CERN Accelerating science

Article
Report number CERN-ACC-2015-0149
Title Design of a Large Single-Aperture Dipole Magnet for HL-LHC Upgrade
Author(s) Qingjin, Xu (KEK, Tsukuba) ; Nakamoto, Tatsushi (KEK, Tsukuba) ; Iio, Masami (KEK, Tsukuba) ; Ogitsu, Toru (KEK, Tsukuba) ; Sasaki, Kenichi (KEK, Tsukuba) ; Yamamoto, Akira (KEK, Tsukuba) ; Todesco, Ezio (CERN)
Publication 2013
Imprint 14 Jan 2013
Number of pages 5
In: IEEE Trans. Appl. Supercond. 23 (2013) 4001305
DOI 10.1109/TASC.2013.2240034
Subject category Accelerators and Storage Rings
Accelerator/Facility, Experiment CERN HL-LHC
Project CERN HL-LHC
Free keywords Superconducting accelerator magnets ; HL-LHC Upgrade
Abstract An upgrade of the low-beta insertion system for the ATLAS and Compact Muon Solenoid experiments is proposed in the high luminosity Large Hadron Collider upgrade project. It includes final beam focusing quadrupoles, beam separation and recombination dipoles, and larger aperture matching section quadrupoles. KEK is in charge of the conceptual design of the large aperture separation dipole D1. The latest design parameters are a main field of   5 T at 1.9 K with Nb-Ti superconducting technology, a coil aperture of 160 mm, and a cos-theta one-layer coil with Large Hadron Collider dipole cable. Because the new D1 is expected to be operated in a very high radiation environment, radiation resistance and a cooling scheme are being carefully considered. The collaring-yoke structure is adopted to provide the mechanical support for the single-layer Nb-Ti coil. We summarize the design study of this magnet, including i) the very large iron saturation effect on field quality due to the large aperture and limited size of the iron yoke, ii) the stray field at the outer surface of the iron cryostat, and iii) the stress management from room temperature assembly to final operation.

Corresponding record in: Inspire
Email contact: [email protected]


 記錄創建於2015-12-08,最後更新在2016-06-30