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Probing single-particle and collective states in atomic nuclei
with Coulomb excitation
Thesis for the Degree of Doctor of Philosophy

c©2012 Douglas Di Julio
Printed in 2012 by Tryckeriet i E-huset, Lund, Sweden.

Division of Nuclear Physics
Department of Physics
Lund University
Box 118
SE-221 00 Lund
Sweden

LUNFD6 / (NFFR - 1033)/1 - 127 / (2012)
ISBN 978-91-7473-422-5

Typeset by the author using LATEX 3.141592-1.21a-2.2



iii

Abstract

A series of experiments and developments, related to stable and radioac-
tive isotopes, have been carried out. These studies have focused on mea-
suring the low-lying excitations of spherical and deformed nuclei using
electromagnetic (Coulomb) excitation and also on developments in detec-
tor technology for upcoming radioactive ion beams facilities.
The low-lying excitations in the nuclei 107,109Sn and 107In have been

investigated using low-energy Coulomb excitation at the REX-ISOLDE fa-
cility at CERN. The measured reduced transition probabilities were com-
pared to predictions of nuclear structure models. In addition, a relativistic
Coulomb excitation experiment was carried out using the FRS at GSI with
the nucleus 104Sn. These radioactive ion beam experiments provide impor-
tant constraints for large-scale-shell-model calculations in the region of the
doubly magic nucleus 100Sn.
A stable Coulomb excitation experiment was also carried out in order

to explore the properties of low-lying structures in the nucleus 170Er. These
measurements resulted in new data for the reduced transition matrix ele-
ments in this nucleus. The results were compared to predictions of models
of deformed nuclei.
The last study contained in this work is related to the design of a new

detector system, to be deployed at the upcoming radioactive ion beam fa-
cility FAIR. A prototype of the detector was tested with a 180 MeV proton
beam and the results were compared to Geant4 simulations. The results
highlight important constraints for the design of the full detector system.
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Chapter 1

Introduction

The atomic nucleus is a small dense region located at the center of an atom.
It consists of a number of neutrons and protons bound together by the
short-ranged attractive nuclear force. The interplay between the nuclear
force and the repulsive electromagnetic force leads to nuclei, with certain
combinations of neutrons and protons, which are stable. These are situ-
ated along the line of stability in the nuclear chart. For the lightest of the
stable nuclei, equal numbers of neutrons and protons are energetically fa-
vored. Heavier stable nuclei, on the other hand, require a neutron excess
to balance the Coulomb repulsion provided by the increasing number of
protons. Nuclei which are removed from the line of stability are unstable
and undergo radioactive decay. On the neutron-rich side, nuclei convert
neutrons into protons via β− decay in order to approach stability. Sim-
ilarly, proton-rich nuclei decay through β+ emission or electron capture,
converting protons into neutrons. The heaviest of nuclei can decay by emit-
ting tightly-bound α particles. The limits of nuclear existence are marked
by the location of the neutron and proton drip lines. Nuclei beyond these
limits are no longer stable with respect to nucleon emission.
The vast majority of our current knowledge, in particular the founda-

tions for many nuclear models, is derived from nuclei near the line of sta-
bility. Unstable nuclei are difficult to produce and study in the laboratory
and the understanding of their properties is rather limited at this time. In
total, there are about 300 stable nuclei. This pales in comparison to the
thousands of identified and predicted number of unstable nuclei. One of
the major questions in nuclear physics today is how well do nuclear mod-
els hold up for the nuclei far from stability. Over roughly the last 15 years,
new technical developments in accelerator and detector technology have
made it possible to push further into unexplored regions of the nuclear
chart. Modern-day facilities can now provide beams of unstable nuclei in

1



2 CHAPTER 1. INTRODUCTION

significant enough quantities to make it possible to carry out experimen-
tal investigations of exotic short-lived radioactive nuclei. These studies
may reveal new nuclear phenomena which will challenge modern nuclear
structure models and our understanding of fundamental nuclear interac-
tions.
The lowest-lying modes of excitation of an atomic nucleus largely de-

pend on the number of neutrons and protons in the nucleus. Two types
of low-lying states are single-particle and collective excitations. Single-
particle excitations refer to those which involve the excitation of individ-
ual nucleons while collective excitations originate from the motion of all
the nucleons working together in a group. A number of different theoreti-
cal models have been developed to understand these modes of motion. In
principle, it should be possible starting from the nucleons and their basic
interactions, to describe all nuclear properties under one unifying model.
This scenario has so far yet to be realized, primarily related to an incom-
plete understanding of the nucleon-nucleon interaction and also to compu-
tational limits imposed by the shear size of the problem. Instead, nuclear
models make use of a number of experimentally observed phenomena in
order to simplify the situation and make calculations possible. For exam-
ple, the nuclear shell model is founded on the experimental observation
that nuclei with proton or neutron numbers N = Z = 2, 8, 20, 28, 50, 82
and 126, known as the magic numbers, have unique properties compared
to other nearby nuclei in the nuclear chart. In the nuclear shell model, these
nuclei can be treated as cores. To a first approximation, the shell-model
state space for a nucleus can be divided into two regions. One region con-
sists of the core of nucleons and the other is the valence space containing
the remaining nucleons. The nuclear states are then described by the exci-
tations of the individual valence nucleons and their interactions amongst
themselves.
The nuclear shell model holds up well in the vicinity of magic nuclei.

However, the model cannot describe features such as rotations and vibra-
tions in nuclei, observed in regions of the nuclear chart distanced from
the magic nuclei. These characteristics have led to the creation of a com-
pletely different model, developed by Bohr and Mottelson [1]. In this
framework, the structure of a nucleus arises from the collective effort of
all the constituent nucleons. These types of nuclei are characterized by
a series of low-lying excitations with large transition probabilities, as op-
pose to single-particle excitations which and have small transition prob-
abilities. Most nuclei exhibit properties which are characteristic of both
single-particle and collective excitations and some combination of the dif-
ferent types of models may be needed to explain all their properties. In
this regard, experimental studies exploring the interplay of collective and
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Figure 1.1: Experimentally determined single-neutron states in the light-Sn
isotopes. The data points are taken from Ref. [3]. The spin ordering of the
states in 101Sn is debated at this time [4, 5].

single-particle degrees of freedom help bridge the gap between the differ-
ent types of models.
One technique for studying low-lying excitations in nuclei is Coulomb

excitation. As a beam of particles impinges on a stationary target, the pro-
jectile and target nuclei are mutually excited due to the time-dependent
electromagnetic field between them. The power of the technique lies in
the fact that the electromagnetic interaction is well understood [2]. At
low energies, the repulsion of the Coulomb barrier keeps the two collid-
ing nuclei separated and the interaction is purely electromagnetic in na-
ture. The above two points make it possible to deduce nuclear data from
experimental observations without encountering obstacles related to the
strong nuclear force. The nuclear quantity of interest in Coulomb excita-
tion measurements is the reduced transition matrix element between two
nuclear states, or alternatively the reduced transition probability, which is
proportional to the square of the reducedmatrix element. The quantity can
also be calculated using a various number of nuclear models and thus the
Coulomb excitation technique is a means for directly testing these models.
A number of experimental and computational developments have also

contributed to the applicability of the Coulomb excitation technique. Mea-
surements today are carried out using large γ-ray detector arrays which
provide highly efficient setups for measuring the γ rays emitted in nu-
clear reactions. Furthermore, these setups have been coupled with sensi-
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calculations were carried out in Ref. [6] using a 100Sn core.

tive particle detectors, allowing for accurate measurements of the angular
dependence of the Coulomb excitation cross section. Modern day accel-
erators can also provide heavy ion beams at energies above the Coulomb
barrier, making it possible to also study the excitation cross section as a
function of beam energy and proton number. On the computational side,
the development of Coulomb excitation analysis codes has made it possi-
ble to determine reduced matrix elements from highly complicated data
sets. In a heavy ion beam experiment, a large number of nuclear states
may be populated. The population for a single excited state can depend
in a complicated way on all the nuclear states involved in the excitation.
Semi-classical Coulomb excitation codes employing least-squares search
routines combined with fast analytical approximations have been devel-
oped specifically to tackle these types of challenges.
This thesis describes the results of several different studies. These in-

clude an experiment with the odd-mass 107,109Sn and 107In isotopes, a rela-
tivistic measurement using the nucleus 104Sn, a stable ion beam experiment
with 170Er, and the design of a new detector system for future radioactive
ion beam experiments. The experimental studies, near 100Sn, are primarily
related to the nuclear shell model. The Coulomb excitation experiments
explored the collective properties of low-lying nuclear excited states in the
odd-mass and even-even neutron-deficient Sn nuclei, 107,109Sn and 104Sn,
and also in the proton-hole nucleus 107In. To a first approximation, the
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low-lying states in the Sn nuclei can be described in shell-model calcula-
tions by the excitations of neutrons outside of a 100Sn core. One important
input parameter for such calculations is the set of single-neutron energies
relative to 100Sn. These states are largely unknown as the nucleus 101Sn is
difficult to produce in the laboratory environment. One approach to get
at them is instead to trace their migration across the Sn isotopic chain, as
shown in Fig. 1.1, where the first five states above N = 50 are tentatively
assigned down to 109Sn. The motivation for the experiments in the odd-
mass Sn nuclei was to confirm the previous findings in 109Sn and to search
for single-neutron states in 107Sn. Themotivation for the 104Sn experiment,
on the other hand, concerned the recently observed increase in the reduced
transition probabilities in the even-even Sn isotopes (see Fig 1.2). The un-
expected enhanced transition strengths call into question the validity of
using 100Sn as a core. The increased transition strengths may indicate the
importance of neutron and/or proton excitations across the N = Z = 50
shell gap, which are typically omitted in the shell-model calculations. In
this regard, it is also interesting to explore the properties of nuclei removed
by a few protons from Z = 50 in order to study the proton-neutron inter-
action. This was the aim of the 107In Coulomb excitation experiment.
The next study presented in this thesis concerns 170Er, which has the

typical properties associated with a deformed nucleus described by the
collective model of Bohr and Mottelson. The Coulomb excitation tech-
nique is particularly well suited for investigating the excitations of these
types of nuclei, as discovered in earlier studies [11], due to their large tran-
sition probabilities and low-lying energies. The nucleus 170Er is unique in
that it exhibits two low-lying rotational bands at nearly the same energy.
Through the Coulomb excitation technique, it is possible to investigate the
interactions between these bands and compare them with predictions of
collective nuclear models.
Progress in the field of experimental nuclear physics is largely driven

by advancements in accelerator and detector technology. The final work
contained in this thesis is related to the development of a new detector
system, to be used in upcoming nuclear physics experiments with radioac-
tive ion beams. The detector may be used in investigations employing a
reaction closely related to Coulomb excitation, known as Coulomb disso-
ciation.
As a final note, the importance of fundamental investigations in nu-

clear physics should not be understated. From a historical perspective,
basic research in nuclear physics has led to a number of important ad-
vancements which have impacted society. The discovery of the neutron
by James Chadwick in 1932 paved the way for the development of nuclear
power and led to events which shaped the political landscape in the latter
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half of the 20th century. Nuclear power currently offers one of the most
promising methods for meeting the increasing demand in energy produc-
tion while limiting the emission of greenhouse gas. New advancements
in safety and waste technology will only make this option more attractive.
Other fields which have benefited from nuclear physics research include
nuclear medicine, earth science, and materials science and engineering. A
new and exciting possible application of nuclear physics is related to using
the properties of weakly-interacting neutrinos, emitted during radioactive
decay, to help predict earthquakes. In the future, discoveries and develop-
ments related to radioactive ion beams may ultimately lead to additional
important technological advancements which are beneficial for society.



Chapter 2

Nuclear Models

The theoretical nuclear structure landscape comprises a rich collection of
nuclear models. The different models provide a basic understanding of
the variety of phenomena observed in atomic nuclei, which have not as
of yet, been explained under the framework of a single unifying model.
If the nature of the nucleon-nucleon interaction was fully known and if
powerful enough computers were available, it may be possible to calculate
any desired nuclear property starting with the individual nucleons them-
selves. This approach is not feasible with the current understanding of the
nuclear force and is hindered by computational limits when attempting to
solve the many-body Schrödinger equation. For these reasons, a large va-
riety of nuclear models have been developed. However, it is not so that a
model developed for one group of nuclei will necessarily be successful in
describing the properties of a different group of nuclei. Certain nuclei may
require the application of two or more different models to describe their
features.
The available models can be grouped into roughly three categories: sin-

gle particle, collective, and models combining both collective and single-
particle degrees of freedom. The most successful model is the nuclear shell
model, which has its foundation in the single-particle motion of the con-
stituent nucleons in a mean-field potential, much like electrons in the atom.
The approach still has limited application to nuclei as the required model
space grows rapidly as the number of states in a calculation increases.
Many other models have been developed which are based on an efficient
means of truncating the relevant space to make calculations possible. The
second group of models are founded on the collective motion of the nu-
cleus as a whole, analogous to the rotations and vibrations of a liquid drop.
Generally speaking, these models can be related to the shell model by con-
sidering the motion of an individual particle in a rotating deformed po-

7
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tential. However, there exists no simple method which links the the two
models together. It may be that these types of motion can arise within
the single-particle framework given a complete understanding of the nu-
clear force and powerful enough computers to solve the nuclear many-
body problem. The third group of models build their foundations on some
combination of both collective and single-particle degrees of freedom.
In the following discussion, the nuclear models of interest for the anal-

ysis and discussion in the later chapters are introduced. The focus is on
features of the models which are relevant for the work presented in this
thesis.

2.1 The nuclear shell model

2.1.1 The average potential

The basic first order assumption of the nuclear shell model is that the in-
dividual nucleons move in orbits, also known as j-shells, independently
of each other. The introduction of the concept of the average potential is
twofold. First, there is a large amount of supporting evidence for the exis-
tence of shell structure in nuclei. The strongest evidence is the experimen-
tally observed magic numbers, N = Z = 2, 8, 20, 28, 50, 82 and 126. These
can be viewed as major shell closures. The first excited states of these nu-
clei can be created only by lifting a single nucleon out of the closed shell.
In nuclei with unfilled shells, the lowest excited states can be formed by re-
coupling the angular momenta of the nucleons in the unfilled orbits. One
would therefore expect that the first excitations would lie at higher ener-
gies in closed shell nuclei than in nuclei with unfilled shells. This agrees
well with experimental observation.
The second reason for the introduction of the average potential is mo-

tivated from a theoretical point of view. To calculate properties of a nu-
cleus it is necessary to solve the Schrödinger equation to obtain the set of
eigenvalues and eigenfunctions. The starting point is the nuclear A-body
Hamiltonian, given by

H =

A
∑

i=1

Ti +

A
∑

1=i<j

Wi,j(~ri, ~rj), (2.1)

whereWi,j represents the two-body interaction between nucleons. An ex-
act solution of the Schrödinger equation using this Hamiltonian does not
exist. The introduction of the average potential makes it possible to move
forward and calculate quantities which can be compared to experiment.
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The motion of a single particle moving in a central potential is described
by the Hamiltonian

H0 =

A
∑

i=1

[Ti + U(~ri)], (2.2)

where U(~ri) is the average potential. On first sight, it may seem difficult
to pinpoint the origin of the average potential for which the individual
nucleons move in. In the case of the atomic shell model, the Coulomb
force of a heavy nucleus provides a center for the lighter electrons. The
situation is not as clear for the nuclear case. However, the potential can be
shown to naturally arise from the convolution of the nuclear density with
a two-body interaction acting between nucleons. The average interaction
from all the other nucleons on the ith nucleon is given by

U(~ri) =

A
∑

j 6=i

∫

ψ∗
j (~rj)Wi,j(~ri, ~rj)ψj(~rj)d~rj . (2.3)

The single-particle wave functions can then be calculated by solving the
single-particle Schrödinger equation, given by

−~
2

2m
∆ψi(~ri) +

A
∑

j 6=i

∫

ψ∗
j (~rj)Wi,j(~ri, ~rj)ψj(~rj)d~rj · ψi(~ri) = ǫiψi(~ri), (2.4)

where ǫi are the eigenfunctions. Here, anti-symmetrization between nu-
cleons is not taken into account. By knowing the wave functions and the
interaction between two nucleons, it is possible to calculate the average
potential. However, in order to know the wave functions one must first
solve the Schrödinger equation with an average potential. A common way
forward is to use an iterative approach, such as the Hartree-Fock method.
The general idea is to take a guess for the wave functions and solve the
Schrödinger equation. The resulting new set of wave functions can be used
to solve the Schrödinger equation again and the process is repeated until
convergence is achieved. In the case above, in which anti-symmetrization
between two nucleons is ignored, the process yields a potential called the
Hartree field. Requiring anti-symmetrization leads to a self-consistent po-
tential which depends on two terms. The first is the Hartree term and the
second is known as the exchange term. The field calculated in this way is
known as a Hartree-Fock self-consistent field.
Themean field is often approximated using potentials with well known

solutions, such as the harmonic oscillator, U(r) = 1
2mω

2r2, which has the
solutions

E = ~ω(N +
3

2
), (2.5)
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whereN denotes the major oscillator number. The gaps between the shells
correspond toN = 2, 8, 20, 40, 70 and 112, where only the lower three num-
bers agree with the experimentally determined magic numbers. One pos-
sibility is to instead use a more realistic shape of the potential. In a heavy
nucleus, a nucleon in the center should experience no net force, suggesting
that the potential should be flat in this region. The addition of an l2 term
leads to this effect. A particle at a distance further from the center, which
has a higher orbital angular momentum, will feel a stronger force and thus
have a lower energy. A Woods-Saxon potential, which has the correct be-
havior at large distances, also produces a similar effect. Both corrections
break the l degeneracy of the shells but still do not produce the correct
sequence of magic numbers. The major breakthrough came with the intro-

duction of a strong spin orbit term in the potential, Vso = −Vso(r)~l ·~s, which
splits each state according to j = l± s [12, 13]. The interaction pushes sev-
eral of the orbits down into the lower oscillator shells leading to the proper
reproduction of the magic numbers. The effect of the spin orbit force on
the single-particle energies is highlighted in Fig. 2.1.

2.1.2 Residual interaction

The previous discussion has revolved mainly around the individual mo-
tion of nucleons in the mean-field potential. Experimentally, this picture
only holds up well for a very few select group of nuclei; those with one
nucleon or hole outside of a closed shell. For nuclei with a few nucleons
outside of a closed shell it becomes important to consider the residual inter-
action between the nucleons. It can be illustrative to look into more detail
at Eq. 2.1. The average potential can be introduced in the Hamiltonian by
adding and subtracting it to Eq. 2.1, resulting in

H =
A

∑

i=1

[Ti + U(~ri)] + [
A

∑

1=i<j

Wi,j(~ri, ~rj) −
A

∑

i=1

U(~ri)]. (2.6)

The Hamiltonian can further be written as a sum of a core part and a va-
lence nucleon part. For a simple two nucleon and core system, where the
core particles are indicated by the indices i = 3, ..., A, the core Hamiltonian
becomes

Hcore =
A

∑

i=3

[Ti + U(~ri)] + [
A

∑

3=i<j

Wi,j(~ri, ~rj) −
A

∑

i=3

U(~ri)], (2.7)
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Figure 2.1: The single-particle energies for the (a) simple harmonic oscil-
lator, (b) intermediate form between harmonic oscillator and square well
and (c) with spin-orbit interaction. The number N represents the major
oscillator shell. The figure was inspired by Fig. 3.2 in Ref. [14].



12 CHAPTER 2. NUCLEARMODELS

while the Hamiltonian for the two particles is given by

H12 =

2
∑

i=1

[Ti+U(~ri)]+[

2
∑

i=1

A
∑

j=3

Wi,j(~ri, ~rj)+W1,2(~r1, ~r2)−
2

∑

i=1

U(~ri)]. (2.8)

The two-particle term can also be expressed as two parts. The first corre-
sponds to the single-particle energies relative to the core, given by

H0
12 = [T1 + U(~r1)] + [T2 + U(~r2)] (2.9)

and the second term, containing the residual interaction, given by

H1
12 = [

A
∑

j=3

W1,j(~r1, ~rj) − U(~r1)] + [
A

∑

j=3

W2,j(~r2, ~rj) − U(~r2)] +W1,2(~r1, ~r2).

(2.10)
If it were so that the average potential was simply a sum of the two-particle
interactions of all the nucleons, then only the term W1,2(~r1, ~r2) would re-
main in the above equation. However, in a typical calculation the core
part and the valence part of the calculation are separated and the two-
body interaction must be replaced with the residual two-body interaction
v1,2(~r1, ~r2). This accounts for the fact that the average potential does not
fully describe the interaction between the core and valence particles.
The introduction of the residual interaction leads to mixing of the pure

shell-model states. The perturbed wave functions will instead be based on
linear combinations of the pure states, given as

ψp =

g
∑

k=1

akpψ
0
k, (2.11)

where akp represents the amplitude of state k in the total wave function,
g is the total number of configurations considered in the mixing, and p =
1, ..., g. In this case, the Schödinger equation can be shown to be

g
∑

k=1

Hlkakp = Epalp, (2.12)

and in matrix form,











H11 H12 · · · H1g

H21 H22 · · · H2g

...
...

. . .
...

Hg1 Hg2 · · · Hgg





















a1p

a2p

...
agp











= Ep











a1p

a2p

...
agp











, (2.13)
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where the Hamiltonian terms are given by

Hlk = 〈ψ0
l |H0|ψ0

k〉 + 〈ψ0
l |Hres|ψ0

k〉. (2.14)

The first term is just the single-particle energies, which correspond to the
eigenvalues of the Schödinger equation with the unperturbed Hamilto-
nian. The second term in Eq. 2.14 represents the residual interaction, which
contributes to both the diagonal and off-diagonal elements. To find the
eigenvalues of Eq. 2.13 requires that the determinant satisfies the follow-
ing condition,

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 − Ep H12 · · · H1g

H21 H22 − Ep · · · H2g

...
...

. . .
...

Hg1 Hg2 · · · Hgg − Ep

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (2.15)

The problem thus boils down to finding an efficient means for diagonaliz-
ing the energy matrix.
To summarize, the basic idea begins with the construction of the matrix

Hlk . The unperturbed part of the Hamiltonian is just the single-particle
energies of the individual nucleons moving in the average field and con-
tributes to only the diagonal elements of Hlk. The residual interaction in-
troduces corrections to the diagonal and off-diagonal elements into the cal-
culation and diagonalization of the energy matrix yields the perturbed en-
ergies and wave functions. The single-particle energies and two-body ma-
trix elements make up the two primary input parameters to shell-model
calculations. The basis for the discussion regarding the residual interac-
tion and mixing can be found in Ref. [15], which provides a more detailed
overview of the material presented here.

2.1.3 Effective interactions based on realistic
nucleon-nucleon potentials

The application of the previous formulation to atomic nuclei introduces
several additional obstacles. The first is that the perturbation approach is
only valid if the residual interaction is weak. The repulsive core of the
nucleon-nucleon interaction means that direct application using perturba-
tion theory is not possible. Secondly, the dimensions of the single-particle
basis grow very fast with the addition of neutrons and protons, quickly
making it impossible to perform shell-model calculations within a reason-
able time. To solve this issue, further truncation of the model space must
be carried out.
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Ideally one would like to derive the free nucleon-nucleon interaction
directly from quantum chromodynamics. This has yet to be carried out,
however some progress has been made recently using chiral effective the-
ory (see the review article Ref. [16]). An alternative is to use models based
on meson-exchange theory. The parameters of the model are adjusted to
fit nucleon-nucleon scattering data such as phase shifts and some proper-
ties of the deuteron. The work presented in this thesis has been carried out
using such a potential, known as the CD-Bonn potential [17].
In the truncated shell-model space, there is no reason to believe that

the nucleon-nucleon interaction should be the free nucleon-nucleon inter-
action. Instead, one has to introduce the concept of an effective interac-
tion. The hope is that this interaction will account for all the configura-
tions which were not included in the model space. In a typical calculation
the model space includes a few single-particle orbits just above a magic
nucleus. This is usually a reasonable assumption as the energy gaps be-
tween the major shells are larger than the energy gaps between the orbits
within a shell. In the current work, the effective interaction was derived
from the CD-Bonn potential using the G-matrix renomalization method.
An overview of the procedure applied to the Sn nuclei can be found in Ref.
[18].
The reduction of the shell-model space also introduces the concept of

the effective charge, similar to the reasons discussed for the need for an
effective interaction. The calculation of the E2 electromagnetic transition
matrix elements, 〈ψi|E2eff |ψf 〉, is carried out by operating on the wave
functions of the states with the electric multipole operator E2eff . In the
truncated model space, the wave functions are only projections of the full
wave functions. If the full wave functions were known, the bare opera-
tor could be used in the standard form. Instead, the E2 operator must be
renormalized by the effective charge eeff . This hopefully accounts for any
missing contributions to the full wave functions omitted during the trunca-
tion of the shell-model space. The effective charges are another important
input parameter for shell-model calculations.

2.1.4 The seniority scheme

One efficient truncation of the shell-model space is known as the seniority
scheme [19, 20]. The method will only be briefly introduced in this section,
but is relevant for the Sn nuclei and is particularly useful for single closed
shell nuclei if strong pairing correlations are present. The basic idea of the
scheme takes advantage of the fact that like particles tend to pair in groups
of two to J = 0+. The seniority of a state, ν, is defined as the number of
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unpaired nucleons in a given jn configuration with angular momentum J .
For example, the J = 16 state for the configuration (h11/2)

4 has seniority
four, as all four particles must be maximally aligned. One simple predic-
tion of the model is that for a particular j-orbit, the energy level differences
between ν = 0 and ν = 2 states are independent of n and constant. When
more than one j-orbit is occupied, admixtures of the jn configurations can
be accounted for by using a generalized seniority scheme [21]. There are
two important predictions for the Sn nuclei. The first being that the ener-
gies of the 2+ states should be roughly constant across the isotopic chain.
The even-even Sn nuclei are an excellent example of this behavior, as indi-
cated in Fig. 1.2 panel a. The second prediction is that the reduced tran-
sition probabilities of these states should exhibit a parabola like behavior
which peaks at midshell for the major neutron shell. The reduced transi-
tion probabilities on the neutron rich side of the shell show the expected
behavior while evidence has mounted for deviations from this trend on
the neutron deficient side of the shell (Fig. 1.2 panel b). Results from
large-scale-shell-model calculations using a 100Sn core are also shown in
the figure and show the expected behavior from the seniority scheme. In-
terestingly, recent measurements also indicate a loss of collectivity near the
midshell (Fig. 1.2 panel b). These results have however been shown to be
consistent with the generalized seniority scheme and related to the filling
of the j-orbits [22].

2.2 Geometric collective model

2.2.1 Collective coordinates

The collective model of Bohr and Mottelson [1] describes the low-lying ex-
citations of a nucleus in terms of the collective effort of all the constituent
nucleons. The nucleus can be viewed as a liquid drop and a point on the
surface of the drop can be described by the following expansion in spheri-
cal harmonics

R(θ, φ) = R0(1 +
∑

λµ

αλµY
∗
λµ(θ, φ)), (2.16)

where αλµ are called the collective coordinates, R0 is the equilibrium ra-
dius, λ is the multiple order, and µ = λ, λ− 1, ...,−λ. The mutipoles of the
expansion correspond to different types of nuclear motion. The monopole
part relates to a change of the nuclear radius, which does not occur at low
energies. The dipole part corresponds to a shift of the center of mass of
the nucleus and thus no changes in the nuclear shape. The quadrupole
term is the lowest multipole which influences the nuclear shape and is the
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most important mode for the work carried out in this thesis. The collective
coordinates can thus be reduced to the five quadrupole variables, αµ, in
the laboratory frame of reference. It is however often useful to consider
their shapes relative to the nuclear axis of symmetry. This is carried out by
transforming the laboratory coordinates to the intrinsic coordinates which
results in two non-vanishing intrinsic deformation variables, usually writ-
ten as

a0 = βcosγ, a2 =
√

2
2 βsinγ. (2.17)

The variables β and γ provide a very simple means for describing nuclear
shapes. The relation between the shape parameters and the nuclear radius
is given by

δRk =

√

5

4π
βR0 cos(γ − k

2π

3
), (2.18)

where k represents the three intrinsic axes of the nucleus. Adjustments of
the parameter β only effect the extent of the quadrupole deformationwhile
γ changes the degree of axial symmetry. A prolate axially symmetric nu-
cleus is described with β 6= 0 and γ = 0o while an oblate axially symmetric
shape is given by β 6= 0 and γ = 60o. Increments of the parameter γ in
multiples of 60o only changes the orientation of the nucleus. In this way,
all possible nuclear shapes can be described by the plane defined by β ≥ 0
and 0o ≤ γ ≤ 60o (Fig. 2.2 panel a). The contours represent a typical po-
tential energy surface for an axially symmetric prolate nucleus.

2.2.2 Rotational and vibrational states

Two types of collective motion are rotations and vibrations. A deformed
nucleus can undergo both rotation and vibration. As no rotations are al-
lowed quantum mechanically with respect to a symmetry axis, spherical
nuclei can only vibrate. The Hamiltonian for an axially symmetric rotor is
given by

Hrot =
~R2

2J , (2.19)

where J represents the moment of inertia and ~R is the rotational angular
momentum. The relationship between the total angular momentum ~I , the

collective angular momentum ~R, and the intrinsic angular momentum ~J ,
is shown in Fig. 2.2 panel b. The projection of the total angular momen-
tum onto the symmetry axis is known as K . When rotational motion is
superimposed on an intrinsic excitation, the total angular momentum will



2.2. GEOMETRIC COLLECTIVEMODEL 17

b)

prolate axis

a) Z’

γ
=

6
0

o

γ = 0o

βmin

ob
la
te
ax
is

β

~K

~R

~I

~J

Figure 2.2: a) The β and γ plane describing various shapes of nuclei and
b) the relation between the angular momentum vectors of a nucleus. The
potential energy contour lines in a) represent a typical deformed axially
symmetric nucleus, such as 170Er.

be equal to I = K,K + 1,K + 2, .... The energy spectrum is classified in
terms of bands with constant values of K , given by

E =
~

2

2J (I(I + 1) −K2). (2.20)

The ground-state band of an even-even rotational nucleus hasK = 0.
One type of intrinsic excitation is believed to be due to vibrations of the

nuclear shape. These can be accounted for in Eq. 2.16 by introducing a time
dependence in the collective coordinates. The Hamiltonian representing
this system, for quadrupole vibrations, is given as

Hvib =
1

2

∑

µ

C|αµ|2 +
1

2

∑

µ

D|α̇µ|2, (2.21)

where α̇µ is the time derivatives of the collective coordinates. The con-
stants C and D are the restoring force and mass parameters, respectively.
The quantum of vibration is called a phonon and the energy spectrum can
be described in terms of these quanta as

EN = ~ω(N +
5

2
), (2.22)
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with ω =
√

C
D and N is the number of quadrupole phonons.

As discussed previously, a deformed nucleus can undergo vibrations in
the β and γ directions and in addition have rotations superimposed on the
vibrations. The energy spectrum in the rotation-vibration model is given
as [23]

E = ~ωβ(nβ +
1

2
) + ~ωγ(2nγ +

1

2
|K| + 1) +

~
2

2J (I(I + 1) −K2), (2.23)

where nβ and nγ are the β and γ quantum numbers. Excited states with the
same values of nβ , nγ , and K form rotational bands according to the sim-
ple I(I + 1) dependence. Typically the β- and γ-vibrational bands occur
around 1 MeV in deformed nuclei, corresponding to the quantum num-
bers K = 0, nβ = 1, nγ = 0 and K = 2, nβ = 0, nγ = 0, respectively. The
γ-vibrational state has nγ = 0 due to the rotation-vibration coupling. This
coupling leads to excited states which include a γ-vibrational component
when K is not equal to zero [23, 24]. The two different types of vibra-
tional bands can be distinguished from each other by examining both the
band-head spins and the spins of the members of the rotational bands. The
β band only contains even spin members while the γ band contains both
even and odd members. For bands with K = 0, the rotational component
of the wave function for odd I members of the band vanishes [24]. In ad-
dition to states built on single-phonon excitations, one would would also
expect two-phonon excitations. These could be, for example, two-phonon
γ-excitations built with K = 0 and K = 4. The identification and classifi-
cation of such states has historically been the focus of many experiments
in the Er nuclei.

2.2.3 Reduced matrix elements

One feature of the collective model of Bohr and Mottelson is that it pre-
dicts very simple relations for the reduced matrix elements between ex-
cited states of a nucleus. If there is not a strong coupling between the in-
trinsic and rotational degrees of freedom, known as the adiabatic approx-
imation, the reduced matrix elements 〈K2I2‖M(λ)‖K1I1〉, to the leading
order are given by

〈K2I2‖M(λ)‖K1I1〉 = (2I1 + 1)1/2〈I1K1λ,∆K|I2K2〉〈K2|M(λ, ν)|K1〉ξ.
(2.24)

For transitions between two bands or within a band, this means that all
the reduced matrix elements can be described by a single intrinsic matrix
element 〈K2|M(λ, ν)|K1〉, multiplied by a spin correction and a Clebsch
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Gordan coefficient 〈I1K1λ∆K|I2K2〉. The constant ξ =
√

2 if K2=2 and
K1=0 and is equal to 1 if both bands haveK = 0.
For an axially symmetric nucleus, the intrinsic matrix element in Eq.

2.24 is a direct measure of the deformation of a particular K band. The
intrinsic quadrupole moment is related to the intrinsic matrix element by

eQ0 = (
16π

5
)1/2〈K|M(λ, ν)|K〉, (2.25)

which in turn is related to the deformation parameter β by

Q0 =
3√
5π
ZR2

0β(1 + 0.16β). (2.26)

In this way, the various shape parameters of axially symmetric nuclei can
be inferred by measuring the in-band reduced matrix elements of a rota-
tional band.
Higher order effects, such as an interaction between the vibrational and

rotational modes of motion, lead to deviations from Eq. 2.24. The inter-
action results in band mixing. For simple two-band mixing between the
ground-state and γ-vibrational bands, the reduced E2matrix elements are
given by

〈K2I2||M(E2)||K1I1〉 =(2I1 + 1)1/2〈I1K12∆K|I2K2〉×
(M1 +M2(I2(I2 + 1) − I1(I1 + 1)))

√
2, (2.27)

whereM1 is the intrinsic matrix element between the bands andM2 is the
coupling matrix element. A simple way to analyze the extent of mixing
between two rotational bands is to plot the square root of the downward
B(E2) values (see Eq. B.2) divided by 〈Iγ22 − 2|Ig0〉 versus the spin de-
pendence (Ig(Ig + 1) − Iγ(Iγ + 1)). Such a graph is known as a Mikhailov
plot. If the two-band mixing formalism is applicable, the points will lie on
a straight line described by the parametersM1 and M2. A horizontal line
indicates that there is no mixing between the two bands. Potential sources
of deviations from a straight line may be due to the presence of undetected
M1 components, differences in the quadrupole moments of the bands, as-
sumed to be zero in the model, and possibly the mixing with additional in-
trinsic excitations. A formalism for three-band mixing has been presented
in Refs. [25, 26].
For the the leading order relation (Eq. 2.24), transitions between bands

with |K1 − K2| > λ are forbidden. However, M1 transitions between
the ground-state and γ-vibrational bands have been observed. A coupling
with a K = 0 band could give rise to M1 transitions to the ground-state
band. Another possible origin could be related to mixing with nearby
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Figure 2.3: Schematic illustration
of the coupling of a single parti-
cle in the d5/2 orbit and a 2

+ core
state.
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K = 1 bands and the reduced matrix elements can be calculated using
the spin-dependent model of Bohr and Mottelson, given as

〈K2I2||M(λ)||K1I1〉 =(2I1 + 1)1/2〈I1(K2 − λ)λλ|I2K2〉×
(

(I1 −K1)!(I1 +K1 + n)!

(I1 −K1 − n)!(I1 +K1)!

)1/2

〈K2|m∆K,ν |K1〉ξ,

(2.28)

with ξ =
√

2 when K1 = 0 and equal to 1 otherwise. The degree of K
forbiddeness is given by n = |K1 −K2| − λ.
The geometric collective model also predicts a simple relation for M1

transitions between twoK = 0 bands, given as

〈K2I2||M(M1)||K1I1〉 = ((2I1 + 1)I1(I1 + 1))1/2m(M1)δ(I1, I2). (2.29)

The parameter m(M1) represents the intrinsic element between the two
K = 0 bands. The coupling schemes presented in this section form the
foundation for the analysis of the 170Er data.

2.3 Core-excitation model

The core-excitation model of de-Shalit [27, 28] is a model for odd-A nuclei
which assumes that the low-lying excited states of a nucleus result from
the coupling of the odd nucleon to a core which has similar properties as
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an excited state in a nearby even-even nucleus. If the single-particle excita-
tions aremuch higher in energy than excitations of the collective core state,
then a likely situation is the excitation of the core while the single-nucleon
remains in the ground-state orbital. When no interaction between the par-
ticle and core is present, the possible states resulting from the angular mo-
mentum coupling of the particle and the core are degenerate. The particle-
core coupling breaks the degeneracy of the states and yields a multiplet
of core-coupled states. The idea is illustrated schematically in Fig. 2.3. In
some detail, the matrix element between two states is given by [27, 28]

〈J ′
cjpJf ||Qk||JcjpJi〉 = (−1)J′

c+jp+Jf [(2Jf + 1)(2Ji + 1)]1/2 × [〈J ′
c||Qk

c ||Jc〉

×
{

J ′
c Jf jp
Ji Jc k

}

+ (−1)Ji−Jf 〈jp||Qk
p||jp〉

{

jp Jf Jc

Ji jp k

}

δJcJ′

c
],

(2.30)

where the multipole Q is divided into a core and particle component. In
the model, the multipole is of the form of the standard static multipole
moment of order k.
For transitions with Jc = 2 to the ground state, i.e. Jc = 0, Eq. 2.30

leads to a simple relation between the E2 transition of the core excitation
and the members of the multiplet [27], given by

B(E2, Ii → If ) =
2If + 1

2Ii + 1

B(E2, ↑)core

5
, (2.31)

where B(E2)core is the reduced transition probability of the core. Further-
more, the center of gravity of the multiplet corresponds to the unperturbed
position of the core-excited state, given by

∑

(2J + 1)(E(J) − Ec) = 0, (2.32)

where Ec is the energy of the core state. The core state in the odd nucleus
may not be identical to the excitation in the even-even nucleus, thus these
relations are expected to give only a qualitative picture of the situation.

2.4 Unified model for odd-mass isotopes

The unified model of odd-mass nuclei [29] provides a description of nuclei
removed from a closed shell by ±1 nucleon. The excited states for such
a nucleus include both the single-particle or hole states along with exci-
tations of the particles or holes across the closed shell, leading to 2p-1h
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or 2h-1p states. In the model, the configuration space includes these ex-
citations coupled to the underlying collective excitations of the core. The
Hamiltonian for such a system is given by

H = Hcore +Hsp +Hsh +Hp−core +Hh−core +Hph−core +Vhh +Vpp +Vph,
(2.33)

where Hcore refers to the excitations of the even-even core, Hsp,sh to the
particle or hole excitations, Hp,h,ph−core to the interaction of the particle,
hole, or particle-hole excitations with the core, and V to the residual h-h, p-
p, or p-h interaction. The wave function for a state is then formed from the
|j−1

h , X(R′); JM〉 and |jp, Y (R); JM〉 configurations, where X represents
the even-even closed shell nucleus, Y represents the nucleus removed 2h
from the closed shell, and R and R′ denote the unique quantum numbers
for a particular state. The model makes it possible to explore the construc-
tive interference between states of single-particle and collective character.
The analysis of the odd-mass isotope 107In is further discussed under the
framework of this model.

2.5 The interacting boson approximation

The interacting boson approximation (IBA) [30] is an algebraic and group
theoretical approach to nuclear structure. The basic idea is to assume that
valence nucleons outside of a closed shell couple in pairs with angular mo-
mentum L = 0 and L = 2, known as s- and d-bosons, respectively. The
low-lying excited states of a nucleus are described by the interactions be-
tween the bosons. In this way, the IBA can be considered as a truncation of
the shell-model space onto a bosonic subspace. Under certain conditions,
it can be shown that rotational and vibrational structures arise from the
basic foundations of the model. Thus the IBA provides a unique approach
for generating collective properties based on microscopic assumptions.
The first version of the model is known as the IBA-1 and makes no dis-

tinction between neutrons and protons. The Hamiltonian for the various
interactions between the bosons is given by

H = ǫnd + aoP
†P + a1L

2 + a2Q
2 + a3T

2
3 + a4T

2
4 , (2.34)

where the various operators can be expressed in terms of the s- and d-
boson creation and annihilation operators. Each of the terms has a cor-
responding physical meaning. The term nd is the number of d-bosons,
L is the angular momentum operator, P is the pairing operator, Q is the
quadrupole operator, and T3 and T4 are the octupole and hexdecapole op-
erators, respectively.
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Figure 2.4: The IBA symmetry triangle. The small level schemes show the
characteristic properties of the limiting dynamical symmetries. Inspired
by Ref. [31].

The unique features of the IBAmodel are rooted in its group theoretical
foundation. The magnetic substates of the d- and s-bosons can be viewed
as forming a six-dimensional vector space. The group structure of the IBA
can be deduced by looking for pairs of operators, which under commu-
tation, yield linear combinations of members of the set, known as closing
on commutation. It can be shown that there are 36 possible combinations
which satisfy boson number conservation, called the generators of the set.
This group structure is known as U(6).
Within the original 36 sets of generators there exist subgroups which

close on commutation. There are three physically relevant subgroups of
interest. These are U(5), SU(3), and O(6) and are known as dynamical sym-
metries. Each group corresponds to simplifications of the IBAHamiltonian
and can be viewed as limiting cases of the model. The Hamiltonians are
given by

(I)U(5) H = ǫnd + a1L
2 + a3T

2
3 + a4T

2
4 , (2.35)

(II)SU(3) H = a1L
2 + a2Q

2, (2.36)

(III)O(6) H = aoP
†P + a1L

2 + a3T
2
3 . (2.37)

Visually, these three groups can be pictured as the apexes of a triangle rep-
resenting the solutions of the IBA, as shown in Fig. 2.4. The characteristic
properties of each of the dynamical symmetries are shown by the mini
level schemes. The space between the three limits represents the solutions
to the original Hamiltonian of Eq. 2.34.
The three groups given above correspond to ideal situations and realis-

tic calculations require deviations from these limits. For example, consider
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the SU(3) group, relevant for the Er nuclei. A SU(3) nucleus has states
corresponding to the β and γ bands which are degenerate in this limit.
Furthermore, the model makes some interesting predictions for the tran-
sitions between the bands. The E2 transitions from the γ and β bands to
the ground-state band vanish while transitions between them are collec-
tive. This means that these bands, while similar to the γ- and β-vibrational
bands of the collective model, have several distinctly different character-
istics. Transitions between the two vibrational bands are forbidden in the
collective model as they would require the destruction and creation of dif-
ferent types of phonons.
While no nuclei meet all the conditions of SU(3), it serves as a good

starting point for describing the excited states of deformed rotational nu-
clei. The degeneracy of the states can be broken by including a perturba-
tion in the direction of O(6). This should be carried out without breaking
the rotational like energy spacing of the bands. The pairing term has the
desired effect and plays an important role in the description of the Er nu-
clei within the IBA-1 framework.



Chapter 3

The Coulomb excitation
method

The advantage of using Coulomb excitation as a probe of nuclear struc-
ture is the fact that the electromagnetic interaction is well understood.
This makes it possible to deduce electromagnetic transition matrix ele-
ments from observed γ-ray spectra and to compare directly to predictions
of nuclear models. A detailed description of the theory is outlined in Refs.
[2, 32]. The discussion contained in this chapter is aimed at providing the
basic theoretical and experimental foundation of the Coulomb excitation
method for which the work presented in this thesis is based upon.

3.1 Theoretical overview

3.1.1 Basics

The critical experimental condition for Coulomb excitation measurements
is that the interaction between a projectile and a target nucleus is purely
electromagnetic. If the energy of the projectile is low enough to keep the
nuclei from penetrating their mutual Coulomb barrier, then the nuclear
interaction can be neglected. A conservative estimate for the maximum
safe bombarding energy is given by [33]

Emax(MeV ) = 1.44
A1 +A2

A2

Z1Z2

1.25(A
1/3
1 +A

1/3
2 ) + 5

, (3.1)

where 1 stands for the projectile and 2 for the target. This formula corre-
sponds to a minimum separation distance between the nuclear surfaces of

25
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b: impact parameter

scattering angleprojectile

target |i>
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Figure 3.1: Semi-classical picture of Coulomb excitation.

∼5 fm. This condition has been determined from a number of Coulomb-
nuclear interference experiments as highlighted in Ref. [34] and references
within. To briefly summarize, it was found that near the Coulomb bar-
rier, the Coulomb-nuclear interference was destructive leading to sizable
changes in the measured static moments of low-lying excited states. It was
determined that a minimum separation distance of 5 fm was required so
that the nuclear effects on the excitation cross sections were less than 0.1%.
The quantum mechanical description of the Coulomb excitation pro-

cess is well known. However, most modern investigations use the simpli-
fied semi-classical approximation due to the impractical nature of calcula-
tions using the quantum mechanical formalism. In a heavy ion beam ex-
periment, the increasing number of partial waves required quickly makes
the problem insurmountable with modern day computers. Quantum cal-
culations have been carried out for a limited number of states [35] and the
development of a large-scale code based on the quantum theory can be
considered one of the next goals for the theory. In addition to the ease
of the application of the semi-classical approximation, it has been found
to give excellent agreement, <5%, with the quantum mechnical approach
[34].
In the semi-classical approximation of Coulomb excitation, the nuclei

are considered to obey the Rutherford scattering formula and move on hy-
perbolic trajectories. The transition from one nuclear state to another is
however treated quantum mechanically. A figure illustrating the semi-
classical framework is shown in Fig. 3.1. The application of the semi-
classical formalism assumes that the energy loss to nuclear excitation and
transfer of angular momentum is small, i.e. ∆E << E and ∆L << L, so
that the trajectories of the nuclei are not perturbed by the excitation pro-
cess. ∆E and ∆L represent the difference in energy and angular momen-
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tum of the initial and final states, respectively. Furthermore, the following
condition must be satisfied,

η =
Z1Z2e

2

~v
>> 1, (3.2)

where v is the projectile velocity and η is known as the Sommerfeld param-
eter. The Sommerfeld parameter can be rewritten as dπ/λ where d is the

distance of closest approach (d = 2a = 2Z1Z2e2

mov2 ) and λ is the wavelength
of the projectile. The mass mo is the reduced mass of the system. The
above equation assures that the size of the projectile wavepacket is small
compared to the distance of closest approach. Under these conditions the
differential excitation cross section for a nuclear state is given by

dσ = PndσR, (3.3)

with Pn being the probability for excitation and dσR is the Rutherford scat-
tering cross section, given by

dσR = 1.3 × (
Z1Z2

Ecm
)2sin−4(θ/2)dΩ [mb]. (3.4)

The parameterEcm [MeV ] = Ebeam[MeV ](mt/(mt+mp)) is the energy and
θ [rad] is the scattering angle in the center of mass frame. The excitation
amplitudes can be calculated by solving the Scrödinger equation, given by

i~
∂

∂t
|ψ(t)〉 = [Ho + V (t)]|ψ(t)〉, (3.5)

where Ho is the free nucleus Hamiltonian for either the target or projectile
and V (t) is the time dependent electromagnetic field felt by the nucleus
in question. The equation should be solved under the condition that the
nucleus is in its ground state at t = −∞. The solution using only the un-
perturbed term will yield a set of free nucleon eigenstatesEn and the wave
functions, in Eq. 3.5, can be expanded in terms of the excitation amplitudes
an(t), given as

an(t) = 〈n|ψ〉exp(iEnt/~). (3.6)

The Schrödinger equation is then equivalent to the set of differential equa-
tions, given by

i~
dan

dt
=

∑

m

〈n|V (t)|m〉ei(En−Emt)/~am(t), (3.7)

and the excitation probability is given in terms of the coefficient an as

Pn = |an|2. (3.8)



28 CHAPTER 3. THE COULOMB EXCITATIONMETHOD

The population of a state n thus depends on the total number of nuclear
states involved in the excitation. This plays an important role in Coulomb
excitation experiments with heavy ions as high-lying states in collective
bands may be populated. The excitation probability for a particular high-
lying state may depend in a complex way on the states below. The calcu-
lation of the excitation probability amounts to solving the set of coupled
differential equations in Eq. 3.7.

3.1.2 Electromagnetic interactions

The potential V (t) can be expanded in terms of multipoles in the standard
way and is given by

V (t) =

∞
∑

λ=1,µ

4πZ1e

2λ+ 1
(−1)µSλµ(t)M(λ,−µ), (3.9)

where λ is the multipole order and µ is the magnetic quantum number.
The term Sλµ(t) represents the orbital part of the interaction, which only
depends on the collision parameters, andM(λ,−µ) is the corresponding
magnetic and electric multipole moment. For electric transitions the mul-
tipole moment is defined as

M(Eλ, µ) =

∫

rλYλ,µρ(~r)dτ, (3.10)

where Yλ,µ are the spherical harmonics, dτ is the volume element, and ρ(~r)
is the charge density. The excitation and de-excitation of a nuclear state are
both governed by the electromagnetic multipole moments and are subject
to the standard angular momentum selection rule, given by

|Ii − If | ≤ λ ≤ Ii + If , (3.11)

where λ is the multipolarity and Ii,f denotes the initial and final states. The
parity of the radiation field is given by

π(Mλ) = (−1)λ+1, π(Eλ) = (−1)λ. (3.12)

It follows that transitions between two states which do not result in a
change of parity must proceed through even electric and odd magnetic
transitions while transitions between states which result in a change of
parity have odd electric and even magnetic character. The exception to
the rule is transitions with λ = 0 which de-excite instead through internal
conversion.
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3.1.3 First order perturbation theory

Forms of the total cross sections for electric and magnetic excitation can be
derived using first order perturbation theory. The excitation amplitude for
a single state above the ground state is given by

aIf Mf ,IiMi
=

1

i~

∫ ∞

−∞
〈IfMf |V (t)|IiMi〉ei(Ef−Ei)t/~dt, (3.13)

which can be obtained fromEq. 3.7 [32]. Taking the definition of the electric
multipole operator from above, making use of its properties (pg. 79 in Ref.
[32]) and the Wigner-Eckert theorem, given by

〈IiMi|M(Eλ, µ)|IfMf 〉 = (−1)Ii−Mi

(

Ii λ If
−Mi µ Mf

)

〈Ii||M(Eλ)||If 〉,
(3.14)

leads to

aIf Mf ,IiMi
=

4πZ1e

i~

∑

λ,µ

1

2λ+ 1
(−1)Ii−Mi

×
(

Ii λ If
−Mi µ Mf

)

〈Ii||M(Eλ)||If 〉SEλµ. (3.15)

The excitation amplitude can be separated into two terms. The factor SEλµ

contains the orbital integral and time dependence while the reduced mul-
tipole matrix element 〈Ii||M(Eλ)||If 〉 depends on the nuclear properties.
The final relation for the electric excitation cross section is given by

dσEλ = (
Z1e

~v
)2a−2λ+2B(Eλ)dfEλ(θ, ξ), (3.16)

and for magnetic excitation,

dσMλ = (
Z1e

~c
)2a−2λ+2B(Mλ)dfMλ(θ, ξ), (3.17)

whereB(σλ) is the reduced transition probability (Eq. B.2 in the appendix).
The functions df(θ, ξ) depend solely on the geometry of the collision and
the adiabaticity parameter, defined as ξ = a∆E/~v. A determination of the
experimental cross section dσ makes it possible to determine the reduced
matrix elements between the initial and final states. These are model inde-
pendent and can be compared to the predictions of various models.
Through comparison of Eqs. 3.16 and 3.17, it can be concluded that

magnetic excitation is reduced by ∼ (v/c)2 compared to electric excitation.
Furthermore,E2 transitions can be significantly enhanced due to collective
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effects. For these reasons, the excitation process is predominately deter-
mined by the E2 transition matrix elements. Both the E2 and M1 matrix
elements are however important for the de-excitation of a nuclear state.

3.1.4 γ-ray de-excitation following Coulomb excitation

The population of an excited state via Coulomb excitation is followed by
the subsequent de-excitation of the state. These two processes can be treated
as completely separate events as the time scale for excitation is on the or-
der of 10−21s while the lifetime is on the order of 10−13 − 10−12s [33]. The
excitation process generally populates the nuclear states with an unequal
distribution of magnetic substates and consequently the emitted γ-ray ra-
diation exhibit a non-isotropic distribution which can be expressed by the
following differential cross section [33], given by

d2σ

dΩpdΩγ
= σR(θp)

∑

kκ

Rkκ(I, If )Ykκ(θγ , φγ), (3.18)

where σR(θp) is the Rutherford cross section and Ykκ(θγφγ) are the spheri-
cal harmonic functions. The equation is valid for any arbitrary coordinate
frame in which the origin is centered at the de-exciting nucleus. The term
Rkκ(I, If ) is given by

Rkκ(I, If ) =
1

2
√
π

∑

λ |δλ|2
Gkρkκ(I)

∑

λλ′

δλδ
∗
λ′Fk(λλ′IfI), (3.19)

where the summation extends over all possible multipolarities, δλ is the
transition amplitude, and Gk are the attenuation coefficients. The func-
tions Fk(λλ′IfI) are the γ-γ correlation coefficients tabulated in [36]. The
polarization ρkκ of the nuclear state is given by

ρkκ(I) =
√

2I + 1
∑

M,m

(−1)I−m

(

I k I
−m κ M

)

a∗ImaIM , (3.20)

where the coefficients a are given by the excitation amplitudes. These for-
mulas describe the angular distribution of γ rays after Coulomb excitation.
When a state is fed by the de-excitation of a higher-lying state, corrections
need to be introduced and the relevant expressions are given in Ref. [33].
In a typical situation, the de-excitation of an excited state proceeds pre-
dominately by both transitions of E2 and M1 character. In this case, the
double differential cross section depends on the mixing ratio, defined as

δ = 0.835Eγ(MeV )
〈Ii||M(E2)||If 〉
〈Ii||M(M1)||If 〉

. (3.21)
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An overview of the theory of γ-ray angular distributions can be found in a
review article by Rose and Brink [37].

3.1.5 GOSIA Coulomb excitation codes

The GOSIA suite [33] (see also a review article by D. Cline [34]) is a set
of codes used to determine reduced matrix elements from observed γ-ray
yields. There are two different main codes named GOSIA1 and GOSIA2.
Both use a least-squares minimization routine to determine the best set of
reduced matrix elements, based on the semi-classical framework, which
reproduce a list of experimentally measured γ-ray yields. The main differ-
ence between the programs is that GOSIA1 is limited to the excitation of a
single nucleus while GOSIA2 can handle simultaneous excitation of both
target and projectile nuclei. The general procedure for both codes is based
on the calculation of the excitation amplitudes and the double differential
cross section for γ-ray de-excitation as described in the previous sections.
After calculation of the double differential cross section, GOSIA computes
the point yields, defined as

Y ((I → If ), θp, E) = sin(θp)

∫

d2σ

dΩpdΩγ
dφp [mb/srad/rad]. (3.22)

The double differential cross section used in this expression is not exactly
the same as defined in Eq. 3.18 as several additional corrections are in ad-
dition accounted for. These include feeding from higher-lying states, the
nuclear deorientation effect, solid angle factors, and transformation to the
laboratory frame of reference. Reproduction of the experimentally deter-
mined yields is carried out by integrating the point yields over the finite
angles of the particle detector and including energy loss in the target, lead-
ing to

Yi =

∫ Emax

Emin

dE
1

dE/dx

∫ θp,max

θp,min

Y ((I → If ), θp, E)dθp [
mb

srad
× mg

cm2
]. (3.23)

The integration of the point yields is however a time consuming process
and is only carried out periodically during the minimization. In the first
iteration, the integration is performed and the experimental yields are cor-
rected according to the ratio of the point and integrated yields. These cor-
rection factors may then be computed at any given later time. After cal-
culation of the yields and the corrected experimental yields, the minimiza-
tion process is carried out in the standard fashion through definition of the
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statistic S, given by

S =
1

N
(Sy + S1 +

∑

i

wiSi), (3.24)

where each S term represents a different set of data andN is the total num-
ber of data points. The term S1 represents an observation limit. All γ-ray
yields which exceed the upper limit contribute to the total statistic. The
term Si includes additional data to be used in the fit such as branching ra-
tios, lifetimes, mixing ratios, and other previously known reduced matrix
elements. The term Sy is given by

Sy =
∑

k

1

σ2
k

(CY calc
k − Y exp

e )2, (3.25)

where the sum should be taken over all individual γ-ray detectors used in
the experiment. In the current work, the sum of all γ-ray detectors was
used as input to the code rather than the individual detectors themselves,
thereby defining a single detector array. The constant C is the experi-
ment normalization factor and is the essential difference between the two
GOSIA codes. The constant is fit during the minimization procedure along
with the reducedmatrix elements. If the system of equations is sufficiently
overdetermined, then there should exist only one solution and all param-
eters can be uniquely determined. However, in the case of radioactive ion
beam experiments with weak beam intensities, only very few transitions
are usually observed and the constant can not be determined reliably. In-
stead, a transition in the target nucleus with a well known transition prob-
ability is used for normalization. This method is implemented in GOSIA2
and is used for the Sn experiments. In GOSIA1, the constant can be de-
termined through normalization to other γ-ray yields, reduced matrix el-
ements, or by comparison to the Rutherford scattering cross section. The
latter is however difficult due to dead time and pile up effects.

3.1.6 Relativistic Coulomb excitation

As already mentioned previously, the key condition for a Coulomb exci-
tation measurement is that the interaction is purely electromagnetic. In a
typical low-energy experiment the projectile energy is below the Coulomb
barrier and this condition is satisfied. There may however be situations
where the measurements can only be carried out at energies above the
Coulomb barrier. At higher energies the projectile nucleus will come closer
to the target and nuclear interactions may occur. The nuclear interactions
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Figure 3.2: GOSIA calculated excitation cross sections for a typical rota-
tional nucleus.

can however be neglected by considering the deflection angle of the pro-
jectile. The relation between the minimum impact parameter (see Fig. 3.1)
and the deflection angle, in the center of mass frame, is given by [38, 39]

bmin =

(

ZpZte
2

γmov2

)

cot(θmax
CM /2), (3.26)

where γ is the Lorentz factor. The relation shows that a larger scattering an-
gle means a smaller impact parameter, thus bringing the two nuclei closer
together. By limiting the scattering to smaller angles, the nuclear interac-
tion can be safely ignored. Experimentally, the method may be the only
means for producing certain groups of nuclei. In measurements using rel-
ativistic beams, the radioactive nuclei are produced in fragmentation reac-
tions and separated in flight. These nuclei may not be available using the
low-energy method. A review of the theoretical description of the tech-
nique is given in Ref. [40].
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3.2 Experimental technique

3.2.1 Experimental considerations

The goal of a Coulomb excitation measurement is to measure the excitation
cross sections of the observed states and determine the reduced matrix el-
ements involved in the excitation. The cross sections are extracted by de-
tecting the scattered particles in coincidence with emitted γ rays. Consider
the observation of a single excited state in a nucleus. The excitation cross
section is related to the number of observed γ rays by

Nγ = ǫγ · σ · t · NA

A
· I (3.27)

where Nγ is the number of observed coincident particle-γ rays,NA is Avo-
gadro’s number, t is the target thickness (typically in mg/cm2), ǫγ is the
efficiency to detect the γ ray, σ is the excitation cross-section, and I is the
intensity of the beam. The number of particle γ-ray coincidences depends
crucially on the locations of the various detector positions. For example,
the angular dependence of the Coulomb excitation cross section for states
in a rotational band is shown in Fig. 3.2. The important angular ranges
to cover differs for the different states. The experimental particle setup
should be optimized to cover the most sensitive ranges of the cross sec-
tions for the states of interest.
The placement of the particle detectors also depends on the kinematics

of the reaction under study. There should be good separation between the
scattered target and beam particles. The kinematics for the 170Er and 109Sn
experiments are shown in Figs. 3.3 and 3.4, respectively. In the 170Er exper-
iment, the range of the 32S particles extends up to 180o while the maximum
angle for the 170Er particles is 90o. The separation in energy makes it pos-
sible to uniquely identify and Doppler correct for each detected particle
during the analysis. In the Sn case, the inverse kinematics of the reaction
leads to a maximum scattering angle for the Sn particles around 32o. The
bending point is useful during the data analysis as it serves as a clear en-
ergy calibration point and additional check of the scattering angles.

The measurement of the angular distribution of the emitted γ rays
can also provide information on the properties of particular states. For in-
stance, Fig. 3.5 shows a set of calculated angular distributions as a function
of the Ge rings of the GASP [41] detector system, which was used in the
170Er experiment and described in section 3.2.3. The angular distribution
of a state at 1.702 MeV feeding a lower-lying state at 0.860 MeV, for three
different spin choices of the higher-lying state, is shown as a function of the
rings of the detector system. The 0+ selection shows an isotropic behavior
while the two other spin choices exhibit differing behaviors. In this way,
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Figure 3.3: Calculated kinematics for the 170Er experiment in the laboratory
frame.
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Figure 3.4: Calculated kinematics for the 109Sn experiment in the labora-
tory frame. The calculations also account for energy loss in the target.
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experimentally measured efficiency curves from the 170Er experiment.

the position of the γ-ray detectors can be placed in sensitive locations to
help identify the properties of a particular state.

3.2.2 Radioactive ion beam techniques

The majority of nuclear physics studies using accelerators have involved
stable targets and beams. The technology has matured to the point where
high intensity beams of a large number of stable isotopes can be delivered
to experimentalists. Typical beam intensities are on the order of 109 p/s (∼
1 pnA). The Tandem accelerator at Laboratori Nazionali di Legnaro [42] is
such a facility and was used during the 170Er experiment to provide a 117
MeV 32S beam directed onto a 1 mg/cm2 170Er target.
The construction of radioactive beam facilities is a much more recent

development. There are basically two different methods for the produc-
tion of radioactive beams in use today. The first method is known as the
Isotope Separator OnLine (ISOL) method. In this technique, a high energy
beam of light particles (1 GeV protons) is incident on a thick heavy tar-
get resulting in the creation of a wide variety of isotopes. Not all isotopes
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Figure 3.6: Schematic of the REX-ISOLDE facility at CERN.

created however escape the target volume. Once an element of interest
diffuses out of the target, it is then extracted and delivered to an isotope
separator. The isotopes are subsequently accelerated to an energy suitable
for the experiment. The advantage of the ISOL technique is the high qual-
ity of radioactive beams produced and the fact that the beam energies are
well known. The beam spot sizes are also quite small, on the order several
millimeters.
The second method uses projectile fragmentation in a thin target to pro-

duce a wide species of isotopes. The fragments are separated in flight
as they travel towards the secondary target area of the experiment. The
main advantage of the technique is that all isotopes created sufficiently
during fragmentation can be separated and studied. The disadvantage of
the technique is that the quality of the beams is usually rather poor and the
beam spot sizes can be large. The degradation of the beam is related to the
amount of matter needed to slow down and separate out the isotopes of
interest. The low intensity of the beams can however be compensated for
by using thick secondary targets, as compared to the thickness of targets
used in low-energy beam experiments. The recoiling particles must how-
ever still be able to escape the target volume.

3.2.3 Low-energy Coulomb excitation experiments

The 107,109Sn experiments were carried out at the REX-ISOLDE facility
[43, 44] at CERN, which is based on the ISOL concept. A schematic of
the general layout of the facility is shown in Fig. 3.6. The elements were
produced by bombarding a thick LaCx targetwith a 1.4 GeV beam from the
Proton Synchrotron (PS) booster. A typical intensity of beams from the PS
booster was 3.3×1013 protons/pulse with between 10-20 pulses/min. Af-
ter bombardment, the isotopes produced diffused out of the target and into
the transfer cavity where the species of interest were singly ionized using
a resonant laser ionization scheme (RILIS) [45] and delivered to the mass
separator. During the transfer process from the target to the mass separa-
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Table 3.1: Characteristics of radioactive beams in the Sn region produced
at the REX-ISOLDE facility. Taken from Ref. [48] and the experiments
presented in this thesis.

Isotope Energy (MeV/u) Intensity (p/s)

110Sn 2.82 ∼106
109Sn 2.87 ∼105
108Sn 2.82 ∼106
107Sn 2.87 ∼105
106Sn 2.83 ∼105
104Cd 2.87 ∼105
102Cd 2.87 ∼105
100Cd 2.87 ∼103

tor, contaminate isotopes can be singly ionized by the heated walls of the
transfer tube. In the 107,109Sn experiments, sizable fractions of the In iso-
bars were extracted. The methods for determining the relative fraction of
the beam components is discussed in section 4.2.4. After mass separation,
the ions were transferred to REX-TRAP [46] where they were bunched,
cooled, and delivered to the electron beam ion source (EBIS) [47] for charge
breeding. After charge breeding, the ions underwent further separation
according to their A/q ratios and were injected into the REX-linear accel-
erator which brought the beam energy up to 2.87 MeV/u. The intensities
of typical beams using this technique for nuclei in the A = 100 region are
shown in Table 3.1. The table shows that the neutron-deficient Sn beams
are generally on the order of 105 − 106 p/s for 106Sn to 110Sn. In both ex-
periments presented in this work, the Sn and In beams were incident on a
99.93% isotopically enriched 1.95 mg/cm2 58Ni target.

Particle detection

Both the 170Er and 107,109Sn experiments employed double sided silicon
strip detectors (DSSSDs) for the detection of scattered beam and target nu-
clei. The 170Er experiment was the first to make use of the Lund Silicon
Strip Array (LuSiA). A picture of the setup is shown in Fig. 3.7. The de-
tector setup consists of four DSSSDs arranged in a box like configuration
around the target position at a distance of 37.5 mm from the target. The
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Figure 3.7: The mounted LuSiA detector setup used during the 170Er ex-
periment.

Figure 3.8: One quadrant of the DSSSD at REX-ISOLDE (left) and
schematic of the DSSSD (right). The figures are reprinted from Ref. [49]
with permission from Elsevier.
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Figure 3.9: One hemisphere of the GASP detector system used for the 170Er
experiment.

Figure 3.10: A closeup of the MINIBALL Ge detector setup used for the Sn
experiments. The figure was adapted by the author from Ref. [43].
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Figure 3.11: The relative efficiencies for (left) GASP and (right) MINIBALL.
The calibration points are taken from [51].

setup also allows for the addition of two circular DSSSDs, each in the for-
ward and background positions. Each 6×6 cm2 square detector contains
32×32 strips yielding a total of 4096 channels. During the experiment, the
strips were however coupled pairwise to reduce the complexity of the sys-
tem. An Al foil was placed cylindrically around the target in order to stop
secondary electrons created during the reaction process.
The setup at REX-ISOLDE used a single circular DSSSD [49] placed

downstream of the target. The detector is shown in Fig. 3.8. The DSSSD
consists of four individual detectors, represented by the four quadrants
shown in Fig 3.8. Each quadrant contains 16 annual strips (front face) and
24 radial strips (back face). The back strips were coupled pairwise during
the experiment. The average distance from the target to the detector has
been reported to be 31(1) mm [50]. For the Sn experiments, a distance of
30.5 mmwas found to give the best consistency for the data detected in the
four quadrants, as described in section 4.2.2.

γ-ray detection

Modern day γ-ray detector systems consist of large clusters of Ge detec-
tors. In low-energy beam experiments, the detectors are typically placed
around the target position covering as much of the available solid angle
as possible. The granularity provided by the systems is important for de-
termining the emission angle of the γ ray with respect to the direction of
the scattered beam or target particle, which is used for Doppler correction
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of the energy of the emitted γ ray. The recoil velocities of the particles are
on the order of v/c ∼ 0.1, which leads to significant Doppler broadening.
Since thin targets are used for these types of experiments, the scattered
particles recoil into the vacuum and are detected by the DSSSDs. The mea-
sured particle energy, γ-ray energy, and the detected angles can be used to
correct for the Doppler effect, using the relation given by

Erest
γ = γElab

γ (1 − βcos(θlab
pγ )), (3.28)

where β = v/c and γ = 1/
√

1 − β2. The angle between the particle and γ
ray is defined as

cos(θlab
pγ ) = sin(θp)sin(θγ)cos(φp − φγ) + cos(θp)cos(θγ). (3.29)

where p and γ denote the angles of either particles or γ rays, respectively.
The GASP detector system was used for the 170Er experiment and is

shown in Fig. 3.9. The array consists of 40 hyper-pure high-efficiency Ge
detectors placed at a distance of 22 cm from the target position. Each Ge
detector is surrounded by a BGO shield to suppress the Compton back-
ground. The array has a total efficiency of ∼5.8% at 1.33 MeV.
The 107,109Sn experiments were carried out using the MINIBALL array

[50] at the REX-ISOLDE facility. A closeup of the setup is shown in Fig.
3.10, which highlights the granularity of the system. In total, the array
consists of 24 segmented Ge crystals. Each tapered crystal is 78 mm long,
has a 70 mm diameter on the unshaped end [50], and is six-fold segmented
in order to provide additional granularity for the Doppler correction. The
efficiency of the detector system is ∼8% around 1 MeV (see Ref. [50]).
The measured relative efficiency curves for both detector arrays are

shown in Fig. 3.11. Both arrays were calibrated using a standard 152Eu
source and were parametrized using the following relation

ln(ǫ) =

N
∑

i=0

Ai(ln(EkeV ))i. (3.30)

3.2.4 Relativistic Coulomb excitation experiment

The 104Sn experimentwas carried out using parts of the RISING/FRS setup
[52, 53] coupled to the newly developed Lund-York-Cologne CAlorimeter
(LYCCA) [54] located at the Gesellschaft für Schwerionenforschung (GSI)
facility [55]. The general method was presented in section 3.2.2, however a
more detailed overview will be given in this section.
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Radioactive ion beam production

The 104Sn radioactive ion beamwas produced by bombarding a 4 mg/cm2

9Be target with a 793 MeV/u 124Xe beam from the GSI linear accelerator
(UNILAC) and the heavy ion synchrotron (SIS). The SIS can accelerate ions
from hydrogen up to uranium to energies in the range of 1-4.5 GeV/u. The
heavy ion beam is directed towards the primary target where the isotopes
of interest are produced during fragmentation reactions. The process is de-
scribed theoretically by the abrasion-ablation model [56], which treats the
reaction as two distinct steps. The first step is the abrasion stage which
occurs over a time interval of some 10−23 seconds. The model divides
the target and projectile objects into regions consisting of participator and
spectator nucleons. The participator nucleons are involved directly in the
interaction while the spectator nucleons of the projectile keep moving as if
undisturbed by the interaction and form what is called a prefragment. The
target spectator nucleons are left essentially at rest. The second stage is
the abrasion stage which occurs on the timescale of ∼10−16-10−21 seconds.
The excited prefragment can de-excite via a number of different channels,
which may include fission, emission of particles, and/or γ rays. As men-
tioned before, one advantage of the technique is the large range of isotopes
produced during the fragmentation process.

The fragment recoil separator (FRS)

Following the fragmentation reaction at the production target, the isotopes
of interest must be individually identified and separated from the other
produced isotopes. This is the primary purpose of the FRS, which is shown
schematically in Fig. 3.12. The projectile fragments, resulting from the
fragmentation of the production target, move with relativistic speeds in a
forward focused direction. The FRS accepts the fragments and separates
out the isotopes of interest using a combination of energy loss measure-
ments with a magnetic rigidity analysis. The instrument itself consists of
four separate 30o dipole magnets, each surrounded further by quadrupole
magnets, and a wedge shaped degrader at the central focal plane. The FRS
is in total 74 m long. In the first section of the FRS, the two dipoles fo-
cus fragments which have equal magnetic rigidity onto the same location
of the wedge-shaped degrader. The basic idea of magnetic rigidity can be
shown by starting from the force exerted on a particle with massm, charge
q, and velocity v in a magnetic field, given by

~F = q · ~v × ~B. (3.31)
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Figure 3.12: Illustration of the FRS setup. Inspired by Ref. [57].

As a fragment travels through the FRS, the resulting force from the mag-
netic field acts in a direction perpendicular to the fragments velocity. Treat-
ing the force as a centripetal acceleration reduces Eq. 3.31 to

Bρ =
mv

Ze
, (3.32)

where ρ is the radius of motion, m = γmo, and q has been rewritten as
Ze. The quantity Bρ is known as the magnetic rigidity. The first stage of
the FRS provides separation according to A/Z . During the second stage,
the fragments lose energy in the wedge-shaped degrader and are further
separated according to their energy loss in the material of the degrader
itself.

FRS detectors

In order to identify the particles of interest, a series of detectors are located
within and after the FRS setup. Energy loss detectors, known as MUltiple
Sampling Ionization Chambers (MUSIC) [58], are used to determine the
charge of a particular particle. A typical fill gas is CF4. As a particle tra-
verses the detector volume, it losses a fraction of energy proportional to its
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charge and velocity, as given by the Bethe-Bloch formula,

−dE
dx

= Z2 · F (β), (3.33)

where β = v/c. The factor F (β) is dependent only on the velocity of the
ion. The velocity information is provided by time-of-flight detectors. These
are either plastic scintillators or a finger detector, which is a segmented
plastic scintillator. The signals from these detectors not only provide time-
of-flight-information but also give the interaction position of a particle at
the location of a detector. Lastly, time projection chambers (TPCs) provide
further data on the positions of the fragments. The measured positions are
used to correct the magnetic rigidity as most particle trajectories do not lie
on the beam optical axis. This information, along with the measured en-
ergy loss, is used to determine the A/q ratios of the particles of interest.

LYCCA detectors

After separation and identification of the particles, the beam is directed
onto a secondary target where Coulomb excitation takes place. A 197Au
target was used for the 104Sn experiment. The target and projectile parti-
cles, after interacting in the target, are detected using the LYCCA detec-
tor setup, shown schematically in Fig. 3.13. The setup consists of a wall
of DSSSDs for energy loss measurements followed by CsI scintillators for
total energy measurements. Furthermore, fast plastic scintillators [59] or
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large area polycrystalline diamond detectors [60] provide time-of-flight in-
formation. A single DSSSD placed near the secondary target is used to
measure the x and y coordinates of the interaction at the target. These
data, combined with the x and y coordinates determined from the TPCs
placed upstream of the secondary target, are used to determine the incom-
ing velocity vector of a particle. The DSSSDs in the DSSSD-CsI wall and
the target position can be used to calculate the outgoing vector of a particle
in order to determine the scattering angle.



Chapter 4

Experiments near 100Sn

4.1 Introduction

The nuclei near the doubly magic nucleus 100Sn are an important testing
ground for theoretical models. The Sn nuclei, which have 50 protons, can
to a first approximation be described by the excitations and interactions
of the neutrons above N = 50. The first excited states of the even-even
Sn nuclei, shown in the left panel of Fig. 1.2, exhibit a nearly constant be-
havior across the isotopic chain. This feature can be explained by the well
known behavior that nucleons tend to pair in groups of two. The first ex-
cited states correspond to the recoupling of the angular momenta of one
of the neutron pairs. This leads to a nearly constant energy which is also
well reproduced by calculations. The reduced transition probabilities for
these nuclei are shown in the right panel of Fig. 1.2. On the neutron rich
side of the shell, the shell-model calculations are in good agreement with
the experimentally measured values. On the neutron deficient side, recent
measurements have shown that the transition probabilities are enhanced
with respect to calculations. This could possibility indicate the importance
of proton and/or neutron excitations across the N = Z = 50 shell gap. It
is also interesting to see if this trend extends to the odd-Sn nuclei.
Another physics investigation in the same region is related to the single-

neutron states just above 100Sn. The states are important ingredients for
shell-model calculations. No information outside of the energy splitting
between the two lowest-lying states, measured to be 172 keV [4, 5], is
known at this time. The spin ordering of the two states is also highly
debated. An alternative method to locating the positions of the single-
neutron states in 101Sn is to study the migration of these states across the
Sn isotopic chain, as shown in Fig. 1.1. This has been carried out down

47
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to 109Sn, where the assignments for the five states above N = 50 are still
preliminary. One of the main motivations for the 107,109Sn experiments
was to confirm the positions of these states in 109Sn and to identify them
in 107Sn. It is also interesting to see if the reduced transition probabilities
in these nuclei are enhanced with respect to shell-model calculations, as
found in the above mentioned even-even nuclei. To a first approximation,
low-lying excited states in the odd-Sn nuclei can be considered as arising
from the coupling of a single neutron to an underlying even-even core. Un-
der this assumption, it could be expected that the low-lying states of these
nuclei would likewise also be enhanced.
In the 107Sn experiment, it was also possible to extract information for

the isobaric beam contaminant 107In. Experimental studies in the In nuclei
can provide important information on the proton-neutron interaction near
the doubly magic nucleus 100Sn. The lowest-lying excitations in these nu-
clei can be approximately described by the excitations of the proton hole
relative to the Z = 50 shell closure coupled to collective excitations of the
underlying core. This chapter is based on the work presented in Papers I,
II, and III; for 107Sn, 109Sn, and 107In, respectively.

4.2 The 107,109Sn experiments

The Coulomb excitation experiments of 107Sn and 109Sn were performed at
the REX-ISOLDE facility at CERN. The setup used during the experiments
is described in Ch. 3. Both experiments used a 2.87 MeV/u Sn beam inci-
dent on a 99.93% isotopically enriched 58Ni target. The experiments were
analyzed using the same set of methods and software programs, which are
described in this section.

4.2.1 Data acquisition

Electronics

A detailed overview of the electronics used at MINIBALL during the ex-
periments can be found in Ref. [61] and a recent review article [50]. How-
ever, a short overview is presented here. For a single MINIBALL Ge de-
tector, the preamplifer signals from the six segments and core are digitized
by DGF-4C modules [62]. Two modules are used for the core and segment
signals per detector. The core signal is stored in channel zero of the first
module while the remaining signals are stored in the other channels of the
two modules, leaving one channel free. All the modules are synchronized
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Figure 4.1: The coincidence scheme for γ rays and particles (see also Ref.
[50]).

to an external 40 MHz clock for time stamping purposes. In order to avoid
dead time effects, the DGF-4Cs are only read out once at the end of a beam
spill. For this reason, the external clock is needed in order to correlate γ-
ray and particle events.
The signals from the DSSSDs are first processed by Edinburgh/RAL

charge sensitive preamplifers and further by Edinburgh/RAL shaping and
discriminator amplifiers [63, 64, 65]. The time signals for each quadrant of
the DSSSD are read out using CAEN V775 TDCs [66] while the energy
signals are read out using mesytec MADC32 modules [67]. The mesytec
modules are also synchronized with the common clock used as time refer-
ence for the DGF-4Cs.

Coincidence condition

The coincidence scheme used during the experiments is shown in Fig. 4.1.
The raw timing signals from the DSSSD are used to generate an 800 ns de-
layed particle trigger. The delay is necessary as the DGF-4Cs produce a
trigger about 500 ns after a γ ray interacts within the crystal volume of a
Ge detector. Each γ ray creates an 800 ns coincidence window. If the de-
layed particle trigger falls within this window, a coincident particle gate
trigger is generated which opens the ADC gate and timestamps the rele-
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vant particle and γ-ray event. If the particle trigger does not lie within the
800 ns coincidence window, then only one in 2n triggers are accepted. The
downscaled mode is used in order to limit dead time effects arising from
particles scattered elastically from the target.

Data format and event building

The data acquisition for the experiment used the MARaBOU [68] system.
The format of the stored data is of the MBS Event Data (MED) type [69,
70]. A program was developed for the work presented here based on the
mbs2asc software available in Ref. [68]. In its downloadable form, the
software reads the MED event buffers and displays them in ASCII repre-
sentation. The software was modified to dump the information into ROOT
[71] trees, making the data suitable for further analysis. At this point, the
ROOT trees contained only the raw signals acquired from the experiment.
The data was then processed by a series of programs. The main difference
between the programs developed for the 107,109Sn and 170Er experiments
is related to the particle and γ-ray time matching. In the 170Er experiment,
discussed in the following chapter, a particle-γ-ray coincidence was used
as the main trigger and all buffers contained at least one of each type of
particle. In the Sn experiments, the particle and γ-ray events were stored
in separate MED buffers and had to be correlated based on the common
time reference. The following sections discuss in detail the analysis proce-
dure.

4.2.2 Particle data

After unpacking the raw data into ROOT trees, the data was processed by
a particle construction routine. Each particle was constructed from events
which produced TDC/ADC signals in a single front and back strip of the
DSSSD for quadrants Q2, Q3, and Q4. An event was accepted if the sig-
nals were in the same channels of the ADC and TDC. The TDC signals for
Q1 were however not available during the experiments and instead an en-
ergy threshold method was used. Events were created only if the single
front and back strips produced signals above a threshold. The method was
tested against the TDC/ADC matching method and was found to give an
average agreement of 97%.
The particle data was divided into two types of events. Those in which

only one of the Sn or Ni particles was detected (1p) and those in which
both particles were detected (2p). For the 2p events, it was further required
that the particles were scattered into quadrants at 180o with respect to each
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Figure 4.2: Time difference coincidence spectra for adjacent and opposite
quadrants of the DSSSD.

other. The time stamped difference between these type of events is shown
in Fig. 4.2. The plot on the left shows the spectrum for particles scattered
into adjacent quadrants, which exhibits a rather featureless structure. The
plot on the right shows a large prompt peak indicating the detection of two
coincident events. The events within the prompt peak were used for fur-
ther analysis. 1p events may have also occurred in the same angular region
as the 2p events, as dead time effects in the ADC and TDC modules of the
DSSSD may have resulted in the detection of only a single particle.
The collected energy versus scattering angle plots for the two experi-

ments are shown in Figs. 4.3 and 4.4. The spectra were energy calibrated
using the known energy loss in the target. The angles were calibrated us-
ing the distance of the DSSSD from the target position. It was found that
the beam spot position corresponded to x=-0.12 mm and y=-1.49 mm for
the 109Sn experiment and x=1.68 mm and y=-1.86 mm for the 107Sn ex-
periment. The positions were deduced based on the 2p events detected
in the DSSSD. The distance from the target has been given in Ch. 3 to be
31(1) mm. However, this distance did not yield a consistent position of the
maximum scattering angle in the four quadrants. A distance of 30.5 mm,
within the quoted uncertainty, was found to give good agreement in all
four quadrants of the detector. The kinematical cuts used in the data anal-
ysis are indicated in the plots. It can also be mentioned that two strips of
the DSSSD were not functioning properly. One strip in Q3 and one in Q4
was broken. The effects of the missing strips were estimated based on the
quadrants with working strips and found to have no significant impact on
the results.
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4.2.3 Particle-γ-ray coincidence data

The suitable events for the Coulomb excitation analysis were further se-
lected based on the particle-γ-ray coincidence spectrum. An example is
shown for the 2p events in one of the quadrants in Fig. 4.5, collected from
the 109Sn experiment. The prompt events are indicated by the blue cut,
which was typically about 150 ns wide. The cut was set separately for both
the 1p and 2p events and for each individual quadrant of the DSSSD. The
red region marks the area selected for background subtraction in the 109Sn
experiment. No background subtraction was carried out for the 107Sn ex-
periment.

4.2.4 Isobaric beam contamination

The radioactive beams during both experiments contained some fraction
of the isobaric contaminants 107,109In. As these isotopes also produced ad-
ditional excitations in the target, it was important to monitor the purity of
the beam to provide the proper normalization for the transition probabil-
ities of the Sn nuclei. The purity was monitored by turning the laser ion-
ization on and off at different intervals throughout the experiments. For
the 107Sn experiment, two intervals were used at different points during
the experiment. First, laser on/off measurements were taken for one hour
every three hours. After some time, it was instead decided to run con-
tinuously in laser on/off mode. In the 109Sn experiment, the purity was
monitored using the laser on/off method for one hour every three hours.
A time averaged purity was then deduced for each experiment based on
these measurements.
The purity of the beam for the 107Sn experiment, when the laser ioniza-

tion was switched on, was determined by observing the number of scat-
tered particles and 107In γ rays collected during the laser on and off peri-
ods. The beam purity during the laser on runs is related to the number of
scattered particles by

P (ON) =
NTot

p (ON) −N In
p (ON)

NTot
p (ON)

= 1 −
N In

p (ON)

NTot
p (ON)

, (4.1)

where Tot = Sn + In, p corresponds to particles, and P (ON) represents
the beam purity during the laser on runs. Only the number of total parti-
cles is measured during a laser on run. The number of In particles can be
calculated from the the observed γ-ray yields. The number of γ rays from
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Figure 4.3: Measured energy versus laboratory scattering angle for the
107Sn experiment. The markers show the regions used in the analysis.
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Figure 4.5: Particle-γ-ray coincidence spectrum for 2p events for one of the
quadrants during the 109Sn experiment.

the In isobar during a laser on run is related to the number of scattered
particles by

N In
γ (ON) = N In

p (ON) × σ, (4.2)

where σ is proportional to the Coulomb excitation cross section. Likewise,
the number of γ rays during a laser off period is given by

N In
γ (OFF ) = N In

p (OFF ) × σ. (4.3)

Since the proportionality factor is the same in both cases, Eq. 4.1 can be
rewritten as

P (ON) = 1 −
N In

p (OFF ) ·N In
γ (ON)

NTot
p (ON) ·N In

γ (OFF )
. (4.4)

Using this method, the calculated P (ON) for the 107Sn experiment was
found to be 31(6)%. The method provides a means for calculating the
contamination during the laser on runs, as the beam purity is really only
known during the laser on/off runs.
No Coulomb excitation of the 109In isobar was observed in the 109Sn

experiment. Instead, the beam purity was deduced from the scattered par-
ticles collected during the laser on and off runs [72]. The beam purity was
calculated to be 89(1)%.
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Table 4.1: Measured yields and relative intensities from the 107Sn and 109Sn
experiments (Papers I and II, respectively) . Energies given in Ref. [73, 74,
75, 76].

109Sn exp. (Figs. 4.6, 4.7)

Ii→If Eγ (keV) Yield Iγ
3/2+1 →5/2+1 665 462(40) 0.82(8)
/ 5/2+2 →7/2+1 664
5/2+2 →5/2+1 678 60(31) 0.11(6)
3/2+2 →5/2+1 925 277(32) 0.60(7)
1/2+2 →5/2+1 991 99(26) 0.22(6)
7/2+2 →5/2+1 1078 390(37)a 0.93(10)a

/ 7/2+2 →7/2+1 1064
9/2+1 →5/2+1 1240 278(27) 0.72(8)
Ni 2+→0+ 1454 350(30)b 1.00(9)b

107Sn exp. (Figs. 4.8, 4.9)

3/2+1 →5/2+1 704 140(20) 1.92(28)
5/2+2 →7/2+1 667 <71 <0.94
9/2+1 →5/2+1 1222 <66 <1.27
Ni 2+→0+ 1454 47(11)b 1.00(24)b

a3/2+
3
→5/2+

1
transition at 1062 keV may also be present.

bThe yield and intensity were calculated with the observed 58Ni yield combined with the purity of the
radioactive beam.

4.2.5 Experimental results

The measured peak areas and intensities are shown in Table 4.1. The col-
lected spectra from the two experiments are shown in Figs. 4.6 - 4.9 and
the previously known experimental level schemes are given in Fig. 4.10,
labeled as Exp.

The 107Sn experiment

In Fig. 4.8 the 58Ni 2+ state at 1454 keV is clearly visible after Doppler
correction [73]. In the 107Sn spectrum, the peak at 704 keV corresponds
to the 3/2+

1 → 5/2+
1 transition while the peak at 1001 keV is related to

the isobaric beam contaminant 107In [74]. The peak is still observed when
the laser ionization is turned off in the analysis, as shown in Fig. 4.11,
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Figure 4.6: The raw and Doppler corrected γ-ray spectrum gated on 58Ni
for the 109Sn experiment.
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Figure 4.8: The raw and Doppler corrected γ-ray spectrum gated on 58Ni
for the 107Sn experiment.
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indicating that it is not a transition belonging to the nucleus 107Sn. There is
a weak indication of the 5/2+

2 → 7/2+
1 and 9/2+

1 → 5/2+
1 transitions at 667

keV and 1222 keV, respectively. Two other low-lying 3/2+ states have been
observed previously in 107Sn, at 1280 keV and 1454 keV, and one possible
3/2+ state at 970 keV [75]. However, none of these were populated with
significant intensity in the experiment. The known level scheme of 107Sn
is shown in the far left side of Fig. 4.10. The level scheme is compared to
shell-model calculations described in detail later in this chapter.

The 109Sn experiment

The measured γ-ray spectrum, gated on 109Sn, is shown in Fig. 4.7 and
the experimentally known level scheme is shown on the right side of Fig.
4.10. As oppose to the 107Sn experiment, where only one transition was
clearly observed, several previously known transitions can be identified in
the 109Sn spectrum and include the following: the doublet at 664 keV, cor-
responding to the 3/2+

1 → 5/2+
1 and 5/2+

2 → 7/2+
1 transitions; a hint of

the nearby 678 KeV 5/2+
2 → 5/2+

1 transition; the 3/2+
2 state at 925 keV; the

1/2+
2 state at 991 keV; a structure around 1078 keV possibly containing con-

tributions from the 1062 keV 3/2+
3 → 5/2+

1 , 1064 keV 7/2+
2 → 7/2+

1 , and
1078 keV 7/2+

2 → 5/2+
1 transitions; and finally the 9/2+

1 state at 1240 keV
[75, 76]. Only transitions connecting to the 5/2+ ground state and the 7/2+

first excited state were observed with significant intensity in the experi-
ment. These states are only separated in energy by 14 keV. The proposed
single-neutron s1/2 state at 545 keV was not observed [75]. Interestingly

however, the 3/2+
2 state has been suggested to be the single-neutron d3/2

state and it is clearly seen in the spectrum. This indicates that the state
may be partially based on a collective excitation, as further discussed in
section 4.2.9. For the analysis of the data, the structure around 1078 keV
was attributed to transitions from the 1078 keV state, based on the branch-
ing ratio data given in Ref. [77].

4.2.6 Reduced matrix elements and error analysis

The measured yields from the 107,109Sn experiments were analyzed using
the Coulomb excitation code GOSIA2. In both experiments a 58Ni target
was used for normalization. The adopted Ni reduced matrix elements,
used in the analysis, are given in Table 4.2. The extracted B(E2) values
from the analysis of the data are given in Table 4.3. The details for each
case and the error analysis procedures are discussed in the following.
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Figure 4.11: The Doppler corrected spectrum for the 107Sn experiment with
the laser ionization turned off. Only the peak at 1001 keV remains.

Table 4.2: The Ni reduced matrix elements used in the analysis of the Sn
experiments, taken from Ref. [73].

Level Energy (keV) Iπ 1 2 3 4

1 0.0 0+ 0.0 0.2653(28) 0.0 0.0139(24)
2 1454.2 2+ -0.1319(792) 0.3666(196) 0.3163(528)
3 2459.2 4+ 0.0 0.0
4 2775.4 2+ 0.0

The 107Sn experiment

In the analysis of the 107Sn data, although only the 3/2+
1 state was ob-

served, several states were included to account for any unobserved exci-
tation. The additional states were the 7/2+

1 , 5/2
+
2 , and the 9/2+

1 states at
151 keV, 818 keV, and 1222 keV, respectively. In addition to these, a shell-
model predicted 1400 keV 7/2+ state was also included. All possible E2
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andM1 reducedmatrix elements coupling these states were defined in the
input. The starting values were taken from shell-model calculations (SM
F), described in section 4.2.7. During the fitting procedure theM1 reduced
matrix elements and quadrupole moments of all states were fixed. Only
the E2 reduced matrix elements of the observed states were allowed to
vary. The previously known γ-ray branching ratios for the 704 keV and
818 keV states [74] were also included as constraints in the analysis.
While GOSIA2 contains an error estimation routine, it does not include

target and projectile reduced matrix element correlations. The error was
estimated by using a χ2 + 1 technique, where the 3/2+

1 reduced matrix ele-
ment was fixed at different points around the determined minimum value.
The ±σ limits of the B(E2) value correspond to the χ2 parameter plus or
minus one [78]. The minimization was then repeated by releasing the 58Ni
target reduced matrix elements and the 107Sn reduced matrix elements re-
lated to the two branching ratios defined in the analysis. At each additional
point for the 3/2+

1 reduced matrix element, the χ
2 value was calculated.

The errors in Table 4.3 correspond to the χ2 + 1 limits.
The influence of the other fixed 107Sn reduced matrix elements was in-

vestigated using several different methods. First, the minimization was
repeated by fixing all the values to ±50% their shell-model calculated val-
ues. The test is similar to previously used methods for estimating errors
using GOSIA [79]. The 3/2+

1 value was only effected by a maximum of
0.003 e2b2. An effect of the same magnitude was observed when all the
other reduced matrix elements were set to zero. As the ordering of the
two lowest-lying orbits relative to 100Sn is still uncertain, the SM E values
(section 4.2.7) were also tested as initial starting values for the reducedma-
trix elements. The influence on the 3/2+

1 reduced matrix element was less
than 0.001 e2b2. Lastly, an additional fit was carried out where yields cor-
responding to the maximum values of the two observed upper limits were
input to the code. Again, this had only a small influence on the order of
0.002 e2b2. The effects of the above tests are all small when compared to
the uncertainty for the 3/2+

1 state given in the table.

The 109Sn experiment

The analysis of the 109Sn data was similar to that of 107Sn. Ten states were
defined in the input to the code, including all possible E2 andM1 reduced
matrix elements. They were taken from the SM 109 calculations (section
4.2.7). In addition, the analysis included the following data points: the
measured quadrupole moment for the ground state from hyperfine mea-
surements [80] and nine previously known branching ratios [75, 76]. In
total, fifteen reduced matrix elements were fit to fifteen data points.
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Table 4.3: The measured B(E2) values from the 107Sn and 109Sn experi-
ments (Papers I and II, respectively). The core-excitation calculations (CE)
were carried out using a 108Sn core, B(E2) = 0.222(19)e2b2 [9]. The shell-
model (SM) value for 107Sn was taken from the SM F calculations. The
values for 109Sn were taken from SM 109. Energies as in Table 4.1.

Transition Energy (keV) B(E2) e2b2 SM CE

107Sn exp.

B(E2; 5/2+
1 → 3/2+

1 ) 704 0.045+0.023
−0.017

a 0.019 0.030(3)

109Sn exp.

B(E2; 5/2+
1 → 3/2+

2 ) 925 0.029+0.014
−0.015

b 0.007 0.030(3)
B(E2; 5/2+

1 → 7/2+
2 ) 1078 0.060+0.020

−0.022
b 0.047 0.060(5)

B(E2; 5/2+
1 → 9/2+

1 ) 1240 0.085+0.032
−0.034

b 0.032 0.074(6)
B(E2; 5/2+

1 → 3/2+
1 ) 665 0.013+0.008

−0.011
a 0.001 0.030(3)

B(E2; 5/2+
1 → 5/2+

2 ) 678 <0.012a 0.004 0.044(4)
B(E2; 5/2+

1 → 1/2+
2 ) 991 <0.028b 0.008 0.015(1)

aError includes Ni-Sn correlations. bError includes Sn correlations.
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Figure 4.12: The χ2+1 limits for theB(E2; 5/2+
1 → 3/2+

1 ) value. See section
4.2.6 for details. The lines are drawn to guide the eye.
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Table 4.4: The single-particle orbits used in the shell-model calculations for
107Sn and 109Sn. The units are in MeV. All sets were used for the 107Sn
calculations, with the exception of the set labeled SM 109. The indicated
reference was used for the position of the three higher-lying orbits.

Orbit SM A SM B SM C SM D SM E SM F SM 109
d5/2 0.0 0.0 0.0 0.0 0.0 0.172 0.172
g7/2 0.172 0.172 0.172 0.172 0.172 0.0 0.0
s1/2 1.55 2.45 2.2 1.6 2.6 2.3 2.3
d3/2 1.66 2.54 2.3 2.0 2.7 2.5 2.1
h11/2 3.55 3.0 2.7 2.3 3.4 3.4 3.4
Reference [6] [18] [81] [82]

The procedures for the error analysis were also similar to as described
previously. Each reduced matrix element was fixed at points around the
minimum while other unfixed reduced matrix elements were free to vary.
The process was repeated until the χ2 + 1 limits were found. The proce-
dure is highlighted in Fig. 4.12. The red-dashed line marks the χ2 + 1
limits. The error given in Table 4.3 also contains an additional contribu-
tion. Each Sn reducedmatrix element was individually fit with all other Sn
reduced matrix elements set to zero. The resulting deviations were treated
as systematic errors and included in the total error. In addition, a second
set of starting values for the reduced matrix elements was also tested. All
relevant reduced matrix elements coupling the two 3/2+ states were ex-
changed. This had an influence of ∼0.001 e2b2 on the reduced transition
probabilities of the two 3/2+ states.

4.2.7 Shell-model calculations

A series of shell-model calculations were carried out to compare with the
measured B(E2) values. In all calculations a 100Sn core was used. The
input included an effective interaction based on a G-matrix renormalized
CD-Bonn potential and several sets of single-neutron energies relative to
100Sn. The list of single-neutron energies is given in Table 4.4 and the two-
body matrix elements for the G-matrix renormalized CD-Bonn interaction
are given in Appendix C. The reduced matrix elements for all calculations
were generated using the effective neutron charge of eν=1.0e and the neu-
tron g-factors gl=0 and gs=-3.82.
The sets labeled SMA-SM Fwere used in the 107Sn calculations and the

calculated energy levels are shown in Fig. 4.10. The sets were taken from
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several references as the location of the single-neutron energies relative to
100Sn is uncertain at this time. The only known information is the energy
splitting between the two lowest-lying orbitals. The spin ordering of the
states is however uncertain and each set of calculations was performed
with the orbits inverted. Additionally, the single-neutron states used as in-
put were fit to the suggested single-neutron states in 109Sn. The best sets
were produced by locating the χ2 minimum based on the position of the
single-neutron states in 109Sn. The single-neutron energies relative to 100Sn
were varied in units of 0.1 MeV during the fitting. The results of the fit are
given in right side of Fig. 4.10.
For the 109Sn calculations, the single-neutron energies of SM F were

used with an adjusted position for the d3/2 orbit. The energy of the orbit

was adjusted in order to reproduce the position of the 3/2+
1 state in

109Sn.
Only increments of the orbit in units of 0.1 MeV were considered. The re-
sulting set of energies is labeled as SM 109.

4.2.8 Core-excitation calculations

Calculations based on the simple core-excitation model were also carried
out and compared to the extractedB(E2) values. The core-excitation states
correspond to a single hole or particle outside of an excited 108Sn core with
B(E2) = 0.222(19)e2b2 [9]. For a particle or hole in the d5/2 orbit, the cou-
pling results in a multiplet of states with J ∈ 1/2+, 3/2+, 5/2+, 7/2+, 9/2+.
The B(E2) values presented in Table 4.3 correspond to the case in which
the respective state is a member of the core-excitation multiplet.

4.2.9 Discussion

The shell-model calculated B(E2) values for the 3/2+
1 state in

107Sn are
compared to the experimentally measured value in Fig. 4.13. All the pre-
dicted values lie outside of the 1σ limits of the measurement. Interestingly,
in all cases the calculations with the g7/2 orbit as the lowest-lying orbit rela-
tive to 100Sn are enhanced compared to the respective d5/2 calculation. The
inversion of the orbits may be partly responsible for explaining the missing
strength.
The higher-lying orbits may also contribute to the missing strength. For

instance, the calculations were repeated by fixing the h11/2 orbits position
to 2.3 in the SM F set, which resulted in an ∼30% increase in the transi-
tion strength. Likewise, setting the s1/2 state to 1.55 MeV in the SM F set
resulted in an ∼10% increase in the value. Finally, setting the d3/2 to 1.66
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Figure 4.13: The calculated B(E2) values for 107Sn with the various sets of
single-neutron energies (see Table 4.4) relative to 100Sn. The core-excitation
(CE) calculation, given in Table 4.3, is also shown for comparison.

MeV led to a decrease of ∼20%. The positions of the three higher-lying
orbits are thus clearly important for explaining the transition strengths in
the odd-Sn nuclei.
The 108Sn core-excitation calculations predict aB(E2) value that agrees

within the 1σ limits of the measurements. If instead a 106Sn core is as-
sumed, then the core-excitation B(E2) value would be 0.026(5)e2b2, based
on the value given Ref. [9]. This value underestimates the measured mean
value but overlaps within the 1σ limits. Both these predictions lie on the
very lower limit of the measured 1σ error bars. A new measurement aim-
ing for better precision would help determine if the core-excitation model
provides a good explanation for the increased transition strength.
In 109Sn, the 3/2+

2 , 7/2
+
2 , and 9/2+

1 states are well described by the core-
excitation calculations and are underestimated by the shell-model calcu-
lations. The 1/2+

2 state and 5/2+
2 state may also be members of the core-

excitation multiplet, however, their transition probabilities agree with both
shell-model and core-excitation model calculations. Since the 1/2+

1 state is
believed to be the single-neutron state, and since it was not observed in
the experiment, the 1/2+

2 state is left as the best candidate for a collective
state. The strong observation of the 3/2+

2 state is unexpected since it has
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Figure 4.14: Comparison between the B(E2) values for the low-lying 3/2+

states in 107Sn and 109Sn with the prediction of the simple core-excitation
model (Table 4.3). The energies are given in keV and the B(E2) values are
indicated next to the thick arrows and given in e2b2. The states thought to
be single-neutron states from previous studies are indicated [75, 77].

been labeled as a single-neutron state [75, 77]. The assignment is based on
the β-decay feeding strengths when compared to the nuclei 111−117Sn [83].
The 3/2+ states in 107Sn and 109Sn are shown in Fig. 4.14 and are compared
to predictions of the core-excitation model. Here, it can be noted that the
suggested d3/2 state moves up in energywhen moving from

109Sn to 107Sn.

This may mean that the 3/2+
2 state in

109Sn is based on a mixture of collec-
tive and single-neutron states. Similar mixed states have been observed
in previous Coulomb excitation experiments in 117Sn [84]. An additional
study using nuclear reactions could help identify the character of the state.

Lastly, the shell-model calculations employed in this work did not
contain any neutron or proton excitations across theN = Z = 50 shell gap.
The missing degrees of freedommight lead to an increase in the calculated
transition probabilities [6, 7, 8, 9]. Recent shell-model calculations in 98Cd,
without excitations across the N = Z = 50 gap, predicted a 7/2+ ground
state in 101Sn [85]. When neutron core excitations were included, the calcu-
lations instead predicted a 5/2+ state in 101Sn. It will be interesting to find
out if the effect of the core excitations in 107Sn washes out the differences
between the d5/2 and g7/2 calculations, as shown in Fig. 4.13.
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Figure 4.16: The GOSIA simulated spectra for the two low-lying orbits rel-
ative to 100Sn. Based on work presented in Refs. [86, 87]

4.2.10 GOSIA simulated γ-ray spectra

While the GOSIA code is mainly used for determining reduced matrix el-
ements from relative γ-ray yields, it can also be used in the reverse order.
Given a set of reduced matrix elements, the code can be used to calculate
the expected γ-ray yields for a particular experiment. This type of analysis
was explored for the 107Sn experiment. The work described in this section
is presented in Refs. [86, 87].
The analysis started with a set of reduced E2 andM1matrix elements

which was generated from a shell-model calculation. The effective inter-
action was derived as discussed in section 4.2.7 while the single-neutron
energies were taken from a two dimensional fit of the d3/2 and s1/2 orbits
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to the excited states in the nucleus 109Sn. The rms deviation of the fits as
a function of these two orbits is shown in Fig. 4.15. The fits were carried
out for both choices of the lowest-lying orbit relative to 100Sn with a fixed
h11/2 orbit at 3.0 MeV.
The shell-model reducedmatrix elements were fed into the GOSIA code

along with the experimental parameters defining the detector geometries.
The code was used to calculate the expected peak areas based on normal-
izing to the single observed γ ray in the 107Sn experiment. The peak ar-
eas were added to the experimentally determined background spectrum
and broadened to meet the measured full-width-at-half-maximum. The
results are shown in Fig. 4.16. The two spectra show that on basis of the
shell-model calculations the g7/2 orbit would be preferred as the lowest-
lying orbit relative to 100Sn. Of course the method depends on to what
extend the shell-model calculations reproduce the energies and transition
strengths of the experimentally observed excited states. In any case, the
method provides an approach for estimating the observed peak areas for a
given experiment based on model predictions.

4.3 Coulomb excitation of 107In

As a consequence of the isobaric contamination present during the 107Sn
experiment, it was also possible to also extract a B(E2) value for the iso-
tope 107In. The peak areas and intensities relevant for the analysis are given
in Table 4.5. Two γ rays were observed which could be assigned to 107In
[74]. These include the 1001 keV γ ray from the 11/2+ state at 1001 keV
and the 429 keV γ ray depopulating the 3/2− state at 1107 keV. This latter
transition feeds the isomeric 1/2− state at 679 keV [88].
The 58Ni peak was corrected for the Sn to In ratio as described in sec-

tion 4.2.4. However, the In fraction contains two different components.
These include 107In in the ground state and also 107In in the isomeric state.
Considering this, the 429 keV γ ray could either be the result of Coulomb
excitation of the ground-state (see previous measurements of In nuclei [89,
90]) or Coulomb excitation of the isomeric state. The isomeric fraction was
estimated using data from previously known electron capture decay mea-
surements [74]. Using this information and measured decay data from the
current experiment resulted in an isomeric fraction of 0.04(5) and a ground-
state fraction of 0.77(8) of the total data set.
The B(E2) value for the 11/2+ state was extracted in the same fashion

as described for the 107Sn B(E2) value. The result is presented in Table
4.6 along with the results of large-scale-shell model calculations, previous
unified-model calculations, and earlier Coulomb excitation experiments
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Table 4.5: Relevant data for the analysis of the 107In experiment (Paper III),
energies taken from Refs. [73, 74].

Transition Eγ (keV) Yield Iγ
In 3/2−→1/2− 429 <315 <0.77
In 11/2+→9/2+ 1001 658(31) 2.68(17)
Ni 2+→0+ 1454 196(28) 1.00(15)

Table 4.6: Measured and calculated reduced transition probabilities,
B(E2, 9/2+ → 11/2+) values, for 107In. Experimental data for the heavier-
mass In isotopes taken from Refs. [89]. See section 4.3 for a discussion
regarding the shell-model (SM) calculations and the unified-model (UM)
calculations.

Energy (keV) B(E2) (e2b2)
Exp 1001 0.12(2)

SM A 1063 0.09
SM B 1063 0.12
UM - 0.08
113In 1173 0.093(6)
115In 1133 0.100(5)

[89]. The shell-model calculations were carried out using a G-matrix renor-
malized CD-Bonn interaction with 88Sr as the core. The proton and neu-
tron single-particle energies were taken fromRef. [91] andwere d5/2 = 0.00
MeV, s1/2 = 1.26MeV, d3/2 = 2.23MeV, g7/2 = 2.63MeV, and h11/2 = 3.50
MeV for neutrons and p1/2 = 0.00MeV and g9/2 = 0.90MeV for protons.
In order to gain computational efficiency, only a maximum of three neu-
trons were allowed to occupy the h11/2 orbit. The effective charges used
in the calculations were taken from Refs. [92, 93]. These values, eν=1.1e
and eπ=1.7e, however underestimate the extracted B(E2) value, indicated
as SM A in Table 4.6. Better agreement can be found by increasing the
neutron effective charge to eν=1.3e (SM B). The unified-model calculations
were carried out in Ref. [94] for 115In. These calculations were normal-
ized using the known B(E2, 0+ → 2+) value for 116Sn. It can be expected
that this value holds for 107In based on the roughly constant B(E2) val-
ues down to 106Sn (Fig. 1.2). This observation is also supported by the
Coulomb excitation measurements in 113,115In where these results overlap
within the 1σ limits of the 107In measurement.
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Table 4.7: Preliminary analysis for FRS and LYCCA identification of Sn
nuclei.

Isotope ZvsAoq ZvsAoq time
+LYCCA

112Sn 5.7×107 p 2.6×107 p 20 h
104Sn 1.5×107 p 5.7×106 p 64 h

4.4 Relativistic Coulomb excitation of 104Sn

The 107,109Sn radioactive ion beam experiments are part of a more gen-
eral study of isotopes near 100Sn. The main goals have been to identify
and characterize the collective properties of low-lying states in this mass
region. In particular, much of the interest has been driven by the ob-
served enhancement in the reduced transition probabilities in the neutron-
deficient even-even Sn nuclei (see Fig. 1.2b). The previously reported re-
sults include Sn nuclei down to mass number A = 106. In the current sec-
tion, the preliminary results of a relativistic ion beam experiment, aimed at
measuring the reduced transition probability of the first 2+ state in 104Sn,
are described.
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Figure 4.17: FRS identification for the 112Sn normalization run (left) and
for the 104Sn run (right).
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Figure 4.18: LYCCA∆E vs E spectrum from part of the 104Sn run.
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Figure 4.19: Preliminary γ-ray spectra for 112Sn and 104Sn.

Two different beams were used during the course of the experiment.
A 112Sn beam, created by the fragmentation of the 9Be target using a 700
MeV/u 124Xe primary beam with an intensity of ∼1×107 p/s, was used
for normalization. The 104Sn beam was produced with a 793 MeV/u 124Xe
primary beam with an intensity of ∼1×109 p/s. The FRS identification is
shown in Fig. 4.17, where the stable primary beam is seen in the normal-
ization run and four different isotopes were present during the 104Sn run.
These include 104,105Sn and 103,104In. The number of identified 112Sn and
104Sn ions, in the FRS and also in LYCCA, over the course of the experi-
ment is shown in Table 4.7. It can be seen that there is a significant loss in
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the number of ions before and after the secondary target, which is as of yet
unexplained. A sample of the collected ∆E vs E spectrum from LYCCA is
shown in Fig. 4.18.
Preliminary γ-ray spectra from the experiment for 112Sn and 104Sn are

shown in Fig. 4.19. The spectra were generated using a number of differ-
ent conditions placed on the various detectors in the flight path of the ions.
These cuts included identification using the FRS detectors, i.e. Z vs A/q,
target multiplicity equal to one, identification in LYCAA ∆E vs E, and a
cut on the scattered particle angles in order to remove contributions from
nuclear interactions. The work is still ongoing in order to identify the best
selection of cuts to maximize the signal to background ratio.



Chapter 5

The 170Er experiment

5.1 Introduction

The Er nuclei, starting from 162Er up to 170Er, exhibit very similar features.
These nuclei are characterized by rotational ground-state bands and sev-
eral other low-lying rotational structures. There are smooth variations in
the energies and transition probabilities of the ground-state bands across
the chain of nuclei, as shown in Ref. [95], for example. This is a typi-
cal characteristic of rotational motion. Furthermore, low-lying rotational
bands with large transition probabilities to the ground state have also been
observed in these nuclei. The bands are thought to be based on one-phonon
vibrational states. An interesting question is related to the existence of ro-
tational bands built upon two-phonon states. Levels in the nuclei 166,168Er
have been interpreted as such states [96, 97, 98, 99, 100]. One of the main
motivations for the 170Er experiment was to search for two-phonon vibra-
tional states.
A unique feature of 170Er is that two low-lying rotational bands have

been observed at about the same energy. In the model of Bohr and Mottel-
son, to the first order, rotational bands should exhibit smooth variations in
the energies and transition probabilities of the states within and between
the bands. However, the closeness in energy of the two low-lying bands
results in a strong interaction between them [101], leading to deviations
from the expected smooth behavior. Studying the transition probabilities
of states within and connecting the two bands makes it possible to get a
handle on the strength of the interaction. This was also one of main the
goals for the analysis of the experimental data.
The 170Er experiment was carried out using the GASP and LuSiA de-

tector systems as described in Ch. 3. A 117 MeV 32S beam was produced

75
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Table 5.1: Example of a single GASP event buffer.

GASP format ROOT format

f008 New event
RunNumber 1

0001 GeMult 1
0324 GeEnergy 804
040c GeTime 1036
0026 GeID 38
0001 SiMult 1
00f2 SiEnergy 242
0776 SiTime 1910
006f SiID 111

SiDet 4
SiSide 0

using the accelerator at the Laboratori Nazionali di Legnaro and incident
on a 1 mg/cm2 thick isotopcially enriched 170Er target. The data reduction
techniques, analysis, and discussion of the results are presented in detail
in this chapter. The work described here is presented in Paper IV.

5.2 Data acquisition, sorting, and reduction

The LuSiA detector was fully integrated into the EUCLIDES [102] data ac-
quisition setup. The detector preamplifier signals were processed using
mesytec shaping amplifiers [67] and further by the pre-existing ADC/TDC
conversion system [103]. After the read out of the signals, the data were
written in standard GASP event-by-event format to disk using the GSORT
program [104]. Each event buffer contained the Ge and Si detector multi-
plicities and the corresponding time and energy signals. The events were
recorded under the condition that at least one particle and at least one γ
ray were detected in LuSiA and GASP, respectively.
The data were sorted and reduced to a form suitable for analysis us-

ing a series of ROOT based programs. The initial step was to convert the
raw GASP data to ROOT trees. Table 5.1 shows the format of the data in a
single buffer. The ROOT data was subsequently reduced based on several
conditions described in the following sections. These conditions included
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Figure 5.1: Normalized measured particle hit pattern for a single DSSSD in
LuSiA (left) compared to the normalized simulated hit pattern (right).

1) event selection based on DSSSD strip multiplicity, 2) a kinematical cut
on the energy and scattering angles of the detected particles, 3) a coinci-
dence condition between front and back strips of the DSSSD and between
particles and γ rays, 4) reconstruction of the scattered 170Er target nuclei,
and 5) Doppler correction of the γ-ray spectrum.

5.3 Particle data

A typical particle hit pattern from the left DSSSD, gated on the 2+
g → 0+

g

transition in 170Er, is shown in the first panel of Fig. 5.1. Left refers to the
direction when facing downstream with respect to the beam direction. As
a result of the energy loss in the target and the Al foil placed around the tar-
get, only the 32S particles were detected. The observed features arise from
a combination of different sources. These include the angular distribution
of the Coulomb excitation cross section, energy loss in the target and Al
foil, and the kinematics of the reaction.
To get a better understanding of the observed structure in Fig. 5.1,

Geant4 [105] simulations of the detector setupwere carried out. The results
are shown in the second panel in Fig. 5.1. The simulations included the ge-
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Figure 5.2: Experimentally determined energy vs scattering angle (left)
compared to the simulated energy vs scattering angle (right).

ometry of the target, DSSSD, and Al foil. The 32S particles were emitted
from a source placed in the 170Er target. The energies of the particles were
calculated from the two-body kinematics of the reactionwhile the emission
angles were determined from the GOSIA calculated angular distributions
for the 2+

g state. The simulated pattern well reproduces the measured pat-
tern. The broad bump in the forward beam direction, corresponding to
lower scattering angles, is related to the Coulomb excitation cross section
(see Fig. 3.2). The Al foil and target thickness are both important for the
attenuation at the higher scattering angles. The target shadow is clearly
visible around strips 23 and 24 in both hit patterns. At these angles, the
scattered particles do not escape the target volume. The simulations show
that the Al foil was thinner than the quoted value of 12 µm as this thickness
resulted in a larger attenuation of the scattered particles than what was ob-
served experimentally.
The measured energy versus scattering angle for the collected particles

is shown in the left panel of Fig. 5.2 when gated on the 2+
g → 0+

g transition.
Without the γ-ray gate, a broad band of particles appears below 30 MeV,
indicating that these events originate from particles scattered by other ma-
terials than the target. The data presented in the figure correspond to the
events collected in one of the four DSSSDs.
The detected particle energy in Fig. 5.2 was calibrated based on the
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Geant4 simulations. The corresponding simulated plot is shown in the
right panel of Fig. 5.2. The calibrated energy depends on the Al foil thick-
ness. This is however not an issue for the analysis for two reasons. The de-
tected particle energy is only used to set the kinematical cut to select events
scattered from the target. During the Doppler correction, the detected par-
ticle angles were used to determine the energies of the scattered particles
rather than using the energies measured in the DSSSD. The kinematical cut
imposed during the analysis is represented by the black markers in Fig. 5.2
and corresponds to the angular range of 52.4o < θ < 66.0o.
For the particle events, coincidence cuts were defined for the front and

back strips of the DSSSD. The time spectrum is shown in Fig. 5.3 and the
red markers indicate the conditions imposed in the analysis. The width of
the cut corresponds to 14 ns.

5.4 Particle-γ-ray coincidence data

After selection of the suitable events based on the particle energies and
scattering angles, the data were processed in a reconstruction and Doppler
correction routine. The Doppler correction formula depends on the angles
and energies on the scattered 170Er particles. This information was cal-
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culated using the standard formulation for two-body scattering (see Ap-
pendix A) and the measured angles of the 32S particles, since the 170Er nu-
clei were not detected by the DSSSD. The scattering was assumed to have
occurred in the center of the target. The collected γ-ray spectrum from the
experiment before and after the Doppler correction is shown in Fig. 5.4.
A coincidence condition was also applied on the particle-γ-ray time dif-

ference. The measured time difference spectrum is shown in Fig. 5.5 and
the cut used in the analysis corresponds to 61 ns.
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5.5 Data analysis

The γ-ray data were analyzed in the standard fashion by constructing a γ-
γ matrix to assign each of the γ rays a position in the level scheme of the
nucleus. The scheme is shown in Fig. 5.6 and is based on the adopted data
given in Ref. [106]. The ground-state band was observed up to spin 10+,
theKπ = 0+ band up to 6+, and the γ band also up to spin 6+. Three other
low-lying structures were observed, which include the band head of the
K = 2+ band at 1416 keV, a member of the K = 2− band, and three states
belonging to the K = 1− band. A previously unobserved level was also
found at 1789 keV, based on a 686 keV γ ray in coincidence with the 843
keV transition.
A set of intensities was extracted for the observed γ rays using the

RADWARE [107, 108] package and is given in Table 5.2. The intensities of
the two lowest-lying ground-state transitions were not possible to extract
due to uncertainties in the efficiency calibration at low energies. These
were not used directly in the analysis but instead their reduced matrix ele-
ments provided additional tests of the fit results.
The yields were analyzed using the GOSIA code discussed in Ch. 3.

The observed levels for the three lowest-lying bands were included in the
analysis with all possible E2/M1 matrix elements. The coupling between
the γ and Kπ = 0+ bands was however assumed to be zero. In addition,
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Table 5.2: Experimental data used in the GOSIA analysis of the 170Er ex-
periment.

Transition Energy (keV) Rel. Int. Ii→If/Ii→If Ref. [106]

6+g →4+g 280 100(6) 2+γ →4+g /2+γ →2+g 0.014(3)

8+g →6+g 374 4.88(30) 2+γ →0+g /2+γ →2+g 0.897(24)

10+g →8+g 462 0.37(4) 3+γ →4+g /3+γ →2+g 0.146(11)

2+γ →0+g /3+γ →2+g 934/932 42(3) 4+γ →2+g /4+γ →4+g 0.86(11)

2+γ →2+g 855 43(3) 2+
K=0+

→4+g /2
+

K=0+
→2+g 0.65(4)

2+γ →4+g 674 0.55(6) 2+
K=0+

→0+g /2
+

K=0+
→2+g 0.63(7)

3+γ →4+g 750 1.45(11) 4+
K=0+

→2+g /4+K=0+
→4+g 0.273(22)

4+γ →2+g 1049 2.37(18) 6+
K=0+

→4+
K=0+

/6+
K=0+

→6+g 0.076(25)

4+γ →4+g 867 3.26(22)

4+γ →6+g 587 0.44(5)

5+γ →4+g 976 0.72(7)

5+γ →6+g 696 0.17(11)

6+γ →4+g 1142 <0.62

6+γ →6+g 861 <2.50

0+
K=0+

→2+g 812/810 1.67(16)

/6+
K=0+

→6+g
2+

K=0+
→0+g 960 0.35(7)

2+
K=0+

→2+g 881 0.92(10)

2+
K=0+

→4+g 700 0.73(13)

4+
K=0+

→2+g 1024 2.37(17)

4+
K=0+

→4+g 843 7.96(49)

4+
K=0+

→6+g 563 <0.11

3−
1
→4+g 1080 1.36(11)

3−
1
→2+g 1262 <0.40

3−
2
→2+γ 645 0.56(6)

3−
2
→3+γ 569 0.50(6)

3−
2
→4+

K=0+
476 0.26(4)a

2+
K=2+

→2+γ 481 0.48(5)a

Level Lifetime (ps)
Ref. [106]

2+γ 2.61(9)

2+
K=0+

17.46(216)

aMay contain a contribution from 181Ta.

several states on top of each bandwere also included to account for any un-
observed excitation. The observed three higher-lying structures exhibited
little sensitivity to the data set and were not included. The effects of these
matrix elements were instead estimated as discussed later in this chapter.
In addition to the definition of the level scheme, several previously known
branching ratios and lifetimes were used as input to the code and are also
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shown in Table 5.2.
The first attempt at fitting the matrix elements was carried out using the

coupling schemes defined in Ch. 2, based on the collective model of Bohr
and Mottelson. An intrinsic matrix element was defined for each of the
bands and inter-band transitions. The E2 reduced matrix elements were
coupled using the leading order relation (Eq. 2.24). The M1 reduced ma-
trix elements for the γ and Kπ = 0+ bands were coupled using Eqs. 2.28
and 2.29, respectively. The simplified nature of the coupling schemes was
however not sufficient to reproduce the observed intensities. The reason
may be related to the near degeneracy of the two 4+ levels in the γ and
Kπ = 0+ bands, which may result in mixing of the two states [101]. The
mixing breaks the simple relations of the coupling schemes. For this rea-
son, the inter-band E2 reduced matrix elements coupling the 0+, 2+, and
4+ states of each of the bands were varied individually. All other matrix
elements were coupled, as described previously. The method is similar to
other procedures defined in Refs. [109, 110]. In total, 19 reduced matrix
elements were fit to 31 experimentally defined data points and resulted in
a χ2 value of ∼1.8.
The determined E2 reduced matrix elements are given in Table 5.3. For

the uncoupled reduced matrix elements the values predicted by Eq. 2.24
are also given for comparison. Calculations using the IBA-1 model were
also carried out (section 5.6) and the results are also given. Previously mea-
sured reduced matrix elements are also presented.
Several tests were carried out to check the sensitivity of the determined

reduced matrix elements to the higher-lying states, to the phases of the re-
ducedmatrix elements, and to test the uniqueness of the χ2minimum. The
effect of the higher-lying states was investigated by including these states
in the GOSIA fit with fixed reduced matrix elements based on observa-
tions from nearby nuclei. However, no significant effect was found. The
effect of the phases was investigated by flipping the signs of the uncou-
pled reduced matrix elements and repeating the minimization. In the best
set presented here, the initial starting values corresponded to the signs of
the Clebsch Gordan coefficients. The only case which produced a lower
χ2 value was for the 2+

γ →2+g transition. The positive choice was however
adopted as it agrees with both the Bohr-Mottelson model and the IBA-1
calculations. The analysis was not sensitive to the signs of theM1 reduced
matrix elements. Finally, when performing a least-squares minimization
there is always the chance that the determined minimum is not the global
minimum. To examine this, several different starting values for the uncou-
pled E2 reduced matrix elements and intrinsic M1 matrix elements were
tested. The procedure revealed the existence of several local minima, but
none with lower χ2 values than the minimum presented here.
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Table 5.3: The extracted E2 reduced matrix elements, given in eb, from
the GOSIA analysis for the 170Er experiment. The IBA-I calculations are
described in section 5.6.

Transition GOSIA IBA-I BMb Previous
In-band E2 transition matrix elements.

2+g →0+g 2.59+0.05
−0.09 2.59a 2.33(3), 2.48(9), 2.41(2)c

4+g →2+g 4.15+0.08
−0.27 4.12 3.74(5)d

6+g →4+g 5.23+0.16
−0.15 5.14 5.00(11)d

8+g →6+g 6.12+0.93
−0.32 5.92 5.66(21),±5.93(24)e

4+γ →2+γ 2.70+0.37
−0.08 2.45

6+γ →4+γ 4.56+0.22
−2.52 4.09

2+
K=0+

→0+
K=0+

1.91+0.16
−0.18 2.28

4+
K=0+

→2+
K=0+

3.07+0.40
−0.57 3.62

Inter-band E2 transition matrix elements.

2+γ →0+g 0.32+0.01
−0.01 0.32a ±0.321(5)f

2+γ →2+g 0.41+0.01
−0.01 0.40 0.38 >0.413f

2+γ →4+g 0.09+0.01
−0.01 0.10 0.09 ±0.09(1)f

3+γ →2+g -0.51+0.11
−0.03 -0.50

3+γ →4+g -0.32+0.02
−0.07 -0.36

4+γ →2+g 0.14+0.01
−0.01 0.31 0.33

4+γ →4+g -0.05+0.07
−0.07 0.59 0.57

4+γ →6+g 0.25+0.02
−0.02 0.21 0.17

6+γ →4+g 0.36+0.03
−0.27 0.31

6+γ →6+g 0.70+0.53
−0.54 0.70

0+
K=0+

→2+g 0.04+0.01
−0.01 0.13 0.09

2+
K=0+

→0+g 0.09+0.01
−0.01 0.12 ±0.088(5)f .

2+
K=0+

→2+g -0.05+0.03
−0.03 -0.15 -0.11 |0.04|+0.03

−0.02
f

2+
K=0+

→4+g 0.22+0.01
−0.02 0.22 0.14 ±0.199(14)f

4+
K=0+

→2+g 0.33+0.01
−0.01 0.17 0.14

4+
K=0+

→4+g -0.96+0.04
−0.05 -0.19 -0.14

aReduced matrix element used for normalization in the IBA-1 calculations.
bPrediction of the Bohr and Mottelson model (BM) for the uncoupled reduced matrix elements.
c[111, 112, 113]
d[114]
e[114, 106]
f [106]
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5.6 IBA-1 calculations

The programs PHINT and FBEM [115] were used to calculate reduced ma-
trix elements under the framework of the IBA-1. The following parame-
ters were used as input; PAIR=1.06 keV, ELL=17.08 keV, QQ=-21.23 keV,
as found in Ref. [116]. The transition strength parameters were calcu-
lated from the data given in Table 5.3 and found to be E2SD=0.1565 eb
and E2DD=-0.162 eb. Overall there is good agreement between the calcu-
lations of the IBA-1 and the measured values, the exception being the two
4+ states of the γ and Kπ = 0+ bands.
An interesting feature of the IBA-1 model is the prediction of collective

transitions between the γ andKπ = 0+ bands. Interestingly, if theKπ = 0+

band is interpreted as a β-vibrational band, transitions between the two
different vibrational modes of motion are predicted to be zero under the
collective model of Bohr andMottelson, at odds with the predictions of the
IBA-1 model. This was investigated by including an inter-band matrix ele-
ment between the two bands based on the IBA-1 calculations, however no
significant effect was observed.

5.7 Discussion

The ground-state band reducedmatrix elements in general give good agree-
ment with previous measurements, overlapping with at least one previous
value within the ∼1σ limits. The determined B(E2) value for the 2+g state
is compared with other deformed Er nuclei in Fig. 5.7. It can be seen that
the smooth trend of increasing B(E2) values and decreasing energies con-
tinues with 170Er. Here, the effect of the target position on the ground-state
band reduced matrix elements was also investigated in further detail. The
simulated hit pattern in Fig. 5.1 suggests that the target may be ∼1.1 mm
off center or that the target is tilted slightly. The effect of a possible offset
in the position on the ground-state band reduced matrix elements was in-
vestigated and found to decrease the matrix element values by only ∼2%.
The 0+ and 2+ transitions to the ground-state band from the Kπ = 0+

band are in excellent agreement with previous measurements and are gen-
erally well described by the collective model of Bohr and Mottelson. There
are however large deviations for the reduced matrix elements of the 4+

state. The 4+K=0+→4+g transition is enhanced significantly with a reduced
transition probability of ∼18(2) W.u. The enhancement is possibly related
to the mixing with the nearby 4+ state in the γ band. The extrapolated
E2/M1 mixing ratio for this state, based on the 2+K=0+→2+g reduced ma-
trix element of 0.1+0.01

−0.01 uN , is |2.67|+0.19
−0.26, in excellent agreement with the
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Figure 5.7: Energies and B(E2) values of the 2+ ground states in the de-
formed Er nuclei. The experimental point for 170Er is from the current
work.

previously reported value of +2.81(10) [117].
All the γ-band reduced matrix elements are well described by the cou-

pling scheme of the Bohr andMottelsonmodel with the exception of the 4+γ
state. As already mentioned, the possible reason for the deviation may be
related to mixing with the 4+ state in theKπ = 0+ band. The 4+γ →4+g tran-
sition deviates significantly from the Bohr and Mottelson and IBA-1 pre-
dictions. The corresponding reducedmatrix element in the nearby nucleus
168Er is 0.72(2) eb [118]. The small value of the E2 transition strength and
the measured branching ratios for this level indicate a strong M1 transi-
tion in 170Er. The GOSIA value at the minimum was found to be -0.18+0.02

−0.01

µN , yielding an E2/M1 mixing ratio of 0.23+0.27
−0.30. Three values have been

previously reported as -1.29+0.07
−0.12, -4.3

+2.3
−9.9, and -9.8

+2.2
−6.3 [106]. Part of the

difficulty in measuring the mixing ratio may be related to the presence of
a nearby γ-ray line. In this case, possibly the 861 keV 6+γ →6+g transition.
It was also found that in-band reducedM1matrix elements of 2.46+0.55

−0.19

µN and 3.28+0.52
−1.11 µN were needed for the 4

+
γ →3+γ and 6+γ →5+γ transitions,

respectively, in order reproduce the observed intensities. The analysis was
not sensitive to the reduced E2 matrix elements for these states. Extrapo-
lation based on the 4+γ →2+g E2 reduced matrix element leads to an E2/M1
mixing ratio near zero for these transitions, suggesting pureM1 character.
However, it should be noted that as the analysis was not directly sensi-
tive to the reduced E2 matrix elements, this approach may not be valid,



5.7. DISCUSSION 89

especially in light of band mixing with the Kπ = 0+ band. Little informa-
tion exists in the literature on the E2/M1mixing ratios for in-band transi-
tions. Measurements of such transitions are difficult due to their relatively
weak intensities combined with the fact that they occur in a region of high
γ-ray line density. Typically, these have been extracted assuming that the
Alaga rules [119], which state that the reduced transition probabilities from
a single state to two different final states are equal to the ratio of their
Clebsch-Gordan coefficients squared, hold for the E2 components. The
additional intensity is then ascribed to theM1 components and the mixing
ratio can be deduced (see Eq. B.7 and Refs. [120, 121] for examples.). In
Ref. [120], observation of three ∆I=-1 transitions in 168Er was possible in
conversion electron measurements. The measurements also suggested that
the Alaga rules hold to a good approximation for the in-band transitions.
Through comparison of their results with systematics of other rare-earth
nuclei, it was concluded that the mixing ratio for these types of transi-
tions had a nearly constant value of δ2 ≃ 2.0. This was supported by a
theory proposed by Greiner [122] based on the rotation-vibration model.
There still however remains several values which deviate from the ex-
pected theory and are close to zero, as shown in the tables contained in
Refs. [120, 121]. Considering the above and the analysis presented in this
work, it can be concluded that the current theory could benefit greatly from
new measurements aimed at collecting high quality data for in-band and
inter-band transitions of low-lying excitations, especially in regions where
band-mixing effects may be present.
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Chapter 6

The Lund R3B calorimeter
prototype

The development of new detector equipment provides experimentalists
with more sensitive probes of nuclear structure. At the current date, a new
radioactive ion beam facility is being built in Germany, known as FAIR
[123]. One of the main experiments to take place at the new facility is
known as R3B [124]. The setup will be predominately used for nuclear re-
action studies using relativistic radioactive ion beams. The target position
of the experiment will be surrounded by a large CsI(Tl) crystal calorime-
ter called the CALorimeter for In-Flight emitted gAmmas (CALIFA) [125],
which will contain several thousand detector elements. At Lund univer-
sity, a small fifteen element version of the calorimeter was constructed and
tested using a 180 MeV proton beam the The Svedberg Laboratory (TSL)
[126]. The results were compared to simulations in order to evaluate the
performance of the prototype. Of particular interest is the effects of in-
elastic interactions, multiple scattering, and the gain corrected summing
procedure. This chapter is based on the work presented in Paper V.

6.1 The CALIFA calorimeter

The CALIFA calorimeter will be placed at the target position of the upcom-
ing R3B experiment at the FAIR facility. The technical design of the system
is described in detail in the technical status report [125]. A brief overview
of the requirements, relevant for the experimental tests and simulations is
discussed in the following. The calorimeter will be used to detect both γ

91
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Figure 6.1: A schematic of the CALIFA barrel section. Reprinted from Ref.
[127] with permission from Elsevier.

rays and light charged particles emitted in nuclear reactions with relativis-
tic radioactive beams. The aim is to measure γ rays up to 15 MeV with an
efficiency of 80% and light charged particles, i.e. protons, up to 300 MeV.
The energy resolution for γ rays at 1 MeV should be ∼5%.
The analysis of nuclear reaction experiments using relativistic beams

requires event-by-event Doppler correction. Thus, it is important to know
as precisely as possible the interaction point of a γ ray. For this reason,
the CALIFA calorimeter will ultimately consist of between∼4000-5000 de-
tector elements. The polar angle coverage of the detector will be 7o-133o

divided into three primary subsections: the forward and end caps, and the
barrel section. The shapes and sizes of the crystals used in the different
regions of the calorimeter will be selected based on the Lorentz boosted γ-
ray energies. At larger polar angles, the Lorentz boost reduces the energies
of the γ rays and thus shorter crystals can be used. At smaller polar angles,
the Lorentz boost increases the energies and longer crystals will be needed
in order to capture the resulting electromagnetic shower. A rendering of
the calorimeter barrel is shown in Fig. 6.1.
The crystals in the barrel regionwill be CsI(Tl) scintillator crystals. Each

crystal will be wrapped in a reflective foil in order to guide the emitted
scintillation light to either an avalanche photodiode (APD), photodiode
(PD), or photomultiplier (PM). In addition to the reflective wrapping ma-
terial, support structures will also be used in order to hold small clusters
of detectors in place. As discussed in the following, it is important that
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the excess material between the detectors be minimized. A high energy
γ ray or charged particle traversing the detector will deposit energy into
a number of crystals. In order to find the true energy of the particle it is
required to add up the energy signals from these crystals. Any material
between the detector elements will absorb some energy and the gain cor-
rected summing routine will produce the incorrect total energy.
A possible nuclear physics investigation using CALIFA might involve

Coulomb dissociation, which is similar to the method of Coulomb exci-
tation. The physics motivation for such an experiment is of a completely
different nature than investigating the collectivity of low-lying nuclear ex-
cited states. Capture cross sections involving light charged particles are
useful in understanding various nuclear astrophysics phenomena. For ex-
ample, estimation of the 8B solar neutrino flux is related to the 7Be(p, γ)8B
reaction, which has been previously studied via Coulomb dissociation [128].
The Coulomb dissociation technique is based on the following reaction

γ + a→ b+ c. (6.1)

In this process, the Coulomb field of a nucleus serves as a source of virtual
photons which leads to the breakup of a second nucleus. The radiative
capture cross section can be calculated based on the Coulomb dissociation
cross section.

6.2 Overview of the Lund prototype

The prototype, constructed at Lund University, is shown in Fig. 6.2. The
prototype represents detector elements corresponding to the angles 38o-
84o of the barrel region of CALIFA. Each crystal has the shape of the two
truncated rectangular pyramids joined together. The length of the crystals
is 130 mm, with a front area of 15×42 mm2 and a back area of 10×30 mm2.
The light collected at the back surface of a crystal is read out using a PD
with an area of 10×10mm2. The individual crystals are wrappedwith ESR
reflective foils [129], each with a thickness of 65 µm. In addition, Al foils
equivalent to 10 µm of Mylar, were also placed in between each crystal to
serve as additional protection against light crosstalk. The CsI(Tl) crystals,
when received in their raw form, exhibit a smooth exponential decrease in
the light output as a function of the distance from the readout area. Each
crystal was therefore adjusted to have a more uniform response in light
output before the in-beam proton tests. The light output non-uniformity
was better than 0.6% after these adjustments.



94 CHAPTER 6. THE LUND R3B CALORIMETER PROTOTYPE

Figure 6.2: Photograph of the Lund R3B calorimeter prototype. Reprinted
from Paper V with permission from Elsevier.

6.3 Experimental tests

The prototype detector was tested using 179.3 MeV protons at TSL. The
beam energy was further reduced to an energy of 178.2 MeV by a stainless
steal window and two 1mm thick 60×60mm2 single-sided silicon strip de-
tectors (SSSDs) placed in front of the prototype. The two SSSDs provided
information on the profile of the proton beam, which had a beam spot of
about 40 mm2. The two SSSDs defined a hit pattern of pixels, as the strips
of the back SSSD were perpendicular to the strips on the front SSSD. The
count rate was around 100 counts per second. The detector sat on top of a
moveable table which made it possible to center the beam onto the surface
of each of the individual detector elements. The energy calibration of the
detector elements was carried out by using a 25 mm thick Cu collimator,
with an 8 mm diameter hole, which was placed in front of the two SSSDs.
This provided a second energy point of 92.7 MeV for the energy calibra-
tion. The trigger condition during the experiment was a coincident signal
in the two SSSDs.
An example of the measured proton spectrum for a single crystal dur-

ing the experiment is shown in Fig. 6.3. Only protons which produced
signals in the central pixel of the hit pattern, defined by the two SSSDs,
were considered in the generation of the spectrum. In addition, the spec-
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trum only includes events which produced signals in up to two detector
elements. For events with multiplicity two, the scattering had to also occur
in one of the adjacent crystals above or below the central one and thus only
three crystals were used in this part of the analysis. Two different struc-
tures can be observed in the spectrum. The first is the peak around the
primary beam energy, corresponding to multiplicity one events. Roughly
50% of the events lie under the peak. The second is the broad plateau
at lower energies. The structure is composed of events which interacted
inelastically in the crystal volume or were scattered elastically to another
crystal. Inelastic events result in energy losses which cannot be fully re-
covered. Events which interact elastically can be recovered by adding back
the signals from the surrounding crystals.
An example of the gain corrected summing procedure, for the case pre-

viously described, is shown in Fig. 6.4. The black line represents the spec-
trum without any condition on the event multiplicity. There is a struc-
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Figure 6.3: The measured proton energy spectrum in the central detector
element from the TSL experiment.



96 CHAPTER 6. THE LUND R3B CALORIMETER PROTOTYPE

Energy (MeV)
166 168 170 172 174 176 178 180

C
ou

nt
s

1

10

210

310

410

Total

M = 1

M = 2

Figure 6.4: The proton energy spectrum for multiplicity one, multiplicity
two, and the total of all event types. Reprinted and adapted from Paper V
with permission from Elsevier.

ture appearing at lower energies than the full energy peak. The blue curve
shows the events with only multiplicity one and the red curve shows the
events withmultiplicity two. The lower energy structure arises from events
in which the protons were scattered between crystals. The effect is related
to the energy loss in the matter between the crystals, as discussed and in-
vestigated with the simulations described in the next section.

6.4 Geant4 simulations of the prototype

The performance of the prototype was simulated using a Geant4/ROOT
based program. The simulated prototype is shown in Fig. 6.5. The geom-
etry of the prototype was input to the code, including all relevant matter
between the crystals. The reflective foils used in the simulation were made
up of Mylar (C5H402) and pure CsI was used for the crystals.
All the relevant electromagnetic physics processes were included in the

simulation. For γ rays, this included the photoelectric effect, Compton and
Raleigh scattering, and conversion. For electrons, these included Brem-
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Figure 6.5: A graphical rendering the prototype used in the Geant4 simu-
lations.

sthralung, positron annihilation, ionization, and multiple scattering. The
low-energy extensions for these processes were used, which extends the
energy range of the interactions down to ∼100 eV from the standard cut-
off at 1 keV. The standard package was however used for the positron in-
teractions. Two different physics lists were investigated for the hadronic
interactions. The first used the binary cascade model [130]. The model
treats the propagation of the primary hadron and secondaries in a nucleus
as a series of two particle interactions. The second list tested was based
on the Bertini intranuclear cascade [131]. The binary cascade model was
ultimately used in the simulations, however no significant differences be-
tween the two physics lists were observed. After running the Geant4 sim-
ulations, the deposited energies in each crystal were broadened to meet the
experimentally determined resolution for CsI(Tl)/APD systems, given by

R(%) = 5.15/
√

E(MeV ). (6.2)

The formula is the result of a compilation of data fromCsI(Tl)/APD experi-
ments combinedwith the results of the resolutionmeasurements presented
in Paper V.
The simulated spectra for multiplicity one and two events for the sit-
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uation described in the experimental test section is shown in Fig. 6.6. A
very similar pattern, as seen in the experimental data, is observed in the
spectrum. The multiplicity one events are contained within the full en-
ergy peak while the multiplicity two events lie in a structure just shifted
to lower energies. Further analysis reveals that the missing energy can be
contributed to protons scattering between the two crystals. This was con-
firmed by adding back the energy deposited in the wrapping, which re-
sulted in the full energy being recovered. The procedure is highlighted in
Fig. 6.7, where the black curve represents the energy lost in the wrapping.
Furthermore, the simulated energy loss in the wrapping is shown in Fig.
6.8 for electrons and protons. Electrons only contribute a small fraction of
the energy loss compared to protons. Thematerial between the crystals has
little to or no effect on γ-ray events, as shown in the simulated spectra in
Fig. 6.9 for two different energies. The simulated spectra with and without
the foils are nearly identical. The proton energy loss in the reflective foils
can of course be made smaller by using thinner foils between the crystals.
The effect of using thinner foils is illustrated in Fig. 6.10 for multiplicity
two events. When no foil is between the crystals, a symmetric full energy
peak is observed. However, for thinner foils the peak remains asymmetric
and is always shifted to lower energies.
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Figure 6.6: Gain corrected sum spectrum for the Geant4 proton simulations
and spectra for the different multiplicity events. Reprinted and adapted
from Paper V with permission from Elsevier.
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Figure 6.7: The sum spectra including the energy loss in the wrapping. The
full energy can be recovered by considering this energy loss.

6.5 Inelastic and elastic events

One of the important design issues for CALIFA is the maximum possible
efficiency of the system. This depends on the number of unrecoverable
events, i.e. those lost to inelastic reactions, and the number of recoverable
events, i.e. those which can be added back to the full energy peak after
implementing gain corrected summing. The latter depends on the shapes
and sizes of the crystals used in the detector. This issue has been explored
through an ideal gain corrected summing scenario and the results are pre-
sented in Fig. 6.11. The unrecoverable events have been estimated by sim-
ulations using a block of CsI, which could be considered infinite in size
compared to the shape of a standard CALIFA crystal. Those events which
fall outside of the full energy peak are deemed unrecoverable. The max-
imum number of recoverable events is then estimated by comparing the
number of events in the full energy peak of the infinite block simulations
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Figure 6.8: Simulated energy loss in the wrapping due to protons and elec-
trons.

Energy (MeV)
0 0.2 0.4 0.6 0.8 1 1.2

C
ou

nt
s

1

10

210

310 Vacuum

65 micron foil

Energy (MeV)
0 1 2 3 4 5 6 7

C
ou

nt
s

1

10

210

310

Vacuum

65 micron foil

Figure 6.9: Geant4 simulations of γ rays with and without the reflective
foils between the crystals.
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Figure 6.10: Effect of changing the foil thickness on the multiplcity two
spectrum. Reprinted and adapted from Paper V with permission from El-
sevier.

to the full energy peak of a simulation using a crystal representative of the
CALIFA type. As an example, at 200 MeV 42% of the events are contained
within the full energy peak of a standard CALIFA crystal. When simulat-
ing with an infinite block, the full energy peak contains 76% of the events,
yielding an add back factor of 34%. The remaining 24% of the events are
lost to inelastic processes. The losses become even more severe at higher
energies. At 300 MeV, no protons lose their full energy in a single crystal
and only 60% of the events can be recovered by gain corrected summing.
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Figure 6.11: The percentage of unrecoverable and recoverable events for
crystals of the CALIFA barrel. Reprinted and adapted from Paper V with
permission from Elsevier.



Chapter 7

Summary and Outlook

A series of Coulomb excitation measurements were performed using both
radioactive and stable ion beams. The radioactive ion beam experiments
were carried out at the REX-ISOLDE facility at CERN and at the frag-
ment recoil separator at GSI. The experiments were aimed at studying the
properties of low-lying excited states in nuclei near the doubly magic nu-
cleus 100Sn. They were primarily motivated by two previous interesting
physics cases: the unexpected increased transition strengths, relative to
shell-model calculations, of the 2+ states in the neutron-deficient Sn iso-
topes and also the location of the single-neutron states relative to 100Sn.
The two studies are complimentary to each other as the single-neutron
states relative to 100Sn are important input parameters for shell-model cal-
culations. This was indicated in the results of the 107Sn experiment as
the calculated transition probabilities were sensitive to the placement of
the single-neutron states. In general, the measured transition probabil-
ities were underestimated by the shell-model calculations and collective
models were instead found to give a better overall reproduction of the re-
sults. These findings, in combination with the previous measurements in
the even-even Sn nuclei, point towards missing degrees of freedom in the
shell-model calculations. One possibility is the lack of proton and neutron
excitations across the N = Z = 50 shell gap.
Another interesting question regarding the transition strengths is the

continuing trend towards 100Sn (see Fig. 1.2) and whether or not the tran-
sition probabilities stay level around midshell values or decrease as ex-
pected. One of the aims of the 104Sn experiment was to investigate this
question. The abovementioned studies attempt to address some of the fun-
damental assumptions of the nuclear shell model near the doubly magic
nucleus 100Sn. Future plans are being made to remeasure and investigate
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higher-lying transition probabilities in the neutron-deficient Sn isotopes.
Another possibility is to continue the march towards 100Sn and measure
the transition probability of the first excited state in 102Sn.
While radioactive ion beam experiments are much of the focus of mod-

ern day nuclear structure experiments, there is still much left unexplored
in stable isotopes. The stable ion beam experiment presented in this was
carried out on the nucleus 170Er. The aim was to use Coulomb excitation to
search for new excited states and also to explore the interactions of various
low-lying structures in this nucleus. The search for excited states is related
to the possible existence of two-phonon γ-vibrational bands, which have
been identified in 166,168Er. Exploring these states in other Er nuclei would
provide a very interesting picture of how the two-phonon γ-vibrational
excitation evolves with neutron number. The other interesting feature of
170Er is the presence of two low-lying rotational bands at nearly the same
energy. Because of their closeness in energy, they interact strongly, as also
indicated by the measured deviations in the reduced transition probabili-
ties from the predictions of the collective model of Bohr and Mottelson. A
possible extension of this study is to repeat the measurement with the aim
of obtaining higher statistics in order to observe the low-energy transitions
between and within the rotational bands. This information would provide
firmer constraints for the band mixing and also details on the E2/M1mix-
ing ratios for these types of transitions.
As alreadymentioned, technological advancements have paved theway

for the recent progress in nuclear structure physics with radioactive ion
beams. The last study presented in this thesis is related to the develop-
ment of a new detector to be used in relativistic radioactive ion beam ex-
periments. A small version of the detector, to be placed around the target
position at the upcoming R3B experiment, was built and tested using pro-
ton beams. The results were compared with simulations and design con-
straints, relevant for the construction of CALIFA, were discovered. These
results will provide important information for the ongoing discussions re-
garding the design of the detector system.



Chapter 8

Popular summary in
Swedish

Atomer är de grundläggande byggstenarna för alla material runt omkring
oss. Varje enskild atom består av ett tätt packat område i centrum, som
kallas atomkärnan, omgivet av ett moln av elektroner. Atomkärnan in-
nehåller neutroner och protoner, hopbundna av den starka kärnkraften.
Vissa kombinationer av neutroner och protoner leder till bildandet av kärn-
or som är stabila medan andra förhållanden leder till kärnor som är insta-
bila och därmed radioaktiva. Den största delen av världen runt omkring
oss består av de stabila kärnorna och därmed är kunskap om deras egen-
skaper omfattande. Dessa kärnor har studerats i detalj sedan början av
kärnfysiken, omkring 1900. Sammantaget uppgår denna grupp till unge-
fär 300 stabila kärnor, vilket bara är en bråkdel jämfört med några tusen
instabila kärnor som har observerats i laboratorier och som väntar på att
bli upptäckta. Dessa kärnor är svårare att studera i laboratorier på grund
deras korta livstider. Ett av de viktigaste målen med kärnfysik idag är att
utforska dessa instabila kärnor och förstå deras egenskaper.

Denna avhandling kretsar kring en serie experiment samt utveckling
av detektorer relaterade till atomkärnstruktur. Studien av kärnstruktur
handlar om hur de grundläggande egenskaper av en atomkärna, till ex-
empel dess massa eller excitationsnivåer, härrör från neutroner och pro-
toner och interaktionerna dem emellan. För att förstå dessa typer av egen-
skaper, har kärnfysiker utvecklat ett stort antal modeller, främst baser-
ade på information från gruppen av stabila kärnor. En intressant fråga
att ställa är om dessa modeller är fullständiga och i så fall hur de står sig
mot nya observationer av egenskaper i instabila kärnor. Först nyligen har
detta gjorts möjligt genom ett antal tekniska framsteg i den experimentella
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kärnfysiken.
Fyra olika experimentella undersökningar har genomförts i denna av-

handling. De första två studierna handlar om instabila kärnor nära 100Sn
medan den tredje studien omfattar den stabila kärnan 170Er. Målet för var
och en av studierna var att mäta egenskaper som aldrig tidigare observe-
rats samt att jämföra resultaten med moderna kärnstruktursmodeller. Den
sista studien i denna avhandling är relaterad till utvecklingen av ny detek-
torutrustning som skall användas i framtida anläggningar för studier av
instabila kärnor.
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Appendix A
Two-body kinematics
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Figure A.1: Two-body kinematics in the lab and center-of-mass (CM) frame
of reference.

For two-body elastic reactions occurring at non-relativistic energies, the
available energy in the center-of-mass (CM) frame TCM

Tot is related to the
projectile energy TLab

1 by

TCM
Tot =

M2

M1 +M2
TLab

1 , (A.1)

where M denotes the relevant particle mass. The energies of the particles
in the CM frame, withM1 = M3 andM2 = M4, can be expressed in terms
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of this energy, given as

TCM
1,3 =

M2

M1 +M2
TCM

Tot , (A.2)

and

TCM
2,4 =

M1

M1 +M2
TCM

Tot . (A.3)

The CM and laboratory scattering angles for the particles are related by

tan θLab
3 =

sin θCM
3

cos θCM
3 +K

, (A.4)

where K = M1/M2, or alternatively,

cos θCM
3 = [cos2 θLab

3 (1 −K2 sin2 θLab
3 )]1/2 −K sin2 θLab

3 , (A.5)

and
θLab
4 = θCM

4 /2. (A.6)

The energies of the scattered particles in the lab frame are given by

TLab
3 =

M2
2

(M1 +M2)2
TLab

1

[

1 +
M2

1

M2
2

+ 2
M1

M2
cos θCM

3

]

, (A.7)

and

TLab
4 =

4M1M2

(M1 +M2)2
TLab

1 cos θLab
4 . (A.8)

For reactions in inverse kinematics, there exists a maximum scattering an-
gle for the scattered projectile, given by

θLab,MAX
3 = sin−1

(

M2

M1

)

. (A.9)

A detailed and thorough overview of the formulas presented here is given
in Ref. [132].



Appendix B
Electromagnetic transitions

The mean lifetime of a decaying state is equal to the inverse of the transi-
tion probability, which is given by

T (Oλ; Ii → If ) =
8π(λ+ 1)

λ[(2λ+ 1)!!]2
1

~
(q)2λ+1B(Oλ; Ii → If ), (B.1)

where O denotes either an electric or magnetic transition, λ is the multi-
polarity of the transition, Ii is the initial state spin, and If is the final state
spin. The reduced transition probability is related to the reduced matrix
element for a transition by

B(Oλ; Ii → If ) =
1

2Ii + 1
|〈If ||M(Oλ)||Ii〉|2. (B.2)

The quantity q is given by

Table B.1: Weisskopf single-particle units. The downward reduced transi-
tion probabilities are typically given in the literature. Units are in e2bλ or
µ2

Nb
λ−1.

Electric Magnetic

B(E1)W = 6.45 × 10−4A2/3 B(M1)W = 1.79

B(E2)W = 5.94 × 10−6A4/3 B(M2)W = 1.65 × 10−2A2/3

B(E3)W = 5.94 × 10−8A2 B(M3)W = 1.65 × 10−4A4/3

B(E4)W = 6.29 × 10−10A8/3 B(M4)W = 1.75 × 10−6A2
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q =
w

c
=

E(MeV )

197.329 MeV · fm. (B.3)

The units for the reduced transition probabilities are typically given in e2bλ

or e2fm2λ for electric transitions and µ2
Nb

λ−1 or µ2
Nfm

2λ−2 for magnetic
transitions, where 1 b = 100 fm2. The transition probabilities are also fre-
quently given in single-particle Weisskopf units, i.e.

BW (Eλ) =
(1.2)2λ

4π

(

3

λ+ 3

)2

A2λ/3e2fm2λ, (B.4)

for electric transitions and

BW (Mλ) =
10(1.2)2λ−2

π

(

3

λ+ 2

)2

A(2λ−2)/3µ2
Nfm

2λ−2, (B.5)

for magnetic transitions. These formulas are summarized in Table B.1 for
commonly encountered types of transitions.
The E2/M1mixing ratio for an electromagnetic decay is given by

δ = 0.835Eγ(MeV )
〈Ii||M(E2)||If 〉
〈Ii||M(M1)||If 〉

. (B.6)

The transition probability branching ratio for a state is related to the mixing
ratio by

B(E2, Ii → If1)

B(E2, Ii → If2)
=
Iγ(Ii → If1)

Iγ(Ii → If2)

(

Eγ(Ii → If2)

Eγ(Ii → If1)

)5
δ2

1 + δ2
, (B.7)

where δ2

1+δ2 denotes the E2 fraction of the decay, Iγ is the intensity of the γ
ray, Eγ is its energy, and f1 and f2 denote two different final states.



Appendix C
Two-body matrix elements

The tables on the following pages list the two-body matrix elements (ME)
used in the 107,109Sn calculations. They were generated using a CD-Bonn
potential and the G-matrix renormalization procedure with 100Sn as the
core. The matrix elements are given in MeV, n is the radial quantum num-
ber, l is the orbital angular momentum, j is the total angular momentum
for the orbit, T is the isospin, and J is the coupled angular momentum.
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Table C.1: Two-body matrix elements used in the Sn shell-model calcula-
tions.

n1 l1 j1 n2 l2 j2 n3 l3 j3 n4 l4 j4 2T 2J ME

0 4 7 0 4 7 0 4 7 0 4 7 2 0 -1.30725
0 4 7 0 4 7 1 2 5 1 2 5 2 0 -0.64045
0 4 7 0 4 7 1 2 3 1 2 3 2 0 -0.65732
0 4 7 0 4 7 2 0 1 2 0 1 2 0 -0.31608
0 4 7 0 4 7 0 5 11 0 5 11 2 0 1.34930
1 2 5 1 2 5 1 2 5 1 2 5 2 0 -0.87671
1 2 5 1 2 5 1 2 3 1 2 3 2 0 -1.06409
1 2 5 1 2 5 2 0 1 2 0 1 2 0 -0.44930
1 2 5 1 2 5 0 5 11 0 5 11 2 0 0.89184
1 2 3 1 2 3 1 2 3 1 2 3 2 0 -0.43865
1 2 3 1 2 3 2 0 1 2 0 1 2 0 -0.37591
1 2 3 1 2 3 0 5 11 0 5 11 2 0 0.62290
2 0 1 2 0 1 2 0 1 2 0 1 2 0 -0.90313
2 0 1 2 0 1 0 5 11 0 5 11 2 0 0.39533
0 5 11 0 5 11 0 5 11 0 5 11 2 0 -1.32242
0 4 7 1 2 5 0 4 7 1 2 5 2 2 -0.15771
0 4 7 1 2 5 1 2 5 1 2 3 2 2 -0.02257
0 4 7 1 2 5 1 2 3 2 0 1 2 2 -0.11204
1 2 5 1 2 3 1 2 5 1 2 3 2 2 0.00310
1 2 5 1 2 3 1 2 3 2 0 1 2 2 -0.02159
1 2 3 2 0 1 1 2 3 2 0 1 2 2 0.07821
0 4 7 0 4 7 0 4 7 0 4 7 2 4 -0.32776
0 4 7 0 4 7 0 4 7 1 2 5 2 4 -0.02699
0 4 7 0 4 7 0 4 7 1 2 3 2 4 -0.36070
0 4 7 0 4 7 1 2 5 1 2 5 2 4 -0.10691
0 4 7 0 4 7 1 2 5 1 2 3 2 4 -0.19988
0 4 7 0 4 7 1 2 5 2 0 1 2 4 -0.21036
0 4 7 0 4 7 1 2 3 1 2 3 2 4 -0.24387
0 4 7 0 4 7 1 2 3 2 0 1 2 4 0.13211
0 4 7 0 4 7 0 5 11 0 5 11 2 4 0.26657
0 4 7 1 2 5 0 4 7 1 2 5 2 4 0.03012
0 4 7 1 2 5 0 4 7 1 2 3 2 4 0.26818
0 4 7 1 2 5 1 2 5 1 2 5 2 4 0.07946
0 4 7 1 2 5 1 2 5 1 2 3 2 4 0.09525
0 4 7 1 2 5 1 2 5 2 0 1 2 4 0.08818
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Table C.2: Two-body matrix elements used in the Sn shell-model calcula-
tions.

n1 l1 j1 n2 l2 j2 n3 l3 j3 n4 l4 j4 2T 2J ME

0 4 7 1 2 5 1 2 3 1 2 3 2 4 0.02471
0 4 7 1 2 5 1 2 3 2 0 1 2 4 -0.09958
0 4 7 1 2 5 0 5 11 0 5 11 2 4 -0.28697
0 4 7 1 2 3 0 4 7 1 2 3 2 4 -0.44810
0 4 7 1 2 3 1 2 5 1 2 5 2 4 -0.18774
0 4 7 1 2 3 1 2 5 1 2 3 2 4 -0.19679
0 4 7 1 2 3 1 2 5 2 0 1 2 4 -0.25174
0 4 7 1 2 3 1 2 3 1 2 3 2 4 -0.21454
0 4 7 1 2 3 1 2 3 2 0 1 2 4 0.29969
0 4 7 1 2 3 0 5 11 0 5 11 2 4 0.41660
1 2 5 1 2 5 1 2 5 1 2 5 2 4 -0.31338
1 2 5 1 2 5 1 2 5 1 2 3 2 4 -0.12866
1 2 5 1 2 5 1 2 5 2 0 1 2 4 -0.34963
1 2 5 1 2 5 1 2 3 1 2 3 2 4 -0.23709
1 2 5 1 2 5 1 2 3 2 0 1 2 4 0.28786
1 2 5 1 2 5 0 5 11 0 5 11 2 4 0.41598
1 2 5 1 2 3 1 2 5 1 2 3 2 4 -0.06419
1 2 5 1 2 3 1 2 5 2 0 1 2 4 -0.15827
1 2 5 1 2 3 1 2 3 1 2 3 2 4 -0.27314
1 2 5 1 2 3 1 2 3 2 0 1 2 4 0.27125
1 2 5 1 2 3 0 5 11 0 5 11 2 4 0.03334
1 2 5 2 0 1 1 2 5 2 0 1 2 4 -0.51766
1 2 5 2 0 1 1 2 3 1 2 3 2 4 -0.27061
1 2 5 2 0 1 1 2 3 2 0 1 2 4 0.56056
1 2 5 2 0 1 0 5 11 0 5 11 2 4 0.23265
1 2 3 1 2 3 1 2 3 1 2 3 2 4 -0.00263
1 2 3 1 2 3 1 2 3 2 0 1 2 4 0.16208
1 2 3 1 2 3 0 5 11 0 5 11 2 4 0.10782
1 2 3 2 0 1 1 2 3 2 0 1 2 4 -0.21823
1 2 3 2 0 1 0 5 11 0 5 11 2 4 -0.23522
0 5 11 0 5 11 0 5 11 0 5 11 2 4 -0.73887
0 4 7 1 2 5 0 4 7 1 2 5 2 6 0.13919
0 4 7 1 2 5 0 4 7 1 2 3 2 6 0.08885
0 4 7 1 2 5 0 4 7 2 0 1 2 6 -0.12909
0 4 7 1 2 5 1 2 5 1 2 3 2 6 -0.03444
0 4 7 1 2 5 1 2 5 2 0 1 2 6 -0.03823
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Table C.3: Two-body matrix elements used in the Sn shell-model calcula-
tions.

n1 l1 j1 n2 l2 j2 n3 l3 j3 n4 l4 j4 2T 2J ME

0 4 7 1 2 3 0 4 7 1 2 3 2 6 0.15316
0 4 7 1 2 3 0 4 7 2 0 1 2 6 -0.12305
0 4 7 1 2 3 1 2 5 1 2 3 2 6 -0.00973
0 4 7 1 2 3 1 2 5 2 0 1 2 6 -0.00326
0 4 7 2 0 1 0 4 7 2 0 1 2 6 0.16408
0 4 7 2 0 1 1 2 5 1 2 3 2 6 -0.00015
0 4 7 2 0 1 1 2 5 2 0 1 2 6 0.02580
1 2 5 1 2 3 1 2 5 1 2 3 2 6 0.08739
1 2 5 1 2 3 1 2 5 2 0 1 2 6 -0.04968
1 2 5 2 0 1 1 2 5 2 0 1 2 6 -0.00366
0 4 7 0 4 7 0 4 7 0 4 7 2 8 0.09797
0 4 7 0 4 7 0 4 7 1 2 5 2 8 0.10194
0 4 7 0 4 7 0 4 7 1 2 3 2 8 -0.24836
0 4 7 0 4 7 0 4 7 2 0 1 2 8 0.10916
0 4 7 0 4 7 1 2 5 1 2 5 2 8 -0.07943
0 4 7 0 4 7 1 2 5 1 2 3 2 8 -0.22296
0 4 7 0 4 7 0 5 11 0 5 11 2 8 0.15756
0 4 7 1 2 5 0 4 7 1 2 5 2 8 0.11574
0 4 7 1 2 5 0 4 7 1 2 3 2 8 0.18166
0 4 7 1 2 5 0 4 7 2 0 1 2 8 -0.30149
0 4 7 1 2 5 1 2 5 1 2 5 2 8 0.08082
0 4 7 1 2 5 1 2 5 1 2 3 2 8 0.19039
0 4 7 1 2 5 0 5 11 0 5 11 2 8 -0.20582
0 4 7 1 2 3 0 4 7 1 2 3 2 8 0.06683
0 4 7 1 2 3 0 4 7 2 0 1 2 8 0.25560
0 4 7 1 2 3 1 2 5 1 2 5 2 8 -0.06078
0 4 7 1 2 3 1 2 5 1 2 3 2 8 -0.18832
0 4 7 1 2 3 0 5 11 0 5 11 2 8 0.14921
0 4 7 2 0 1 0 4 7 2 0 1 2 8 -0.08731
0 4 7 2 0 1 1 2 5 1 2 5 2 8 0.11798
0 4 7 2 0 1 1 2 5 1 2 3 2 8 0.24606
0 4 7 2 0 1 0 5 11 0 5 11 2 8 -0.20652
1 2 5 1 2 5 1 2 5 1 2 5 2 8 -0.05635
1 2 5 1 2 5 1 2 5 1 2 3 2 8 -0.39775
1 2 5 1 2 5 0 5 11 0 5 11 2 8 0.20784
1 2 5 1 2 3 1 2 5 1 2 3 2 8 -0.57846
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Table C.4: Two-body matrix elements used in the Sn shell-model calcula-
tions.

n1 l1 j1 n2 l2 j2 n3 l3 j3 n4 l4 j4 2T 2J ME

1 2 5 1 2 3 0 5 11 0 5 11 2 8 0.20218
0 5 11 0 5 11 0 5 11 0 5 11 2 8 -0.24599
0 4 7 1 2 5 0 4 7 1 2 5 2 10 0.19470
0 4 7 1 2 5 0 4 7 1 2 3 2 10 -0.00966
0 4 7 1 2 3 0 4 7 1 2 3 2 10 0.21475
0 4 7 0 4 7 0 4 7 0 4 7 2 12 0.25754
0 4 7 0 4 7 0 4 7 1 2 5 2 12 0.19129
0 4 7 0 4 7 0 5 11 0 5 11 2 12 0.10586
0 4 7 1 2 5 0 4 7 1 2 5 2 12 -0.36753
0 4 7 1 2 5 0 5 11 0 5 11 2 12 -0.27382
0 5 11 0 5 11 0 5 11 0 5 11 2 12 -0.06973
0 5 11 0 5 11 0 5 11 0 5 11 2 16 0.01564
0 5 11 0 5 11 0 5 11 0 5 11 2 20 0.07430
0 4 7 0 5 11 0 4 7 0 5 11 2 4 -0.77089
0 4 7 0 5 11 0 4 7 0 5 11 2 6 -0.35195
0 4 7 0 5 11 1 2 5 0 5 11 2 6 0.23051
1 2 5 0 5 11 1 2 5 0 5 11 2 6 -0.71995
0 4 7 0 5 11 0 4 7 0 5 11 2 8 -0.00406
0 4 7 0 5 11 1 2 5 0 5 11 2 8 0.08050
0 4 7 0 5 11 1 2 3 0 5 11 2 8 -0.14412
1 2 5 0 5 11 1 2 5 0 5 11 2 8 -0.02271
1 2 5 0 5 11 1 2 3 0 5 11 2 8 -0.17670
1 2 3 0 5 11 1 2 3 0 5 11 2 8 -0.13412
0 4 7 0 5 11 0 4 7 0 5 11 2 10 -0.07556
0 4 7 0 5 11 1 2 5 0 5 11 2 10 0.08841
0 4 7 0 5 11 1 2 3 0 5 11 2 10 -0.22542
0 4 7 0 5 11 2 0 1 0 5 11 2 10 0.12855
1 2 5 0 5 11 1 2 5 0 5 11 2 10 -0.12849
1 2 5 0 5 11 1 2 3 0 5 11 2 10 0.16971
1 2 5 0 5 11 2 0 1 0 5 11 2 10 -0.35912
1 2 3 0 5 11 1 2 3 0 5 11 2 10 0.01127
1 2 3 0 5 11 2 0 1 0 5 11 2 10 0.29659
2 0 1 0 5 11 2 0 1 0 5 11 2 10 -0.20178
0 4 7 0 5 11 0 4 7 0 5 11 2 12 0.12328
0 4 7 0 5 11 1 2 5 0 5 11 2 12 0.06460
0 4 7 0 5 11 1 2 3 0 5 11 2 12 -0.09441
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Table C.5: Two-body matrix elements used in the Sn shell-model calcula-
tions.

n1 l1 j1 n2 l2 j2 n3 l3 j3 n4 l4 j4 2T 2J ME

0 4 7 0 5 11 2 0 1 0 5 11 2 12 0.01293
1 2 5 0 5 11 1 2 5 0 5 11 2 12 0.16289
1 2 5 0 5 11 1 2 3 0 5 11 2 12 -0.00732
1 2 5 0 5 11 2 0 1 0 5 11 2 12 -0.16325
1 2 3 0 5 11 1 2 3 0 5 11 2 12 0.15870
1 2 3 0 5 11 2 0 1 0 5 11 2 12 -0.08249
2 0 1 0 5 11 2 0 1 0 5 11 2 12 0.10989
0 4 7 0 5 11 0 4 7 0 5 11 2 14 -0.11506
0 4 7 0 5 11 1 2 5 0 5 11 2 14 0.11561
0 4 7 0 5 11 1 2 3 0 5 11 2 14 -0.34373
1 2 5 0 5 11 1 2 5 0 5 11 2 14 -0.00365
1 2 5 0 5 11 1 2 3 0 5 11 2 14 0.33617
1 2 3 0 5 11 1 2 3 0 5 11 2 14 -0.40522
0 4 7 0 5 11 0 4 7 0 5 11 2 16 0.16996
0 4 7 0 5 11 1 2 5 0 5 11 2 16 0.05627
1 2 5 0 5 11 1 2 5 0 5 11 2 16 0.16803
0 4 7 0 5 11 0 4 7 0 5 11 2 18 -0.88081
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