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Assuming that space-time is accompanied by hidden anticommuting coordi-
nates, we have constructed “fermionic” generalisations of the Dirac equation;
these involve matrices (which can be construed as operating in an internal space)
multiplying the Grassmann derivatives. We discuss several models, of varying
degrees of complexity, with “internal symmetries” including Sp(2) and SU(N).
By appending the space- time Dirac operator, one is led to mass spectra with
quantized values, suggesting that this approach may provide a model relating
generations to internal symmetries.
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I. INFRODUCTION

[t is an attractive notion that any hidden additional space-time coordinates are
fermionic in character rather than bosenic. An assumption of this type produces
strongly constrained theories and leads to models with finite internal degrees of free-
dom,; they are thus more amenable to experimental verification than models based
on extra bosonic coordinates, where an infinite tower of states is usually entrained
and one has to ensure that the higher excitations are sufficiently massive so as not to
conflict with the known low-energy particle spectrum.

The idea 1s not new. It originated in Fermi-Bose supersymmetry and has been
applied to superparticles ! and superstrings *, as well as providing a framework for
extended BRST symmetry and the ghost spectrum in gauge theory . The concept
has been advocated as a nice way of handling spin and picturing internal symmetry,
with the choice of coordinates and superwave functions reflected in the resultant
4

gauge group and the associated particle representations It is even possible Lo

contemplate a Kaluza- Klein generalisation of general relativity which encompasses

fermionic coordinate extensions °.

® we examined the consequences of a Grassmann scheme for

In two earlier papers
quantum-mechanical models where the Hamiltonian H is a hermitian function of
two (or more) fermionic coordinates. H can generally be written as a harmonic,
quadratic function of pairs of Grassmann variables and their conjugate momenta plus
anharmonic terms which are finite in extent because of the terminating character of
Taylor expansions of anticommuting quantities. As a result, problems of this type
are always completely soluble in principle and often in practice.

In this paper, we would like to follow in Dirac’s footsteps and look for a “square
root” of the harmonic Hamiltonian,

H=3Y"(piph + zpo})
k

which s the sum of k pairs of conjugate fermionic variables. Notice that we are not
allowed to take the Hamiltonian as only the square of the Grassmann momenta p,
because this is not strictly Hermnitian 7; the addition of the square of coordinates
is essential for restoring hermiticity. In this respect we are departing from Dirac’s
brief. However, Moshinsky and Szczepaniak ® have demonstrated that this is not a
very radical departure by square-rooting the bosonic harmonic Hamiltonian. Here we
want to carry out the same thing but in a fermionic setting, which is why we have
entitled our article a study of Fermi-Dirac equations.

When the square roo$ of the Hamiltonian is obtained in the form G.D where D is
some linear combination of  and p, and G are the associated “internal” matrices,
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it is generally true that the square (G.D)? equals a constant plus an operator whose
eigenvajues sum to zero. We show this in the next section. There we also present the
simplest model of this sort; it has an invariance which might be considered “rotations
around the z axis in symplectic space”; it does not have full Sp(2) invariance, but
rather functions as a dynamical operator, very similarly to its role in the O(4,2)
formalism for the hydrogen atom ¥.

Our preference is a different Hamiltonian which is an invariant under combined
Sp(2) rotations of coordinates and “internal spin”, as that is in direct analogy to the
Lorentz invariance of the ordinary Dirac equation. Therefore we construct in Section
III an appropriate linear combination of coordinates and momenta, multiplied into
related matrices, which possesses this Sp(2) symmetry. At first we do so for k = 1.

The generalization to higher & values may be done in more than one way. In
section I1.B. we consider the most straightforward approach. This has a permutation
symmetry among the Grassmannian coordinates of different index; it has the unusual
feature that the component operators for the different coordinates anticommute rather
than cormnmute.

A more common internal symmetry group is SU(N). It turns out that there is more
than one way to write the SU(N) rotation operators within this framework. Two of
these methods are demonstrated in Sections V and VI; both lead to the same invariant
Hamiltonian.

In the final section we adjoin these Grassmann coordinates to space-time and con-
sider the full Fermi-Dirac equation to determine the repercussions for the mass matrix.

II. GRASSMANN COORDINATES AND MATRICES
A. Internal space operators
Let us begin by briefly summarising our notation. We are dealing with coordinate
pairs of fermionic variables @) and x} and their conjugate momenta,
pi =100z, = —pr1, pi = —i0/a} = pia, (1)
connected with the raising and lowering index rules,
Phr = NesPhy a1 =0t =1 (2)
and in agreement with the “Heisenberg commutation relations”,
{Zhpi} = w"bu, {ag,27} = {p},pi} = 0. (3)
For this purpose, note that the index k is a spectator, simply serving to count the

number of independent pairs.
All of this may look more familiar if one defines creation and annihilation operators,
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Al = (a1 +iph) V3 = (0/02% + =1) V2, (4a)

Ae = (2~ i) V3 = (8)95k + D) IV5, | (4)
Bl = i(e? + ip?) V3 = i( /0L + 2 V3, (50)
By = i(z} — ipp)/V2 = i(—0/0x} + z}) [ V2. (5b)

The harmonic Hamiltonian can be reexpressed as Ek(/{lflk + BI By) if one so wishes.
However, for the most part we shall stick to the coordinate-momentum operators
rather than Fock space combinations. '

Acting on the Grassmann variables are the Sp(2) generators,

Sy =i(z'p! — 2%p?) = (2'9/02" + 2°0/8"), (6a)
Sy = +('pt + 2%p?) = —i(2'8/02* — 220/ 2"), (6b)
Sy = —i(2lp® + 2?p') = (210/0z" — 2%8/0z%). (6¢)

These obey the standard spin algebra rules. For later use, we should point out the
existence of “quasispin” operators (which are quadratic in momenta or coordin&mtes)
that also obey the commutation rules of angular momentum, and which include the
harmonic Hamiltonian:

Ly = a2 4 p'p? = a'2® + 0% /522027, (7a)
Ly = i(—z'2? + plpz.) = i(—z'2? + 8%/92" 8, (7b)
Ly = —i(a'p? — 2"p') = 2'0/02" + 2%9/0a* ~ 1. (7¢)

It should be noted that all the I operators are Sp(2) invariants (i.e. they are unaf-
fected by the action of the S operators). In particular, the scale operator Ly measures
the degree of an z-monomial.
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B. Internal space matrices

The aim of this paper is to obtain a square root of the Grassmannian harmonic
Hamiltonian in much the same way that Dirac tackled the relativistic energy equa-
tion. We are looking for an operator G.D whose square produces the quadratic H
plus possibly other operators which commute with it. [ are linear combinations of
Grassmann coofdinates and/or momenta, while G are internal space matrices, direct
analogues of the Dirac gamma-matrices. Since

4(G: DY = (G:, GHDs, Dy) + {6, G 1{ Dy, Ds},

we can reduce the square to the product of two commutators by requiring either that
{D;,D;} = 0 orthat {G;,G;} = 0. Furthermore we would like

(Di, D] o ni;(H + O)

where (O vanishes or at least commutes with H. One may even relax the conditions
by ensuring that when ¢ = 7 the anticommutators of G; and of D; reduce to the
identity, in which case the square is still given by the product of two commutators up
to an additive constant. The various models that we shall study attempt to satisfy
the above requirements or variants thereof. In any case, since by necessity 4(G;D;)*
contains a commutator of G, that part of the square has zero trace; so the sum of its
eigenvalues is zero.

As a matter of fact, a set of natural internal matrices G do exist. Because all
wavefunctions can be expressed as linear combinations of the basic states,

(1+2%2Y)/v2, 2% o, (1 -2%Y)/V2, (8)

we may determine the action of coordinates z and mormenta p in this basis and extract

a set of corresponding matrices,

00 10 0-100
10 0 1 0000 |
V2XT = ? 9a
V2R = 0 g o |V 1001’ (%)
0010 0100
00 —i 0 00 0
- 00 —i 000 0
apl = | 9P = . b
VaP = 60 o VPP 100 — (9P)
00 i 0 0i00






Obviously, the anticommutation relations between the matrices X and P are precisely
the same as those for the original variables @ and p. The same applies to the matrix
representations of the FFock space operators, namely A and B, where A = (A2 —
i?’z)/ﬁ, and so on. For later use we should record that the “ground state” spinor
on which these matrices act is

©xo = (1,0,0,1)/v2, | (10a)
the first two excited spinors (obtained by applying X” to yo) are
x1 = (0,1,0,0); x2 = (0,0,1,0) (10b)
while the “highest weight” spinor (annihilated by the X) is
xa=(1,0,0,-1)/v2. (10¢c)

C. A “dynamical” Hamiltonian model

Our first model uses a couple of ) and a corresponding pair of internal matrices
G. For simplicity we identify the two D with appropriate creation and annihilation

combinations:

Dy =z' —ip® = /82" + 2, (l1a)

Dy = —i2® — pt = {(8/02* — z?). (11b)

Thus D? = D? = 1 and {Dy,D;} = 0. Also both D’s are hermitian. In order
to ensure that {Gy, G2} = 0, we make the simplest two-dimensional choice, namely
G1 = 09,0y = o3 signifying an “internal spin space” with two degrees of freedom.
This way one arrives at

(G.D)* = (0901 + 03D,)? = i0y[Dy, Dy + D} + D3 (12a)
= 20, (32/33:23.171 +ala? — 28/02% - 3:28/01:1) + 2 (12b)
= 201(.[’[ - Sl) + 2 (12(3)






In this model, the extra operator O equals the first spin component S;, which indeed
commutes with H.

Because the eigenvalues of I are £1 on the bosonic states and 0 on fermionic states
in Eq. (8), while the eigenvalues of Sy are the reverse (#1 on fermionic combinations
z' + 2? and 0 on bosonic states), we conclude that the full eigenvalues of (G.D)? are
2 4 207 whether the states are Bose or Fermi and hence the range of eigenvalues is 0,
2 and 4. We notice in this model that the Hamiltonian is associated with the matrix
oy and is only invariant under rotations about the first axis. It is, in fact, invariant
under the full Sp(2) rotation about this axis, Sy + ;.

Because the Hamiltonian is not invariant under the full Sp(2) group, it is a “dy-
namical” operator of this group including the “spin”. This concept of a dynamical
symmetry including the Hamiltonian is well-known in a number of contexts. Our
Fermi-Dirac equation is merely another example, albeit in an unusual setting.

One may develop this idea and double the internal space by extending the D with
another hermitian pair,

Dy =14(8/dz' — '), Dy=(8/82" +z*)

and finding another matrix pair Gy and G4 which anticommute with the previous G.
In the sections below we develop this idea, yielding models with full Sp(2) symmetry,
and with SU(N) symmetry.

II1. SP(2) SYMMETRIC MODELS

A. Basic case

Recall that a natural set of spinorial matrices exists in the form of X and P of Eq.
(9). For them one can also construct a triple of Sp(2) spin matrices:

Sy = (AP — xEpHy, (13a)
Sy = +{A'P + APPY, (13b)
Sa = (AP 4+ AP, (13¢)

and by the same token there arise the 4 x 4 quasispin matrix analogues,

L= X%+ plp? , (14a)

Ly =i(=XTA7 4 PIP?), (14b)
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L= —i(X1P? - X*Ph), (14c)

which stay invariant under & rotations.
We are now guaranteed that the hermitian linear combination

G.D = —ino(X7p* + a"P°) (15)

is Sp(2) invariant under combined coordinate-spin rotations generated by the full
generators S+ 8. A fortioriits square will also be Sp(2) symmetric; in fact the result
can be manoeuvred into the pleasing form,

(G.DV¥=1-88-L.LC, (16)

where the last term on the right is also quasi-spin invariant.
It only remains to find the eigenspectrum. This is readily done by splitting the
operator in question into the sum of two commuting parts, G.D = U + V, where

U= ~i(X'p* 4+ 2'P?), V=i X%p + 2P, (17)

and determining the eigenfunction of each part, %, and <, with eigenvalues ), and
Ay respectively. Nevertheless we should point out that the total eigenvalue of the
product wave function ,¥, equals A = A, 4 A,; the possible change in sign is due
to the fact that the eigenstates i, are sometimes fermionic; passing the operator V
through the product can induce this curious sign reversal.

By expanding the wavefunction i, in the form

thy = la+ B! + X" + 82" A7 xq

because it depends purely on the first Grassmann components, we may derive the
four eigenvalues and wave functions,

Ay = 1: 1./)1}, = [ml + Xl}XO (18&)
Ay =0 Py =xo0 or a Xy, (18b)
/\u o1 ¢u. = [ml - Xl]XD (18(:)

Note that the wavefunctions are 4-component spinors in the fermionic variables be-
cause the bracketted quantities in Eq. (18) act on the ground state spinor yo. For
instance,

(1) = (2! /2,1,0, 2 /V2).
Similar sets can be found for V, with the second Grassmann component replacing the
first. Paying proper attention to sign changes, the combined operator U 4V possesses
the 5 eigenvalues and 16 eigenfunctions,
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A=2: P = [zt + X[2* - ¥*]xo (19a)

A= =2 P o= [z} — X[2* + X%x0, (19b)
A=1:  p=[z"+X"x0, ¥=["+Ax0,
%= [ot + XN A)x0, (2P A7)[2? 4+ A% x0, (19¢)
A= =1 %=t = XMy, ¥ = (27— X%y,
¥ = [o - A2 A)x0, (212" ~ X¥]xo, (19d)
A=10: = [1, 2" A, 22 A%, 2" A2 A 0,
p = [} + )@+ A%)x0, (& = AN)e? - A%xe. (19€)

B. Extension to higher k

We shall treat the case k = 2 in some detail and then sketch the results for larger
k-values. The added “normal” Grassmannian coordinates zi,z% anticommute with
each other and with the previous z}, 2% according to the relations in Eq. 3. When
one considers the internal matrices &, X7, however, one sees that a standard type
construction will result in {3, ¥2}=0, but [Xf, A{]=0.

The reason for this is that the internal spaces “attached” to #! and r% are similar
to the spin spaces attached to two different particles in standard quantum mechanics.
Just as the spin operators for different particles commute, the analogous symplectic
matrices for different symplectic spaces will commute.

We will have a similar situation for spin-like matrices and wave functions for our in-
ternal coordinates A7 and A; hence the matrices G, and G, commute even though the
operators Dy and D; made of normal Grassmannian coordinates anticommute. This
has a number of very positive features, but it also introduces one or two complexities
into the computation of the eigenfunctions of the extended Hamiltonian operator.
Let us consider these in turn:

First, by using the G and D operators as defined in Eq. (15) for each coordinate
k, our new operator {the square root of the new Hamiltonian) is ¥;G,;.D;; this 1s
the sum of operators for individual 7 which enficommute with each other. Hence
the Hamiltonian becomes automatically a sum of Hamiltonians for the individual
coordinates:

(2;G;.D;) = Lx(Gr-Dy)? {20)
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The individual coordinate Hamiltonians commute with each other; hence if A 1s an
eigenvalue of the whole Hamiltonian, and Ay is an eigenvalue of the &’th Hamiltonian,
the eigenvalues for larger numbers of dimensions can be computed from those of lower
dimensions by

A% = AR (21)

Hence mass contributions of these extra dimensions add in quadrature; that is a very
nice feature of the system.

The eigenfunctions 3 of the whole operator ¥,G;.D; are not, however, simple prod-
ucts of the eigenfunctions listed in Eq. (19); this is best illustrated by an example.

g2-D2($i + Xll) = (_5‘5% + Xll)g?D? (22)

In other words, if we define Y, = Gy.0)4 , then for each 1y such that Yy, = Ay,
we have Yy, = 1Y, where ¢} may be different from ;. Hence even though 1y may
be an eigenfunction of Yi, and 2 may be an eigenfunction of Y;, the state yy3hy is
not necessarily an eigenfunction of ¥; + Y;.

Such an eigenfunction can, however, always be found from linear combination of
P1tpe and PiP2. Notice that (31) = iy, and that since Y] and Y; anticommute, we
can prove that ¥ is an eigenstate of ¥; with eigenvalue —A; if 1) Is an eigenstate
of ¥} with eigenvalue +A;. Hence linear combinations of products of the states with
eigenvalues +X; can be used to form a basis in which to calculate the states with net
eigenvalue A such that A% = T3 A%,

For example, the states

{aler + 2] + Blay — X Hes + Ap)[2; — A7) (23)

with 4 = a1 F v/5)/2 are eigenstates of the overall Hamiltonian with A = +/5.

One might have some prejudice that a state with an even number of powers of =¥
or XF would be a “boson” and one with an odd number of such powers would be
a “fermion”. Using this classification {which may or may not ultimately be useful),
there are equal numbers of Fermi and Bose states. -

For 2 pairs of Grassmannian coordinates, one therefore has 256 states, of which 128
are “Fermi” type. There are 11 eigenvalues: /8, £v/5, £2, £v/2, 1 and 0. There
are 96 fermi-type states with eigenvalues -+1, and 32 “heavy” fermi-type states with
eigenvalues ++/5.

Since there are 16 states for each coordinate dimension, the total number of states
grows very rapidly like 16™ as more dimensions of symplectic space are added. Hence
direct implementation of a higher symmetry by the addition of n such pairs of di-
mensions would require an additional selection rule to reduce the number of physical
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states. Alternatively, one may search for a more subtle representation of the symmetry
in spaces of dimension lower than n. Work on this approach is currently underway.

IV. SU(N) SYMMETRY: APPROACH I

A. Introduction

As we discussed above, it i1s natural to generalize the result for one pair of Grassman-
nian coordinates z,y to the case of several symplectic dimensions by simply adding
the symplectic Hamiltonians for the various pieces: H = LH; with (see Eq. 15)

0 d 0 0

Hizmra"};-i-/l’gé;;-l-yréﬁ ;)&-53; | (24)
(For the remainder of the paper we use z,yx instead of z},22. This simplified no-
tation stresses the index under discussion here - that of the different pairs.}) Since
the symplectic spinors for different dimensions commute, whereas the “ordinary” sym-
plectic coordinates anticommute, the Hamiltonians H; anticommute. The eigenvalues
then add in quadrature, A* = ¥;A?. This is perhaps unusual, but a complete theory
can be composed in this way.

Although the Hamiltonian constructed in this way has permutation symmetry
among the indices, it does not have SU(N) symmetry. In subsection IVB we dis-
cuss and solve the problem of representing the SU(N) generators on the symplectic
spinor coordinates.

In subsection IVC we give a modification of the Hamiltonian which does have the
desired SU(N) invariance. This Hamiltonian has the feature that the H; do commute
with each other; the eigenvalues of the total H are then sums of the eigenvalues for

the individual H,.

B. SU(N) Generators in symplectic spaces
1. “Ordinary” Symplectic Coordinates

When one deals with standard symplectic coordinates z;,y; such that 2;y; = —y,z;,
the basic SU(N) generators are well known '°. They are (for 1 # j)

o 9

5|G i — gy
bz~ oy,

i (25)

== l"[jz'
and the commutators thereof. For example, the SU(2) generators are
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G2 g gy 2
ST = 5, U W (26a)
61, 0 _ 9 |
57y = £ ] By’ (26b)
SG3 o= [SGIQ, SG;] = fl?]—a— - T a a -+ Yo a (260)

diy b-m—z B ylzr;?‘)‘—l‘ 03}2

2. Internal space matrices

One might be tempted to simply make a copy of Eq. 25 using &7, V; instead of 2, y;,
and add it to Fq. 25 in order to get the overall SU(N) generators. This procedure
was successful in defining the symplectic group generators, Eq. 13. (For more than
one coordinate «;, one simply adds copies to Eq. 13)

‘I'his will not work, however, because X} comrmutes rather than anticommutes with
X3, so an imitation of Eq. 26 in the symplectic spinor space would need some addi-
tional way to specify that one should take the anticommutator of S;% with 5,2 but
the commutator of S,* with S,*.

The solution to this problem is to realize that, just as v5 anticommutes with all the
ordinary gamma matrices, there is a “y5 - equivalent” matrix in the symplectic spin
space. For a given set of symplectic coordinates z;,y; with associated spinors X;, Y
we can form

TN VN
5w, TV Gx ~ NGy + (55

Zi=( Vi) (27)

This has the feature that it anticommutes with all the four basic matrices X, 5%;, Vi,
and 5‘1;7' Hence, insertion of the matrix can help change commutators into anticom-
mutators as desired.

We are then led to define the “spinorial” contribution to the SU(N) generators as

; %, 7, P
5§57 = (A,;W + 3{,»-53;)3,»...33-_1 if i<y (28a)
(A 1
i d ) .
Ssj = *(Afjay -} y,-ﬁ)—)Z,ZJul H 1< 7 . (281))
" H J






By forming the sum SGij + Ssij , and making all commutators of these with each
other, we generate the entire algebra of SU(N).

It can easily be seen that these do not commute with the sum Y H; of the operators
H;mn Eq. 24. If we take, for instance, just H = Hy 4+ H,, the commutator of 5312
with Hy will lead to a messy expression which cannot be cancelled by the other terms.
The “natural” thing here would be the anticommutator.

C. SU(N) Invariant Hamiltonian

Again, the thing to do is to convert some commutators into anticommutators. This
can be guaranteed by a slight modification of H. We now choose ‘

H = EéHiZ]ZQ....Ziml (29)

This has the feature that it commutes with all S;’ constructed from the sum of Eqs.
26 and 28. Hence it commutes with all their commutators, and is an SU(N) invariant.

Furthermore, the “sub-Hamiltonians” H;Z,Z,..2;.; commule with each other.
Hence eigenstates of the entire Hamiltonian may be formed from eigenstates of the
individual coordinate Hamiltonian H;. These were derived in Section Il , where we
show they have eigenvalues - 2, 4 1, and 0. _

For two coordinates, consider a product eigenfunction of the form wy = thy1hs.
Action on this of our Hamiltonian Hy + HyZy will yield Mr + HaZinypy. To
use the fact that Haws = Ajib,, we must “push” HyZy through 4. Fortunately, all
the eigenstates of H; have a definite “parity” under this operation. For instance,
HyZy(zy + X)) = ~(21 + A1) He.

Define F; to be the “parity” of 4; under commutation with H;Z;, ¢ # j. Then H
as defined in Iig. 29 has eigenfunctions 1h11s... with eigenvalues

A=Ay 4 (DA 4 (1) g 4 (30)

We see, therefore, that although the Hamiltonian of Eq. 29 may appear rather ugly,
its eigenfunctions and eigenvalues are simple to construct.

V. SU(N) SYMMETRY: APPROACH I1

In the previous Section, the SU(N) generators were constructed by first taking
generators composed entirely of Grassmanman coordinates and then adding to them
ones composed entirely of Grassmannian “spin”. {The obvious analogy is orbital
angular momentum plus spin angular momenturs). This is, however, not the only
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way to achieve operators which have the commutation relations of SU(N). In this
section we display another approach, which combines the Grassmannians and their
spins in a different way.

The Hamiltonian operator is the same as in the previous section. Our construction
here demonstrates that in fact it has not only SU(N) x Sp(2) invariance, but SO(4N)
invariance.

Let us begin with the H of Eq. 29, for two sets of Grassmannians:

H = f.[l + Zlﬂg == (311—1)
) & ) B 8 ) )
2P N e +1 Y153 + y1 + Zi{2 5 +A’z + Yoy + yzayz) (31b)

The eigenstates are products e with eigenvalues A + (—1)F1 X/ where P} is the
parity for pushing H,Z; through i,
Now consider the SU(2) generators R; and the Sp(2) generators S; defined as follows:

R;z(‘lﬁ)( 38 + N5 +Z‘(q‘:16i)\52+y‘8§22)) (32a)
R = (o + gy + Bl + Vi) (32b)
= ()% aifyl ) J”“aa ”*aal ¥ ?i’eryz %, ”288 +y23§2))
(32¢)
and
S+:(-n1\/_-2-)(115§-;+ Q-a%wdi +X2£)2) (33a)
5 :(%)(yl ail T, da_ 0 a% + M) (33b)
(33¢)
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Not only do we have [H, Ri} = 0 = [H, S;] , but also [R;, S;] = 0. We therefore see
that this Hamiltonian has SU(2) x Sp(2) invariance.

Actually, however, H has a larger invariance group than this. It has SO(8) invari-
ance. This can be seen by explicitly constructing an SO(8) invariant using a trick
discussed in Georgi ''. In this method, sigma matrices for 4 commuting coordinates
are used to construct an 8 dimensional vector representation of SO(8):

Iy = oy0i0503 Iy = —ojolodo] (34a)

Iy = orosos Ty = —oioias {34b)
Is = o505 T6=—0con (34c)

=g, Tg=-—0} (34d)

The matrices M, = £{T';,I':] have SO(8) commutation relations, and [M, [Y] =
160k — 6uT;) as required for the vector representation.

We now construct mutually commuting sigmas from our Grassmannian coordinates
and spin matrices. We use separate “gamma-5 equivalents” for the y and z coordi-
nates; e, 2¥ = —1 + Qy% anticommutes with y and 3‘%, whereas z® plays the same
role for z. Of course z = 2¥2* anticommutes with all of these.

For the Grassmann spin matrices, therefore, the sigmas are

0 y 0 0

L (5}; + )z ul= 1(3% -X)zy  vl= 14 zxzﬁ; (35a)
= (aé))g + M) Ni= z’(a‘; V) Lie= 14 23225% (35b)
52 = (5—% + )2y 5= z(é%; -2 Dy =14 zfvl-éi—l (35¢)
o= ( 8?)1 +3) D=4 a(; V) Bri=-1420 a;avl (35d)

And the corresponding sigma’s for the Grassmann coordinates are
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o) = (5;; + @y)z3 oy = 7«(% — T9)z32; 03 =—1 +2x2&;
d ) g
=g tun si=iGmrn sl
oy = (57— + 21)7} 05 = i — z,)2Y 033__1_}_2_1-1__62_
1 $1 T1)2y ) die 1)%] 3 B2
Y1 oy e

Starting with these, the equivalents to the Georgi I''s are

Gy = Eis2sivs
Gy = ~SNInIndns
Gy = T2Esw

Gy = —5ixdns

Gy = £33
G = ~5351

Gy = %1
Gy = — 5

_ 1 2 3 4
g1 = 09030303

. 1.2 .3 4
Y2 = — 0103030,

2.3 4
3 = 00304

Yq = —0120:?‘7;
g5 = 0303
gs = —070%
g7 =3

gg = "0:

(36a)

(36b)

(36¢)

(36d)

(372)
(37D)
(37c)
(37d)
(37e)
(371)
(37g)

(37h)

The quantity %,Gag, is clearly invariant under commutation with the SO(8) genera-
tors Mi; = My; +my; where My; = (5)[Gy, G] and my; = (3:)[gi, g;]. The remarkable

result for our purposes is that

YolGoge = 2H

(38)

The inclusion of further Grassmann variables is obvious. For three different Grass-

mannian sets, the construction produces a Hamiltonian invariant under SO(12), which

contains SU(3) x Sp(2).
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VI. GRAFTING ON SPACE-TIME

The eventual purpose of this exercise is to tie in the internal degrees of freedom,
namely the Grassmann @ and p, with the space-time degrees of freedom through an
extended Fermi-Dirac equation. Thus the total Dirac operator is to be regarded as
some linear combination of v. P and G.D. Because the space-time and Grassmann spin
operators commute, it becomes obligatory to include a factor of ys5(= y9v1727s) with
the fermionic derivatives, in order that the space-time and Grassmannian terms add
in quadrature when the overall Hamiltonian (square of our wave-function operator)
is calculated. This leads us to the full Fermi-Dirac equation,

(v-P + pysG.D — m)yp = 0, (39)
where p is an arbitrary mass scale factor.
Squaring the complete derivative operator (2 = —1) then produces the mass spec-
trum,
M? =m? 4+ (uG.DY =m* + (np)% n=0,1,2 (40)

with various degeneracies of eigenstates implied. For %k additional pairs of Grass-
mannian variables, with a perturbation symmetry invariant Hamiltonian, the mass
spectrum will be

M? = m? + (pG.D)* = m?* + E';z_'f(njp)z; n=0,1,2 (41)

For k additional pairs of Grassmannian variables with an SU(k) invariant Hamilto-
nian, the mass spectrum will be

M?* =m? 4 ,u,z(Ej:zfnj)? n; = +2,%1,0 (42)

We see, therefore, that the “hidden degrees of freedom” in the symplectic spaces
have immediate consequences for the mass spectrum. This suggests a tantalizing
possibility that “families” of quarks and leptons might be “explained” in this way.
Study of this possibility is currently underway.
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