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Abstract

ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production

of beams of exotic radioactive isotopes. Currently over 1000 di�erent isotopes with half lives down to

milliseconds can be extracted with beam intensities of up to 1011 ions per second. This variety is achieved

by permanent investigations resulting in sophisticated target materials, target setups and ion sources.

Although many isotopes are available at ISOLDE, the extraction of refractory elements is challenging.

The high boiling points of these elements require the extraction in molecular form.

Carbon and boron, the subjects of this thesis, belong to the group of elements that are di�cult to extract.

Up to now reproducible extraction of exotic carbon isotopes 9C and 17−20C is not successful. Furthermore

beams of radioactive boron 8B were never extracted at ISOLDE or any other ISOL facility. Hence there

is a strong demand for beams of these isotopes.

Many di�erent phenomena are involved in the extraction process from ISODLE target units and thus

determine the beam intensity and purity. Radioactive isotopes are produced by impact of the 1.4 GeV

proton beam on the target. After the production parts of the isotopes di�use to the surface of the bulk

material where evaporation or molecular formation takes place. During the migration from the target to

the ion source chemical losses with the environment can occur.

Besides ionization to q = +1 ions, molecules can dissociate in the ion source. In some cases the cross

section for the dissociation exceed the cross section for direct ionization by orders of magnitude.

To maximize the beam intensity each process has to be optimized by selection of target materials, target

setup and operational conditions.

The goal of this thesis is to determine the hindering processes during extraction of exotic isotopes and

identify target material and setup combination that will allow the production of radioactive ion beams

of short lived carbon and boron in the future.

Therefore the di�usion of boron in target materials was studied. Stable boron was implanted into target

material samples and later on irradiated with thermalized neutrons. Alpha particles occurring from the
10B(n,α)7Li reaction allowed to monitor the amount of boron before and after heat treatment of the

samples. This study lead to a choice of target material from which the release of 8B was tested during

the online period 2014.

The same implantation method was used for the production of samples which will serve the characteri-

zation of neutrons, emitted from the liquid lithium target (LiLiT) at the SARAF facility in Israel.

To identify target setups that allow an e�cient formation and extraction of carbon oxide and boron

�uoride, the chemical equilibrium with target materials and structural materials was calculated. The

results of these calculations were experimentally tested at the ISOLDE o�-line mass separator. The

experimental setup consisted of a modi�ed ISOLDE target unit that allowed the injection of reactive

gases into the target container. In this way the dependency of the formation and release of carbon oxides

and boron �uorides on temperature and materials present in the container was tested. Furthermore, the

setup allowed studies of the ionization characteristics of these gases.

To complement the knowledge on the adsorption of carbon monoxide and carbon dioxide on target ma-

terials, the adsorption enthalpies on Yttria and Alumina were measured within a collaboration with the

University of Pardubice, CZ.

The approach of extracting refractory elements as molecules was used for the production of a titanium

�uoride beam. A sample of radioactive 44Ti, produced at the Paul Scherrer Institute in Villigen, was

inserted into an ISOLDE target unit. Injection of CF4 allowed the formation and extraction of titanium

as volatile 44TiF3
+.





Zusammenfassung

ISOLDE, die Isotope Separation Online facility, am CERN ist eine führende Anlage für die Produktion

radioaktiver Teilchenstrahlen. Derzeit können mehr als 1000 Isotope mit Halbwertszeiten bis zu wenigen

Millisekunden und Strahlintensitäten von bis zu 1011 Ionen pro Sekunde extrahiert werden. Diese Vielzahl

an möglichen Strahlen kann nur erreicht werden durch andauernde Verbesserungen von verwendeten

Targetmaterialen, Targetaufbauten und Ionenquellen. Obwohl eine Vielzahl verschiedener Isotope bei

ISOLDE verfügbar ist, ist die Extraktion refraktiver Elemente nach wie vor nicht in allen Fällen möglich.

Der hohe Schmelzpunkt dieser Elemente erfordert die Extraktion als �üchtigere Molekuele. Die Elemente

Kohlensto� und Bor, das Thema dieser Arbeit, gehören zur der Gruppe der schwer zu extrahierenden

Elemente. Bisher ist es nicht möglich, zuverlaessig Strahlen aus kurzlebigen neutronarmen 9C sowie

neutronreichen 17−20C herzustellen. Des Weiteren konnten bisher keine Strahlen aus radioaktivem 8B bei

ISOLDE oder einer anderen ISOL Anlage hergestellt werden. Folglich existiert ein grosser Bedarf an

Strahlen bestehend aus diesen Isotopen.

Die Intensität und Reinheit mit welcher ein Isotop aus einem ISOLDE Target extrahiert werden kann

hängt von einer Vielzahl von Prozessen ab. Nach der Erzeugung des Isotopes durch Wechselwirkung

des 1.4 GeV Protonenstrahls mit dem Targetmaterial müssen diese vom Ort der Erzeugung zur Ober-

�äche des Targetmaterials di�undieren. Dort können Isotope verdampfen, oder im Falle von refraktiven

Elementen, mit anderen Elementen zu Molekülen reagieren. Während der anschliessenden Migration

zur Ionenquelle können Verluste durch chemische Reaktionen mit den umgebenden Materialen statt�n-

den. Im molekularen Fall können neben der Ionisation zu q = +1 Ionen Verluste durch Aufbruch der

molekularen Bindung statt�nden. In manchen Fällen ist der Wirkungsquerschnitt für die Aufspaltung

eines Moleküls um Grössenordnungen höher als die Ionisation. Um den resultierenden Teilchenstrom

zu maximieren müssen all diese Prozesse optimiert werden. Dies geschieht durch geschickte Wahl von

Targetmaterialen, des Targetaufbaus und Betriebsparametern. Das Ziel dieser Arbeit ist es, die Gründe

zu identi�zieren, welche bislang die verlässliche Extraktion von kurzlebigem Kohlensto� und Bor verhin-

derten und Targetkombinationen zu �nden, die es in Zukunft ermöglichen, Strahlen dieser Isotope für

Experimente bei ISOLDE zur Verfügung zu stellen.

Dafür ist es notwendig die einzelnen Prozesse der Extraktion getrennt zu untersuchen. Um die Di�usion

von Bor in Targetmaterialien zu untersuchen wurde stabiles 10B mit Hilfe des ISOLDE O�-line Massense-

parators in Proben von Targetmaterialien implantiert. Der hohe Neutroneneinfangs Wirkungsquerschnitt

von σ = 3840 barn erlaubt, die Position und Teilchenzahl des implantierten Bors mittels der Reaktion
10B(n,α)7Li zu untersuchen. Die Ergebnisse dieser Messungen führten zur Wahl des Targetmaterials für

einen Online Experiment 2014, bei welchem die Extraktion von kurzlebigem 8B erstmalig getestet wurde.

Mit der gleichen Methode wurde 10B in Aluminiumfolien implantiert. Diese werden in Zukunft benutzt

um emittierte Neutronen des Liquid Lithium Targets (LiLiT) an der Saraf facility in Israel zu charakteri-

sieren. Zur Identi�kation von Targetmaterialien und strukturellen Materialien, welche die Formation und

Extraktion von Kohlensto�oxiden und Bor�uoriden erlauben, wurde das chemische Gleichgewicht dieser

Materialien berechnet. Die Ergebnisse dieser Berechnungen wurden experimentell am ISOLDE O�ine

Massenseparator getestet. Dafür wurde ein standard ISOLDE Target mit einer zusätzlichen Gasinjektion

ausgestattet welche es erlaubt, Gase in den Targetcontainer zu injizieren und damit Extraktionse�zienzen

zu bestimmen. Mit diesem Experiment wurde die Abhängigkeit der Bildung und Extraktion von Kohlen-

sto�oxiden und Bor�uoriden von Temperatur und verwendeten Targetmaterialien untersucht. Darüber

hinaus wurde die Ionisation dieser Moleküle sowie verschiedener Edelgase in der verwendeten VADIS

Ionenquelle untersucht. Im Zuge einer Kollaboration mit der Universität Pardubice, CZ, wurden Adsorp-

tionsenthalphien von Kohlensto�monoxid und Kohlensto�dioxid auf Ytrriumoxid und Aluminiumoxid

bestimmt.



Die Konzepte, welche für Kohlensto� und Bor erarbeitet wurden konnten auf andere refraktive Ele-

mente angewendet werden. Dies erlaubte die erfolgreiche Extraktion von radioaktivem Titan 44Ti als
44TiF3

+.
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List of abbreviations and symbols

Abbreviation Unit De�nition

A Mass number of atom

CERN European Organization for Nuclear Research

CNT Carbon Nano Tubes

D m2 · s−1 Di�usion coe�cient

D0 m2 · s−1 Di�usion pre-exponential factor

ε0 F/m Vacuum permittivity

εdiff E�ciency for the di�usion of an isotope to the surface of the target material

εFormation E�ciency for molecule formation

εIon Ionization e�ciency

εTransport E�ciency taking into account chemical losses during e�usion

ERAWAST Exotic Radionuclides from Accelerator WAste for Science and Technology

FEBIAD Forced Electron Beam Induced Arc Discharge (ion source)

fextr Extraction e�ciency

∆G J Gibbs free energy

∆H0 kJ/mol Adsorption enthalpy

ISOLDE Isotope Separator On Line DEvice

Ip eV Ionization potential

J mol/m2s Flux of di�using isotope

kB m2 · kg/s2 Boltzmann constant

Kc Equilibrium constant for chemical reaction

λf 1/s Fast decay constant

λs 1/s Slow decay constant

λr 1/s Rise time constant

N Number of extracted isotopes

NA 1/mol Avogadro number

ne 1/cm3 Electron density

nn 1/cm3 Neutral atom density

N0 Number of produced isotopes

m kg Mass

M g/mol Molar mass

MWCNT Multi Walled Carbon Nano Tubes

P Ionization probability

PSI Paul Scherrer Institute

φ mol/m3 Concentration pro�le

Q eV Activation energy for di�usion

R eV/K ·mol Universal gas constant

RIB Radioactive Ion Beam

RILIS Resonance Ionization Laser Ion Source

ρA g/cm2 Areal density

SARAF Soreq Applied Research Accelerator Facility

σ mbarn Production cross section

σIon mbarn Ionization cross section

T K Temperature

τ s Residence time for single hit

tads s Total adsorption time

tdiff s Di�usion time

Continued on next page
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teff s Migration time

U V Voltage

v m/s velocity

VADIS Versatile Arc Discharge Ion Source

VSource cm3 Ion source volume

W eV Work function

ξ Extend of reaction
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1 Radioactive Ion Beam Production and

Phenomena

While an element and its chemical properties are de�ned by its number of protons and electrons, the

number of neutrons in the nuclei can vary. Nuclei with the same number of protons but varying number

of neutrons are called isotopes of an element. Certain combinations of protons and neutrons are known

as the stable matter surrounding us. Other combinations where the number of neutrons is higher or

lower than in the case of stable matter are unstable with half lives reaching up to billions of years. All

known nuclei are listed in the nuclear chart where the stable isotopes form the so called valley of stability

(see �gure 1.1). Isotopes on the left or right side of the valley of stability decay via a variety of possible

channels towards the valley of stability and eventually end up as a stable nuclei.

Since decades radioactive isotopes are used by researchers for manifold investigations. The study of

nuclei and their properties is crucial for the understanding of processes in our universe such as the for-

mation of matter or supernovae. But besides interest from nuclear physics and fundamental astrophysics

other �elds such as solid state physics show high interest in radioactive nuclei. Here radioactive nuclei

are used as probes to investigate material properties and give an insight into the material.

Furthermore radioactive nuclei �nd an increasing number of applications in the �eld of medical physics

and patient treatment. Besides using short lived isotopes as probes for imaging (e.g. positron emission

tomography (PET) imaging with 18F), radioactive isotopes are used for cancer treatment. Therefore

suited isotopes (typically α or β+ emitter) are attached to vectors which tend to accumulate in can-

cer cells, where these isotopes decay and deposit the energy locally. Hence less damage is caused to

surrounding healthy tissue compared to conventional (γ) radiation therapies. The �rst approved alpha

emitting radio-pharmaceutical drug uses 223RaCl2 and targets prostate and bone cancer [1].

While some of the commonly used radioisotopes for medical applications can be produced via (p,n) re-

actions (e.g. 18O(p, n)18F) using small cyclotrons with relatively low energy (≥ 15MeV), the production
of most exotic isotopes requires sophisticated facilities. Historically these facilities are divided into two

classes, depending on the applied technique for radioactive isotope production: the so called in-�ight

method and the Isotope Separation Online(ISOL) method. Although the methods are di�erent, both

techniques are based on a primary high energy beam hitting a so called target. The formation of ra-

dioactive isotopes takes place by spallation, fragmentation or �ssion of either the primary beam or the

target nuclei. After the production, the desired isotopes need to be separated from the huge background

at the interaction point. This process needs to be fast, e�cient and highly selective in order to deliver

pure beams of high intensity and assure the success of an experiment.

Depending on the nature of the isotope either the in-�ight or the ISOL method are better suited.

1.1 Facilities for Radioactive Beam Production

In-Flight Method

The in-�ight method is characterized by a primary ion beam hitting a thin target (100 nm to few cm)

consisting of a light element (e.g. Be, C). The nature of the primary beam varies depending on the

facility and desired production from light noble gases to heavy elements. The dominating process is

the fragmentation of the projectile nuclei and therefore the production of isotopes lighter than these.

1



Figure 1.1.: Lower part of the nuclear chart showing light elements up to phosphorus. Each line represents

one element with a �xed number of protons and varying number of neutrons. The stable

isotopes are marked in black.

Di�erent from the ISOL method (see next section) isotopes which are produced by the in-�ight method

don't need to be extracted from a target container, and therefore losses due to long transportation times

are negligible. The delay from production to delivery of the isotope to the experiment is caused by the

separation process and the time of �ight. With energies of the secondary beam of more than 50 MeV
u this

time typically lies in the order of µs. This allows the study of very short lived isotopes. The extraction

of the isotope of interest from the target happens due to the recoil energy itself and thus the in-�ight

method is not chemically dependent. This allows the equal extraction of chemically very reactive or

refractory elements. A disadvantage of the In-�ight method is the large emittance of the secondary

beam. This is due to the random recoil momentum and angular distribution of the fragments coming

from the target. Furthermore extractable yields are limited by the low production rate of this method

and therefore experiments which require high amounts of isotopes are often not feasible. However this

can be addressed with an increased intensity of the primary beam. Examples for currently operating

facilities using the in-�ight method are GSI (will be FAIR) in Darmstadt - Germany, RIKEN in Japan

or NSCL/MSU (will be FRIB) in the United States [2].

ISOL Method

In ISOL facilities a thick target (ISOLDE: l = 20cm, r =1 cm) is bombarded with an intense high energy
beam of charged particles e.g. protons or heavier ions. The target usually consists of a heated metal

container �lled with a target material. The choice of target material depends on the desired isotopes and

other parameters which will be discussed later. The particle beam penetrates the container over its whole

length or is stopped towards the end of the container and produces a large set of isotopes along its path

by interacting with the target material. Due to the large thickness of the target a high production rate of

radioactive isotopes can be achieved. Di�erent from the in-�ight method, isotopes need to be extracted

thermally out of the target material and the container. For the extraction containers are connected via

a transfer line to an ion source. Here the species are ionized and extracted by an applied electrical �eld

2 1. Radioactive Ion Beam Production and Phenomena



Figure 1.2.: Schematic drawing of the di�erent techniques for radioactive ion beam production: ISOL,

In-�ight and hybrids. Picture taken from [2].

of typically 10 kV to 60 kV. The process of extraction from ISOL targets is delayed by di�usion in the

target material and a�ected by chemical losses. Therefore short-lived isotopes with a reactive nature are

typically di�cult to extract and thus often only available in reduced quantities. However if the choice

of target material and target setup allows the extraction of a species, high rates with current of up to

1011 pps can be achieved.

Besides these principal techniques that are used by the majority of the radioactive ion beam facili-

ties other techniques can be found that lie somewhat in between ISOL and In-�ight. An example is

IGISOL, developed at the University of Jyväskylä in Finland.

The IGISOL method (Ion Guide Isotope Separation Online) separates radioactive isotopes from a thin

target using a stream of noble gas. For the IGISOL method the target is located in a chamber �lled with

a noble gas (He or Ar). Here the ion is slowed down and thermalized [3].

Stopped ions are transported in the stream of helium or argon to an exit hole where separation of noble

gas and ions takes place. If the applied �ux of the noble gas is high enough extraction can take place

faster than ms. Similar to the in-�ight method the chemical nature of the element has no impact on the

extraction. Hence refractory and very reactive elements can be extracted with high intensity (≈ 105 ions

per sec of e.g. Mo, Rh, Tc)[4].

Future Facilities

In the near future a new generation of RIB1 facilities will be available for the scienti�c community. The

upgrade of existing facilities like HIE2-ISOLDE at CERN, FRIB3 at MSU in Michigan and FAIR4 at

GSI in Darmstadt will provide beams of yet unmatched intensity and quality. Furthermore new facilities

1 Radioactive Ion Beam
2 High Intensity and Energy
3 Facility for Rare Isotope Beams
4 Facility for Antiprotons and Ion Research
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Figure 1.3.: ISOLDE in the CERN accelerator complex. The Protons for ISOLDE are accelerated by

the LINAC 2 and the Booster up to 1.4 GeV.

like EURISOL are in the planning.

The upgrade of ISOLDE to HIE-ISOLDE will improve the energy, purity and intensity of post acceler-

ated beams. This happens by upgrading REX-ISOLDE with a superconducting 40 MV linac what will

raise the energy of post accelerated beams from currently 3 MeV
u to over 10 MeV

u [5].

At FRIB stable isotopes are accelerated to up to 200 MeV
u and beam powers up to 400 kW by supercon-

ducting RF cavities. The beam will be directed on a thin (maximum thickness ≈ 50mm [6]) target and

the resulting projectile fragment and �ssion products separated and post accelerated. The continuous

power deposition on the target of up to 200 kW and the desired target life time of about one week

requires the development of new target designs. One possible solution is a rotating graphite disc cooled

by thermal radiation [6].

A similar target design will be used at FAIR in Darmstadt. Here a beam of up to 1012 ions
s will impinge

a rotating graphite target with a thickness of 1-8
g

cm2 . The primary beam will consist of all elements

up to Uranium with energies up to few GeV
u , depending on the element. Fragmentation product will be

separated within ns by the Super-FRS separator, allowing the extraction of most exotic isotopes.

1.2 RIB Production at ISOLDE

ISOLDE is part of the CERN accelerator complex. Located after the PS Booster [Fig 1.3] it receives

protons with an energy of 1.4 GeV. The maximum frequency of this pulsed beam is one pulse every 1.2

seconds with up to 3 ∗ 1013 protons per pulse. The theoretical maximum integrated current of protons
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Figure 1.4.: Overview of the ISOLDE hall. The picture shows the two target stations GPS and HRS

and the incoming proton beam lines (right side). Downstream, the separation magnets

(two for HRS, one for GPS) and the lines for the secondary beam, leading to the di�erent

experiments, are shown.

is 4µA. For reasons of radio protection the current is limited to 2µA. At ISOLDE two targets can be

connected simultaneously to the available mass separators: the general purpose separator (GPS) and

the high resolution separator (HRS)[Fig 1.4]. After the extraction of radioactive ions from the target,

the beam is mass separated and the requested isotopes guided to the experimental setups through beam

lines.

Typical ISOLDE target units consist of a dome like container [Fig 1.5] which is evacuated to a vacuum

of about 1 ∗ 10−6 mbar. Inside one can �nd the target container which contains the target material of

choice. For the production of radio nuclei this target container is bombarded by the proton beam and

can be heated resistively up to 2100 ◦C in order to promote the extraction of isotopes. The produced

isotopes are di�using out of the material, through the transfer line into the ion source, where they are

ionized and extracted via an applied electric �eld of 10 kV-60 kV. Depending on the nature of the desired

isotopes several options are available for the choice of target material, ion source and transfer line.

From the initial produced number N0 of an isotope inside the target material, to the point of extraction

isotopes undergo a variety of interactions with the target environment where several physical and chemical

processes are involved.

After the production, isotopes have to di�use to the surface of the bulk material. This is happening

within a characteristic time tdi f f . Assuming that no secondary di�usion back into the target material at

a di�erent location is happening the isotope starts to migrate through the target and eventually reaches

the ion source. During the migration losses due to chemical reaction with the surrounding material can

occur. The lost fraction is taken into account by εt ranspor t . Furthermore the migration can be delayed

by a time tAds due to adsorption phenomena on the surfaces of target and structural material. In case

the extraction of a desired isotope happens as a molecule this molecule has to be formed prior to the

migration through the setup. Depending on the conditions (temperature, pressure) and present reaction

partners inside the target formation of di�erent molecules can take place. For instance carbon can react
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Figure 1.5.: One possible set-up of an ISOLDE target unit. To see here with a standard target container

(A), a cold copper transfer line (B) and a Febiad ion source (C).

with present oxygen to form carbon monoxide and carbon dioxide. In most cases the formation of one

species is thermodynamically favored under the given conditions. Hence this process can be characterized

with an e�ciency ε f ormation.

Eventually the species will be ionized with an e�ciency εion and the ion extracted to the experiment. In

a �rst order approximation these processes can be assumed to be independent from each other and are

happening sequentially. Taking these di�erent processes into account the extracted number of ions can

be described as:

N = N0 · ex p(−λ · tdi f f + tAds + te f f ) · εdi f f · εt ranspor t · ε f ormation · εion (1.1)

The goal of the thesis is to separately investigate the factors involved in equation 1.1 for the extraction

process of carbon and boron from ISOLDE target units.

Reproducible extraction of carbon isotopes with half lives shorter than 200 ms is not successful up to now.

Furthermore, radioactive beams of boron have not been produced at ISOLDE or other ISOL facilities.

To identify the hindering processes and allow the extraction of radioactive isotopes of these elements in

the future the results of several experiments carried out within this work were combined with theoretical

results.

Namely the di�usion of boron in target materials εdi f f , molecular formation of carbon oxides and boron

�uorides ε f ormation, transport processes through the target container and ion source εt ranspor t , tAds+ te f f
and the ionization behavior of the molecules εion were studied.

The availability of beams of short lived isotopes of carbon and boron would allow a number of exper-

iments to be feasible. Beams of exotic 9C (t1/2 = 123 ms) are requested for elastic resonance scattering

experiments to investigate low lying states of 10N. Due to the limited availability little is known about

neutron rich isotopes 17−19C. Therefore experiments are interested in the study of basic properties such

as half lives, decay and excitation of the nuclei.
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Beams of 8B (t1/2 = 770 ms) would serve the study of the proton halo of 8B and resonant elastic scattering

experiments on protons to investigate low lying states of 9C. Furthermore 8B is required to investigate

the behavior of boron as a dopant in semi conductors using alpha emission channeling.

Hereinafter the di�erent parts of ISOLDE units together with the relevant phenomena involved in

equation 1.1 are introduced.

1.2.1 Target Materials and Transfer Lines

The choice of the target material is made to maximize the intensity of the beams of isotopes which are

requested by the experiments. Production cross sections for the particular isotope are the �rst impor-

tant parameter that needs to be considered. Furthermore characteristics of the target material such as

structure, density, mechanical and thermal resistance, melting point and electrical conductance have to

be taken into account. Uranium carbide is the preferred target material for many isotopes. This is due

to its high production cross section for many neutron rich isotopes and good release characteristics[7].

For the production of light isotopes other materials like CaO, Y2O3, TiO2 or HfO2 [8], [9]are used. These

materials are usually present in powder or �ber form and pressed to pills before they are inserted into

the target container.

The release characteristics of the desired element from the target material is a second important parame-

ter. To assure a fast extraction, di�usion and transport have to take place as fast as possible[10]. Delays

due to slow di�usion in the bulk material or long residence time on surfaces due to adsorption lead to

decay losses of short lived isotopes. Hence the powder, used for the production of the target pills, should

consists of small grains. The small size assures short di�usion paths to the surface[11]. Once an isotope

reaches the target materials surface it can evaporate or react with other species in order to form volatile

molecules. To assure a fast extraction of isotopes which are formed deeper in the target material a high

open porosity of the target material pill is desired.

After extraction, the volatile species can migrate through the transfer line towards the ion source.

This migration is an important parameter which needs to be controlled.

Depending on the element and therefore chemical and physical properties the choice of the transfer line

can either hinder or promote the transport. For elements with a high boiling point and little reactivity

towards the transfer line material a hot transfer line [�g 1.10] is the best choice. Similar to the target

container the hot transfer line consists of tantalum and can be operated up to 2100◦C . These high

operational temperatures assure that isotopes don't condensate on the walls and minimizes residence

times on the surface due to adsorption. For elements for which a hot tantalum surface is not suited

or if boiling points are low like it is the case for noble gases cold transfer lines are available. These

water cooled copper lines [�g 1.9] reach temperatures of around 50◦C . Besides the fact that the low

temperature combined with the chemically less reactive copper avoids the formation of chemical bonds,

the extraction of isobaric contaminants with a higher boiling point is suppressed due to condensation

and adsorption. The latter e�ect is used as an advantage in a special arrangement where a quartz tube is

inserted into a kinked heated transfer line [12]. Since the adsorption enthalpy is di�erent for each element

and the residence time depends on the temperature and adsorption enthalpy [see eq. 1.6], the release

for a particular element can be controlled by adjusting the temperature of the transfer line. Therefore

the release of isobaric contaminants with a higher adsorption enthalpy can be suppressed and hence the

extracted beam puri�ed.

Isotope Production

At ISOLDE a proton beam of 1.4 GeV hits a thick (l = 20cm, r =1 cm) target. Depending on the nature

of the target material di�erent processes can lead to the production of radioactive isotopes. These
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Figure 1.6.: Processes for isotope production at ISOLDE. The incoming beam of 1.4 GeV protons can

undergo spallation, fragmentation and �ssion reactions with the target material.

processes are mainly spallation, �ssion and fragmentation (�g 1.6). The number of produced isotopes

N0 in 1.1 can be calculated as

N0 = σ ∗ Np ∗ρA (1.2)

where σ is the cross section for the production of a particular isotope, Np the number of protons

hitting the target and ρA the the number of target nuclei in the material per cm2. Production cross

sections can be calculated using advanced codes such as ABRABLA [13], EPAX [14] or Fluka [15].

Spallation

If a projectile, in the case of ISOLDE protons, with an energy higher than 100 MeV hits a target nucleus

spallation can occur [16],[17]. Typically spallation of a target nucleus is a two step process. The �rst step

of the process is the interaction of the projectile with single neutrons and protons of the target nuclei.

This leads to an emission of secondary neutrons and protons which then interact with other nuclei in

the same way. This process forms a cascade inside the target material. The interaction of the projectile

with the target leaves a highly excited nucleus behind where the energy is equally distributed over all

constitutes. This nucleus can then in the second process evaporate further neutrons and protons, leading

to the �nal nucleus. Since the mass of the resulting nucleus is close to the mass of the target nuclei, this

process is important for the production of heavy isotopes.

Fragmentation

If a high energy hadronic projectile hits heavy nuclei fragments with 6 ≤ A≤ 40 [18] can be produced

by nuclear fragmentation. The cross section for this process are small for low energies and raise with the

energy of the projectile up to 10 GeV where it stabilizes. Fragmentation is the important process for the

production of light nuclei.

8 1. Radioactive Ion Beam Production and Phenomena



Fission

Fission takes place if an incoming particle e.g. neutron, proton is absorbed by the target nuclei. If the

additional binding energy due to the absorbed particle is high enough the target nucleus can be excited

to a state where �ssion occurs. The excited nucleus separates in two, sometimes three secondary nuclei

and additional neutrons and protons. For cold �ssion, which takes place for low energy projectiles (e.g.

thermal neutrons on 235U), the resulting nucleus typically obtain 1/3 and 2/3 of the mass of the primary

nuclei. For �ssion induced by high energy neutrons or protons (hot �ssion) the resulting distribution

of nuclei strongly depends on the target material and the projectile energy. Fission takes place if the

resulting nuclei are energetically more stable. Hence it is a process merely observed for heavier elements.

1.2.2 Di�usion

Di�usion describes a transport phenomena in a bulk material, based on the statistical movement of

particles due to their thermal energy. Di�usion of a species in the host material occurs if the concentra-

tion of the di�using species along the host material is not homogenous. Then the system evolves to an

equilibrium state with homogeneous distribution. Even when this state is reached, di�usion still takes

place, but without any net change of the concentration.

Depending on the nature of the host material and the di�using species, di�usion can take place in dif-

ferent ways, vacancy di�usion, interstitial di�usion and substitutional di�usion [19]. Vacancy di�usion

occurs if the solid has vacancies so atoms can exchange their positions with vacant positions. The rate

with which this process takes place depends on the number of vacancies in the material and the activation

energy needed to overcome energy barriers for atomic motion.

Interstitial di�usion occurs for species which are small in comparison to the crystal lattice of the solid.

In this case atoms di�use in between the atoms of the solid. The later process is in general much faster

than the vacancy di�usion as energy barriers are lower.

If the di�usion is steady, it is proportional to the concentration gradient in direction of the di�usion

and described by Fick's �rst law [20]:

J = −D
δφ

δx
(1.3)

Here J [mole
m2s ] is the �ux of the di�using species, D the di�usion coe�cient [m2/s] and φ [mole

m3 ] the
concentration pro�le in direction of x.

The di�usion coe�cient D is speci�c for each combination of host material and di�using species and

given by

D = D0 ∗ ex p(−
Q

RT
) (1.4)

where Q is the activation energy, R the universal gas constant and T the temperature.

The more general case of non-steady di�usion is described by Ficks's second law:

δφ

δt
= D

δ2φ

δ2 x
(1.5)

Here local di�erences in concentration and time dependent processes are taken into account. Exact

solutions of these di�erential equations are dependent on the boundary and initial conditions and thus

speci�c for each system.

1.2. RIB Production at ISOLDE 9



In the case of isotope extraction the di�usion of produced isotopes to the surface of the target material

is important. Once an isotope reaches the surface it can either evaporate or react with a second species

to become more volatile and then be extracted. As migration through open pores is much faster than

the di�usion in the material it is desired to have short di�usion paths. Therefore the grain size of the

used target materials should be as small as possible (≈ nm).

The di�usion of produced isotopes can be in�uenced due to radiation damage induced vacancies in the

material [21].

1.2.3 Adsorption

When an atom or molecule hits a surface it will remain with a certain probability for a certain time on

the surface. The process of attaching to the surface is called adsorption, its reverse process, the detach-

ment from the surface, desorption. The force with which the adsorbate is attracted to the adsorbent

is characterized by the so-called adsorption enthalpy ∆H0 [kJ/mole]. The sticking probability and the

adsorption enthalpy depend on the combination of adsorbent and adsorbate. Normally one distinguishes

between physisorption and chemisorption[22].

Physisorption is characterized by the fact that the adsorption on the surfaces is weak, reversible and

usually the adsorbent is found in a mono layer or few layers. The cause of the interaction is the Van-

der-Waals force [22]. The electron structure of the adsorbed species is not changed signi�cantly.

In the case of chemisorption the bonding is often dissociative, irreversible and present in multilayer.

A molecule which chemisorbs on a surface would often break the bond between its atoms and either

undergo a chemical reaction with the adsorbent or remains as an unbound fraction of the molecule.

The binding is often of covalent nature. As an orientation the absolute value of ∆H0 can be considered

in order to distinguish between physisorption and chemisorption. Adsorption as physisoprtion takes

place if the adsorption enthalpy is below ∆H < 10 kJ/mole and chemisorption for values bigger than

∆H > 10kJ/mole. However this can't be regarded as a universal rule.

Some examples for values of adsorption enthalphy are ∆H = 16kJ/mole for CO on Y2O3, ∆H =
153kJ/mole for CO on Z rO2 (compare sec 2.5). The time an atom remains on the adsorbent is

dependent of temperature and adsorption enthalpy and given by

τ= τ0 ∗ ex p(
∆H0

kB ∗ T
) (1.6)

where τ0 = 1/νm is given by the maximum theoretical phonon frequency for a material with νm the

Debye frequency. This material speci�c time constant typically lies in the order of τ0 = 10−13−10−15 s.

kB is the Boltzmann constant and T the temperature. For a molecule or atom hitting a surface multiple

times, the residence time for a single hit has to be multiplied by the number of hits n. This leads to the

total adsorption time for a surface:

tads = n ∗τ= n ∗τ0 ∗ ex p(
∆H0

kB ∗ T
) (1.7)

The residence time at room temperature for an adsorption enthalpy of approximately ∆H = 100kJ/mole
is in the order of 10−4 seconds for a single hit. Hence for isotopes with half lives of less than one second

adsorption becomes a determining factor if the number of hits equals to the reciprocal of the residence

time for a single hit.

The number of hits n on the surface has to be simulated with speci�c codes e.g. RIBO[23]. For simple

geometries it can be calculated with semi empirical formulas[24], derived from Monte Carlo simulations.
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Figure 1.7.: The picture shows a cross section of a target arrangement using a surface ion source. The

heated tube is connected in the center of the target container. Protons impinge the target

container perpendicular to the drawing plane.

The sum of all adsorption times for all present materials together with the �ight time of the molecule

gives the total time needed for e�usion te f f :

te f f = t f l i ght +
∑

i

tadsi
(1.8)

The time of �ight can be estimated with the kinetic energy of the gas atom. This energy depends on the

mass and the average temperature T of the gas and follows a Maxwell-Boltzmann distribution with an

average velocity v

Ekin =
1
2

mv 2 =
3
2

kbT (1.9)

v =

√

√3kbT
m

(1.10)

Obviously adsorption on surfaces is a crucial factor that needs to be controlled in order to be able

to successfully extract short-lived radioactive isotopes as molecules. Both, a long total adsorption time

due to multiple hits on a surface and an irreversible adsorption due to high adsorption enthalpies lead

to losses during extraction.

1.2.4 Ion Sources

The Surface Ion Source

The surface ion source has the simplest design of all ion sources used at ISOLDE. Di�erent from other

ion sources, the ionization takes place on the surface of the transfer line and the additional ionizer

tube[�g 1.7][25]. The surface ion source consists of a refractory metal with a high work function like

tantalum or rhenium which is operated at around 2000◦C . Roughly, ionization of an element takes

place if the work function of the ion source material is higher or close to the ionization potential of the
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Element φi [eV] Element φi [eV]

Li 5.39 Be 9.32

Na 5.13 Mg 7.64

K 4.34 Ca 6.11

Rb 4.17 Sr 5.69

Cs 3.89 Ba 5.21

Fr 3.83 Ra 5.27

Table 1.1.: First ionization potentials of alkali

and earth alkali metals [27]

Material W [eV]

Re 4.85

Ta 4-4.8

W 4.32-5.22

LaB6 2.07

Table 1.2.: Work function of used materials for

surface ion sources

element. With typical work functions of rhenium and tantalum between 4 eV and 5 eV this ion source

is capable of ionizing alkali and some earth alkali metals. The degree α of ionization for a given element

at temperature T is given by the Saha-Langmuir equation [26]:

α=
g0

gi
∗ e(W−φi)/kB T (1.11)

where g0 and gi are the statistical weights of the atomic and ionized states, W the work function of

the metal and φi the ionization potential of the element. The e�ciency of ionization is given by

εsur f ace =
1

1+ 1/α
(1.12)

Tables 1.1 and 1.2 show ionization potentials of alkali and earth alkali metals and work functions of

materials used for surface ion sources

Ionization probabilities P are close to 100% for some element-ion source combinations: P(Cs on W at

1500 K)=0.99. [26]. At ISOLDE the temperature of surface ion sources is typically kept at 2000◦C .

The Resonance Ionization Laser Ion Source (RILIS)

The RILIS [28] ion source is used in approximately 50% of the on-line runs at ISOLDE. A system of

lasers, which are speci�cally tuned on the desired element, are directed into the hot cavity of the surface

ion source. During the migration time of the atom through the cavity the atom is interacting with the

lasers. By adjusting the wavelengths of the lasers to the energies of the electronic transitions in the

atomic shell it is possible to excite the outer electron to the ionization energy of the particular element

or even isotope. If isobars are not ionized on the hot surface, puri�cation of the beam can be achieved as

each laser scheme is speci�cally matched to a particular element. Figure 1.8 shows the schematic setup

of a surface ion source in combination with resonant laser ionization. At ISOLDE, RILIS is used for the

extraction of about 31 di�erent elements [29]and more to come.

The FEBIAD Ion Source

Due to its versatility FEBIAD (Forced Electron Beam Induced Arc Discharge) ion sources are widely

used at ISOLDE. In FEBIAD ion sources a heated cathode emits electrons which are accelerated in

a little chamber by an anode [31]. The atoms or molecules in this chamber, coming from the target

container or injected via a dedicated gas system are ionized via electron impact ionization by electrons

�ying towards the anode. Besides q = +1, ions with higher charge states can be produced, although

with lower cross sections.

The modern FEBIAD ion source used at ISOLDE is the so called VADIS (Versatile Arc Discharge Ion
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Figure 1.8.: Principle of RILIS ion source: Di�erent lasers, matching a speci�c energy scheme of an

element, are directed into the hot tubular cavity of the ion source. Here the elements

valence electrons are stepwise excited and eventually ionized. Figure taken from [30]

Element Ionization e�ciency ε [%]

He 1.4

Ne 6.7

Ar 26

Kr 38

Xe 47

Rn 62

Table 1.3.: Measured ionization e�ciencies of the VADIS ion source for �rst ionization of noble gases [32]

Source) [32] ion source. VADIS ion sources are typically operated with anode voltages of 120V − 250V
at a temperature of T = 2000◦C .
The adjustment of the anode voltage and with that the electron energy o�ers the opportunity to tune

the ion source to the maximum of the ionization cross section for the desired element. The e�ciency for

ionization εion is described by the following theoretical model:

εion =
ne ∗ nn ∗σion ∗ vrel ∗ Vsource ∗ fex t r

Inin

(1.13)

where ne is the electron density in the source, nn the neutral atom density, σion the ionization cross

section, vrel the relative velocity of electrons to atoms, Vsource the source volume, fex t r the extraction

e�ciency of ionized species and �nally Inin
the current of species entering the source.

Table 1.3 shows ionization e�ciencies for noble gases. Fig 1.9 shows the pro�les of a setup using a

FEBIAD ion source. In this setup the target container is connected to the ion source via a cold copper

transfer line.

The radio frequency (RF) Ion Source

A major disadvantage for the extraction of some elements is the fact that the electron emission in

FEBIAD and surface ion sources relies on hot metal surfaces. Depending on their chemical nature some

elements tend to form stable bonds with tantalum, molybdenum or other refractory metals used in ion
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Figure 1.9.: FEBIAD ion source with cold transfer line: The target container is connected via a water

cooled copper transfer line to the ion source. During operation the ion source reaches

temperatures of approximately 50 ◦C .

Figure 1.10.: FEBIAD ion source with heated transfer line: The target container is connected via a

resistively heated tantalum transfer line to the ion source. Similar as the target container

the transfer line can be heated to 2100 ◦C .
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Figure 1.11.: Helicon ion source from [33]

sources. This is in particular the case for carbon and boron that are studied in this thesis. Therefore

an ion source based on RF technology [33] with the goal to minimize the use of hot metal surfaces was

developed. Fig 1.11 shows the setup of the ion source: a quartz tube is surrounded by permanent

magnets and a RF coil. Inside this quartz tube the RF coil induces a RF discharge, ionizing the injected

bu�er gas (He, Ne, Ar,..) and the volatile species coming from the target container. Formed ions are

extracted via a two step extraction system. During operation ionization e�ciencies of 3.9% for argon

and 2.5% for carbon monoxide were achieved.

For the case of gaseous species and molecules FEBIAD and RF ion sources are the ion sources of

choice. In FEBIAD ion sources the energy of the electrons can be adjusted by tuning the accelerating

voltage. Typically these values vary between 120 V and 300 V and therefore lead to energies up to 300 eV.

This allows to adjust the electron energy to the maximum of the ionization cross section of a particular

species. For the case of RF ion sources the electron energy is lorentzian distributed around smaller

energies of typically 1eV - 10eV. The energy needed to ionize an atom or molecule is called ionization

potential. Typical values are around 15eV for most gases with a maximum for helium of 24.6eV. While

the ionization potential is the minimal energy required for (direct) ionization, the maximum of the cross

section is usually found for electron energies three to four times the ionization potential. The ionization

can take place by direct or stepwise ionization due to electron-electron interaction, ion-electron or laser-

electron interaction.

Direct ionization by electron electron impact

Direct ionization of neutral unexcited atoms or molecules can occur if an incident high energy electron

interacts with a valence electron. If the transferred energy ε [eV] exceeds the ionization potential Ip [eV]
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of the species, ionization occurs. The cross section for an energy transfer of ε ≥ Ip can be estimated by

the Thomson Formula:

σi =
1

(4πε0)2
πe4

ε

�

1
ε
−

1
Ip
+

2εv

3

�

1
I2
p

−
1
ε2

��

(1.14)

Where εv [eV] describes the kinetic energy of the valence electron and ε0 the vacuum permittivity

[F/m].

For the case of diatomic molecules non-dissociative direct ionization can be described as

AB + e−→ AB+ + e− + e−

Since some parts of the energy of the incident electron can be transferred into molecular vibration this

process requires a little more energy than the corresponding process for atoms. After direct ionization

the molecule can often be found in an excited state (AB+)∗. If the energy transfer from the incident

electron was high enough this can result in a dissociation of the molecule with the excited molecule as

an intermediate state

AB + e−→ (AB+)∗ + e− + e−→ A+ B+ + e− + e−

For the case of CO and CO2 the cross sections for ionization are signi�cantly higher than for dissociation

[34], [35], [36].

Stepwise ionization by electron-electron impact

For the case that the energy of the electrons in a plasma is distributed around lower values (like it is

the case in RF sources) and therefore direct ionization by high energy electrons is not likely, stepwise

ionization becomes the dominant process. Here a neutral species is excited stepwise until the valence

electron has enough energy to escape its boundary. In comparison with direct ionization this process

can be 103−104 times faster. Since the time scale for direct ionization is in the order of 10−16 to 10−15

seconds the time needed for ionization does not contribute to delays in the extraction process. [36]

1.2.5 Chemical Equilibrium

Chemical processes play two roles in the extraction of radioactive isotopes from a target. On one hand

the chemical reactivity of the desired element with the present materials has to be considered. Formation

of molecules with the hot tantalum of the target container (e.g. TaC2) or the target material itself can

take place. These bonds might lead to irreversible losses.

On the other hand formation of volatile molecules is desired in order to extract less volatile elements like

carbon, boron or titanium from target units. Therefore one has to assure that elements necessary for the

formation (e.g. oxygen for CO, �uorine for BFx , TiFx) are present in the target unit and available for

the formation. This can be achieved by the choice of target material (e.g. an oxide for CO or a �uoride

for BFx) or the additional injection of a gaseous species during operation (e.g. SF6, C F4).

In order to estimate the reactions taking place inside the target container the chemical equilibrium of a

system can be considered. This allows (with some limitations) to evaluate under which conditions and

combination of materials in the target the extraction of desired species is favored.

A chemical reaction 1.15 is called to be in equilibrium if the concentration of products (C and D)

and reactants (A and B) remains constant and the system has no tendency to change in one direction.

16 1. Radioactive Ion Beam Production and Phenomena



Usually both reactions still happen but without any net change of the concentration of any component.

[20]

αA+ βB
k+−*)−
k−
γC +δD (1.15)

A reaction like 1.15 can be divided into forward and backward reaction with reaction rate coe�cients

k+ and k−:

� Forward reaction: k+Aα ∗ Bβ

� Backward reaction: k−Cγ ∗ Dδ

If a system is in equilibrium the rates of forward and backward reaction are equal: k+Aα ∗ Bβ =
k−Cγ ∗ Dδ.
The ratio of these rate constants is called the equilibrium constant and speci�c for each reaction and

temperature:

Kc =
Cγ ∗ Dδ

Aα ∗ Bβ
=

k+
k−

(1.16)

Thermodynamically a system is considered to be in equilibrium where the reaction Gibbs energy of the

system for constant pressure and temperature plotted against the extent ξ of reaction has a minimum.

Therefore:

∆r G =
�

δG
δξ

�

p,T
= 0 (1.17)

As illustrated in �gure 1.12 a system with a reaction Gibbs energy di�erent from zero tends to migrate

spontaneously towards the equilibrium point:

� ∆r G < 0 : forward reaction is spontaneous

� ∆r G > 0 : backward reaction is spontaneous

In order to estimate the phase coexistence in ISOLDE target units the software HSC 7 [37] was used.

This software uses the Gibbs free energy minimization method to calculate equilibrium compositions[38].

Unfortunately these calculations do not consider the kinetics with which this reaction is happening. Hence

it is possible that from a thermodynamic point of view the production of a species takes place under the

conditions given, that however the process takes much longer than the half life of the isotope or typical

extraction times found at ISOLDE. The extraction time is de�ned as the time between production of the

isotope by impact of the proton beam on the target and the point in time when the isotope is extracted

by the applied electrical �eld after ionization.

1.3 Release from ISOLDE Targets

All the previously mentioned e�ects (�g 1.13) after the production of the isotopes lead to a characteristic

release for each element in combination with the set-up of the target unit and choice of target material.

To determine the performance of a target unit and to document the release, each target unit is tuned

and the release characteristics are measured at the beginning of an online run. These characteristics are

absolute ion yield, level of isobaric contaminants and the time structure of the release. Besides a strong

interest from the experiment side these measurements help to understand the impact of changes of the
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Figure 1.12.: Reaction Gibbs energy

Figure 1.13.: Scheme of a target setup including the target container, transfer line and ion source. The

relevant phenomena are shown .
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target set-up on the online performance and determine the direction of further developments.

For the measurement the radioactive ion beam is directed to a so called tape station [39] that allows

to measure β and γ radiation and thus allows to determine the ion current and to distinguish the isotope

of interest from possible isobars.

The time window between arrival of the pulsed primary proton beam and release of secondary ions from

the target is increased step-wise in order to determine the time characteristics of the release.

For the description of the measured release a modi�ed version of equation 1.1 can be used [40]. In this

approach the di�usion and e�usion processes are described by probabilities pµ(t) for di�usion and pν(t)
for e�usion. The probability that a produced isotope di�uses to the surface of the target material and

e�uses through the target system before it decays can be described by

P(pµ, pν,λ) = e−λ·t · pµ(t)⊗ pν(t) (1.18)

Solutions for the di�usion probability pµ can be calculated with Fick's law and depend on the char-

acteristics of the target material. The di�usion probability in a foil with in�nite length and thickness d

can be described by

pµ(t) =
8µ0

π2
·
∞
∑

n=0

e−µ0(2n+1)·t (1.19)

where µ0 =
π2·D

d2 with D [m2/s] the di�usion constant of the element in the material.

The probability for e�usion can be described by considering the conductance of the tubular system.

Assuming a gas �lled tube that is emptied through a small hole at its end, the probability that gas

molecules e�use through the hole can be described by

pν(t) = ν · e−ν·t (1.20)

For the more complex geometry of an ISOLDE target container the e�usion is described more accu-

rately if a second time dependent term is added to equation 1.20. This leads to

pν(t) = (1− e−ν1·t) · e−ν2·t (1.21)

Integration of P(pµ(t), pν(t),λ) gives the released fraction:

εrelease =

∫ ∞

0

P(pµ, pν,λ)dτ=

∫ ∞

0

e−τ·λ · pµ ⊗ pνdτ (1.22)

With equation 1.22 equation 1.1 can be described as

N = N0 · εrelease · ε f ormation · εion = N0 ·
∫ ∞

0

e−τ·λ · pµ ⊗ pνdτ · ε f ormation · εion (1.23)

This function can be �tted to the resulting graph of number of ions versus time after arrival of the

protons on the target in order to determine e.g. di�usion constants. However due to the complexity of

the model this is in many cases not possible.

The typical shape of release curves with a steep rise with a following decay can be described by a function

containing of three exponential factors. This description was suggested in [40] and [41]:

R(t,λr ,λ f ,λs) = A∗ (1− e−tλr )(α ∗ e−tλ f + (1−α) ∗ e−tλs) (1.24)
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Figure 1.14.: Release of 6He measured during an online experiment within this thesis. The curve shows

a typical behavior: a steep rise within ms after the arrival of the proton pulse, followed by

a decay with two time constants. In this case the fast decay time is 113 ms. The displayed

measurement was taken with a unit using Carbon nano tubes as a target material, operated

at 1600◦C . The code, used to determine the parameters was developed by Tim Giles,

CERN.

where A is a normalization factor to the released ion current, λr the rise time constant, λ f the fast

decay constant and λs the slow decay constant. The value of α (0< α < 1) determines the fraction of the
released ions in the fast and slow part of the release. Figure 1.14 shows an example for a release curve

measured during an online run. In this case the release of 6He from carbon nano tubes was measured.

1.4 Extraction of Molecular Beams

Although ISOL facilities deliver a wide range of isotopes some elements are still not available or only in

low intensities. This applies in particular for refractory elements or those with a very reactive nature.

With some exceptions (Hf, Y, Lu, Ta, Ti) [42] the extraction of refractory metals of group 3b to 5b

was not successful to this point. This is also the case for some non metals. These are boron, carbon

(which are the subject of this thesis), phosphorus and sulfur. These elements share that due to their

reactive nature stable bonds with the surrounding materials like tantalum, molybdenum or even the

target material itself, are formed and thus extraction is di�cult. In the case of carbon longer lived

isotopes (t1/2 ≥ 500ms) can be extracted as CO+ from ISOL units. However extraction times are often

a multiple of the half live of short lived isotopes like 9C , 17−20C and thus extraction is di�cult.

Already in the early years of ISOL facilities the extracting of refractory elements in molecular sidebands

was discussed [43]. The possibility of extraction as halides, oxides, hydrates or combinations is suggested

and displayed in �g 1.15.

First extractions of BaF+ with �uorine coming from the used target material (ThF4 · LiF) were re-

ported by Ravn et al. [44]. Formation of chlorides was tested but due to the higher reactivity of chlorine

towards the structural materials extraction as �uorides was preferred [45]. Furthermore �uorine has the

advantage that only one stable isotope exists which allows a higher extraction e�ciency during mass

separation.

With the �uorination method beams of Sr, Ba [46], Ga, Y, Zr,In, Sn [45], V [47] and Ti, Zn, Sb [48] have
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Figure 1.15.: Periodic table with suggestions on how refractory elements can be extracted by formation

of molecules. Taken from [43]
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been extracted.

Oxygen was used to produce beams of CO, COSe [9] and Lanthanides [49]. Furthermore a vapor of

stable aluminum was used to form molecules with radioactive halides AlI and AlBr [45].

1.5 Beam development

To match the demand for high intensity and high purity beams of exotic radioactive ion beams the

development of new target techniques, target materials and ion sources is required. As introduced in

section 1.2 species undergo a variety of interaction with the environment during the extraction process.

For the development of a new beam at ISOLDE these interactions have to be investigated. Classically

beam development involves investigation of the in-target production of the desired isotope, di�usion

characteristics in the target material, adsorption on present surfaces and the ionization of the species.

For carbon and boron, which have to be extracted in molecular form, the list of investigations has

to be expanded. To promote the formation of molecules, the chemical equilibrium of carbon and boron

with target materials has to be considered.

Furthermore the ionization of molecules is more complex in comparison to atoms. Besides additional

degrees of freedom like vibrational and rotational states, the dissociation of the molecule into its com-

ponents might in�uence the overall extraction e�ciency.

An example which will be discussed in detail later in this thesis is the extraction of boron as boron

�uorides. While calculations of the chemical equilibrium of boron with �uorides suggest a dominant

production of BF3, ion beam composition is such that the current of BF+2 is 100 fold higher than the

current of BF+3 . Comparing this observation with literature showed, that the ratio of measured currents

can be explained by the high dissociation cross section of BF3 in comparison to the direct ionization.

In this work aspects of classical beam development for carbon and boron and in some extend for

other species are investigated. These investigations cover in-target production as well as adsorption and

di�usion characteristics with materials present in target units. Molecule speci�c investigations focus

on the calculation of the chemical equilibrium and ionization characteristics in the utilized VADIS ion

source.
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2 Extraction of Short-Lived Carbon Isotopes

2.1 Introduction

The technique of extracting carbon isotopes as an oxide molecular sideband from ISOLDE targets was

suggested many years ago [50] and extensively studied ever since [51]. While extraction of longer lived

isotopes is very successful (e.g. 7.7 · 108 1
µC

11C [52]), reliable beams of short lived isotopes with half

lives shorter than 500 ms are not available in requested amounts for su�cient periods of time. Table 2.1

shows currents of di�erent carbon isotopes extracted at ISOLDE. This chapter will describe properties

of carbon relevant for the extraction of carbon from ISOLDE targets such as di�usion and adsorption,

chemical equilibrium with surrounding and target materials and ionization characteristics.

Knowledge available in literature and former investigations at ISOLDE (mainly [51]) will be summarized

and supplemented with results achieved within this thesis. These results allowed a deeper understanding

of former online runs and identi�ed the problems occurring during the extraction of radioactive carbon

isotopes from ISOLDE targets.

Neutron de�cient 9C is requested for the investigation of low lying states in the unbound 10N via

elastic resonance scattering of 9C on protons [55].

Beams of neutron rich isotopes of 17C to 19C would allow to study basic properties of these nuclei like

beta decay, excitation and half-life. Due to the di�culty in producing these beams generally little is

known about the heaviest carbon isotopes. For feasible experiments, extracted yields have to be in the

order of 5 ∗ 104 1/µC .
As introduced in section 1.2, the number of released isotopes from thick ISOLDE targets can be

described by formula 1.1:

N = N0 · ex p(−λ · (tdi f f + tAds + te f f )) · εdi f f · εt ranspor t · ε f ormation · εion (2.1)

Some of the factors in formula 1.1 have been studied at ISOLDE in the past [51] or can be found in

literature. In order to achieve a more complete understanding of the processes involved in the release

of carbon and to identify the hindering process, a series of investigations have been performed within

this thesis. These investigation involve simulations of the chemical equilibrium between carbon and both

structural and target materials. This allows to estimate under which conditions desired carbon oxides

are formed (ε f ormation) or where losses occur (εt ranspor t). The results of these calculations are shown in

section 2.4. Furthermore measurements of the adsorption enthalpy ∆H0 of carbon oxides on Alumina

(Al2O3) and Yttria (Y2O3) are performed within a collaboration between CERN-ISOLDE and the group

Isotope Half life [s] extracted yield [1/µC] Target Material Ion Source Ref
9C 0.123 1 ∗ 103 Y2O3 Minimono [53]
10C 19.3 7 ∗ 105 CaO VD7 [54]
11C 1222.22 7.7 ∗ 108 LiF:NaF VD5 [52]
15C 2.45 1.5 ∗ 105 CaO VD7 [54]
16C 0.747 8.9 ∗ 101 CaO HELICON [33]
17C 0.193 8 ∗ 100 HfO2 HELICON [33]

Table 2.1.: Some carbon isotopes and yields at ISOLDE
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of R. Bulanek University of Pardubice, Czech republic. The obtained results allow a deeper analysis

of former on-line runs during which Yttria was utilized as a target material. The measured adsorption

enthalpy for CO on Yttria has been found to be low (∆H0 = −16 kJ/mole) and thus making Yttria a

very interesting candidate for extraction of short-lived carbon isotopes. The results together with other

known adsorption enthalpies are analyzed in section 2.5.

In order to understand where, and to which degree, losses of carbon oxides during the extraction from the

target container and ion source take place a dedicated experiment has been set-up. This setup allows to

study e�ciencies (ε= εt ranspor t ·εionization) and time structures of the release of carbon oxides depending

on present materials and target temperature. The obtained results are compared to calculations of the

chemical equilibrium of carbon oxides with materials used in ISOLDE target systems.

The experimental set-up together with the obtained results are shown in section 2.6.

As the �nal step in the extraction of radioactive isotopes the ionization of carbon oxides in a VADIS ion

source was studied. The results are shown in section 2.7 and compared to theoretical cross sections for

ionization.

In summary the following factors of formula 1.1 are studied within this chapter:

� N0

� Calculation of in-target production of carbon isotopes, using EPAX and ABRABLA

� ε f ormation

� Calculation of chemical equilibrium between carbon and target materials

� εt ranspor t

� Calculation of chemical equilibrium between carbon and structural materials

� tads

� Measurement of adsorption enthalpy of CO and CO2 on Al2O3 and Y2O3

� εionization

� Study of ionization behavior of CO and CO2 in Febiad ion source - dependency of εionization
on U [V] and comparison with theoretical cross sections

� εt ranspor t · εionization

� Study of release of injected 13CO2 as 13CO2
+ and 13CO+ from target and ion source system

depending on temperature and material composition

2.2 Isotope Production from Target Materials

In order to predict the initial production of isotopes inside the target, simulations of the production

cross section have been carried out using the ABRABLA [13] and EPAX [14] code. The chosen materials

are oxides of calcium (CaO), hafnium (HfO2), yttrium (Y2O3), aluminum (Al2O3) and titanium (TiO2).

Calcium oxide, hafnium oxide and yttrium oxide have been used as target materials for carbon beam

production during online experiments. The good material properties of Alumina in terms of adsorption

make this material a possible candidate for online experiments. The isotope production cross section was

calculated for each of the constituents of the material separately. The resulting cross section is calculated

by combining the result for each component. The resulting cross section of a compound AmBn is given

by:

σAmBn
= m ∗σA+ n ∗σB (2.2)
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Figure 2.1.: Comparison of simulated isotope production cross sections for carbon isotopes using

ABRABLA and EPAX.

The calculated cross sections from ABRABLA and EPAX show signi�cant di�erences for radioactive

isotopes. Former estimations for the in-target production of exotic isotopes were based on the results

from calculations using EPAX [51].

Results from calculation with the ABRABLA code suggest that the current of 9C can be expected to be

2 to 3 orders of magnitude lower than formerly believed.

Figure 2.1 shows the cross sections for isotope production from calcium oxide obtained with the di�erent

codes. Results for other target materials can be found in appendix A.1.

The amount of produced isotopes per proton pulse can be calculated with a thin target approximation

via

N = σAmBn
∗ Np ∗ NAmBn

=
σAmBn

∗ Np ∗ Vtar get ∗ρ ∗ NA

M
(2.3)

where σAmBn
is the production cross section, Np the proton density per pulse [1/cm2], NAmBn

the

number of particles of the material, ρ the density of the material, NA the Avogrado constant, Vtar get the

target volume and M the molar mass of the used species. The densities and molar masses used for the

calculation are compiled in table 2.2. The densities of the actual target material is usually smaller than

the nominal density due to the desired porosity. Figure 2.2 shows the cross sections obtained with the

ABRABLA code and the resulting in-target production derived with formula 2.3.

2.3 Di�usion

As discussed in 1.2.2 the di�usion of isotopes to the surface of the target material's is a major factor for

the speed and e�ciency of extraction. Target materials for the production of exotic radioactive carbon

isotopes usually consist of powders or �bers of metal oxides. Depending on whether neutron rich or

de�cient isotopes are desired, heavier (e.g. Hf) or lighter (e.g. Al, Ca) metals are chosen. As shown

before, the production cross section for neutron de�cient carbon isotopes does not vary much with the

2.3. Di�usion 25



Figure 2.2.: Simulated isotope production cross section (upper �gure) and in-target production (lower �g-

ure) for di�erent potential target materials. The numbers were derived using the ABRABLA

code [13].
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Material M [g/mole] Nominal density [g/cm3]
CaO 56 3.35

Y2O3 225.8 5.01

Al2O3 101.96 3.95

TiO2 79.86 4.23

H f O2 210.49 9.68

Table 2.2.: Nominal densities and molar masses of target materials. The lower densities of the actual

target material have to be taken into account to calculate the isotope production

choice of the metal cation, as the production is dominated by oxygen. More important than the choice

of the actual material is the structure and chemical behavior of the material.

In general, release is favored if the target material has a high open porosity and a small grain size [≈
nm]. In this case the path from the production point to the surface is short. The high open porosity

assures that the isotope can migrate quickly in between the grains. Since in most cases the movement

of a gaseous substance in open space is much faster than the di�usion through a solid material this will

support a fast release.

As di�usion and e�usion are dependent on the temperature target units are usually operated at a high

temperature of 700 ◦C to 2100 ◦C .
Studies on i.e. CaO [54] show that high temperatures can be adverse for the target material to maintain

grain size and porosity. If a target material is operated at too high temperature small grains will sinter

to bigger sizes and the open porosity gets lost. This sintering process is faster the smaller the initial

grain size is [56]. This so called aging of the material explains in some cases why exotic species can be

seen for a short time when target temperatures are raised but then suddenly disappear.

Studies on the release of carbon from metal oxides have been performed at ISOLDE [51],[19]. During

an online experiment at GANIL it was found that the release from pressed �ber pellets is faster than

from those made of pressed powder [51]. The results are shown in �gure 2.3. The same work studied the

release of implanted radioactive 11C from pellets of MgO, TiO2 and HfO2. For implantation, carbon was

extracted during online operations and implanted at 60 keV and 260 keV energy respectively. In order

to promote di�usion, samples were heated afterwards for 10 minutes for each temperature step and the

remaining activity was measured. These measurements show that in the case of MgO and TiO2 90 %
of the implanted 11C was released at 1200 ◦C . To release the same fraction from HfO2 the temperature

had to be 1300 ◦C -2000 ◦C .
As operational temperatures of the target should be kept at relatively low temperatures in order to

maintain the target material properties, materials that show a higher di�usion rate at these temperatures

such as MgO and TiO2 are favorable.

Measurements of the di�usion properties of carbon in CaO and Y2O3 are still pending and should be

object of future investigations.

2.4 Chemical Equilibrium of Carbon Oxides with Target Materials

After the production and the di�usion of an isotope to the surface of the grain, the formation to a more

volatile molecule has to happen in the case of refractory elements like carbon and boron. Besides a

high boiling point, these elements share high reactivity with many materials. In order to �nd conditions

(temperature) and combinations of used materials under which the formation of a desired molecule and

its extraction is as e�cient as possible, the chemical equilibrium of carbon with materials present in the

target system is calculated here.

In former tests it was found, that in the case of extraction of carbon from oxide target materials

the molecules with the highest abundances are carbon monoxide and carbon dioxide. Typically cur-
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Figure 2.3.: Di�usion studies from di�erent target materials. Open markers show results from implan-

tation with 60 keV, solid markers from implantation with 260 keV. Results and �gure taken

from [51]
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rents of stable as well as radioactive CO+ is measured with a factor of ten to hundred more than CO2
+.

Other molecules like COF, CFn or CH4 are also volatile at temperatures present in targets but either

extracted currents are not as high as for CO, CO2 or the provision of a reaction partner (e.g. hydrogen

for the formation of CH4) comes along with safety issues. Hence calculations performed in this section

concentrate of the extraction of carbon as an oxide. For simplicity the formation of the carbon oxide

and its extraction are considered separately.

One aspect in choosing a suited target material for the production of carbon beams is the supply of

available oxygen from the target material at operational temperatures. A su�cient supply of oxygen is

necessary in order to assure an e�cient formation of carbon oxide molecules.

Typically characteristics of the target materials that are important for an e�cient extraction, such as

grain size and porosity can be maintained for a longer period if the operational temperature is main-

tained below material dependent thresholds. Therefore it is advantageous, if the target material provides

oxygen for the formation of carbon oxides at relatively low temperatures. In order to identify in which

temperature region the production of carbon oxides is favored the equilibrium of carbon with di�erent

target materials has been calculated (see section 2.4.2).

In the same way the chemical equilibrium between CO and structural materials present in the target

(Ta,Mo, Re, Cu) was calculated. The results of these calculations allow to estimate where losses during

the migration of the formed carbon oxide to the ion source might occur. The results are shown in

section 2.4.1.

In both cases the calculation of the chemical equilibrium was carried out using the HSC 7 code [37].

The ratios used in the calculations of the chemical equilibrium of carbon or carbon oxide and the in-

vestigated material is 1:10. In reality the ratio of produced carbon to the target material is orders of

magnitude smaller. However performing the results with a ratio of 1:10 does not change the resulting

composition but allows for more comfortable usage of the �gures. The temperature region for which the

equilibrium is calculated is 25 ◦C to 2500 ◦C at a pressure of 10−3 mbar. Typical operational values for

ISOLDE targets are temperature between 800 ◦C and 2100 ◦C with pressures of p ≈ 10−3 − 10−6 mbar.

Calculating the chemical equilibrium with lower or higher pressure shifts the occurrence of a species to

higher or lower temperatures but does not change the ratios of present species. Hence results present a

general tendency of a system to form one or the other species. Figure B.1 in appendix B illustrates the

pressure dependency. The kinetics of the formation of desired species and the optimum conditions have

to be determined experimentally.

2.4.1 Extraction of Carbon Oxides

Figure 2.4 shows the results of the calculation of the chemical equilibrium between carbon monoxide and

structural materials (Ta, Re, Mo, Cu).

In the case of tantalum, the formation of tantalum carbide and tantalum oxide is thermodynamically

favored at all temperatures. Hence losses are to be expected if the molecule gets in direct contact with

the hot tantalum surfaces in the target. The formation of carbides and oxides with tantalum is known

and has been studied in many cases (e.g. [57]).

In the case of molybdenum, the formation of molybdenum carbides takes place up to temperatures of

approximately 1600 ◦C . At higher temperatures the formation of carbon monoxide is dominant.

With rhenium no reaction with carbon oxide is expected up to approximately 1300◦C . At higher tem-

peratures rhenium forms solid solutions with the stoichiometry of Re2(CO)10.

Tantalum, rhenium and molybdenum are typically operated at temperatures between 800◦C and 2100
◦C , where these reactions become important for the release of carbon oxides. Typical operational tem-
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Ta+CO Mo+CO

Re+CO Cu+CO

Figure 2.4.: Chemical equilibrium of CO with structural materials found in ISOLDE target units. The

calculation were performed with a ratio of 1:10 of CO to the particular material.

peratures of copper are approximately 50 ◦C . The low operational temperature combined with the

chemical inertness of copper towards carbon oxides makes copper a good material for the extraction of

CO. However due to its low melting point it can be only utilized for cold parts of the target.

Figure 2.5 shows the results of the calculation of the chemical equilibrium of carbon monoxide with

target materials. Investigated materials were either used as target materials in the past or show promising

properties for a successful extraction of carbon as carbon oxide. The investigated materials are CaO,

MgO, Y2O3, Al2O3, TiO2 and HfO2.

For the case of MgO, Y2O3, Al2O3 and HfO2 no reactions between carbon oxide and the material occure

up to 2500 ◦C . Hence no losses of formerly formed carbon oxide is expected. In the case of CaO an

additional provision of oxygen occurs from 800 ◦C . If oxygen is present in a surplus CO reacts to CO2.

At lower temperatures calcium oxide reacts with carbon dioxide and forms CaCO3. A similar behavior

can be observed for TiO2. At temperatures lower than 600 ◦C carbon monoxide is reduced to carbon.

For temperatures between 600 ◦C and 1000 ◦C formation of carbon monoxide is favored. At higher

temperatures additional oxygen is provided, leading to an oxidation of CO to CO2.
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Al2O3+CO Y2O3+CO

CaO+CO MgO+CO

TiO2+CO HfO2+CO

Figure 2.5.: Chemical equilibrium of CO with possible target materials. The calculations were performed

with a ratio of CO to the particular material of 1:10.
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2.4.2 Formation of Carbon Oxides

For an e�cient formation of carbon oxides it is crucial that a surplus of oxygen is present in the target

container. In the past the supply of oxygen was believed to be assured by using an oxide as a target

material. Calculations of the chemical equilibrium of carbon with used target materials show that this

is not the case for some of the materials.

Instead the formation of carbon oxides only occurs at temperatures higher than temperatures these

materials have been operated at in the past (e.g. Operational temperatures for Y2O3: T= 1100◦C and

HfO2: T= 1450◦C ; Formation of carbon oxides expected from Y2O3: T= 2000◦C and HfO2: T= 1600◦C)
.

The results of the calculations are shown in �gure 2.6. In the case of Alumina (Al2O3), Magnesia (MgO)

and HfO2, carbon monoxide is formed from approximately 1600 ◦C . In the case of Titanium oxide (TiO2)

and calcium oxide (CaO) oxygen is provided from temperatures around 800 ◦C .
The results suggest that chemical reactions in the target container are more complicated than believed.

Most of the discussed target materials have been used for the extraction of carbon as CO at operational

temperatures between 800 ◦C and 1500 ◦C . According to the chemical equilibrium formation of CO is

not expected in some cases.

The fact that CO is released nevertheless means that a supply of oxygen is not only given by the material.

Possible sources of oxygen might be

� Contamination that might be present in much higher amounts than C and in�uence the equilibrium

� Target materials are rarely present in theoretical stoichiometries and crystal lattice. Hence oxygen

might be present in the structure and be slowly released

� Chemical bound is destroyed by proton beam

The exact analysis of the origin of oxygen requires a deeper insight into the chemical equilibrium and

phase coexistence of target materials in the target container environment and is beyond the scope of this

work.

If the availability of oxygen is one of the limiting factors in the formation and extraction of carbon as

carbon oxide it is possible to change the chemical equilibrium in the target by injection of additional

gases. According to equilibrium calculations Ta2O5, Y2O3 and Al2O3 form �uorides while releasing oxygen

if �uorine is present. In the case of tantalum, present �uorine might also suppress the formation of

tantalum carbides and therefore provision of �uorine might enhance the release of carbon as carbon

oxide in these two ways.

2.5 Adsorption

On its way through the pores of the target material and on the path through the target container a

previously produced atom or molecule experiences many hits with the surrounding surfaces. As de-

scribed in 1.2.3 the particle will stick with a certain probability S on the surface. This causes a delay of

τ = τ0 ∗ exp ∆H0
kB∗T

each time the particle sticks to the surface. The total delay caused by one adsorption

has to be multiplied by the total number of hits n. Simulations show [24] that n is in the order of 102

for the transport through the target structure. Comparing the ratio of tubular length and radii of the

target container to a nano structural target material leads to an estimated number of hits of at least 106

inside the material.

In order to guarantee a similar delay for both materials the adsorption enthalpy of the species on the

target material has to be 10 times smaller than the adsorption enthalpy of the structural material.

Parts that are resistively heated to temperatures up to 2100 ◦C such as transfer line, target container

and ion source inside ISOLDE target units are made from refractory metals. While the container and the
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Al2O3+C Y2O3+C

CaO+C MgO+C

TiO2+C H f O2+C

Figure 2.6.: Chemical equilibrium of C with target materials. The results show the temperature region

in which formation of carbon oxides can be expected (CO: dark blue line, CO2: green line.
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Adsorbent ∆H0 [kJ/mole] CO Ref. ∆H0 [kJ/mole] CO2 Ref.

Ta -128 [68]

Re -96 [62]

Mo -60 [68]

MgO -131 [51] -164 [51]

Y2O3 -16 this work -80 this work

HfO2 -66 [51] -133 [51]

Al2O3 -35,-21 this work,[51] -35,-65 this work, [51]

TiO2 -61 [51] -158 [51]

ZrO2 -153 [51] -177 [51]

SiO2 -22 [51]

Table 2.3.: Adsorption enthalphies ∆H0 for CO and CO2 on target and structural materials.

transfer line (in case of a hot transfer line) are made of tantalum, the ion source can contain tantalum,

molybdenum, rhenium, tungsten and carbon. Furthermore foils of rhenium are often inserted into the

target container to carry the target material. Other materials used are copper, graphite, quartz and

a large variety of target materials for isotope production. For light isotopes such as carbon, pills of

pressed powder or �bers of metal oxides are the target material of choice. To extract carbon isotopes

with high e�ciencies the adsorption on each of these materials has to be considered separately. Most

experimental studies that are investigating the interaction of gases with surfaces are carried out with

highly directed structures. As materials for target production are usually polycrystalline, studies looking

at such unordered and porous structures are of particular interest.

These studies show that most of the metals used in ISOLDE targets interact strongly with carbon and

carbon oxides. This is in particular the case for tantalum [58], the main component of target units.

While adsorption occurs already at lower temperatures, dissociative chemisorption of CO occurs from

T = 400 ◦C , bonding the oxygen on the surface while the carbon di�uses into the tantalum lattice [59]

[60].

A similar interaction, although in di�erent temperature regions, was found for rhenium [61]. Chemisorp-

tion of carbon monoxide occurs from room temperature. When heating to 500 ◦C the chemisorbed

molecules partly desorb while the remaining molecules are dissociated. Heating the sample to 1060 ◦C
causes a recombination and desorption of the dissociated CO.

If Re is exposed to CO and O/O2 in same amounts, almost no dissociative chemisorption was observed.

The order of exposure had no impact in this behavior [62]. On tungsten CO adsorbs at low tempera-

tures (T ≈ −200◦C to −173◦C). Heating this sample to T ≈ 0− 100◦C shows that 60% of the initially

adsorbed CO desorbs. Even on elevated temperatures T ≈ 600− 700◦C no dissociative chemisorption

was observed in isotopic mixing experiments [63].

For the case of molybdenum non-dissociative chemisorption at room temperature was observed [64].

Desorption occurs from 500 ◦C with no evidence of further adsorption [65].

Studies on the adsorption of CO and CO2 on proposed light metal oxides (Al2O3, MgO, CaO,Y2O3) are

not as manifold as for the adsorption on metals. However some few investigations were performed [51]. It

was found that MgO is a strong adsorbent for CO and CO2. Investigations on CaO could not be carried

out since CaO carbonizes in contact with air. Calcium and Magnesium belong to the same group and it

can be assumed that the strength of interaction is comparable.

For the case of Alumina, Yttria and Hafnia adsorption enthalpies are lower and comparable (see ta-

ble 2.3). The table also shows results from measurements carried out in the framework of this thesis.

The adsorption enthalpy of CO and CO2 on Al2O3 and Y2O3 was investigated by the group of R. Bulanek

at the University of Pardubice using microcalorimetry. A detailed description of the technique can be

found in [66] and [67].
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Figure 2.7.: Residence time of CO on target and structural materials for a single hit, assuming a sticking

probability of 100 %.

Figure 2.7 and 2.8 show the residence time given by formula 1.6 for CO and CO2 on di�erent materials

depending on temperature, calculated for one single hit on a surface assuming a sticking probability S

of 100%.

2.6 Release Studies of Carbon Oxides from ISOLDE Targets

From release measurements taken during on-line runs it is often di�cult and in many cases not possible

to calculate single contributions of the total release e�ciency or release time introduced in equation 1.1.

Most of the time a combination of several e�ciencies or even the total release e�ciency or release time

for a release can be derived. In order to investigate release parameters in more detail and to understand

where losses occur a dedicated experiment has been set-up. An ISOLDE target unit was equipped with

a cold transfer line that connects an empty tantalum container to a VADIS ion source.

Through a controllable valve, that is connected via a gas line to the target container, pulses of gas (e.g.

CO, CO2, noble gases) are injected into the target container and the resulting release from the ion source

is monitored (see �gure 2.9).

Via a second gas line that is connected to the transfer line additional gases can be injected into the

target system and the impact on the release of the species injected through the pulsed valve studied.

As introduced in chapter 1.2 the release fraction from an ISOLDE target is described by

N = N0 · ex p(−λ · (tdi f f + tads + te f f )) · εdi f f · εt ranspor t · ε f ormation · εion (2.4)

The released fraction can also be described by the integral of the time depended current I(τ) which
will be used later in this chapter.

N =

∫ ∞

0

I(τ)dτ (2.5)
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Figure 2.8.: Residence time of CO2 on target and structural materials for a single hit on the surface,

assuming a sticking probability of 100 %

For the measurements the gas to be studied (e.g. CO2, Ar) is injected directly into the target container.

Therefore di�usion from the target material and in case of molecules their formation is not required.

Hence the di�usion e�ciency εdi f f , the molecule formation e�ciency ε f ormation and the di�usion time

tdi f f in equation 1.1 are εdi f f = 1, ε f ormation = 1 and tdi f f = 0s. Then equation 2.4 simpli�es to

N = N0 · ex p(−λ · (tads + te f f )) · εt ranspor t · εion (2.6)

Combining equation 2.6 with equation 1.22 under consideration that εdi f f = 1 gives

N = N0 ·
∫ ∞

0

e−τ·λ · pνdτ · εion (2.7)

where pν is the probability for e�usion out of a volume for a given geometry.

When noble gases are injected no losses due to chemical reactions or delay due to adsorption on surfaces

are expected and hence εt ranspor t = 1 and tads = 0. This allows to determine the ionization e�ciency

εion and the e�usion time te f f .

For chemically reactive gases like CO2 a delayed release time due to adsorption and losses due to chemical

reactions with the target system are expected.

The goal of the experiment is to study the impact of operational temperature of the target container,

di�erent materials and chemical composition in the target on the release of carbon oxides. This is in

order to identify materials and operational parameters that allow to maximize the extraction e�ciency

of produced radioactive carbon isotopes.

2.6.1 Experimental Setup

The setup was designed as a part of this thesis project. The gas of interest is injected into the target

container via a dedicated gas system. This system consists of a calibrated leak with a leak rate of

5 ∗ 10−5 mbar
l∗s (for air) through which a reservoir is �lled. Downstream of the reservoir a rapid valve

36 2. Extraction of Short-Lived Carbon Isotopes



Figure 2.9.: Setup for release measurements. The gas of interest (e.g. CO, CO2, Ne, Ar,..) is injected

pulse by pulse via a pulsable high speed valve into the target container. Depending on the

nature of the injected gas, adsorption or chemical reactions with the container materials can

occur during the migration to the ion source. After the extraction, ions are mass separated

and the current of +1 ions monitored via a Faraday cup.

(Parker 009-0442-900) is installed. Figure 2.9 shows the schematic setup of the experiment and a

picture of the modi�ed target unit.

After a closure time tclose of the valve during which the gas of interest accumulates in the reservoir a

pulse generator opens the high speed valve for a period topen during which the reservoir is emptied and

the gas injected into the target container. The amount of gas injected can be calculated with

V =
L · tclose

p
·
√

√mair

mgas
(2.8)

where L is the leak rate of the calibrated leak [mbar·l
s ], tclose [s] the time the high speed valve is closed

and p [mbar] the pressure of the gas applied on the calibrated leak. The
Ç

mair
mgas

term in formula 2.8

accounts for the fact that the leak rate is given for air and thus needs to be scaled to the mass of the

injected gas. As soon as the valve is open a burst of gas migrates through the gas line into the target

container and to the ion source where it is ionized and extracted.

The resulting stream of ions is mass separated and the current of the ion of interest monitored with a

Faraday cup. The data acquisition is realized with a Keithley 6487 picoamperemeter and a labview®

program running on the connected computer.

2.6.2 Measurements

To study release characteristics measurements with noble gases (Ne,Kr,Xe) and isotopicaly enriched
13CO2 were performed. During each series of measurement the target container temperature was in-

creased stepwise from room temperature to 2000 ◦C for the case of the plain tantalum container and

the container covered with rhenium foil and to 1400 ◦C in the case of Al2O3. After each increase of

temperature the target remained for 10 minutes in order to reach thermal equilibrium.
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Figure 2.10.: Ion beam intensity of 13CO+ after pulsed injection of 13CO2 with a target temperature of

T = 1500 ◦C .

After that 8 pulses of the gas of interest were injected and the resulting release was monitored. In the

case of noble gases the q = +1 ions and in the case of 13CO2,
13CO2

+ and 13CO+ were monitored as

dissociation is expected. Figure 2.10 shows a typical measurement.

To accumulate gas, the valve was closed for tclose = 250 s and opened for topen = 1 s. When shorter

opening times were chosen an increase of the peak height over time was observed what suggests that the

reservoir could not be emptied entirely.

The measurements can be separated into two di�erent parts:

1. Characterization of the system with noble gases

� evaluation of release e�ciency, here ε= εIon

� evaluation of dependency of rise time1 to square root of mass t∝
p

M (see equation 2.9)

2. Injection of reactive species (13CO2) to study release time and release e�ciency

� release of 13CO2
+ and 13CO+ from plain tantalum container

� release of 13CO2
+ and 13CO+ from tantalum container covered by i.e. Al2O3, Re

1 The rise time is the time between the opening of the valve and the moment when the resulting ion current reaches

it's maximum.
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During the �rst part of the experiment di�erent noble gases were injected into the container. These

gases are neon, krypton and xenon. Due to their chemical inertness noble gases do not react with the

surrounding material. This allows to characterize the system and determine the migration time indepen-

dently of adsorption. Furthermore chemical losses do not occur which allows to determine the ionization

e�ciency. The average time a noble gas atom needs to migrate through the system is determined by the

mass m of the species, the temperature T and the e�ective path length l through the system:

E =
1
2

mv 2 =
3
2

kB T

v =

√

√3kB T
m

v= l
t→ t =

√

√

√
l2 ∗m

3kB T

(2.9)

A linear correlation between the rise time t and the square root of the mass
p

m is expected.

In this experiment the correlation between mass and release time was studied for noble gases. The results

allowed to study release time characteristics of reactive species where tads ≥ 0. Measurements showed

that the rise time of the release o�ers the best way to study the time structure of the release. The rise

time is de�ned as the time between the opening of the valve by the trigger pulse from the pulse generator

and the point where the pulse reaches its maximum (see �gure 2.11).

The goal when injecting 13CO2 into the container is to understand the impact of surfaces of hot tantalum

and other materials on the release time and release e�ciency. When the container was covered with a

Re foil and a tube of Al2O3 one expects di�erent release e�ciencies (see section 2.4) due to the chemical

reaction of CO2 with the surrounding material. Furthermore the release time is expected to be in�uenced

by adsorption (see section 2.5) as shown in equation 2.4.

In order to analyze the release e�ciency the measured peaks were averaged and the background sub-

tracted (�gure 2.11). Integrating the curve numerically results in the total amount of released gas Nrel .

Comparing that number with the amount of injected gas Nin j that is determined by formula 2.8 allows

to calculate the release e�ciency ε in the case of carbon oxides or the ionization e�ciency in the case of

noble gases:

ε=
Nrel

Nin j
(2.10)

2.6.3 Calibration with Noble Gases

Figure 2.12 shows the results of ionization e�ciency measurements for di�erent noble gases at temper-

atures from 850 ◦C to 1900 ◦C . As noble gases are chemically inert no losses due to chemical reactions

with the target environment are expected.

Indeed measurements show that the ionization e�ciency is independent from the temperature and con-

stant.

The measured εion and published e�ciencies εVad [32] are compared in table 2.4. The errors for the

ionization e�ciencies εion are given by the standard deviation of the measurement, the errors of the

quotient of expected e�ciency εVad and εion follow from the propagation of this uncertainty.

While the quotients of measured ionization e�ciency εrelease divided by published e�ciency εVad for
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Figure 2.11.: Typical measurement of release of injected gas. In this case the release of 13CO+ was

monitored after the injection of 13CO2 from a plain tantalum target container heated to

1500 ◦C . The presented peak is an average of 82 injections.

Species εion [%] εVad [32] [%]
εVad
εion

[32]

Ne 0.42± 0.05 6.7 15.99± 1.38
Kr 1.43± 0.04 38 26.57± 0.72
Xe 1.93± 0.09 47 24.35± 0.76

Table 2.4.: Comparison of measured and published ionization e�ciencies for noble gases, ionized in a

Vadis [32] ion source.

xenon and krypton are in agreement, the ionization e�ciency for neon appears to be too high compared

to Kr and Xe respectively. This is most likely due to a contamination on mass 20 due to Ar2+ ions

coming from injected argon.

In order to investigate the delay time a species experiences migrating through the target system, the

time structure of the measured curves was analyzed. Here the rise time, the time between the opening

of the valve and the point when the measured current reaches its maximum is considered.

As noble gases should not experience adsorption on surfaces the release time for a species should only

depend on its mass and temperature. As shown in equation 2.9 a linear correlation between the square

root of the mass and the release time is expected for a given temperature. Figure 2.13 presents the

results for neon, krypton and xenon, where the linear correlation between t release and
p

m is observed.

The absolute values are in the order of seconds, compared to ms seen during online measurements. The

reason for that appears to be the conductance of the used fast valve and the gas system. Hence the

absolute release times are not representative. However as shown in the next section can a delayed release

for reactive species be observed.
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Figure 2.12.: Derived release fractions of neon, krypton and xenon depending on the target temperature.

As expected for noble gases is the release fraction independent of the target temperature.
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Figure 2.13.: The plot shows the linear correlation of rise time with the square root of the mass as shown

in equation 2.9. Measurements were taken with Ttar get = 800◦C and pgas = 0.4bar.
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2.6.4 Release Measurement with 13CO2 and Release E�ciency

In order to understand the release of carbon oxides, 13CO2 was injected into the target container. This

isotopically enriched gas was used in order to distinguish the injected 13CO2, released as 13CO+2 and
13CO+ from naturally occurring carbon oxides and other contaminants with the same mass (e.g. N2 for

mass 28).

As natural carbon occurs in the isotopic mixture 98.9% 12C and 1.1% 13C the background level of 13C
oxides was determined prior the injection of 13CO2. As seen in section 2.7 is the majority of the injected
13CO2 expected to occur as two di�erent ions: 13CO+2 and 13CO+. Hence the beam intensity of 13CO+

and 13CO+2 was monitored after each injection.

The released 13CO+2 originates from direct ionization of 13CO2 by electron impact. For the production

of 13CO+ three di�erent scenarios are possible:

� Dissociative ionization of CO2: CO2→ CO+ +O+ + 2e−

� Thermal dissociation of CO2 to CO and O with subsequent ionization of CO

� Dissociative adsorption or chemical reaction of 13CO2 on surfaces with release of CO and subsequent

ionization

Figure 2.14 and 2.15 show the results of the measurements. Both �gures show the release from the

plain Ta container and the same container covered with a rhenium foil and an Alumina tube.

In the case of carbon dioxide as 13CO+2 clear trends are observable, for εrelease we �nd that εAl2O3
≥

εRe ≥ εTa.

For temperatures up to 1400 ◦C the release e�ciency from the alumina covered container where no reac-

tion is expected is around 2 times higher than the release from a rhenium covered container and 4 times

higher than the release e�ciency from the plain tantalum container. Above 1400 ◦C the release e�ciency

from the plain container and the rhenium covered container drops by almost two orders of magnitude.

However the release e�ciency from the rhenium covered container is higher at all temperatures.

For rhenium a reaction with carbon oxides is expected from approximately 1400 ◦C as seen in �gure 2.4

and indeed the release e�ciency starts dropping at this temperature.

According to calculations of the chemical equilibrium no release of 13CO+2 is expected for the case of

tantalum. This is re�ected in the generally low release e�ciency from the plain container.

The reason why 13CO2
+ is released, in contrast to the predictions from chemical equilibrium calculations,

can probably be found in e�ects induced by saturation of the surface, sticking probabilities smaller than

1 and the �nite time the molecule spends in the container. In the later case the molecule might be release

before equilibrium was reached.

In general it has to be noted that the coverage of the tantalum container was not perfect. Substitution

of the tantalum as a container material is not possible as the design of the container heating requires

a refractory metal. Therefore e�ects applying on the release of 13CO2
+ and 13CO+ from tantalum also

apply to the measurements with alumina and rhenium, but to a smaller degree.

In the case of carbon monoxide di�erences in the observed release e�ciency are not as high as in the

case of 13CO2. Measured e�ciencies for all three materials are approximately the same for low tempera-

ture (up to 800 ◦C). Again the release from rhenium drops in agreement with �gure 2.4 while e�ciencies

from alumina and tantalum remain constant up to 1400 ◦C .
The fact that release e�ciencies for CO are approximately the same for all three materials leads to the

conclusion, that the majority of produced CO comes from a reaction that is not taking place in the

target container and hence independent of the inserted material. Therefore the transformation from CO2
to CO must take place in the ion source.
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Figure 2.14.: Fraction of 13CO2, released as 13CO2
+
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Figure 2.15.: Fraction of injected 13CO2, released as 13CO+

As dissociation cross sections of CO2 to CO are much smaller than the direct ionization of CO2 [35] the

released CO must origin from a chemical reaction. Looking at the calculations of the chemical equi-

librium between the ion source material molybdenum and CO shows, that for elevated temperatures

(T ≥ 1500◦C) the formation of CO is favored. This means that a fraction of CO2 that is arriving in

the ion source reacts with the surrounding Mo to CO and gets extracted as CO+. The remaining CO2 is

ionized immediately and extracted as 13CO2
+.

If release times are considered additional evidence can be found (�gure 2.16). From the release measure-

ments of noble gases the dependency of the square root of the mass to the release time is known (see

�gure 2.13). For this particular setup at a temperature of 800 ◦C the dependency is given by:

t(
p

M) = 0.19 ·
p

M − 0.259 (2.11)

For 13CO2
+ with a mass of m(13CO2) = 45 amu and 13CO+ with a mass of m(13CO) = 29 amu

equation 2.11 gives release times of t(
p

45) = 1.01 s and t(
p

29) = 0.76 s. The experimentally measured

release times of 13CO2
+ and 13CO+ are t(

p
45) = 1.09±0.1 s and t(

p
29) = 1.81±0.1 s (see �gure 2.16).

While the release of 13CO2
+ happens withing the expected time, the release of 13CO+ is delayed by a

factor of 2.4. This delay probably occurs from the reaction of 13CO2 to 13CO on the ion source material.

2.6.5 Conclusion

From Calibration with noble gases:
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Figure 2.16.: Comparison of rise times of noble gases (Ne,Kr,Xe) with measured rise times found for
13CO+ and 13CO+2
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� The ion source performance for the used (conservative) settings was determined. The published

[32] maximum ionization e�ciency εion for Kr and Xe is approximately 25 times higher than the

measured ones. The ionization e�ciency for neon is biased by the overlapping Ar2+ peak on mass

A= 20 and is therefore not discussed further.

� The expected linear correlation between the release time and the square root of the mass of the

species was con�rmed: t∝
p

m. This quali�es the setup for the investigation of reactive species.

From Release measurements with 13CO2

� From the characterization with noble gases we learn, that if the combined e�ciency ε= εt rans ·εion
for 13CO2 is limited by εion an increase of up to 25 fold can be expected if the ion source is operated

at best conditions.

� The combined e�ciencies ε= εt rans ·εion of CO2 as CO2
+ are higher if the container is covered with

alumina or rhenium than from the plain Ta container (εAl2O3
≥ εRe ≥ εTa). The e�ciencies vary

between 0.07− 1 · 10−4% for Ta, 0.03− 1 · 10−4% for Re and 0.07% for Al2O3 for the release of

CO2.

� The release of CO seems to be independent of the surface material for temperatures up to 1300 ◦C
(εAl2O3

≈ εRe ≈ εTa). This leads to the conclusion that the dissociation of CO2 to CO does not take

place in the container.

� Released CO originates from chemical dissociation of CO2 to CO on the hot molybdenum surface

in the ion source. This is in agreement with calculations performed in 2.4.1.

� The delayed release of CO in comparison to CO2 is an additional indicator that CO is produced

in a chemical reaction while the extracted part of CO2 does not experience any delay. That means

that CO2 that gets in contact with hot tantalum surfaces is lost irreversibly.

� In the case of CO2 e�ciencies drop for Re and Ta as of T ≈ 1000 ◦C . For Al2O3 more data needs

to be collected for a conclusive interpretation.

2.7 Ionization Characteristics of CO2 in a VADIS Ion Source

The last step in the extraction process is the ionization of the produced isotopes and molecules. In order

to extract carbon oxides with high e�ciencies, the impact of the ion sources parameters on the extracted

current of CO+ and CO+2 has been studied. After the emission from the hot cathode (see �gure 2.17)

electrons are accelerated by the applied anode voltage. The voltage of the commonly used VADIS [32]

ion source can be varied between 0 V and 300 V. Without additional e�ects the energy of the electrons

can be calculated by E = e · U [eV] where U is the applied voltage and e the elementary charge [32].

Due to their importance in environmental science CO and CO2 have been intensively studied, including

their ionization and dissociation cross sections σion[34], [35],[36]. The precise knowledge of the energy

dependent ionization cross section σion(E) allows to determine the average energy of electrons in the

used VADIS ion source.

Enriched 13CO2 (99,9%) was injected into the target container via a dedicated gas line while the target

unit was mounted to the ISOLDE o�-line separator. Here the release of 13CO+ and 13CO2
+ was mon-

itored depending on the applied anode voltage. The error on the determination of the anode voltage

originates from �uctuations of the anode power supply and is given by ∆U = ±3 V.

After each change of anode voltage a mass scan was performed in order to determine the exact position

and intensity of the peak maximum of 13CO+ and 13CO2
+. The measured ion current of 13CO+ and
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Figure 2.17.: Sketch of the VADIS ion source with a cold transfer line. A: Copper transfer line, B: Anode,

C: Cathode, D: Connection for resistive heating.
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Figure 2.18.: Normalized yield of CO+ and normalized ionization cross section σ(CO→CO+O++2e−)

13CO2
+ and ionization cross sections are shown in �gure 2.18 and 2.19. To ease comparison the mea-

sured yields and known cross section are normalized. Theoretical cross sections obtained with the BEB2

model σBEB [69] taken from [70], experimentally obtained values for CO [71] and CO2 [72] are shown.

While the theoretical [69] cross sections for CO and CO2 and the one obtained in [71] and [72] are in

good agreement, measurements taken here show systematic di�erences (see �gures 2.18 and 2.19). Both

the ionization potential Ip of CO and CO2, and the maximum of the ionization are shifted towards higher

energies. The ionization potential Ip is the value were ionization �rst occurs and was determined by

�tting a linear function of the form y = m · x+ b to the low energy part of the measurements and solving

the obtained equation for y = 0 (the �tted measurements can be found in appendix C). The error is

calculated with gaussian error propagation and given by the error of the �t:

∆Ip =∆x0 =

√

√

√

�

1
m

�2

·∆b2 +
�

b
m2

�2

·∆b2 (2.12)

Table 2.5 shows the di�erence between expected and measured values for Ip and σmax .

The reason for this di�erence is, that the electron energy is not purely given by the accelerating voltage

and thus E = a · e · U with a ≤ 1, where a follows a distribution. The �eld distribution inside the ion

2 BEB=Binary-encounter-Bethe: A theoretical model for electron impact ionization of atoms and molecules.
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Figure 2.19.: Normalized yield of CO+2 and normalized ionization cross section σ(CO2→CO+2 +e−)

Species Ip theo [eV] Ip exp [eV] E(σmax) theo [eV] E(σmax) exp [eV]

CO 14 20.7± 1.5 105 200

CO2 14.5 31.1± 7.3 95 80-120

Table 2.5.: Comparison of measured and theoretical threshold of ionization Ip and electron energy with

maximum cross section for CO and CO2.
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Unit Material Ion Source Ttarget[
◦C ] Yield 1/µC comment

123 CaO MK7 1000-1100 9C : 5 · 103 humidity in target

425 Y2O3 VD7 1400-1600 9C : 1.5 · 103 O2 inj, Cl cont

425 Y2O3 VD7 1400-1600 10C : 1.5 · 104 O2 injection, Cl cont

469 CaO VD7 687 15C : 1.3 · 105 nano material

469 CaO VD7 687 10C : 6.1 · 105 nano material

Table 2.6.: List of online runs during which 9C was successfully extracted or extraordinary high yields.

source was simulated in [32]. It was found, that the resulting �eld follows a distribution where in some

regions the �eld is approximately 30% lower than the applied voltage. The ionization characteristics of

the used VADIS ion source is further investigated in section 3.4.1, where measurements are extended to

noble gases and boron �uorides.

2.8 Analysis of On-line Measurements

During on-line runs at ISOLDE the release of radioactive carbon from target units has been studied in

several cases. Many combinations of target materials and ion sources were investigated but to this point

it is not possible to extract requested yields of exotic carbon isotopes like 17−20C or 9C for an extended

period of time, in a reproducible manner.

In some cases (target units #123, #371, #425, #459) extraction of the short-lived 9C isotope was mea-

sured but either yields were too low or only available for a short period.

An exception is the online run using target unit #123 in 1999 (CaO, MK7) when yields of 5 · 103 1/µC

of 9C were extracted over 3 days. However it was not possible to repeat this result using the same

combination of material, ion source and target setup.

Figure 2.20 gives an overview over all documented extractions of carbon as CO+, extracted from a

range of di�erent setups at ISOLDE. The ratio of carbon beam current extracted as C+, CO+ and CO2
+

ions is usually 1:100:10. Therefore the focus of discussion is on CO+.
The extracted yields from the di�erent target units vary up to four orders of magnitudes for the same

isotope. Generally yields from setups using a VADIS or the former MK7 ion source show higher yields

compared to units using RF ion sources. Furthermore units with calcium oxide as a target material

show good yields. This is especially true for unit #469 for which a sophisticated target material with

nano-sized grains and high porosity was developed [54].

To analyze the factors of the origin of the low or high yields, three online runs were chosen. These

target units are #123 utilzing CaO and a MK7 ion source. This unit is the only documented from which

it was possible to extract 9C for three days. The second target unit is #425 with Y2O3 as a target

material and a VD7 ion source. During operation 9C was seen as well, although for only a short period.

This target unit is especially interesting as release times are the shortest ever observed for carbon oxides.

The third unit #469 utilizing the above mentioned nano-structured calcium oxide as the target material

and a VD7 ion source. Here very high currents of 10C were extracted. The details of these runs are

summarized in table 2.6.

In case of unit #425 where Yttria (Y2O3) was used as target material the absolute yield of extracted

carbon as CO+ was not very high. However during this run it was possible to extract short lived 9C with

1.5 · 103 1/µC.

This was measured after increasing the target temperature to 1600 ◦C which might have caused additional

release of oxygen. As seen in section 2.5 is the adsorption enthalpy of carbon oxides on Yttria with

∆H0 = 16 kJ/mole very low. Hence the elevated temperature avoids long residence times on the surface.

The fact that short-lived carbon was only measured after an increase of the temperature and the low

observed yields of longer lived isotopes indicates a shortage of oxygen when Yttria is used as a target
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Figure 2.20.: Obtained yields of carbon isotopes extracted as CO+ during online runs from di�erent

target units. The legend indicates the target unit number, the used target material and ion

source.
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material. This can also be seen by comparing the ratios of production cross sections of 9C and 10C with

the ratio of extracted yields:

σ10C

σ9C
≈ 300,

I10C

I9C
≈ 10

Here the ratio is 30-fold smaller than expected from the production cross sections. If a surplus of oxygen

was available for the formation of molecules both ratios should be of the same order. Hence only a small

fraction of the produced carbon can react to carbon oxide and be extracted.

In comparison to Yttria, yields extracted from calcium oxide units are generally higher, with record

yields from unit #469. Nevertheless it was not possible to extract very exotic isotopes.

According to chemical equilibrium calculations (shown in section 2.4) calcium oxide decomposes at

temperatures above 700◦C -900 ◦C and, in presence of carbon, formation of carbon oxides is taking

place. This availability of oxygen can be seen when comparing ratios of production cross-section and

extracted yield.

σ10C

σ15C
≈ 11.8,

I10C

I15C
≈ 4.7

Here the di�erence in the ratio is only a factor of 2.5, compared to a factor larger than 30 in the case of

Yttria. The availability of oxygen combined with nano-metric grain size of the target material and the

open porosity allowed the extraction of the highest yields. Furthermore the low target temperature is

bene�cial as seen in the experimental part of this chapter 2.6.

However the low operational temperature seems to be responsible for di�usion and adsorption times

much longer than life times of exotic isotopes.

In contrast to that 9C was extracted over a period of 3 days from target unit #123 utilizing CaO as a

target material. This unit was operated at T ≈ 1050 ◦C which might have caused shorter extraction

times, su�ciently for extracting 9C . Furthermore bad vacuum and high intenisties of stable 12CO+

(ICO+ = 410 nA) and 12CO+2 (ICO+2
= 44 nA) (without proton bombardment) were measured after initial

heating of the target unit.

The production of calcium oxide usually takes place by decomposition of calcium carbonate CaCO3 to

CaO and CO2. This reaction is reversed if CaO is in contact with air and therefore CO2 Therefore the

possible presence of CaCO3 combined with high operational temperatures assured the availability of

oxygen and a su�ciently fast extraction of short lived 9C .
The results suggest that the extraction of short-lived carbon isotopes as carbon oxide is limited by

three major factors. These factors are losses on the heated tantalum surface, particularly if temperatures

exceed T = 1000 ◦C , chemical reactions and adsorption on the hot molybdenum of the ion source delaying

the extraction and a shortage of oxygen for the formation of molecules.

These problems might be tackled as follows

� Shortage of oxygen:

� High operational temperature to decompose the target material

� Injection of reactive species (e.g. C F4) to substitute oxygen by �uorine and hence release

oxygen

� Losses on tantalum of target container:

� Coverage of the container with chemically inert material (e.g. Al2O3, SiO2, compare [51])

� Operational temperature below T = 1000 ◦C

� Delay due to adsorption on molybdenum in ion source and other materials:
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� Replace FEBIAD ion source with RF ion source, (e.g. HELICON[33])

� utilization of target materials with low ∆H, e.g. Y2O3, Al2O3
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3 Extraction of Short Lived Boron Isotopes

Up to now no beams of radioactive boron were extracted from ISOL targets. The reasons are similar as in

the case of short lived carbon isotopes. Boron has a tendency to form various stable bonds with materials

present in targets as for example metals. Furthermore the high boiling point requires an extraction as a

more volatile molecule. Formation of boron �uorides by injection of �uorine containing gases (e.g. CF4,

SF6) was suggested in [43]. This technique has been successfully applied for other refractory elements

[[73], [74]].

Recently 8B has been extracted with yields of 7 ions per second at KVI [75] and 200 ions per second

at IGISOL [76] respectively. For experiments at ISOLDE, yields of post accelerated radioactive 8B
(t1/2 = 770 ms) of 5 · 103 1/µC are requested. These experiments aim to investigate the structure of 8B
as 8B is expected to possess a proton halo in its ground state [77]. Furthermore a successful extraction

would allow to investigate the high lying resonances of 9C by resonant elastic scattering on a thick proton

target, aiming for a better insight into the poorly known nuclear structure of 9C [78]. Besides studies in

the �eld of nuclear physics, the availability of 8B would allow a sophisticated study of di�usion in group

IV semiconductors (Si, Ge, Diamond). For the production of semiconductor devices boron is the most

used p-type dopant. However investigations on the position and di�usion behavior after the implantation

of boron into semiconductor wafers are di�cult or lack the needed sensitivity. Intended experiments aim

to investigate the behavior of boron using alpha emission channeling [78].

Although potential target materials for the extraction of radioactive boron were studied [42] [79], no

beams of boron have been extracted at ISOLDE. The di�culty in the case of boron is to �nd a target

material that o�ers high production rates and fast di�usion while not competing in the reaction with

injected �uoride.

Investigations performed within this work focus on the selection of materials, that obtain the necessary

properties for a successful extraction of boron from ISOLDE targets. Besides simulations on the in-

target production and calculation of the chemical equilibrium of boron with potential target materials,

di�usion of boron in these materials was investigated. This was done using the high neutron capture

cross section of stable 10B. Furthermore the dependency of extractable currents of boron �uorides on

target parameters such as temperature, ion source settings and amount of injected gas was studied.

Finally, a full prototype target unit combining MWCNT1, SF6 injection, a cold line and a VADIS ion

source was tested.

Equation 1.1 shows the single parameters of the extraction process:

N = N0 · ex p(−λ · (tdi f f + tAds + te f f )) · εdi f f · εt ranspor t · ε f ormation · εion (3.1)

The following factors of formula 1.1 are studied within this chapter:

� N0

� Calculation of in-target production of boron isotopes, using EPAX, ABRABLA and FLUKA

� εdi f f usion

� Study of di�usion of boron in target materials via the reaction 10B(n,α)7 Li

� ε f ormation

1 Multi Wall Carbon Nano Tubes
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Material M [g/mole] Density [g/cm3]
CaO 56 3.35

Y2O3 226 5.01

Al2O3 102 3.95

HfO2 210 9.68

CaF2 78 3.18

Graphite 12 2.23

Table 3.1.: Densities and molar masses of target materials

� Calculation of chemical equilibrium between boron and potential target materials

� εt ranspor t

� Calculation of chemical equilibrium between boron �uorides and structural materials

� εionization

� Study of ionization behavior of BF3 and BF2 in a VADIS ion source - dependency of εionization
on U [V] and comparison with theoretical cross sections

� ε f ormation · εt ranspor t · εionization

� Study of the release of BF+3 and BF+2 from a target and ion source system depending on

temperature and material composition

3.1 Isotope Production in Target Materials

Similar as in the case of carbon, the production cross sections of boron isotopes in target materials were

calculated. For Al2O3, Y2O3, CaO and CaF2 this was done using EPAX [14] and ABRABLA [13]. As it

was seen in the simulation of the production cross sections of carbon, the results from EPAX give a higher

cross section for the production of exotic isotopes compared to ABRABLA. Figure 3.1 shows the results

for comparison for the case of Al2O3. The results obtained with EPAX show a production of 8B which is

more than one order of magnitude higher than the production cross section obtained with ABRABLA.

Since results obtained with ABRABLA showed a good matching with measured currents of radioactive

isotopes, all further discussion is limited to these results. For Graphite, additional calculations with

FLUKA [15] were carried out. The results of all three calculations are shown in �gure 3.2. The �gures

of all calculated cross sections can be found in appendix A.2.

Figure 3.3 presents all isotope production cross sections for boron for potential target materials. Using

formula 2.3 allows to calculate the number of produced isotopes in the target per µC protons. The used

target material densities are summarized in table 3.1. The calculations show that for the theoretical

densities a production of 8B between 2∗109 1/µC and 1∗1010 1/µC nuclei can be expected. As one desired

property of target materials is a high open porosity and therefore lower density, these numbers have to

be scaled with the real density of the target materials. Production cross sections for the desired 8B are

comparable to those of 15C which was extracted in molecular form with yields of up to 1.5 ·105 1/µC from

ISOLDE targets.

3.2 Di�usion of Boron in Target Materials

As described in 1.2.2, the di�usion of produced isotopes from the bulk target material to its surface is

one of the determining processes during radioactive ion beam production.

Therefore the choice of a target material which allows a fast and e�cient di�usion is crucial for the
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Figure 3.1.: Comparison of derived isotope production cross sections for the production of boron isotopes

in Alumina, using ABRABLA and EPAX.
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Figure 3.2.: Comparison of derived isotope production cross sections for the production of boron isotopes

in Graphite, using Fluka, ABRABLA and EPAX.
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Figure 3.3.: Derived isotope production cross sections of boron isotopes in di�erent target materials,

using the ABRABLA code.
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Figure 3.4.: Derived In-Target production of boron isotopes in di�erent target materials, using

ABRABLA.
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extraction of exotic isotopes. In this work the di�usion of boron in potential target materials was

studied.

Natural boron appears as 10B with an abundance of 20% and 11B with an abundance of 80%. An elegant

way to investigate di�usion characteristics of boron is to use the extraordinary high neutron capture cross

section of 10B of up to σnth
= 3840 barn [80] for thermal neutrons. If a 10B atom captures a neutron it

decays via the reaction 10B(n,α)7 Li into an alpha particle and 7Li via two di�erent channels [81]:

10B + nth

→ 0.840 MeV 7 Li + 1.470 MeV α+ 0.478 γ MeV [94%]

→ 1.015 MeV 7 Li + 1.777 MeV α [6%]
(3.2)

In order to investigate the di�usion, boron was produced as a 10BF2
+ ion beam from an ISOLDE target

unit and implanted into target material samples. These samples were later on irradiated with thermal

neutrons and the resulting alpha particles detected. The measurement process can be divided into the

following steps

1. Implantation of 10B as 10BF2
+ into target material samples

2. Measurement of the initial distribution and amount

3. Heating of the sample to trigger di�usion

4. Measurement of 10B distribution and remaining amount

5. Repeating step 2 to 4

The �rst step, the preparation of the samples, takes place at the in-house o�ine mass separator. Here
10B is extracted with 50 kV as 10BF2

+ and implanted into samples of target materials of Graphite, multi

walled carbon nano tubes (MWCNT) and Yttria. The details of the sample production are described in

section 3.2.1 and 3.4.

After the implantation, the samples are placed in a setup for alpha detection and irradiated with moder-

ated neutrons, coming from a Pu-Be source. Alpha particles, originating from the reaction 10B(n,α)7Li,
are detected and their energy measured. This measurement allows to determine the relative amount

of boron inside the sample. The experimental setup for the alpha energy measurement is described in

section 3.2.2

During step three samples are heated stepwise in order to promote di�usion. After each heat treatment

the distribution of boron as well as the amount with respect to the initial implantation is checked by

repeating step three. The analysis of these measurements and the results are presented in 3.2.3.

3.2.1 Sample Preparation

The samples were prepared at the ISOLDE o�-line mass separator using the same target setup introduced

in section 2.6. After the mass separator magnet a sample holder was installed which allowed to position

the target material sample in the beam (see �gure 3.5). The mass separated beam of BF2
+ was collimated

by a 8 mm collimator right before the sample position. The acceleration of the molecular ions was done

with an applied extraction voltage of 50 kV on the target position. Tests with aluminum samples (compare

�gure 3.24) covered with a thin �lm of 10B showed a reasonable separability of alpha peaks from the
10B(n,α)7 Li reaction to the background, occurring during irradiation with neutrons. The amount of 10B
on the used aluminum foils is known to be 4 · 1016 on a beam spot with a radius of r = 1.5 mm.
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Figure 3.5.: Sample holder for the implantation of 10BF2
+ into target materials. The sample is on a

potential of -15 kV to increase the energy of the molecule and therefore the implantation

depth.

Material Density [g/cm3] Crystal structure

Graphite 2.23 mono crystalline

MWCNT 0.4 poly crystalline

Y2O3 3.16 poly crystalline

Table 3.2.: Investigated materials

With average currents of 10BF2
+ of 50 nA on the sample position, implantation took approximately 36

hours per sample to achieve an amount of implanted atoms close to 4 · 1016.

Table 3.2 summarizes the investigated materials and their densities. For the case of Yttria and CNT

the material was pressed into pills. The density of the pills is not the same as the theoretical density as

these materials are poly-crystalline and highly porous.

3.2.2 Measurements and Analysis

Detection of the alpha particles coming from the samples was realized with an Ortec Alpha Aria spec-

trometer. Inside of an evacuated chamber the sample is placed in a distance of d = 5 mm to a silicon

detector (450 mm2, 100 µm depletion layer) and irradiated with neutrons coming from a Plutonium-

Beryllium (1.85TBq, 108n/s @ 4π) source. Since the neutron capture cross section of 10B is highest for

thermal neutrons, the high energy neutrons [82][83]coming from the source were moderated. This was

realized with 7 cm polyethylene (PE), placed in front of the detector. To reduce background, additional

15 cm of lead were placed between the source and the polyethylene block. Figure 3.6 shows a sketch of

the setup.

Although a strong neutron source was utilized for irradiation of the samples, observable count rates

were very low with approximately 1.6 · 10−3 Hz. This low count rate required measurement times of

approximately 50 hours per data point, in order to acquire su�cient statistics. Due to a high background

in the detector only the most abundant alpha peak with Eα = 1481 keV was observable. Therefore all
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Figure 3.6.: Set up for detection of alpha particles coming from the 10B(n,α)7 Li reaction. In order to

moderate the neutrons coming from the Pu-Be source, 7 cm of PE are placed in front of the

Ortec Alpha Aria detector. Additional 15cm of lead help reducing the background in the

measurement.

analysis are based on the position of the peak and it's area. These values were determined by �tting a

function of the form

y = y0 +
A

w ·
p

π/2
∗ ex p(−2 ∗ (

x − x0

w
)2) (3.3)

where A is the area under the peak, x0 the position of the peak and w its width. Figure 3.7 shows an

example of a measurement with a �tted function.

To promote the di�usion of the implanted boron in the target material samples, samples were heated in

a modi�ed ISOLDE target. Each heat treatment consisted of heating of the sample for 30 minutes with

an increase and decrease of the temperature within 3 minutes. After each heat treatment, samples were

irradiated with thermalized neutrons and emitted alpha particles detected. In order to determine the

change in the amount of present boron and the migration in the sample, measured spectra are compared

to the spectra taken after the initial implantation. The fractional activity is calculated via

β =
Ai · t0

A0 · t i
(3.4)

where A0 is the area under the �t and t0 the measurement time of the measurement after initial

implantation. Ai and t i are the corresponding values after heat treatment. The error of the fractional

activity ∆β is given by the errors of the �t and calculated by Gaussian error propagation:

∆β =

√

√

√

�

t0

t i · A0

�2

·∆A2
i +

�

t0 · Ai

t i · A2
0

�2

·∆A2
i (3.5)
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Figure 3.7.: Measured alpha spectrum resulting from 10B(n,α)7 Li reaction of investigated Graphite sam-

ple. The plot shows the region between 600 keV and 2000 keV. The 840 keV 7Li peak is

covered by the high background and thus analysis are limited to the most abundant alpha

peak of 1481 keV. The measured time was t = 27.2 h.
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3.2.3 Results and Discussion

In this section the di�usion characteristics of boron in potential target materials was investigated. There-

fore an amount of approximately 4 ·1016 10B was implanted as 10BF2
+ into samples of Graphite, Carbon-

nano-tubes and Yttria. Di�usion was investigated using the extraordinary high neutron capture cross

section of 10B. Samples were irradiated with moderated neutrons coming from a Pu-Be source and the

particles originating from the reaction of 10B(n,α)7 Li were detected. To identify suited materials for the

extraction of radioactive boron, similar studies were carried out in the past for MgF2, Carbon and Pt

[42]. However only the results from MgF2 were published [79].

Due to high background levels in the detector, only the 1481 keV alpha peak could be used to analyze

the measurements. The detection limit for 10B in the sample is 2 · 1015 atoms. To investigate the

di�usion behavior, samples were heated for 30 minutes in 5 (4 for CNT) steps, from room temperature

to approximately 2000 ◦C . After each step, samples were irradiated for approximately 50 hours and the

emitted alpha particles detected. Figure 3.8 shows the evolution of the amount of boron, present in the

sample in dependency of temperature. To ease comparison, measurements are normalized to the initial

implantation of each sample. The measurements show a big di�erence for the di�usion of boron in the

di�erent materials. Di�usion coe�cients of boron in Graphite are known to be high with 2.2 ·10−5 cm2

s at

2200 ◦C [84] if di�usion happens between the atomic carbon layers. This is re�ected in the results shown

in �gure 3.8: from 700 ◦C the amount of boron in the Graphite sample drops from almost 100% to about

50% of the initially implanted amount. Heating the Graphite sample to 1300 ◦C causes an additional

drop of remaining boron to 30 %. Increasing the temperature further does not change the remaining

amount signi�cantly that suggests that the remaining boron is physically or chemically con�ned in the

Graphite.

The situation for carbon nano-tubes (WMCNT) is slightly di�erent. Similar as for Graphite signi�cant

fractions are released at relatively low temperatures with a decrease of present boron to approximately

65% after heating to a temperature of 300 ◦C . Further heating shows a faster decrease of present boron
in comparison to Graphite. After heating to 1700 ◦C no remaining boron could be detected during

measurements.

While di�usion in between and through the walls of the nano tubes should be the same as for graphite, ad-

ditional di�usion and e�usion along the surface and through the capillaries of the tubes can be expected.

This is probably the reason for the faster decrease of boron in the material.

In the case of Yttria almost no change can be observed up to 1300 ◦C . The remaining amount of boron
at this temperature is close to 100 % of the initially implanted. However heating the sample to 1700 ◦C
shows a drop of 50%. After subsequent heating to 1900 ◦C no remaining boron was detectable during

irradiation with neutrons.

The width and the position of the measured alpha peaks remained constant for each material. If boron

would di�use deeper into the material a broadening of the measured peaks due to the additional energy

loss of the emitted alpha particles would be expected. The fact that the amount of boron is decreasing

while the peak energy and width remains constant, indicates that the loss of boron is due to di�usion to

the surface of the sample with subsequent evaporation.

Based on these results carbon nano tubes (MWCNT) were chosen as a target material for the extraction

of radioactive 8B during an online experiment 2014.

3.3 Chemical Equilibrium of Boron with Target Materials

In contrast to carbon, boron was never extracted from a thick ISOL target. Therefore it is not possible

to refer to former online runs to identify the process hindering its extraction.

The high reactivity and the high boiling point of boron (Tboil = 3927 ◦C) and therefore low vapor

pressures at operational temperatures of ISOL units make it necessary to extract boron as a more

volatile molecule. Obvious options are oxides (e.g. B2O3) and halides (BXn, X=Cl,F,Br; n=2,3). As
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Figure 3.8.: Di�usion characteristics of Boron in di�erent potential target materials. Shown is the relative

activity for the reaction 10B(n,α)7 Li
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halides are more volatile (eg T BF3
Boil = −100.3 ◦C , T BCl3

Boil = 12.6 ◦C) than oxides (T B2O3
subl = 1860◦C),

extraction of boron as a halide is intended.

In this thesis the extraction of boron as a �uoride (BF2, BF3) has been investigated. Following the same

approach as in the case of carbon, a target made of a metal �uoride would be the obvious choice. Possible

choices are CaF2 (Tmel t = 1418 ◦C) or MgF2 (Tmel t = 1263 ◦C).
If non-�uoride target materials are chosen, gases containing �uorine like CF4 or SF6 have to be injected

into the target unit to allow the formation of boron �uorides. In this case, the chosen target material

has to have a lower a�nity to �uorine than boron. In order to identify suitable candidates, calculations

of the chemical equilibrium were performed. Again two di�erent cases are considered:

1. Formation of boron �uorides in target materials under the presence of tantalum as the target

container material. When target materials are not �uorides, SF6 is added for the calculation. These

calculations help to identify candidate target materials that allow the formation and subsequent

extraction of boron as BF3.

2. Chemical equilibrium of the formed BF3 with structural materials such as Ta, Re, Mo and Cu.

These calculations allow to identify if a formed molecule reacts with the target environment. This

is important in order to estimate where losses during the transport process take place.

3.3.1 Formation of BF3

To asses the formation of BF3 the chemical equilibrium for 5 di�erent materials was calculated. The

considered materials are Alumina Al2O3 and Yttria Y2O3 as oxides, MgF2 and CaF2 as �uorides and

graphite.

Using MgF2 and CaF2 as a target material might have the advantage that �uorine is provided by the

target material and no further injection is necessary. During investigation on carbon it was found, that

even if metal oxides are used as target materials, the supply of oxygen for the reaction of carbon to

carbon oxide, can not be guaranteed in all cases. Therefore it has to be tested experimentally if MgF2
and CaF2 provide �uorine for the reaction of boron to boron �uorides.

The high di�usion coe�cient of boron in graphite of 2.2 · 10−5 cm2

s [84] together with the availability of

carbon in very favorable forms such as carbon nanotubes or nanometric graphite powder (carbon black)

make this material an interesting candidate. The high porosity of carbon nanotubes likely allows a fast

e�usion of volatile species trough the open porosity.

Figure 3.9 shows the results of the equilibrium calculation. The equilibrium composition between tanta-

lum, the potential target material, boron and SF6 in a ratio of 10:10:1:1 was calculated.

In order to increase readability of the resulting plots, only species that contain boron are shown.

The results show a wide spread of possible phase compositions. A common result for all cases is that

�uorine has to be available in excess. If this is not the case tantalum borides are formed.

In the case of Alumina, volatile molecules of BF3 and BOF are formed in relatively narrow temperature

ranges. BF3 can be expected from 800 ◦C to 1400 ◦C , BOF from 1400 ◦C to 2100 ◦C . Furthermore

calculation show the formation of aluminum borides. The equilibrium with Yttria shows a dominant

formation of BOF starting from 1500 ◦C . Below this temperature no volatile boron species is formed.

For both of calcium �uoride and magnesium �uoride MgF2 and CaF2 formation of boron �uoride takes

place. Unfortunately the temperature at which formation of BF3 starts is in both cases higher than the

boiling point of the material. For MgF2 gaseous BF3 appears above approximately 1400 ◦C , for the case
of CaF2 above 1600 ◦C .
The calculation of the chemical equilibrium between carbon and boron indicates that the extraction

of boron as a �uoride is feasible. Given a su�cient presence of �uorine, formation of boron �uorides,

mainly BF3, is taking place from room temperature to approximately 2000 ◦C . The results obtained from

calculation of the chemical equilibrium suggest, that graphite is the favorable material for the extraction

of boron �uorides.
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Ta+C+B+SF6 Ta+Al2O3+B+SF6

Ta+Y2O3+B+SF6 Ta+M gF2+B

Ta+CaF2+B

Figure 3.9.: Chemical equilibrium of B with possible target materials. To assure a better readability of

the �gures, only species containing boron are shown.
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Ta+BF3 Mo+BF3

Re+BF3 Cu+BF3

Figure 3.10.: Chemical equilibrium of BF3 with structural materials. To assure a better readability of the

�gures, only species containing boron are shown.

3.3.2 Extraction of BF3

In order to evaluate if a once formed molecule persists in the target environment, calculations of the

chemical equilibrium with BF3 and constructional materials were performed. The considered materials

are tantalum, rhenium, molybdenum and copper. These materials are usually found inside the target

container, the transfer line or the ion source. Apart from cold copper transfer lines, which are water

cooled and operated at around 50◦C , materials are usually heated to temperatures between 1200◦C −
2000◦C . The results of the simulation show (see �gure 3.10), that once formed boron �uoride remains

for temperatures between 500 ◦C and 1900 ◦C for all materials. If the temperature exceeds 2000 ◦C
transformation of BF3 into BF2 is taking place. It can be concluded that assuming a surplus of �uorine

formation of boron �uoride is favored over the formation of borides with present materials and thus

extraction should be possible. The formation and extraction of boron �uorides in a target system was

tested experimentally and the calculations con�rmed. The results are shown in the next section.
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Figure 3.11.: Mass scan showing the peaks of boron �uorides molecular ions. The dominance of BF2
+ is

due to dissociative ionization of BF3 in the ion source.

3.4 Extraction of Boron from ISOLDE targets

In this section the extraction of boron in atomic and molecular form from ISOLDE targets is investigated.

In order to determine extraction characteristics atomic boron in powder form was inserted into a target

container and the container gradually heated. The container was connected via a cold transfer line to a

VADIS ion source.

To promote the formation of molecular sidebands, SF6 was injected via a calibrated leak of 5 ·10−5 mbar·l
s

(measured for air) into the container.

After the study of the temperature dependence, the impact of injected amounts of SF6 on the release of

boron �uorides was studied. Figures 3.12 and 3.13 show the results of these measurements.

Thermodynamical calculations of the chemical equilibrium show, that the formation of BF3 is expected

from a mixture of tantalum, boron and SF6 (compare �gure 3.12). Di�erent from the results of the

equilibrium calculation, mass spectra show that the dominantly extracted species is BF2
+ instead of

BF3
+ (see �gure 3.11). This observation can be explained with the higher dissociative ionization cross

section of BF3 to BF2
+ compared to the cross section for direct ionization to BF3

+ and will be addressed

in section 3.4.1.

Assuming that the observed BF2
+ is produced mainly from the dissociative ionization of BF3, the measured

BF2
+ can be regarded as BF3 prior its dissociative ionization. A comparison of the behavior of the

measured ion currents to the theoretical expectations [compare �g 3.12] shows similarities: the ion

yield rises from approximately T ≈ 100◦C and drops at elevated temperatures from T ≈ 1600◦C . The
maximum of the ion current was observed at T ≈ 1500◦C . Although suggested by the calculation of the
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chemical equilibrium no plateau can be seen in the extracted currents.

Possible reasons that might lead to the di�erence in the measured spectra are:

� At lower temperatures the extraction happens before the system reaches equilibrium. The kinetics

of this reaction is unknown.

� Ion source characteristics: superposition of ionization of BF2 and dissociative ionization of BF3

� Impurities a�ecting the equilibrium

Nevertheless the results con�rm, that taking the previous comments into consideration, information

obtained from calculations of the chemical equilibrium apply to ISOLDE targets.

Combining these results with calculations performed in section 3.3 shows that a target utilizing graphite

as a target material at a temperature between 1300− 1600 ◦C should allow the extraction of boron as

BF2
+. As it was shown in section 3.2, this is as well the temperature range, where fast di�usion of boron

in Graphite can be expected.

Besides the dependency of the extracted current of boron �uorides on temperature, the dependency

on the amount of injected SF6 was studied. The results are shown in �gure 3.13. From equilibrium

calculations a linear dependency of the formation of BF3 to available �uorine is expected. This correlation

is con�rmed in the measurements: an increase of injected �uorine leads to an increase of extracted boron

�uorides. Consequently, a high �ow of injected �uoride fosters an e�cient extraction.

The known leakage rate of the calibrated gas leak allows to determine a combined e�ciency for the

formation, transport and ionization of boron from the target. The extraction of boron as BF2
+ can

roughly be divided into three steps:

1. Formation of the molecule

2. Migration to the ion source

3. Ionization

According to formula 1.1 each of these processes has an e�ciency ε, here ε f ormation for the formation

of the molecule, εt ranspor t for the migration through the system and εion for the ionization in the ion

source. Assuming a formation of BF3 via the process

2B + SF6→ 2BF3 + S (3.6)

and followed by ionization to BF2
+ the release e�ciency can be determined via the known leakage rate

of the calibrated leak and hence the supply of SF6. The analysis of measured data leads to a combined

release e�ciency of

εBF2 = εt ranspor t · ε f ormation · εion = 1.5%

.

3.4.1 Ionization Characteristics of Noble Gases, BF2 and BF3

In order to guarantee an e�cient extraction of atoms and molecules from ISOLDE targets, it is crucial to

operate ion sources in a mode where the electron energy matches the maximum ionization cross section

of the species to be ionized. In chapter 2.7 the dependency of extractable currents of carbon oxide on

the anode voltage and with that electron energy was studied. The results were compared to theoreti-

cally and experimentally obtained ionization cross sections found in literature. A discrepancy between
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Figure 3.12.: Dependency of the BF2
+ ion current on the target temperature in comparison with calcu-

lated chemical equilibrium of tantalum, sulfurhexa�uoride and boron.
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Figure 3.13.: Dependency of the BF+2 ion current on the amount of injected SF6 in comparison with

calculated chemical equilibrium.
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the expected and the measured ionization behavior was observed. While ionization begins at electron

energies close to the Ionization potential Ip, a mismatch can be observed for higher electron energies.

To further investigate the characteristics of the ion source, measurements are extended to noble gases

(Ar,Kr,Xe) and boron �uorides (BF2 and BF3).

Due to their chemical inertness noble gases are well suited to investigate ion source characteristics. In

addition to that is the ionization process for atoms not as complex as for molecules where additional

degrees of freedom such as rotation and vibration are present and additionally dissociative ionization

can occur.

During the measurements the anode voltage of the source and, with that, the energy of the electrons

was varied and the resulting current of 11BF2
+ and 11BF3

+ as well as q = +1 ions of argon, krypton

and xenon coming from the target was monitored. After each change of the anode voltage a mass scan

was performed and the peak maximum in the mass spectra determined. In this way possible changes of

the peak position due to changes in the extraction energy caused by the anode voltage are taken into

account. To ease comparison, measured data and the theoretical cross section are normalized to the

maximum. The results of all measurements are listed in table 3.3.

3.4.2 Ionization of Ar,Kr and Xe

To better understand the ionization characteristics of the used VADIS ion source, noble gases were

injected into the target container. As noble gases don't undergo chemical reactions with the environment,

the resulting current of q = +1 ions is only dependent on the ionization. The noble gases used are neon,

argon, krypton and xenon. The results for Ne+1 ions are not presented, as contamination of Ar+2 ions

were present on the same mass. The ionization of noble gases was studied intensively, e.g. [85],[86].

Values for comparison are taken from [85]. Figure 3.14 to 3.16 show the results of the measurements for

xenon, argon and krypton.

3.4.3 Ionization of Boron Fluorides

From calculation of the chemical equilibrium (see section 3.3) of boron with �uorine containing gases like

SF6, the production of BF2 and BF3 is expected. Indeed mass spectra, measured from a target containing

atomic boron in which SF6 is injected, show the presence of these molecules as q = +1 ions. As opposed

to the equilibrium calculation for neutral molecules, BF2
+ molecular ions are present in a much higher

amount than BF3
+ (IBF2

+/IBF3
+ ≈ 35).

Figure 3.17 and 3.18 show the result of these measurements together with the theoretical cross section

for ionization. To ease comparison the measurements and the theoretical cross sections are normalized.

The ionization behavior of BF3 in the VADIS ion source is very similar to other species measured

before. In other experiments the ionization potential of BF3 was found to be 16.5 eV [69] and 16 eV [87]

respectively while the maximum ionization cross section was found for an electron energy of 125-130 eV

[69] and 120-170 eV [87].

The results obtained in this work show BF3
+ �rst occurring (detection limit: Imin = 1 pA) in the mass

spectra at U = 25.9 ± 1.7 V. The maximum current was extracted for an anode voltage of U = 160
V which is agreement of the values obtained in [87]. Furthermore, a slower increase in the ionization

behaviour can be observed for measured values in comparison to theoretical predictions.

To the best of our knowledge no experimentally obtained values of the ionization cross section of BF2
+

are published. Hence the only available values are those calculated with the BEB model. A comparison

of the results from the performed measurements with the calculated cross sections from [69] shows a

bigger discrepancy for the case of BF2
+ than in other cases. The reason for that can be found in the

origin of measured BF2
+. BF2

+ can be produced via three reaction channels:
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Figure 3.14.: Comparison of ionization cross section for xenon and measured ion currents in dependency

of anode voltage. Cross section values are taken from [85].

Figure 3.15.: Comparison of ionization cross section for argon and measured ion currents in dependency

of anode voltage. Cross section values are taken from [85].
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Figure 3.16.: Comparison of ionization cross section for krypton and measured ion currents in dependency

of anode voltage. Cross section values are taken from [85].
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Figure 3.17.: Comparison of normalized ion current of BF3
+ coming from a VADIS ion source with nor-

malized ionization cross section for the process BF3→ BF3
+ + e−.

� Direct ionization of BF2: BF2→ BF2
+ + e−

� Dissociation ionization of BF3: BF3→ BF2
+ + F+ + 2e−

� Thermal dissociation of BF3→ BF2 + F and later on direct ionization of BF2: BF2→ BF+2 + e−

Literature [87] indicates that the main production process of BF2
+ is thermal dissociation of BF3 with

add-on ionization of BF2 and dissociative ionization of BF3. It was found in [87] that the cross section for

dissociative ionization of BF3 to BF2
+ is 10 times higher than the direct ionization of BF3 at an electron

energy of Ee = 70 eV.

The same publication stated that thermal dissociation cross section at 1800 K is in the order of 2.26 ·
10−16 cm2, compared to 5.56 · 10−16 cm2 for dissociative ionization of BF3 found in [88]. Since the ion

source temperature is approximately 2300 K, thermal dissociation becomes as important as dissociative

ionization. Comparing the ionization cross section of BF3 with the measured current of BF2
+ shows indeed

a better match than for the ionization of BF2. This also con�rms the prediction from calculation of the

chemical equilibrium, that BF3 is the dominantly produced species.

3.4.4 Discussion

Comparison of the results obtained in this section for some noble gases and boron �uorides with former

results for CO and CO2 [section 2.7] shows an accordance in the ionization behavior. All measurements

show discrepancies in comparison to experimentally and theoretically obtained values found in literature.

For comparison the measured values and values for the ionization potential Ip found in literature and

maximum ionization Eσmax
are summarized in table 3.3. In most cases the anode voltage where ionization
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Figure 3.18.: Comparison of normalized ion current of BF2
+ coming from a VADIS ion source with nor-

malized ionization cross section.

�rst occurs Ip,ex p is close to the values Ip,theo found in publications for noble gases. Comparing the

values for maximum ionization E theo
σmax

and Emeas
σmax

shows a big discrepancy for most investigated species.

Furthermore all measured curves show a di�erent slope especially for the region up to U = 150 V. In [32]

the resulting �eld in the VADIS ion source for an applied anode voltage of U = 150 V was calculated.

These calculations considered the e�ect of electrons and ions to the resulting �eld. It was found that the

potential in the source varies between 110 V and 149 V. However no resulting average electron energy

was given. Nevertheless these calculations show that the average electron energy in the ion source can

be expected to be smaller than given by E = e · U .
If calculations were extended to lower voltages, the measured results obtained in this work would allow

to verify the theoretical result.

Species Ip theo [eV] Ip exp [eV] Eσmax
theo [eV] Eσmax exp [eV] ∆E[eV ]

CO 14 20.7± 1.5 105 200 95

CO2 14.5 31.1± 7.3 95 80-120 ≤ 25
BF2 8.45 20.8± 4.2 100 190 90

BF3 16 25.9± 1.7 125-170 160 0

Ar 17 17.9± 2.3 90 215 145

Kr 15 15.7± 0.9 65 180 115

Xe 18 11.9± 1.7 70 180 110

Table 3.3.: Comparison of measured and theoretical threshold of ionization Ip and electron energy with

maximum cross section for molecules and noble gases
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3.5 Suggested Setup for On-line Extraction of Boron

Results obtained within this work suggest that the extraction of 8B (t1/2 = 770ms) as 8BF2
+ is feasible.

The most promising material seems to be carbon in the form of carbon nanotubes (MWNCT). Simula-

tions of the production cross section (compare section 3.1) and the in-target production of 8B show that

rates of 1 · 109 1
µC to 1 · 1010 1

µC can be expected if graphite is utilized as a target material. If carbon

nano tubes are chosen as a target material, the lower density of ρ = 0.4 g
cm3 will result in a production

of 2 · 108 1
µC of 8B.

Results obtained from di�usion measurements presented in section 3.4.4 show, that for this choice di�u-

sion of boron can be expected to be fast. As these measurements do not allow a quantitative analysis,

di�usion e�ciencies have to be accessed during on-line runs.

During o�ine studies with a VADIS ion source (compare section 3.4) a combined e�ciency for the for-

mation of BF3, transport and ionization to BF+2 of ε = 1.5% was found. This was for an empty target

container in which a source of atomic boron was inserted and SF6 injected through a calibrated leak of

5 · 10−5mbar · l/s. The maximum extracted current was observed for T = 1500 ◦C .
An unknown factor during online operations is the e�ect of carbon nano tubes on the formation and

extraction of boron �uorides. Although calculation of the chemical equilibrium show (section 3.3), that

the formation of BF3 is favored over the formation of carbon �uorides, the dominating amount of carbon

combined with the extraordinary high surface area of CNT might hinder the formation and/or extrac-

tion. This might a�ect the extraction time tex t r , the formation e�ciency ε f ormation and the transport

e�ciency εt ranspor t .

Yields of I = 5 ∗ 103 1/µC of post-accelerated 8B are requested [77]. For stable CO to C+6 a combined

charge breeding and transmission e�ciency through the low energy part of the REX post accelerator of

2.7% was measured [89]. Assuming a similar e�ciency for boron allows to calculate lower limits for the

combined value of extraction time tex t r and di�usion e�ciency εdi f f . With equation 3.7 follows that a

combined decrease due to extraction time and di�usion e�ciency should not exceed a factor of 1
15 . This

would for instance be the case for tex t r = 1.5 s and εdi f f = 0.25. The real values for these parameters
have to be determined during on-line operation.

Nmax = N0 · e−λ·tex t r ·
2.7·10−2
︷︸︸︷

εREX ·
1.5·10−2

︷ ︸︸ ︷

ε f ormation · εt ranspor t · εionization ·εdi f f

= 2 · 108 · e−
ln(2)
0.77 ·1.5 · 2.7 · 10−2 · 0.015 · 0.25

≈ 2.94 · 104 1
µC

(3.7)

The desired current of 5·103 1
µC after post acceleration corresponds to an intensity of NBF+2

= 1.9·105 1
µC

of expected molecular ions before post acceleration.

In most cases the release of isotopes from ISOLDE targets is determined with a setup called a tapestation.

This setup is located in the beam line of ISOLDE and allows to collect the extracted beam on a tape.

After collection, the tape is moved from the in-beam position to a position where it is surrounded

by gamma and beta detectors. This combination allows for most cases to determine the amount of

radioactive species and distinguish between isobars by detection of speci�c gamma emission. A problem

that is common for radioactive isotopes of light elements is the lack of gamma emission or only such with

very high energies where detector e�ciencies are very low.

In the case of 8B no gamma lines are known and thus a separation from isobars is di�cult. Possible isobars

are 8C, 8Li, 8Be and 8He. As 8C is extremely short lived and 8Be unbound, only 8Li (t1/2 = 839.9ms)
and 8He (t1/2 = 119.1ms) might be seen. However, as boron is expected to be extracted as BF2

+ with

m(8BF2) = 46 amu, isobaric contaminants on m = 8 amu will not a�ect the measurement. If carbon

nanotubes are used as a target material no radioactive species with mX = 46 amu or mX = 27 amu as
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Target material Ion Source Uanode [V] Ttarget [◦C] Gas injection

CNT VADIS 160 ≥ 1500 SF6 or CF4

Table 3.4.: Suggested combination of target material, ion source and operational parameters for the

extraction of radioactive boron as 8BF2. During o�-line studies a cold transfer line was used.

XF+ ions will be produced. Furthermore the formation of 8LiF2
+ is in principle not possible and thus no

contamination on mass m= 46 amu for the low energy beam or m= 8 amu for the post accelerated one

have to be expected. Hence a measurement of the β+ activity should allow a determination of extracted

currents of 8BF2
+

Table 3.4 summarizes the suggested target unit, choice of target material and operational parameters.

3.6 Online Measurement at ISOLDE

3.6.1 Target Setup

The release of radioactive boron from an ISOLDE target unit was tested during the online period 2014.

Therefore a target prototype with the characteristics suggested in section 3.5 was built. The target unit

(# 499) consisted of a standard tantalum target container, connected via a cold copper transfer line to

a VADIS ion source. For the target material multi-walled carbon nano tubes (MWCNT) with a purity

of 95% (Nanocyl S.A.m NC3100) were chosen. The same material was used for the study of di�usion of

boron in chapter 3.2. A total amount of 15.1 g of MWCNT was pressed (8t) into 41 pellets (thickness

≈3 mm, r = 7.5 mm) with a density of 0.43 g/cm3. All pellets were loaded into a rhenium boat and

inserted into the target container. In order to promote the formation of boron �uorides a gas line with

a calibrated leak of 0.37 · 10−4 mbar·l
s was connected to one side of the target container, allowing the

injection of SF6. The applied pressure of SF6 on the calibrated leak varied between 0.5 bar and 1.8 bar.

3.6.2 Measurements and Results

Earlier studies showed that boron under a �uorine atmosphere is released mainly as BF+2 from ISOLDE

targets (section 3.4.4). Therefore the release of radioactive boron �uoride and possible molecule frag-

ments (8B+, 8BF+, 8BF2
+, 8BF3

+) was measured to identify the most abundant ions. As the majority

of the released stable beam consisted of CO+ (Imax = 6µA) and CO+2 (Imax = 400nA) the release of

radioactive species on the masses of 8BO+, 8BOC+ and 8BOF+ was measured in addition. For all mea-

surements the earlier described tape station [90] was used. This setup allows to monitor the gamma and

beta activity of the extracted beam. The expected isobaric contaminant for 8B (t1/2 = 770ms) is 8Li
(t1/2 = 839.9ms). To distinguish 8B (β+ emitter) from 8Li (β− emitter) the presence of the E= 511
keV gamma line, originating from annihilation of the emitted positrons with electrons, was used. The

detection limit with this setup is 7.5 ·101 1/µC . The activity on the described masses was measured for

three di�erent target temperatures: T = 1350◦C , T = 1600◦C and T = 2000◦C .
Contrary to expectations no activity was found on the masses of boron �uorides 8BF+, 8BF2

+ and 8BF3
+

or 8BO+, 8BOC+ and 8BOF+. However for all three temperatures a beta activity on mass m= 8 amu

with a maximum for T = 2000◦C of 1 · 104 1/µC was measured. The half live of the extracted isotopes

was determined to be approximately t1/2 ≈ 800± 100 ms. This half is very close to the half lives of 8Li
and 8B The measured gamma activity on E= 511 keV suggests that 3% of the measured beta activity

originates from a β+ emitter. Since the presence of doubly charged β+ emitting ions with m= 16 amu

was excluded, it can be concluded that the measured isotope is most likely 8B with a yield of 3 · 102

1/µC . It was intended to identify the isobaric composition using the ISOLTRAP MR-tof [91] setup with
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a mass resolution power of ∆m = 2 · 10−4 amu. The combination of the occurrence of activity only on

mass m= 8 amu combined with low count rates did not allow to use this setup. Thus the �nal proof

that the measured isotope is 8B is still pending.

The absence of boron �uorides can be caused by several reasons. During o�ine studies SF6 was injected

into the target container over multiple days before the current of extracted BF2
+ and BF3

+ reached a

constant maximum. Prior the online release measurements, injection of SF6 into the target unit took

place for only about 48 hours. A typical sign indicating a surplus of �uorine in the target is the presence

of tantalum �uoride and tantalum oxo-�uoride ions in the extracted beam. These peaks were absent

during the online measurement with the MWCNT target unit, indicating a lack of �uorine. Contrary

to this theory is the presence of 19F+ ions with IF = 7 nA and SF5
+ with ISF5

≈ 0.9 nA in the stable

beam. The applied pressure of SF6 varied between 0.8 bar and 1.8 bar. A second reason why no boron

�uoride peaks were formed might be given by the used MWCNT as a target material. Although not

predicted by chemical equilibrium calculations, a reaction of carbon with the injected �uorine might take

place. Contrary to this theory is the fact that the release of stable CFn (n= 1, 2,3, 4) was very little with
currents in the order of pA.

To qualify MWCNT as a target material for the extraction of radioactive boron in the future, the

release e�ciency of stable boron as boron �uoride from a target using MWCNT should be determined

during o�-line experiments.

3.7 Sample Preparation for Experiments at the SARAF Facility

Besides the implantation of boron into possible target materials for ISOLDE, implantation into aluminum

foils took place. This was done in the framework of a collaboration between n-tof/CERN, Paul Scherrer

Institute (PSI), the Israel-US SARAF collaboration and ISOLDE. This collaboration intends to measure

the cross section for the reaction 7Be(n,α) which might correct the di�erence between predicted and

observed amount of primordial 7Li and possibly solves the 7Li problem [92].

While the relative abundances of 2H/1H, 3H/1H and 4He/1H are predicted correctly by the Big Bang

Nucleosynthesis theory (BBN)[93], the relative abundance of primordial 7 Li/1H is predicted to be 3-4

times higher than it is observed (�g 3.19). Most of the primordial 7 Li is destroyed during the �rst 4-15

minutes after big bang via the 7 Li(p,α) reaction.
The 7 Li which can be observed up to now is believed to be produced via the decay of 7Be (t 1

2
= 53.29d)

by electron capture.

One possible reason for the de�ciency of 7 Li might be the destruction of 7Be via the 7Be(n,α) reaction
during the �rst minutes after the big bang (10-15min). The calculation of this destruction rate relies on

an extrapolation of the cross section to high (primordial) energies from measurements performed with

neutrons at thermal energies [94].

The goal of the experiment is to measure the cross section for 7Be(n,α) at higher neutron energies (10-

100keV) with a modern setup.

For the measurements, 7Be, coming from the water-cooling loop of the SINQ neutron spallation source

at the Paul-Scherrer Institute [95] will be implanted into Beryllium foils at ISOLDE during operations

in 2015.

The extraction of 7Be happens within the framework of the ERAWAST2 project at PSI. Within this

project several sources for radio nuclides are exploited, o�ering high amounts of desired exotic isotopes

such as 7Be, 44Ti, 60Fe and 53Mn.
The measurement of the cross section will take place at the Soreq nuclear research center in Israel, with

neutrons coming from a liquid lithium target which is irradiated with protons.

In order to test the experimental procedure and determine the energy distribution of the neutrons from
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Figure 3.19.: Relative abundances of D, 3He, 4He (Y) and 7 Li to 1H in dependency of the Baryon to

photon ratio η. In the case of 7 Li the green line indicates the expected abundance while

the blue square marks the observed. Picture taken from [92]
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Figure 3.20.: Layout of SARAF during Phase I and the temporary beam line [96]

the liquid lithium target (LiLiT), an experiment with an aluminum foil with implanted 10B, produced
within this work, is planned beforehand the measurement of the cross section σ(7Be(n,α)).

3.7.1 SARAF and LiLiT

At SARAF protons and deuterons with currents up to 5 mA are accelerated via a RF superconducting

linear accelerator [96] and directed onto a target. Figure 3.20 shows the setup of the accelerator during

phase 1. The achievable energy can be varied up to 4 MeV for protons and 5 MeV for deuterons. For

the production of neutrons, a proton beam of 1.91 MeV is directed on a liquid lithium target (LiLiT).

The energy is chosen to be just above the threshold for the reaction E7 Li(p,n)7Be = 1.8804 MeV, in order

to produce neutrons with low energies (10-100 keV).

Besides investigations on astrophysics, one target of SARAF is dedicated to investigate the feasibility

of liquid lithium targets for neutron production, serving the treatment of cancer with the boron-neutron

capture therapy (BNCT). Neutrons produced with a low proton beam of energies just above the reaction

threshold for 7 Li(p, n)7Be have the advantage that the energy of the resulting neutrons is close to the

optimum energy for cancer treatment with the BNCT of E = 1eV − 10 keV .
Neutrons coming from radioactive sources such as Pu-Be possess a much higher energy of about 5MeV

[83] and thus need to be moderated.

The liquid lithium target at SARAF consists of a loop of molten lithium [97]. In order to keep the

lithium in a liquid state, the loop is kept at 200◦C (Tmel t,Li = 180.5◦C). A steady �ow with up to 4m/s
is assured by a electromagnetic pump. Figure 3.21 shows the target setup and its components.

The area where the proton beam interacts with the lithium is an open part of the loop, where the lithium

�ows through a narrow nozzle and a wide and thin stream of lithium is created. The liquid lithium has

two tasks: �rst the production of neutrons via the reaction 7 Li(p, n)7Be. This happens in the �rst few

µm of the lithium stream. Second, the high thermal power of 5 kW transported by the proton beam

needs to be removed. The extraordinary high heat capacity of lithium of Cp = 4350J/K g · K allows to

transport the power to a heat exchanger.

The to be investigated samples (7Be,10B) will be located very close to the lithium target. Neutron yields

at this position are estimated to be in the order of 1010 n
s·cm2 .

3.7.2 Sample Preparation

As in the case of studies of prospective target materials, 10B was extracted as 10BF2
+ and implanted

into aluminum foils. Figure 3.23 shows the setup for the implantation into foils of aluminum with its 4
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Figure 3.21.: The right side shows the LiLiT target loop with the target chamber (A-D), the lithium

containment tank (E), the EM pump (F), loop line (G) an �ow meter(H). The left side

shows a zoom on the interaction zone. The lithium �ows through a narrow nozzle, creating

a steady stream where the proton beam impinges the lithium [96].

Particle − dE
d x [

keV
nm ] −

dE
d x (x = 25nm) [keV]

200 µg
cm2

︷ ︸︸ ︷

−dE(x = 715nm)

500 µg
cm2

︷ ︸︸ ︷

−
dE
d x
(x = 1825nm) [keV]

840 keV 7 Li 0.508 12.7 363 927

1481 keV α 0.298 7.45 213 543

Table 3.5.: Energy loss of the emitted alpha particles and lithium from the reaction 10B(n,α)7Li in

aluminum . The energies of the particles are the one of the most abundant reaction channel.

elements: the 2 elements surrounding the sample holder were kept on -500 V in order to repel secondary

electrons. This is important as the total amount of boron needs to be known. Therefore the current of
10BF2

+ on the sample was monitored with a micro ampere meter and later on integrated. The goal was

to implant an amount of boron of 4 ∗ 1016 atoms.

The beam of 10BF2
+ was collimated to the desired beam spot size of 3 mm.The average current of 10BF2

+

on the aluminum foil was approximately 12 nA. To achieve the desired amount of boron of 4 · 1016 an

implantation time of approximately 7 days was necessary per sample. In total three foils were produced

with two di�erent thicknesses. These are 200
µg
cm2 which corresponds to a thickness of 740 nm and 500

µg
cm2 which corresponds to a thickness of 1850 nm. The extraction of 10BF2

+ took place with an applied

high voltage of 32 kV. This corresponds to
m10B

m10BF2
· 32keV = 10

48 · 32keV = 6.67keV for 10B. Simulations

of the implantation depth, using the SRIM code show (�g 3.22), that the majority of implanted 10B is

located at a depth of 25 nm.

In the case of the 200
µg
cm2 aluminum foil both, the alpha particle and the 7Li can be detected at

the same time. This allows to only count coincidentally events and therefore reduce the background

from other sources. Table 3.5 shows the expected energy loss for the most abundant alpha and lithium

particles for the used aluminum foils of 740 nm (200 µg
cm2 ) and 1850 nm (500

µg
cm2 ) thickness.
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Figure 3.22.: Distribution of implanted boron in aluminum. Boron was extracted with a high voltage of

32kV as 10BF2. This corresponds to an implantation of 10B with 6.66 keV.

Figure 3.23.: Setup for the implantation of BF2 into aluminum foil for SARAF
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Sample dbeam [mm] thickness Al foil (µm) Implanted Ni(10B) ∆Ni(10B)
Calibration 3 0.74 4.0 · 1016 2 · 1015

Sample 1 3 1.85 3.88 · 1016 2.66 · 1015

Sample 2 3 0.74 1.07 · 1016 1.12 · 1015

Sample 3 5 0.74 2.59 · 1016 1.95 · 1015

Table 3.6.: List of produced samples and amount of implanted boron. The calibration sample was used

as a reference with a known amount of boron.

3.7.3 Determination of Implantation

In order to determine the implanted amount of 10B, the produced sample was placed in front of the alpha
detector described in section 3.2.2 and irradiated with thermal neutrons. The result of the measurement

is compared to measurements with a calibration sample with a known amount of boron of 4·1016±2·1015

atoms.

In order to determine the implanted amount, the more abundant alpha peak is �tted with a function

of the form introduced in equation 3.3.

The amount of boron in the aluminum foil is determined by comparison of the peak areas of the

calibration sample with the implanted foils. The used equations are similar as in section 3.2.2. The

amount of implanted boron Ni is given by:

Ni =
Ai · t0

A0 · t i
· N0 (3.8)

where A0 is the area of the peak of the calibration sample, t0 the time measured, N0 = 4 · 1016 is the

amount of 10B in the calibration sample, Ai the area of the peak of sample i and t i the corresponding

time.

The error of the implanted amount ∆Ni is given by the errors of the �t and calculated by Gaussian error

propagation:

∆Ni =

√

√

√

�

t0 · N0

t i · A0

�2

·∆A2
i +

�

t0 · Ai · N0

t i · A2
0

�2

·∆A2
0 +

�

t0 · Ai

t i · A0

�2

·∆N2
0 (3.9)

Table 3.6 summarizes the results from these measurements and shows the derived amount of implanted

boron.

3.7.4 Online Measurements at SARAF

In march 2014 the �rst proton beam, coming from SARAF hit the liquid lithium target. During this

test, the combined operation of the accelerator and the lithium target was successfully tested. Also, a

foil with implanted 10B was placed close to the target position in order to be irradiated with produced

neutrons, coming from the target. The sample was positioned in between two silicon detectors in order

to detect alpha and lithium particles, resulting from the 10B(n,α)7 Li reaction, in coincidence. Due to

a high radiation background in the detectors and a low event rate it was not possible to tune the data

acquisition to allow the detection of emitted alpha and lithium particles within the short beam time.

For the future a di�erent approach for the execution of the measurements will be followed. Instead of

silicon detectors, measurements will take place using CR-39 plastic detectors. The detector is placed

close to the sample during the irradiation with neutrons. Charged particles coming from the reaction
10B(n,α)7 Li enter the plastic, resulting in a visible damage. After irradiation the detectors will be
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Figure 3.24.: Measurements and �t of the calibration sample and sample 3. Details see table 3.6.
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extracted from the setup and the number of detected particles determined by counting dark spots on

the surface. Depening on the structure of the spot it is possible to distinguish between di�erent charged

particles such as protons, alpha particles or lithium. If this setup is feasible to investigate the reactions

of interest is currently studied by Emily Kading and Moshe Gai, University of Connecticut.

3.8 Summary

In this chapter the feasibility of extracting radioactive boron 8B from an ISOLDE target unit was in-

vestigated. The high boiling point of boron requires the extraction in molecular form. The extraction

as boron �uoride is favorable in comparison to other halides or oxygen as only one stable �uoride iso-

tope exists and the low boiling point of boron �uorides. To identify target materials that allow the

formation of boron �uorides in presence of C F4 or SF6, the chemical equilibrium between these elements

was calculated. These calculations also allow to estimate where losses due to reactions with structural

materials might occur. The results show that if a surplus of �uoride is present in the target container,

the formation of boron �uorides is favored for all considered materials over the formation of e.g. metal

borides. Furthermore, results suggest that graphite is the best suited target material. Although results

of other considered target materials show that formation of volatile boron molecules is taking place, only

the obtained results with graphite show a constant formation of boron �uorides over the majority of the

considered temperature range from 25 ◦C to 2500 ◦C .
The formation and extraction of boron �uorides from an ISOLDE target unit was tested experimentally.

Therefore boron was inserted into a target container and SF6 injected. The in�uence of operational

parameters such as target temperature, ion source settings and amount of injected �uoride gas on the

intensity of extracted boron �uoride was investigated. It was found that under optimum conditions a

combined e�ciency for formation, transport and ionization of 1.5 % can be achieved for the extraction

of boron as BF+2 from an otherwise empty target container.

Beams extracted from this experiment were used to implant 10B as 10BF+2 into samples of potential target

materials to investigate the di�usion of boron and identify a material for the extraction of radioactive

boron. Investigated materials are graphite, multi walled carbon nanotubes (MWCNT) and Yttria. The

high neutron capture cross section of 10B allowed to monitor the amount of boron in the samples before

and after thermal treatment. Therefore the samples were irradiated with moderated neutrons and alpha

particles originating from the reaction 10B(n,α)7Li detected. The results show, that the fastest decrease
of activity can be found for pellets made from MWCNT.

In the framework of a collaboration between ISOLDE, n-TOF, the Paul Scherrer institute and Saraf the

same method was used to produce and characterize aluminum foils with implanted 10B. The produced
samples will be used to characterize neutrons, coming from the liquid lithium target (LiLiT) at the Saraf

facility in Israel.

Results from o�-line investigations were tested at ISOLDE during an online run 2014 with a dedicated

target unit prototype. The prototype consisted of a standard target container using a cold transfer

line and a VADIS ion source. The investigated multi walled carbon nanotubes were chosen as a target

material. A special gas line allowed the injection of SF6 directly into the target container to promote

the formation of boron �uorides. Contrary to expectations no activity was found on masses of boron

�uorides or other volatile boron molecules. However on mass m= 8 u a positron activity corresponding

to 3 ·102 1/µC was measured. Although other sources were excluded, the �nal proof that the measured

activity originates from 8B is still pending.
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4 Other Molecular Beams

4.1 Titanium Fluoride

Within the ERAWAST1 project di�erent sources for radioactive isotopes are explored and exploited at

the Paul Scherrer Institute (PSI) in Villigen. The sources that are used to extract isotopes are beam

dumps and irradiated samples of e.g. stainless steel formerly used for material studies[98]. The PSI

cyclotron accelerates protons up to 590 MeV with current up to 2.4 mA and hence production of exotic

isotopes takes place wherever the high intensity beam is directed on material. With advanced radio

chemical methods 44Ti (t1/2 = 60.4 a) and 60Fe (t1/2 = 1.5 · 106 a) were extracted from a copper beam

dump.

Furthermore 7Be (t1/2 = 53.29 d)[95], produced by spallation of oxygen with fast neutrons in the cooling

water of one of the experiments, is extracted. As mentioned in the last chapter the extracted 7Be will

be used to investigate the primordial 7 Li problem at SARAF (see section 3.7).

During the experimental phase 2012 a sample of extracted 44Ti was used at ISOLDE to investigate the

cross section for the reaction 44Ti(α, p)47V aiming to gain a better understanding of physics processes

triggering core collapse supernovae [73].

Due to the refractory nature of titanium, with a boiling point of 3287 ◦C extraction had to take place

in molecular form. Figure 4.1 shows the periodic table presented in section 1.4 where the extraction

of titanium as a halide was suggested. Fluorine is the favorable element as it possesses only one stable

isotope in contrast to chlorine and bromine. Furthermore, the relatively low boiling point favors the

extraction as a �uoride (TiF4: Tboil = 377◦C) over the oxide (TiO2: Tboil = 1843◦C). The feasibility of

extracting Ti as a �uoride was demonstrated in the past during o�ine tests.

Simulations of the chemical equilibrium show (�g 4.2), that the formation of titanium �uorides from
44TiF to 44TiF4 is expected, with 44TiF3 as the dominant species.

The di�erent �uoride molecules were visible in o�ine measurements prior the online experiment with

di�erent stoichiometries. The part of the measured mass spectra around 104 amu (�gure 4.3) shows

the peaks of natural titanium as 46−50TiF+3 . For the o�ine measurements a target equipped with a hot

transfer line and a VADIS ion source was used. Transfer line and container were heated up to 2000 ◦C .
During the later online measurements with the extracted sample from PSI an identi�cation of the corre-

sponding titanium peaks was much more di�cult as the isotope abundances were unknown. Nevertheless

su�cient extraction was achieved [73].

The used 44Ti sample was extracted from a stainless steel sample and contained 50 MBq of activity

which corresponds to 5 ∗ 1018 atoms. The half life of 44Ti is measured to be 60.4 years.

During online operations the extracted ion current was measured with Faraday cups at two positions.

The �rst position was after the mass separator. Here the yield of low energetic 44TiF+3 was measured.

The second measurement was after the REX-ISOLDE post-accelerator [99] where singly charged

molecules are dissociated and ionized further by charge breeding. There the current of Ti13+, the

most abundant ion after charge breeding, was monitored. The measurements of both Faraday cups are

shown in �gure 4.4. Integration of the measured currents shows an extraction e�ciency for 44Ti from
the target of 0.01% and a transmission e�ciency through REX ISOLDE of 0.3%. Hence a total amount

of approximately 2 ∗ 1012 ions was delivered to the experiment.
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Figure 4.1.: Periodic table with suggestions on how refractory elements can be extracted by formation

of molecules. Taken from [43]
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Figure 4.2.: Chemical equilibrium of Titanium with carbon tetra�uoride C F4 in presence of tantalum.
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Figure 4.3.: Mass scan in the mass range of TiF+3 . The isotope distribution of natural titanium is nicely

visible (46Ti : 8%,47Ti : 7.3%,48Ti : 73.8%,49Ti : 5.5%,50Ti : 5.0%)
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Figure 4.4.: Extracted yield of radioactive titanium ions. Plotted are the yields of 44TiF+3 and post

accelerated 44Ti+13 after REX-ISOLDE. During the charge breeding process molecules are

dissociated [99].
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4.2 Extraction of Tantalum

The extraction of radioactive isotopes of refractory metals such as tantalum, rhenium or tungsten from

ISOL targets is confronted with similar problems as in the case of carbon and boron. High boiling points

and chemical reactivity requires the extraction in molecular form. Radioactive isotopes of tantalum

were extracted from a target using LuF3 as tantalum �uoride and oxo-�uorides in 1982 at the ISOCELE

facility [100] and the used technique of �uorination was further discussed and applied in several cases

(e.g. [47] and [45]). However up to now no beams of radioactive tantalum were extracted at ISOLDE.

Tantalum shares the refractory nature and chemical reactivity with other elements discussed within this

thesis and in addition a relatively low number of potential target materials are suitable for its production.

The extraction of TaFn from a target utilizing 50µm tungsten foil was investigated in [42] but it was

found that di�usion times are very long (≈ 2h).
Within the LIEBE [101] project a new target system for ISOLDE using an eutectic of lead and bismuth

is currently under development. As both lead and bismuth are heavier than tantalum the production of

radioactive tantalum is possible.

Calculations of the chemical equilibrium between lead, bismuth, tantalum and C F4 show, that the for-

mation of TaFn is favored over the formation of lead- or bismuth-�uorides (compare �gure 4.5). The

calculation was carried out with a ratio of Ta:Pb:Bi:C F4 of 1:100:100:10 at a pressure of 10−3 mbar.

Figure 4.5 shows that besides TaFn lead �uorides are produced. This production takes place if a surplus

of �uorine compared to tantalum is present in the target.

The dominantly formed lead �uoride species P bF2 has a melting point of 824◦C under normal conditions

compared to operational temperatures of approximately 600◦C of the target. The result of the calcula-

tion shows however that from approximately 600◦C P bF2 will transform to gaseous P bF4. The precise

behavior of liquid lead in combination with �uorine in an ISOLDE target system has to be investigated

experimentally to make an extraction of radioactive tantalum feasible.

The same setup (compare 2.6) that was used to investigate the release of carbon oxides was used

to study the response of the target system to injections of C F4. The observation of several tantalum

molecules, created by the reaction of C F4 lead to the investigation on their release characteristics. Figure

4.6 shows the extracted amount of tantalum oxo-�uorides and CO, COF depending on the temperature

of the target container. Molecules of TaFn with n=1,2,3,4 were present as well, although in a lower

amount.

In the present case formation of oxo-�uorides is favored, likely due to the presence of Ta as Ta2O5 on

the container surface.

Besides measurements on the quantity, the time structure of the release was investigated. The results

are presented in �gure 4.7. The long release time for all molecules suggest that chemical reactions with

relatively slow kinetics take place. Interesting is that release of the heavy ions TaOF+2 and TaOF+3 is

much faster than the release of CO+ and COF+.
The reason for this di�erence is probably that the heavy tantalum molecules are an intermediate stage

of a multistage chemical reaction from Ta2O5 and C F4 to the reaction products.

Although times for molecule formation are long in comparison to other cases, a target unit designed for

relatively quick di�usion of tantalum could allow the extraction of 168−186Ta with half lives longer than

2 minutes as �uorides or oxo-�uorides.

4.3 Sulfur and Phosphorus

Sulfur and Phosphors have similar properties in terms of chemical reactivity as carbon and boron. There-

fore the extraction from ISOL targets is very di�cult. So far radioactive sulfur at ISOLDE is documented

with 8 · 103 1
µC

38S only from a unit utilizing Z rO2 �bers.

Phosphorus was extracted at GANIL after spallation of 36Ar on a graphite target. The longer lived isotope
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Figure 4.5.: Chemical equilibrium of Ta, Pb, Bi and C F4 with ratios of 1:100:100:10. Although P bFn
molecules are shown, is the production of TaFn favored. This is clear as all added Ta (here

0.1 kmole)can be found as �uoride. Only then lead �uorides starts to form.
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Figure 4.6.: Yields of TanOmFk molecules depending on target temperature.
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Figure 4.7.: Release time of tantalum and carbon molecules from an empty target container after the

injection of C F4.
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Material Formation of SO2 ? Comment

CaO x Formation of CaS

TiO2 (Ø) Formation of TaS2
Y2O3 x Formation of TaS2 and Y2S3
Z rOx x Formation of TaS2 and Z rnSm

Table 4.1.: Potential target materials for the extraction of sulfur. The chemical equilibrium between

tantalum, sulfur and the target material was simulated for a temperature range of T = 25◦C
to 2500◦C .

Material Formation of PFn ? Formation of PmOn ? Comment

CaF2 x

Y F3 x

CaO x Formation of Ca3P2
Y2O3 x

TiO2 x

Z rO2 x

Table 4.2.: List of considered target materials for the extraction of phosphorus as �uoride or oxide. The

chemical equilibrium between tantalum, phosphorus and the target material was simulated

for a temperature range of T = 25◦C to 2500◦C .

30P (t1/2 = 2.49 min) with a current of 4.7 ·106 pps as 30P+ and with a current of 3 ·105 pps as 30PH+.
Furthermore, 29P with a half life of t1/2 = 4.14 s was extracted with a current of 2 ·104 pps as 29P+ [102].

To produce beams of phosphorus and sulfur at ISOLDE, the extraction of molecules of these elements

might be bene�cial. For sulfur the extraction as SO2 with a boiling point of Tboil = −10◦C seems to be

a potential candidate.

In order to estimate which target materials would allow the extraction, calculations of the chemical

equilibrium of oxides of Ca, Ti, Y and Yr with traces of sulfur were performed (see table 4.1).

The calculations show that from the considered materials only TiO2 allows the extraction of S as SO2.

This however is only the case if no tantalum is present. Hence a substitution or coverage of the reactive

tantalum surface with e.g. Alumina seems to be the only possibility for the extraction of sulfur isotopes.

Phosphorus forms bonds with �uoride and oxygen with relatively low boiling point compared to opera-

tional temperatures of ISOLDE targets. These molecules are PF3 with a boiling point of Tboil = −101.8◦C
and depending on the availability of oxygen P2O3 with Tboil = −175.3◦C and P2O5 with a boiling point

of Tboil = 360◦C .
Therefore possible target materials are metal oxides for the production of phosphorus oxides and �uorides

for the extraction of phosphorus as a �uoride. The results are compiled in table 4.2. Unfortunately none

of the calculated chemical equilibrium of the considered target material show a formation of phosphorus

oxides or �uorides.
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5 Summary and Outlook

In this work important phenomena for the extraction of carbon and boron in molecular form from

ISOLDE target units were studied. The studies have been combined with former results.

The in-target production of carbon and boron was simulated using the EPAX [14], ABRABLA [13] and

Fluka [15] code. Comparison of the results showed, that the production of exotic isotopes 9C and 17−20C
is up to two orders of magnitude lower than formerly believed to be possible [51]. The same di�erence

between the results of the two codes was found for the production of short lived isotopes of boron.

In order to succeed in the extraction of exotic carbon and boron the chemical reactivity of these elements

needs to be considered. Therefore calculations of the chemical equilibrium between carbon, boron and

materials used in ISOLDE targets were carried out using the HSC 7 [37] code. These calculations enable

evaluation of materials and conditions that allow formation and extraction of carbon as carbon oxides

and boron as boron �uorides. It was found that some oxide target materials (Y2O3, HfO2) that have

been used in the past for the production of beams of short lived carbon isotopes, do not allow a su�cient

formation of carbon oxides. On the contrary, some other materials (CaO, TiO2) were identi�ed where

the chemical equilibrium favors the formation of carbon oxides at operational temperatures. The results

from the calculations of the chemical equilibrium explain measured yields of radioactive carbon oxide

during former online measurements. While currents from units utilizing CaO are very high (e.g. 10C:
I ≈ 107 1/µC) is the release from a similar setup but Y2O3 as a target material rather low (e.g. 10C:
I ≈ 104 1/µC). The only di�erence between these units were the used target material and the operational
temperature.

The results from the chemical equilibrium calculations were tested experimentally at the ISOLDE

o�-line mass separator. A target unit was equipped with a gas line, allowing the injection of gases into

the target container. To test the impact of di�erent materials on the release e�ciency the inner side of

the tantalum target container was covered with Re and Al2O3. It was found that the release e�ciency

of 13CO2
+ originating from injected 13CO2 varied between 7 · 10−2 − 1 · 10−4% for the plain tantalum

container, 3 · 10−2 − 1 · 10−4% for the container covered with rhenium and 7 · 10−2% for the container

covered with alumina (Al2O3). Furthermore, the results indicate that released
13CO+ originates from a

chemical reaction of 13CO2 with the molybdenum present in the ion source and subsequent ionization of
13CO.
The same setup was used to test the formation and extraction of boron �uorides. Boron in the form of

powder was inserted into the container and SF6 injected through a calibrated leak. It was found that

the combined e�ciency for formation of BF3, transport to the ion source and dissociative ionization to

BF2
+ is up to 1.5%. The extraction of BF2

+ was used to implant 10B as 10BF2
+ into samples of target

materials. The high neutron capture cross section of 10B of σnth
= 3840 barn allowed studies of the

di�usion of boron in the samples by monitoring alpha particles occurring from the reaction 10B(n,α)7Li
under irradiation with thermal neutrons. These measurements allowed the identi�cation of multi-walled-

carbon-nano-tubes as a suited material for the extraction of radioactive 8B.
The same method was used to implant 10B into aluminum foils which will be used for experiments at

the SARAF facility in Israel.

Results from chemical equilibrium calculations, di�usion studies and release measurements for boron

resulted in an on-line measurement where the extraction of radioactive 8B was tested. The results

indicate the �rst ever extraction of 8B with 3 · 102 1/µC at an ISOL facility. The relatively low yield

and the absence of gamma emission from 8B did not allow the de�nite identi�cation of the isotope. This

has to be done in the future by experimental setups sensitive to alpha or β+ particles emitted from 8B.
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The experimental setup used for investigation of the dependency of the release e�ciency on temperature

and materials was also used to investigate the ionization behavior of carbon oxides, boron �uorides and

noble gases in the equipped VADIS [32] ion source. The measurements con�rmed results from simulations

of the electron energy distribution inside the ion source.

The technique of extracting refractory elements as molecules was used for the production of a titanium

�uoride beam. A sample of radioactive 44Ti (t1/2 = 63.3a), produced at the Paul Scherrer Institute in

Villigen, was inserted into an ISOLDE target unit. Injection of CF4 allowed the formation and extraction

of titanium as 44TiF3
+, and a pure beam of 44Ti+13 at REX-ISOLDE after break up of the molecule in

the REX-Trap.

For the extraction of refractory species from ISOLDE target, the in-target and ion source chemistry

seems to be one of the most important factors. In this work the chemistry of carbon oxides and boron

�uorides with the target environment was studied. In the future release measurements from ISOLDE

targets should include target materials. Doping a target material with the element of interest will allow to

determine the impact of the target material on the molecule formation and test results from calculations

of the chemical equilibrium. Investigating the formation of carbon oxides with CaO and Y2O3 would

help to further understand results obtained during on-line measurements. Furthermore would tests of

the formation and release of boron �uorides from carbon-nano-tubes under the injection of SF6 allow to

clarify if the absence of boron �uorides during the performed online measurements is caused by the used

target material.

A precise knowledge of the electron energy distribution in the VADIS ion source would allow to exploit

the source as a tool for the measurement of ionization potentials and ionization cross sections.
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A Production cross sections

A.1 Carbon

Production cross section of carbon isotopes in target materials, calculated with EPAX [14] and

ABRABLA [13] codes.

(a) CaO (b) Al2O3

(c) Y2O3 (d) HfO2

(e) TiO2
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A.2 Boron

Production cross section of boron isotopes in target materials, calculated with EPAX [14] and ABRABLA

[13] codes.

(a) Graphite (b) Al2O3

(c) Y2O3 (d) CaO

(e) CaF2
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B Pressure dependency of chemical equilibrium

calculations

Figure B.1 shows the result of the calculation of the chemical equilibrium between calcium oxide and

carbon at three di�erent pressures A: p = 10−1 mbar,B: p = 10−3 mbar and C: p = 10−6 mbar.

Figure B.1.: Results of chemical equilibrium calculation of CaO and carbon for A: p = 10−1 mbar,B:

p = 10−3 mbar and C: p = 10−6 mbar.
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C Results Ionization Measurements and Linear Fit

Measurements of ionization behavior of di�erent gases in a VADIS ion source and �t of the low energy

part.

Figure C.1.: Argon

Figure C.2.: Krypton
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Figure C.3.: Xenon

Figure C.4.: BF2

106 C. Results Ionization Measurements and Linear Fit



Figure C.5.: BF3

Figure C.6.: CO

107



Figure C.7.: CO2

108 C. Results Ionization Measurements and Linear Fit
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