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ABSTRACT

Transposition operator of two dyons on the nontrivial two
dyons fibre bundle is constructed. So we can correctly define
its action on local sectionas. It is shown that symmetric wvave
functioﬁs defined on this bundle can not be transformed into
antisymmetric ones by gauge transformation, apart from <the
vell known statement, incorrect as it ;ill be seen, firstly
pointed out in connection vitﬁ dyon spin problem. It is shown
aleo, that Zeeman energy levels splitting for dyons differs

from the splitting for ordinary fermions.



1. INTRODUCTTION

For a long time the system consisted of monopole and charge
(dyon) has been an example of how spin is generated by two partic-
les interaction, bogons wake up a fermion. In particular, the
statistics problem of dyon including Dirac monopole was examined in
wvell known Goldhaber’s work (1], cited in many reviews and popular
lectures (see, for example, [2,31).

As known, the monopole - charge system has dynamical integral
of motion 3: vhose components satisfy to commutation relations of
su(2)-algebra. The popular is assertion that through the monopole -
charge interaction a spin n/2 = ep (lowest 3j) is generated. In
particular, when n is odd, tvo bosons (spinless particle and spin-
less Dirac monopole) make up a fermion..

Assuming that n/2 is adequate to spin, we should solve a puzzle
connected vith spin and statistics (vhen n is odd). Goldhaber (1]
gives the solution of this problem in which he studies two dyons
vave function at their transposition. The puzzle is smoothed out by
the following result. There are tvo gauge equivalent descriptions
of two dyons system. In the first case with symmetric wave function
¢y and certain Hamiltonian H, the dyons are considered as bosons. In
the second one with antisymmetric wave function ¢’ and Hamiltonian
H’ the dyons are considered (vwhen n is odd) as fermions. These
descriptions'are connected by a gauge transformation.

However, an approach proposed in this work is not correct. It
does not take into account that the system including Dirac monopole

does not have global wave function. Instead, the sections of complex

s
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line bundle are to be examined. Charge in the Dirac monopole field
is a well knovwn case [4,5]. Within t;e correct approach ve consider
the two dyons bundle and construct an operator of dyons trans-
position, defined on this this bundle. Trivial bundle being a case,
there is no problem to construct it. But vﬁen ve have nontrivial
bundle, the problem arise - hov to lift the action of operator on
base to the action on wvwhole bundle? Hopf fibering, as an example,
displays the 1ift not possibly existing. In that case, there is no
1ift for reflection operator on base. This fact wmay be proved

through using a degree of mapping and Lefschetz number.
2. TRANSPOSITION OPERATOR IN NONTRIVIAL TWO DYONS FIBRE BUNDLE

-System of one Dirac monopole and a charge . have tvo Hamil-

tonians (see, for example [4]) caused by twvo choises of wmonopole

potential
+ + + + n e - - - - R» e
A (A =A =0, A = —tan-)) and A (A = A =0, A = - —cotan-)
r e ¢ r 2 r e ¢ r 2

and corresponding to them domains U = R \{(z€[(0Q,+00)} and u =
-+

3
= R \{z€(-00,01}. Transition from wave function y on U to wave
+ +

function vy on U is determined by transition function T =
— —> —> -
= exp(2iepyp(r )), vhere ¢(r ) is azimuthal angle of vector r from

monopole to charge. Thus, state of the system is described by the
pair of functions (each has its own domain) which are connected on

the overlap U N U by the transition function T .
+ - *

In tvo dyons case, by a natural way, one obtains 16 respective
domains and Hamiltonians

PR g AT ) P L T g = 2
= P —- eAlr - eA(r + ( - ( -
>m 1 1 12 - pe eA r2) eA(r )) +



1 -2 1 -2 -
* =P *+—Pp +Vir + R -r - R))
2M p1 28 p2 1 1 2 2"’

corresponding to choises A and A_ for each of four variables
—_> — B —_—d - —_— —
r T b o =r + R - -
1’ 2" 12 1 1 TR Tt T Rp* F

(see Fig.1).

Fig. 1

Transition between wave functions defined on different domains
(local sections) is combined of those exp(2ieny).
For instant,
—> —> —>
= exp(2iepflel(r ) + o(r ) — o(r )HI) .
rre— wf——-" P nie 12 ® 2 ) ® 21

Thus, two dyons bundle has base
—> —> > > —> —> —> —>
m2 = ((r ,R ,r ,R )] r 0 r 0, r =0, r * 0},
1 1 2 2 1 12 2 21
covering of this base by 16 regions

(U’u=(::tg)},U=U x U xU xU
+ +

o x * +

with transition functions T .
ap
Equivalently, instead of sections of afore-mentioned complex
line bundle (let us denote it as LD2) cne makes use functions

determined on total space of principal U(1l) - fibre bundle D2

associated with it. States of system are descrihed either by 16
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functions, every pair of them being connected by transition function
T on the overlap of their domains, or by single function defined

ap
on the total space D2 (and satisfying to condition (4)).
)
The problem of lifting to D2 of an arbitrary element of the
group Diff(M2) of diffeomorphisme on the base M2 is connected with

exact sequence

i S
* *
1 —> Autv(D2) ——> Aut(D2) —> Diff(M2) , (1)
vhere
Aut(D2) = { £ ' f(ug) = f(ulg , ug D2, g€ U(L)}, (2)

Autv(D2) - gauge transformations group, i.e. subgroup of the group
Aut (D2) consisted of elements f inducing identical transformations
on the base: p*f = 1 (homomorphism p* is induced by projection
p ¢ D2 —> M2).

A
Dyon transposition operator is sutomorphism < of fibre bundle,

A

satisfying <© = 1 and being a lift of mapping on base
- > > —> - —=> > >
«: (r ,R ,r ,R ) —> (r ,R ,r ,R ) . (3)
1 1 2 2 2 2 1 1
A L)

If lift <« for <« &€ Diff(M2) exists, then < & Aut(D2). Since vwe
)
are interested in how T acts on local sections y of line bundle LD2

(or, equivalenly, on functions %(u) on principal bundle D2 with equi-
variant condition
-1

Y(ug) = g W) , (4)

g € U1, ug D2; ¢ (X) = (6*¥)(X) = W(6 (X)) for local sections 6
« 3 o 3

in D2), then important is how it acts on regions U covering the
« .

c
base. It is evident < : U —> U ¢’ vhere o« : = (klij) if a =
« o«

.

. A
= (ijkl). So it is convinient to define automorphism < in the form
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c c c - > > >
§ X) ——> (h _(X
g, o o€ )g, X ),C’ (X 2 = (r2, Rz, rl, Rl)'

. - —> > >
if X=«(r , R, r, R)).
1 1 2 2
One can show, that correspondance

c
(g, X) ——> (g, X))
o «C

) )
correctly defines automorphism <t € Aut(D2) , v =1 on two dyons

fibre bundle D2.

Then
A

c c
© 3 (g, X) —> (T (X )g, X)) (5)
o aa [

for X € U Nu .
[ xC

Therefore, on the sections

a

c c
Ty (X) : = ¢ (X )T (X ).
« [

aCo
c
For example, when o = (++++) o« = a , T ¢, = 1, one has
A e au
Ty (X): = g (X ),
et e+
but vhen « = (+-++), one obtains
" - -—> (=]
Ty (X): = exp(2iepip(r ) - @(r )1)- (X ).
r—ts P nhe 12 ® 21 W’_ +

A
Symmetry condition © W = ¥ of global function on these regions
has the form

c
Y (X ) =y (X), x = (++++),
o «

c —-> —>
w (X ) = exp(2ieple(r ) - @(r Iy (X)), p = (+=++) ,
8 12 21 Yo'

—> —->
When |R1 - RZ' —> 0, the right hand side of last equality tends

to exp(2iepn)y (X) = - ¢ (X) for 2ep being odd.
B P

c
Transition from y satisfying vy (X ) =y (X) to y satisfying
« .4 o g

c
Y (X ) = - ¢y (X) vas interpreted in (1] as the dyons are fermions
] [

(2ep being odd). We have different forms of single symmetry condi-

A
tion T ¥ = W for different local sections.In general, on nontrivial

fibre bundle the global section can be formed by symmetric and anti-
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symmetric functions on respective regions. As an instance, the

Moebius band is simplest case (see Fig.2).

-~ antisymmetric function at
the region

~ symmetric function at the region

Fig.2

Note, that on fiber bundle the notion of symmetricity is cor-

A A
rect in regard to automorphism <. The property <t ¥ = ¥ is defini-
A
tion of symmetric ¥, © ¥ = - ¥ -~ of antisymmetric one. Hence, the
symmetric global function (vhen we pass to language of local sec-
tions) can take antisymmetric form on certain regions. At first
glance, this contradicts to Pauli principle. Since the antisymmet-
- —_> _d —_>
ric function must be equal to zero at r2 = rl, R2 = Rl, in contra-
distinction to symmetric one. But on two dyons fibre bundle it is
not the problem, since symmetric global function takes antisymmet-
—> —>

ric local form only when |R1 - Rz‘ —_> 00 .

Return now to assertion [1) that symmetric wave function of two
identical dyons can be converted by gauge transformation to anti-
symmetrical Eorm,vhen n = 2ep 1is odd. Exactness of sequence (1)

results that if there exists some 1lift on D2 of <« defined on

the base, then exact sequence
i

» P

1 —> Autv(DZ) -—> E

*

> {1, —> 1, (6)
<
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takes place, here E denotes the subgroup of Aut(D2), being
extension of the group T = (1,xt} with the aid of Autv(DZ). In
addition, to satisfy condition ;2 = 1 the homowmorphism p* wmust
have»the right inverse s, p*s =1 (i.e. exact sequence (6) have
to split). Let us prove that this condition is satisfied.

Evident is that any 1lift :, : = lift(x) satisfies :2 = a &
G'Autv(DZ), vhere « may be considered as a function on the base,
« = x(pu) = x(X) as it results from U(l) is Abelian. The base of

tvo dyons fibre bundle D2 can be represented as subset

3 3
n2 = U 5 (a,b) x (R \{a,b}) x (R \{a, b})
ta,b)ER x R

of RxRXR x R . One can shovw that set of homotopy classes of
mappings «o: M2 —> U(1l) 1is trivial. It follows, that y = arg(«x)
is function y : M2 —> R for arbitrary «(X). This fact is suf-

~2
ficient for the sequence (6) to split. Actually, let © = «(X) =

= exp(iy(X)), then using the associativity in E, one can obtain

~ ~ c
T expliy(X)) = exp(iy(X))xt (di.e. y(X ) = y(X)). Let wus define

A ~ A
© = texpl{-iy(X)/2). Then © =1.
A A2
Having the operator © (Tt = 1), one can extract symmetric and

a
antisymmetric functions on the total space D2, Y = (w| ¥ = +« W),
+*

satisfying the equivariance condition (4). It is ;vident there is
no gauge transformation (a & Autv(DZ)) from any w+e Y? to ¥ € Y_,
since in opposite case it should mean vanishing of u— (X) on whole
set of stationary points s

3 3
M= V) (a,a) x diag((R \{a}) x (R \(a})) C M2
(] 3 3
(a,a) € diag(R x R )

of involution < on the base M2.
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Summarizing all nentioned above, we can assert that "prons” to
gauge equivalence [1] of two descriptions of dyon as boson and as
fermion are not right in principle (and so there is no contradict-
ion to the connection spin and statistics). The structure of non-
trivial fibre bundle is crucial here, it affects the definition of
two dyons transposition operator.

Another contrargument to "the dyon is fermion" results from
Zeeman effect in a wveak field for the system forwmed by spinless
charge and spinless wmonopole [6]1. The splitting for such dyon
differs significantly from the splitting of levels for ordinary
fermion.

3. ZEEMAN EFFECT IN A CHARGE - DIRAC MONOPOLE SYSTEM

"

The dynamical integral of motion 3>of spinless charged particle
in the Dirac monopole field is most simple in the total space of
of fiber bundle P = Cz\(o) (vith the base Ra\(O) and fibre U(1)) on
to which one can transport the dynamice of particle [7,8,91]. The
corresponding to this integral are generators of SU(2) C AutP

A
J =

(Z6 3 - 38 2) , i =1,2,3 . (7)
i i i

N -

1 2 2 -
In the formula (7) (Z ,Z2 ) &€ C \(Q}, ZsiZ = X - the projection p
i

3
on the base R \({0},
L) A A A

£J ,J 1 = ie J , (3 ,H) =0
i 3 i i o
wvhere 2

n
—_— (3]t — )
("] 2MZ22 472

is the Hamiltonian (71 of a spinless charged particle in the Dirac

monopole field with n = 2ep. With the aid of integral of motion (7)

»
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one can separate angular variables (determined on three-dimentional
3 -

sphere S ) from the radial variable r = 2Z [10]. Angular part of

vave function on the total space P is element of rotation matrix
3 3
D_n/2 n(§). 13 S;m=-3, -3 +1, ..., 3;

J =n/2, n/2 + 1, n/2 + 2,... (suppose n > Q).
A
The generators J (7) can be written in other form

A - 1 z6,2 V
= — -
7z 2

J e 26 Z - h
i ijk Jj 41 k
vhere operators h1 and V are defined (since monopole connection

’ (8)

is w = (ZdZ - ZdZ)/2ZZ) by conditions phi l‘éi = a/axi, wth ) = 0,
i

w(iv) = 41 :

h

i

3 = 3/3Z2, 9
o o

1 - - _
= = (26 3+ 36 2), V =23 — 23 (9)
2Zz 4 TR '

= as3zZ .
o o
A

3
In local description on the base R \ {0} the generators Ji are re-
presented by locally defined operators Ji acting on local sections
v(X) corresponding to functions ¥ (Z,E) on the total space P:
n
1 X n

J = -8 X (d - dinA (X)) - —L -, (10)
i i ijk j k k X 2

tJ,J 1 = ie J, A (X) - local potential of Dirac monopole. Opera-
i 3 ijk k i

tor Ji(IO) is well known in Dirac monopole theory. Relation between

(8) and (10) has been clarified by Solov’ev [7]. The last term in

(10) is often interpreted as internal angular momentum of the

system. One concludes from that interpretation that spin n/2 is

generated in the system of charge and monopole.

28;7 V
Note, that extra term — i; 5 in (8) arise not by chance, it

has an algebraic origin caused by topology of fibre bundle P.
When there is some Lie algebra of differential operators of the

3
order 1 on the base R \({0}, for examp;e, spatial symmetries
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generators algebra, and we want to lift this algebra to total space
of bundle, then operators ai = a/axi changf by horyzontal operators
h1 (phi = ai) acting on functions W(Z,E) ofltatal space P.

Commutation relations thi,hj] = 1n;jv (2 = dw - the curvature
of connection w), in terms of homological algebra, determine exten-
sion [(11,12) of differential operatogs of order 1 Lie algebra I on
base with the aid of commutative aléebra A coneisting of operators
of the forwm a(Z,E)V (here a(Z,i) are the functi?ns constant along
every £iber:'V%(z,2) = @, and, consequently, they may be considered
as functions on the base). Extension is solution of the problem: to
find an algera Z, wvwhich can be included in exact sequence

P

i »*
" > A > = > F > 0

’ .
wvhere homomorphism 1 is inclusion and p* indused by projection p
on to base. If the lift &€ maps operator g = gi(X)ai to operator
e{g) = ¢ (Z6 Z)h , then
€ Ei 3 i’ ,
[el(g),eln)] = etig,nl) + 1iQ(g, IV = (lg,nl) + « (g,n),

-2 2 .
Qlg, n) = Qi ginj, vhere a (g, n) = iQ(g, NIV E H (E,A) realizes 2-co-

3
cycle on Lie algebra E with values in A. 1Ite closeness Saz = @ is
equivalent to closenesss dQ? = @ of the curvature form Q. This exten-
sion is nontrivial, since uz(g,n) = 1Qtg, )V = (Sul)(g,n), i.e.
curvature form Q of connection w defined nontrivial element in
de Rahm cohomology group H2(R3\(0)) = R. As the result = consists
of elements of the form gi(ESJZ)hi + 1a(z,Z)V. If we take Lie
algebra of Lie group S0(3), given by geneiators Li = -1eijkxjak in

E, then by the extension we can map operators L to J (8), which
i

make up finite dimensional subalgebra in E.
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-
For scalar- particle, taking into account only linear on field H

terms, the Hamiltonian H in total space of fibre bundle has the

form
1 2 H
- n eH; Z6;Z n A
H=H *AH=——-(.—.—-63*———.-.—2)*W———“(-—.—.‘——-—+J),H (11)
(] 2M ZZ 4(Z7) 2n 22 2

vhere W is a potential localizing the charged particle.The monopole
&

position is assumed to be fixed. As an instance, for a point dyon

at centre W = - «/2Z, and discrete spectrum energy levels of nonper-

turbated hamiltonian H0 + W are not degenerated on j.

Hence, levels splitting is given by matrix elements

eH o A 6:Z n .
AE = - — <njm|J r — —‘njm>, (12)
2M 3 2z 2
vhere
(n) - 23 + 1 3 —> ->
jpim> = R z22) f ————— D (g), H = He .
b 4n -n/2 m 3

Integrating in (12) is over total space having volume element dV =

- 1 2 - -2 .
= (ZZ/n)dZ AdZ AdZ AdZ . After integrating the product of three D-

3 3 1 1 - -
functions D#* D D (here D = 26 Z/2Z) over 3-dimentional
-n/2 m.-n/2 m 00 (1] 3 43
sphere, one obtains 2
eHm n.
OE = - — (1} = ——w——), (13)
2M 43¢3 + 1)

Consider the lowest orbital state with j = n/2. Have we true spin,

the formula for magnetic sublevels would be

-

e
OE = - — 2mH , - n/2 £ m & n/2. (14)
2M
In our case, as it is seen from (13), we have
e n -1
OE = - — mH (— + 1) . (15)
2M 2
The difference between (14) and (15) is quite evident, taking into
A
account that operators of dynamical symmetry Ji being carried on to

3
base R \ (@} (i.e. after local trivialization) do not concern the

generators for rotations of coordinate system. It show itself, in
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particular, in the evolution of wvave function on account of its
being in magnetic field. During the period corresponding to Larmor
—>>
precession of spin wvwith ffequency n H the wave function gets phase
factor
exp(nin/(2n + 2)} ,
vhile for true spin n/2 this factor should be
n
(-1) .
(Remember, that the latter was used in the experimental check of
neutron spin 1/2).
Thus, it is clear that dynamical symmetry group generators (7)
can not be interpreted as spin operators. The spin operators may
A A
be defined by W’(Z’) = S(g)¥(Z) at automorphism g & SU(2) < AutP,
A A
g: Z —> Z’(with generators Ji), of bundle P covering a rotation

g: X

> X’ by the projection p, in our case s = 0.

4. ZEEMAN EFFECT FOR T’HOOFT-POLAKOV MONOPOLE INTERACTING

WITH SCALAR ISODOUBLET

The work [1] was stimulated by papers of Jackiwv and Rebby (131

and of Hassenfratz and t’Hooft [14], vhich are devoted to spin
generation problem for t’Hooft-Polyakov monopole interacting with
scalar isotopical doublet. 1In (13,141 and many papers after one
asserts that though starting fields are bosonic, the half-integer

spin arises in this system through existence of integral

— — —

J = L + T, (16)
— - > —> >

where L= {r x p ] and T = 6 /2 -~ isospin operator.

That is why interesting is (on our point) to examine how
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thie system behaves itself in a weak homogenious magnetic field. It
is shown in this section, that the splitting of levels differs from

W
that for the particle having true spin.

It is convenient to study this system in ordinary space, since
k-3

relevant fibre bundle is trivial.
In a weak homogenious magnetic field the Hamiltonian
1 —>a
H = — (p -®A T 1 + W,
a

a
vhere .Aj = e Jk[(1 - hir))/r )Xk - t’Hooft-Polyakov monopole poten-
a

%

tial gets extra terms

eH 1 1
OH = — — {(T_ + =)L+ — (1 - h(r))-
2n 3 2 3 2

1 2 1
*I(T_ + —)ein 6/2 - — co8®(T (n - 4in ) + T (n + 4in ))1}, (17)
3 2 2 + 1 2 - 1 2
- -
n=r/r, T =T +£T ,
* 1 2
vhich leads to the splitting level
eH  +m + 1/2 1 1 - h(r)
AE = = — —————————— (m - — +
2 28+ 1 2  4(g - 1/2)(¢ + 3/2)
. 1 3 2 1
sl -+ )+ m s mlrm- N, (18)
2 2 2

j=£02 1/2

Here ;?;T - mean value with radialfunction R (r) arises. When
extra potential W(r) localizes thé particle at distance a >> 1/p of
monopole size (h(r) ~ Ar exp{(-pr), when r ———>oa.), then wve wmay

ignore h(r) and splitting takes the form

- 2
eH £+ m + 1/2 1 1w o+ mf+m-1/2)

BE = - — —— (M - — + — ), (19)
2 28+ 1 4 4 (g - 1w/2(L + 3/2)

i=f =172

Splitting AE is nonlinear on number m. Thus, Zeeman effect is quite

anomalous in arbitrarily weak field.
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It is worth to ephasize that splitting of energy levels in a weak
field for the dyons considered above differs significantly from}the
the splitting of levels for ordinary fermion. We may conclude that

spin is not generated in the system of charge and monopole.
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