudo-scalar mediators). The bounds from Ωc × h2 ≤ 0.12 are considered as

a function of the couplings in Fig. 4. Although the shapes of the constraints do not change

significantly for the couplings considered, the maximally allowed mass changes significantly,

scaling in proportion with the coupling.
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Figure 1. The predicted DM relic density for the vector, axial-vector, scalar, and pseudo-scalar

mediators for coupling gq = gSM = gDM = 1. The white dashed line corresponds to the region where

MMed ∼ 2 ×MDM . The pink curve denotes the masses for which the predicted relic DM coincides

with the observed Ωc × h2 = 0.12 [1].
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Figure 2. The predicted DM relic density for the vector and axial-vector mediators for coupling

gSM = 0.25 (labelled gq = 0.25) and gDM = 1. The white dashed line corresponds to the region where

MMed ∼ 2 ×MDM . The pink curve denotes the masses for which the predicted relic DM coincides

with the observed Ωc × h2 = 0.12.
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Figure 3. Predicted DM relic density for the vector, axial-vector, scalar and pseudo-scalar mediators

for default coupling gq = gSM = gDM = 1. The white dashed line corresponds to the region where

MMed ∼ 2×MDM . The pink curves denote the masses for which Ωc × h2 = 0.12.
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Figure 4. Predicted regions for Ωc × h2 ≤ 0.12 for the vector, axial-vector, scalar and pseudo-scalar

mediators for various couplings: gDM = 1/3, 1, 3. The label g on the plots denotes gDM , for all cases

gq = gSM = 1.
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5 Direct Photon search

The scattering cross section of a pseudo-scalar mediator is heavily velocity-suppressed at

direct detection experiments. Because of this, we compare collider and relic constraints with

bounds from indirect detection. We consider indirect detection bounds from searches for

photons resulting both from the decay of SM particles produced in DM annihilation, and from

those from direct mediator-to-photon production, i.e. “photon line” searches. Bounds from

the latter are computed by considering the direct production of a pseudo-scalar mediator to

photons through a top loop. The velocity averaged annihilation cross section to photons,〈σv〉γ ,

can be expressed as [21, 41]:

〈σv〉γ =
1

4π

( α
2π

)2 g2qy2t
v2

g2DM
(M2

Med − 4m2
DM )2 +M2

MedΓ2
Med

∣∣∣∣NcQ
2
tFA

(
m2
t

m2
DM

)∣∣∣∣2 , (5.1)

FA(τ) = τf(τ), and (5.2)

f(τ) = θ(τ − 1) arcsin2

(
1√
τ

)
− θ(1− τ)

1

4

(
log

1 +
√

1− τ
1−
√

1− τ
− iπ

)2

. (5.3)

Here, Nc is the number of colors, Qt is the top charge, gq is the coupling to quarks, and yt/v

is the Yukawa coupling divided by the Higgs vacuum expectation. From this cross section

formula, we can directly compare with the photon line searches[42, 43] from HESS [44] and

FermiLAT [21, 45] in Fig. 5 (left).

The results in Fig. 5 (right) compare the bound from the photon line search with bounds

from indirect searches. The photon line bound is less sensitive than, although comparable to,

the indirect bounds. In addition, we observe that the current photon line bound approaches

sensitivity to a 750 GeV mediator mass for gDM = gq = 1. This is close to the expected

sensitivity of the excess of diphoton excess observed at the LHC [41, 46–67]. For a DM

coupling of order unity, the potential reach of direct photon searches may provide for a

detection of pseudo-scalar mediated DM in the near future.

We additionally consider the projected sensitivities of FermiLAT [45, 68, 69] and of the

upgraded HESS experiment [44]. We plot the direct and indirect bounds for these projected

results in Fig. 5. From these projected bounds, one observes an extension in the sensitivity

to a mediator mass of 1 TeV. We compare these results with relic density bounds in next

Section.

6 Experiments vs Relic constraints

Fig. 6 compares cosmological constraints and bounds from direct detection with the 100 TeV

collider reach for 1-100 ab−1 of data. The reach of the FCC (in blue) extends to MMed ∼
35 TeV for a scalar mediator and up to MMed ∼ 15 TeV for vector and axial-vector mediators.
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Figure 5. Left: Photon line bounds from FermiLAT [70] and HESS [71] - the dashed lines show

the expected updated sensitivity based on 15 years of running for FermiLAT [70] and the Cosmic

Telescope Array [72]. The excluded regions are above the curves, i.e. the regions with largest cross-

section Right: the translation of the FermiLAT, HESS and photon line bounds to the (MMed,MDM)

plane. The yellow line and blue shaded regions correspond to the indirect photon searches and the

red and green shaded regions correspond to the photon line searches. The collider bounds from the

most sensitive CMS DM search, the combined mono-jet, mono hadronic vector boson search, are also

shown [36]. This is presented for both the simplified model where a pseudoscalar coupling to fermions

is present (red), and the case where pseudoscalar vector boson couplings are also present(black). For

the latter, additional physical effects from the extended model are neglected. A red line at 750 GeV

is added to guide the eye.

The collider constraint for a pseudo-scalar mediator is less stringent, reaching only to MMed ∼
4 TeV [73].

Projected FCC constraints do not completely cover the cosmologically allowed region

of DM parameter space. Nevertheless, the axial-vector model is almost fully accessible at

the FCC, particularly if the large datasets expected for such an experiment are ultimately

obtained. A significant fraction of parameter space can also be probed for scalar-mediated

models. Pseudo-scalar mediators pose the most significant challenge; as Fig. 6 shows, both

FCC and indirect detection experiments are incapable of constraining the parameter space

allowed by relic density observations.

The sensitivity of a 100 TeV collider decreases for smaller coupling values, however cosmo-

logical constraints are impacted more significantly. This results in tighter collider constraints

for all mediators. Direct searches for mediator decays to standard model particles can provide

even tighter constraints. Examples of such searches include those for axial mediator decays to

dijets and scalar mediator decays to di-photons. Overall, the pseudo-scalar mediator is per-

haps the most challenging model to cover with experimental searches - the strongest handles
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come from collider based searches.

Figure 6. Pink: regions with Ωc × h2 ≤ 0.12 for the vector, axial-vector, scalar and pseudo-scalar

mediators, for coupling gq = gSM = 1, and gDM = 1. Green: neutrino wall. Blue: expected sensitivity

for a 100 TeV collider with 1 ab−1 [73].
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7 Conclusions

Cosmological constraints have been shown for the class of simplified mediator models used

in searches at the LHC. The numerical predictions of relic DM abundance are calculated

using MadDM , which uses the MadGraph simplified models to estimate the cross-section of the

χχ→ SM annihilation within the standard model of cosmology.

For DM and mediator masses accessible at the LHC, the shapes of the relic constraints

are attributed to suppressed mediator to dark matter decays when MDM < Mt and enhanced

resonant annihilation for MMed ∼ 2×MDM . Cosmological constraints have also been shown

for the wider mass ranges reachable at possible future colliders. Masses consistent with

cosmological observations typically reach up to 10-100 TeV. The shapes of the bounds in this

wide mass range are attributed to resonant annihilation and the width of the mediators.

The LHC has sensitivity to a small part of the cosmologically preferred parameter space

for the models considered. A 100 TeV collider, on the other hand, has significant sensitivity in

the full parameter space allowed by relic density constraints. Significant coverage is obtained

for scalar and axial-vector mediators, whereas the pseudo-scalar mediated model is rather

difficult to constrain.

The cosmological constraints presented in this document are available for the collider

searches by the LHC Collaborations at [74].
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I. Allekotte, F. Antico, L. A. Antonelli, and et al., Design concepts for the Cherenkov Telescope

Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy,

Experimental Astronomy 32 (Dec., 2011) 193–316, [1008.3703].

[73] P. Harris, V. V. Khoze, M. Spannowsky, and C. Williams, Closing up on Dark Sectors at

Colliders: from 14 to 100 TeV, Phys. Rev. D93 (2016), no. 5 054030, [1509.02904].

[74] Relic Density Calculation for LHC DM Searches, cern.ch/LPCC/index.php?pag=dm wg docs, .

– 16 –

http://xxx.lanl.gov/abs/1512.08992
http://xxx.lanl.gov/abs/1512.07462
http://xxx.lanl.gov/abs/1512.07243
http://xxx.lanl.gov/abs/1512.08117
http://xxx.lanl.gov/abs/1512.04933
http://xxx.lanl.gov/abs/1512.05327
http://xxx.lanl.gov/abs/1512.05779
http://xxx.lanl.gov/abs/1512.02943
http://xxx.lanl.gov/abs/1503.02632
http://xxx.lanl.gov/abs/1502.03244
http://xxx.lanl.gov/abs/1008.3703
http://xxx.lanl.gov/abs/1509.02904

	1 Introduction
	2 Simplified Models
	3 Cosmological Constraints for Searches at the LHC
	4 Cosmological Constraints for a 100 TeV Collider
	5 Direct Photon search
	6 Experiments vs Relic constraints
	7 Conclusions

