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Abstract

In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system
is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for
the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider
experiments. A miniaturised version of this complex system is being developed for pattern matching in generic image processing
applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles
of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of
the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns
are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering)
are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale
images, depending on the application and thus increasing exponentially the processing requirements of the system. We present
the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx
Kintex Ultrascale FPGA device.
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1. Introduction

In recent years the demands for fast, real-time image pro-
cessing of massive data volumes have grown significantly. The
detector technologies are continuously improving, resulting in
higher resolution images and video. The introduction of 3D
imaging has also increased the amount of produced data as well
as the processing complication. 3D image processing is espe-
cially useful in biomedical applications such as PET and MRI.
Processing this type and size of data faster requires a clever and
efficient pre-processing step that executes filtering and data re-
duction while maintaining the information that is useful to the
next processing steps.

This approach is very similar to the one used for the trigger
systems in High Energy Physics (HEP) experiments. In these
trigger systems real-time filtering is executed on the massive
amounts of data produced by the detectors to select those that
contain higher probability for studying and identifying ”new”
physics.

2. High Energy Physics Background

We have built an Associative Memory (AM) system for the
Fast Tracker (FTK) processor [1], a recently approved upgrade
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for the ATLAS [2] trigger. FTK is a high-performance embed-
ded system based on the combination of two innovative tech-
nologies: powerful and flexible FPGAs working with standard-
cell ASICs. These ASICs are the Associative Memory (AM)
chips [3] that are used to execute the pattern matching algo-
rithm with utmost gate integration density and maximum per-
formance.

The most interesting processes generated at LHC experi-
ments are very rare and hidden in an extremely high level of
background. Implementing the most efficient selections in real-
time (trigger) is therefore essential to fully exploit the physics
potential of experiments where only a very limited fraction of
the produced data can be recorded. This is a specific case of
Big Data problem whose solution is based on the organization
of the trigger system in different levels of selections. At the
lower levels, dedicated hardware with a high degree of paral-
lelization is exploited for an extremely efficient preprocessing
step.

3. Cognitive Image Processing

Studies have demonstrated that the most convincing models
about brain functioning hypotheses are extremely similar to the
real time architectures developed for high energy physics [4]
and more specifically the trigger organization used in HEP ex-
periments. This led to the idea of exploiting hardware and al-
gorithms that derive from HEP triggers to perform high perfor-
mance image processing.
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The embedded system presented in this paper can accelerate
neurophysiological studies of the brain. A multilevel model is
proposed as appropriate to describe the brain image process-
ing. The method proposed by Del Viva et al. [4] introduces the
idea that the brain, when the human subject is under stress or
in danger, works by dramatically reducing input information by
selecting for higher-level processing and long-term storage only
input data that match a particular set of memorized patterns. A
double constraint of finite computing power and finite output
bandwidth is imposed, very similar to the constraints used in
embedded systems design for memory size and data through-
put. This double constraint determines the type of information
that is meaningful or relevant for following processing steps
and becomes part of higher level processing and longer-term
memory.

The AM pattern matching process has demonstrated to be
able to play a key role in high rate filtering/data-reduction tasks.
Simulations [4] have shown the potential of the pattern match-
ing algorithm on static 2D images. Since the needed computa-
tional time causes serious limits to the capability to extend these
studies to 3D images and movies, we are developing an imple-
mentation that can use the AM system based on the AM chip
[5] for a real-time pattern selection/filtering of the same type
that is studied in these models of human vision. These studies
could have an impact in the area of medical imaging for real-
time diagnosis or any area where pattern matching is relevant
and computing performance is a limiting factor.

Figure 1 shows the results of the simulations of the model
described in [4] where pattern matching with the preselected
relevant patterns is used to filter the main features of the image.
The pictures on the right (b, c) show the quality of the filtered
images. The butterfly can be clearly recognized even if the im-
age information is reduced at the level of 10% or less of the
original content. The associative memory system works as an
edge detector implementation able to extract the salient features
of the image.

Figure 1: Impact of selected patterns in the output image.

3.1. Pattern Matching Process
The pattern is defined as the collection of pixels contained

in a 3 × 3 pixel square, as shown above the butterfly image
(a) in Figure 1. Each square is converted in a 9 bits sequence

(each bit is ’1’ for a black pixel and ’0’ for a white one for B/W
processing) or an 18 bits sequence in case of 4 levels of grey
(each pixel encoded with 2 bits). The bit sequence is used to
identify the pattern. Starting from the left top corner the image
is scanned by the 3×3 square moved in steps of one pixel toward
the right. When the row is finished, the square is moved one
pixel down to scan again the raw from the left to the right. Each
pattern detected in the figure during the scan is compared to the
set of relevant patterns predefined by a training phase. If there
is a match the pattern is saved in the same pixel coordinates.
If there is no match the pattern is rejected and the pixel data
are filtered. Figure 1 shows two collections of relevant patterns
for two different selections. The 16 patterns in the blue box
produce a larger image compression than the 50 patterns in the
green box. The smaller is the set of chosen patterns the stronger
the information reduction that is achieved in the end.

Analysing images with 4 or 8 levels of grey, or using 3D
images, increases the number of relevant patterns. The pattern
in the 3D case is not a square, but a cube of pixels: a set of three
3× 3 squares taken from 3 subsequent frames. Each pattern for
B/W is made of 27 bits corresponding to 227 possible patterns.
If 4 levels of grey are used the total number of patterns becomes
254.

3.2. Training Process

The training process is executed to select the ”relevant pat-
terns”. A suitable sample of images need to be processed in
order to obtain satisfactory results. The image sample must be
large enough (e.g. more than 1000 images for the B/W case)
and from the same source as the targeted application. Then the
information theory entropy ([4],[6]) of each pattern is calcu-
lated. The ”relevant patterns” are the ones that their probability
of appearance in the sample images correspond to the entropy
maximum (maximises the useful information content of the pat-
tern).

4. Hardware Implementation

Our parallel processing architecture is based on hardware
currently used in HEP, in the FTK processor [7]. FTK recon-
structs the events produced at the ATLAS detector, that can
be described as extremely complex images, in few tens of mi-
croseconds. It therefore is extremely suitable to tackle Big Data
problems. The key role in the novel technology is played by the
custom multicore AM system that will intensively be used to
filter out the relevant information of the data to be further pro-
cessed by Field Programmable Gate Arrays (FPGAs) executing
higher level algorithms. The AM implements maximised par-
allelism and offers the best timing performances, since it solves
its task in the time data are loaded on it. Additionally our archi-
tecture benefits from the FPGA computing power. The FPGA
complements the AM task with its flexibility and reconfigura-
bility, adapting its logic to perform any necessary refining post-
processing required of the AM output (such as segmentation,
clustering [8] or volume and size calculation etc.). In addition
the AM has a specific architecture (the pattern matching can be
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successful on a subset of the tested data) that helps to identify
not only perfect features, but also partial, or noisy versions of
them.

The implementation is divided in two main parts, like the
algorithm: the training phase and the real-time pattern recogni-
tion phase, what is referred as the data taking phase. Most of
the functions are executed by the FPGA with the only exception
of the data taking, that is executed by the AM under the FPGA
control. We have estimated the processing latency for the data
taking exploiting the long AM experience accumulated in FTK
[? ]. For the training, instead, we implemented the logic on
a Xilinx Kintex Ultrascale XCKU040 of a KCU105 evaluation
board, easily connectible to an external PC (or a video camera)
and to a set of AM chips [5]. The implementation setup can
be seen in Figure 2. In this figure the Xilinx Kintex Ultrascale
KCU105 Evaluation Board can be seen. A mezzanine with de-
vices performing pattern matching can be connected to the large
connectors on the top of the board. The mezzanine organization
offers flexibility: it allows using the system in different config-
urations and with different AM chip versions (parallel or serial
I/O, different pattern densities). We have evaluated the training
timing performance directly on the new hardware.

Figure 2: Hardware setup (FPGA Development board with AM mezzanine)

The Training Phase is subdivided in the following steps:

1. Calculation of the pattern appearance frequencies: The
embedded system receives the image bit-streams (e.g.,
data from a PC or a video camera). The FPGA parti-
tions/reorganizes the input data into the small 3 × 3 pixel
patterns. Then, for each possible pattern, the FPGA cal-
culates the occurrence frequency in the processed im-
ages/frames, using a large set of training images, to mea-
sure the frequencies with precision. When the environ-
ment and the lighting conditions change, the training has
to be repeated in order to identify the relative patterns set
suitable for the new environment. Therefore a continuous
real-time training execution is required to allow the device
adapt itself autonomously to the different conditions of the
images that it observes.

2. Pattern selection: the system must decide which set of pat-
terns is relevant, to be selected for memory storage and

later use. We adopt the hypothesis described in [4] to
maximize the capability to recognize shapes, i.e., maxi-
mum entropy is a measure of optimization. The set of pat-
terns that produces the largest amount of entropy allowed
by system limitations (size of the memory to store patterns
and output bandwidth) is the best set of relevant patterns.
In [4] are described the details of the selection. The se-
lected patterns have to be written inside the AM bank for
the following data taking phase.

We have implemented the training for 2D B/W images. The
block diagram of the implementation is presented in Figure 3.

Figure 3: Training implementation block diagram

The FPGA needs to perform training in real-time for de-
manding streaming video applications. Several optimization
techniques are used to achieve the best performance possible
in the hardware implementation. The video frames are stored
in the external memory before being transferred in an internal
frame buffer. As soon as enough data has been transferred for
the 3 × 3 patterns to be formed, a pattern identification matrix
begins to be loaded. It identifies and propagates two patterns
per clock cycle to the pattern accumulators. The accumulators
are specifically designed to facilitate successive accumulation
in the same memory location (fall through data logic). As soon
as the whole image sample has been read, the pattern frequency
is calculated by taking advantage the FPGA DSP slices. The ar-
chitecture is generic and parametric to allow easier adaptation
for the implementations of the more complex 3D and 4 levels
of grey cases.

The calculation of the probability of appearance of each pat-
tern is executed by using a radix-2 divider implemented by an
FPGA DSP slice. The calculation of the entropy values for each
pattern is optimized by using specifically calculated Look-Up-
Tables (LUTs). The LUT values are loaded in the implementa-
tion during the initialization phase. The LUTs are not ”sample
specific”, therefore their values do not depend on the training
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Figure 4: Crow Example

sample of images used. What can vary is the required calcula-
tion precision that can change slightly the final pattern selection

The values of the LUTs are calculated by a simulation frame-
work developed to verify the operation of our system. The
frameworks operation is threefold: a) It is used as a bit accu-
rate simulation to verify the hardware operation. b) It is used
as a benchmark to compare performance between the proposed
hardware system and general CPUs. c) It is used to explore the
algorithm’s potential and confirm the validity of the algorithmic
assumptions, before the hardware implementations of the post-
processing steps. In Figure 4.1 we can see a 512 × 512 pixel
grey scale image. In Figure 4.2 the image is transformed to a
black and white binary image of the same size. In Figure 4.3 the
output of the simulation framework can be observed by using
50 ”relevant patterns”.

5. Results

The training phase is implemented and tested for 2D B/W
images. We use a set of sample images to verify the system
operation. The complete training implementation requires less
than 2% of the FPGA LUTs and 2.4% of the available BRAMs
for processing of black and white images. We use a 250 MHz
clock. To process a 512×512 pixel image less than 2.5 ms are
required. A third generation i5 processor with 4 Gb RAM re-
quires instead more than 3 s to execute the training algorithm
for an image of the same size (performance comparison using
the simulation framework).

For the data taking phase we measured 100 ns for each pat-
tern check with the bank where relevant patterns are stored, us-

ing the board presented in [? ]. With future AM versions, not
using the serialized I/O that introduces some latency on data
transmission, this latency/pattern will be even lower. This time
is independent from the number of relevant patterns stored in
the AM chip, since the AM chip performs all the comparisons
of stored patterns with incoming data in parallel. So the ad-
vantage compared to standard CPUs that execute sequentially
the comparisons increases enormously when pattern matching
is extended on 3D images, especially if 4 levels of grey are
used. Our future goal is the exploration of the architecture and
pattern bank size needed to store the relevant patterns for a 3D
four levels of grey case, where the total amount of patterns is
254.

6. Conclusions

As image processing requirements for fast and efficient fil-
tering of massive high resolution input data are continuously
increasing, we present a high performance embedded system
that can execute real-time pattern matching and answer these
demands. The system is based on hardware and algorithms de-
veloped for the trigger systems of HEP experiments. It is flex-
ible and can be expanded to be used for processing of 3D grey
scale input data. A smart training algorithm is used to select
the useful patterns, based on cognitive image processing. A
current implementation of the training algorithm for 2D black
and white image processing can process 512×512 pixel images
more than 1000 times faster than a normal CPU.
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