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Abstract

ROOT is an object-oriented C++ framework conceived in the high-energy physics
(HEP) community, designed for storing and analyzing petabytes of data in an ef-
ficient way. Any instance of a C++ class can be stored into a ROOT file in a
machine-independent compressed binary format. In ROOT the TTree object con-
tainer is optimized for statistical data analysis over very large data sets by using
vertical data storage techniques. These containers can span a large number of files
on local disks, the web, or a number of different shared file systems. In order to an-
alyze this data, the user can chose out of a wide set of mathematical and statistical
functions, including linear algebra classes, numerical algorithms such as integration
and minimization, and various methods for performing regression analysis (fitting).
In particular, the RooFit package allows the user to perform complex data mod-
eling and fitting while the RooStats library provides abstractions and implemen-
tations for advanced statistical tools. Multivariate classification methods based on
machine learning techniques are available via the TMVA package. A central piece
in these analysis tools are the histogram classes which provide binning of one- and
multi-dimensional data. Results can be saved in high-quality graphical formats like
Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be
stored into ROOT macros that allow a full recreation and rework of the graphics.
Users typically create their analysis macros step by step, making use of the inter-
active C++ interpreter CINT, while running over small data samples. Once the
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development is finished, they can run these macros at full compiled speed over large
data sets, using on-the-fly compilation, or by creating a stand-alone batch program.
Finally, if processing farms are available, the user can reduce the execution time
of intrinsically parallel tasks – e.g. data mining in HEP – by using PROOF, which
will take care of optimally distributing the work over the available resources in a
transparent way.

PACS: 00; 07; 05

Key words: C++; object-oriented; framework; interpreter; data storage; data
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LONG WRITE-UP

1 Introduction

ROOT is a cross-platform C++ framework for data processing, created at
CERN 3 . Every day, thousands of physicists use ROOT based applications to
analyze and visualize their data.

The ROOT project was started in 1995 by René Brun and Fons Rademakers
[1]. It started as a private project and grew to be the officially supported
LHC analysis toolkit. It is currently developed by a small team with members
from several laboratories. ROOT benefits from a considerable amount of user
contributions, both from inside and outside science. This write-up focuses on
the current status of ROOT, as of version 5.24.00.

A typical application developed for HEP research (more details in section §1.2
and figure 2) is used to process both real and simulated data, consisting of
many events having the same data structure and assumed to be statistically
independent 4 . In addition, complementary information is also needed to ana-
lyze the data, for example detector parameters (geometry, read-out powering
and configuration, magnetic field maps, etc.) or input settings of the simula-
tion engines. Such values do not change at the event scale. Rather, they have
a slower evolution that defines a much coarser granularity: a run is defined by
a set of events with constant settings 5 .

1.1 Discovering ROOT

To introduce the ROOT framework, one may follow the typical approach of
new users and its large collection of libraries and tools, with the help of the
sketch in figure 1. For a comprehensive description of ROOT’s features see the
User’s Guide[2].

Newcomers often start from their own analysis program, running over their
data (usually stored in ASCII format or accessed through a relational database

3 European Organization for Nuclear Research, Geneva, Switzerland.
4 Such independence is very important from the computing point of view, because it
allows to gain the maximum speed-up by distributing subsets of the data to parallel
analysis nodes.
5 In real life, few of the auxiliary parameters may be allowed to vary inside a run.
Hence, they define smaller blocks that are intermediate between the event scale and
the run granularity.
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Fig. 1. Most frequent approach to start using ROOT.

engine). They simply look for a library to produce graphs to visualize their
histograms. They start by playing with the ROOT class TGraph, which can
be used to display a set of (x, y) points including errors.

The next step is to use ROOT histograms (whose base class is TH1; see §2.3
for more details) instead, and let the TH1::Draw() method produce the plots.
ROOT histograms can be used for binning a data set and to estimate its
density. They have a number of useful properties, allowing the user to manip-
ulate them, to obtain statistical information about the underlying data, and
to perform fits without caring about the plots — they will redraw themselves
whenever changes are applied.

Especially during the early phases, when the data analysis program changes
quite often, the users may find the interactive C++ interpreter CINT embed-
ded in ROOT very useful. Developing programs with the help of an interpreter
speeds up the typical iterative approach to data analysis by removing the ad-
ditional compile and link steps. Of course, if the logic of the application is
already well known, one may prefer to develop the program in a more struc-
tured way, relying on the compiler in the usual way.

The most common task for data access in HEP is the selective, sparse scanning
of data. Traditional RDBMS-like horizontal data partitioning does not allow
for efficient sparse reading, with the exception of indices. Instead, ROOT uses
vertical data partitioning of arbitrary user-defined objects, implemented in its
TTree class.

TTrees are partitioned into branches. During reading each branch can be ac-
cessed independently. A TBranch stores consecutive objects or data members
of a class or other TBranches. By default, all branches stored in a TTree are
written into separate buffers in a file, so that iterating over the data stored in
a branch requires only the reading of these associated buffers. TTrees can span
multiple ROOT files. A ROOT file is very similar to a file system, allowing

5

http://root.cern.ch
http://root.cern.ch
http://root.cern.ch/root/htmldoc/TGraph.html
http://root.cern.ch
http://root.cern.ch/root/htmldoc/TH1.html
http://root.cern.ch/root/htmldoc/TH1::.html
http://root.cern.ch
http://root.cern.ch
http://root.cern.ch/root/htmldoc/TTree.html
http://root.cern.ch/root/htmldoc/TTree.html
http://root.cern.ch/root/htmldoc/TBranch.html
http://root.cern.ch/root/htmldoc/TBranch.html
http://root.cern.ch/root/htmldoc/TTree.html
http://root.cern.ch/root/htmldoc/TTree.html
http://root.cern.ch
http://root.cern.ch


for further internal organization using directories. For example, the main data
set could be stored into a single TTree, whereas summary information (in the
form of histograms) resides in separate directories in the same TFile.

If the data volume grows, the user can choose to split the TTree instance
among several TFile instances. Later, when accessing data, they can all be
chained into a single logical entity, a TChain, making accessing several files
almost transparent. Because a TChain inherits from a TTree, it provides the
same benefits in terms of optimized data access, even though the data are
distributed among different files.

The quickest way to develop the user’s analysis program is creating ROOT
macros step by step using CINT. Once the development phase has ended,
performance becomes paramount. The first obvious optimization step is to
convert the application into a compiled program. Still, one does not need to
abandon the use of the interpreter: the most efficient way to work with ROOT
is to consider the interpreter as the “glue” which binds together the compiled
pieces of code that perform most of the intensive computation. Actually, this
is less difficult than it appears: CINT macros can be compiled during the
interactive session by ACLiC (§2.6.2), to gain the full speed of compiled code
and the reliability of the full C++ compiler (CINT has e.g. limited support of
C++ templates). In general, interpreted code may call compiled code and vice
versa (more details on §2.6). Finally, if a multi-core machine or a computing
farm is available, PROOF (§2.7) provides a way to make full use of the inherent
event parallelism of independent HEP events by taking care of distributing the
analysis over all available CPU’s and disks in a transparent way.

1.2 Typical Uses of ROOT

Figure 2 shows most of the features that a ROOT application can have. Of
course, a single application rarely has all of them: for example, its focus could
be on the detector simulation or on the data analysis, but not both.

ROOT provides the Virtual Monte-Carlo (VMC) interface (§2.5) to the most
important HEP simulation engines, like Geant4 [3] (C++), Geant3 [4], Fluka
[5] (FORTRAN), to simulate the passage of particles through matter and
their propagation in a magnetic field. The VMC interface allows the user to
build an application that simulates the behavior of a particle detector, with
the freedom to switch between different simulation engines. Comparing the
results of different simulation engines allows to estimate systematic simulation
uncertainties.

Usually, most ROOT users develop programs to perform statistical data anal-
ysis (see also §2.2) of binned (histograms) or un-binned data (TTree variables).
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Fig. 2. Example of typical usage of ROOT.

The TMVA package 6 (§2.2) can be used for event classification to discrimi-
nate between signal and background. Various methods exist for performing
the best fits of the selected data to theoretical models.

ROOT can also be used to develop an event display §2.4. An event display is
an application that provides detector geometry visualization, views of hits 7

and clusters of hits used to build calorimeter jets 8 and physics vectors (4-
momenta 9 ). In addition, clusters and physics vectors are used to build tracks
that visualize the path of particles through the detector.

2 Description of the ROOT Framework

The ROOT framework contains about 3000 classes, grouped into about 110
packages and plugins. In addition, the latter are grouped into top-level cate-
gories that are the subject of this section.

6 http://tmva.sourceforge.net/
7 In the HEP jargon, a “hit” is a localized energy deposition that is detected by
the read-out electronics.
8 A jet is a 3D distribution of energy deposition that is usually well contained by
a cone (think about a very big elongated drop of water, to visualize it).
9 A four-momentum is a vector of the spacetime whose time-like component is
(proportional to) the particle energy and the space-like component is the 3D mo-
mentum.
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Fig. 3. Transient/persistent conversion in ROOT.

2.1 Input/Output

ROOT is currently used for storing up to 50 petabytes of data according to the
latest estimates 10 . The I/O layer stores C++ objects into storage systems, be
it file systems, databases, common protocols to storage elements (like xrootd
[6], dCache 11 , or rfio 12 ), or HTTP, see figure 3.

2.1.1 Describing C++ Objects

To be stored, C++ objects need to be described: the I/O must know what
to store. ROOT provides this description (called dictionary) for all its classes
and users can build dictionaries for their own classes. The description data
(commonly called reflection) are provided by CINT, or by a combination of
GCCXML [7] and Reflex, a C++ reflection library that is part of ROOT. Based
on that information, ROOT knows where in memory an object’s data members
are, what their size is, and how to store them. ROOT I/O supports pointer
(un-)swizzling, the conversion of pointers to indexes in the output buffer. It
can even deal with an object graph with circular references (making sure each
object is streamed only once to the buffer), and it is able to restore it correctly
upon reading.

Because the description of all relevant classes is stored with the data, changes
of the class definition of objects stored with ROOT I/O are supported. When
reading, the descriptions from the persistent layer and the in-memory ver-
sion are compared: if differences are found, ROOT automatically translates in
many cases from the old to the new format (schema evolution). A complete
framework for arbitrary user controlled conversions is also available [8].

10 According to a survey of a number of experiment computing coordinators
11 http://www.dcache.org/
12 http://hikwww2.fzk.de/hik/orga/ges/infiniband/rfioib.html
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2.1.2 TFile

A ROOT file is read and written by the class TFile and is designed to be write-
once, read-many (while supporting deletion and re-use of contained data).

The content of a ROOT file is a simple binary stream, with a layout described
in the class documentation of TFile [9]. All data but the header is usually
compressed to reduce the storage space and I/O bandwidth usage of files at
the cost of slightly increased CPU time when reading and writing files. The
file consists of a content index, the list of type descriptions relevant for the
file, and the actual data. Each data chunk is named and it can be retrieved
given its name. TFile also supports hierarchical storage in nested directories.

Typical file sizes range from a few kilobytes to several gigabytes. Files can
be merged into new, larger files; this can be done recursively, i.e. merging
also the collections themselves that are contained in the file, as long as they
have the same name and are of the same type. Collections of files can also
be merged into a zipped container; ROOT supports transparent unzipping of
and navigation in this collection of files.

The description of the classes stored in the file (§2.1.1) can be used to read the
data even without the C++ class definition. One can thus write C++ objects
using the definition from a user library, and read them back without the user
library. Any available reflection data is used to interactively browse a ROOT
file using the TBrowser that can also expand and browse the content of all
C++ objects, either from ROOT or STL, or user defined.

ROOT files can be opened via the HTTP protocol, without any special server
requirement. ROOT only asks for those parts of the file (using http content-range

requests) that are actually required. This allows a low-latency, live remote
browsing of ROOT files.

2.1.3 TTree and I/O

A TTree is a container that is optimized for I/O and memory usage. A TTree
consists of branches, branches can contain complete objects of a given class
or be split up into sub-branches containing individual data members of the
original object. This is called splitting and can be done recursively till all
sub-objects are split into branches only containing individual data members.
Splitting can even transform containers into branches of the containee’s data
members, grouping them as shown in 4. Splitting can be done automatically
using a class’ dictionary information. Each branch stores its data in one or
more associated buffers on disk. The desired level of splitting depends on the
typical future access patterns of a tree. If during analysis all data members of
an object will be accessed then splitting will not be needed. Typical analyses
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Fig. 4. Automatic splitting of a container of objects.

access only a few data members; in this case splitting is highly beneficial.

Branch-based storage is called vertical or column-wise storage (CWS; figure 5),
as opposed to horizontal or row-wise storage (RWS) as is usually found in
RDBMS databases. In CWS, just like in RWS, a collection (“table”) of similar
objects (“rows”) is assumed. However, in RWS all data members of an object
are always read, while in CWS only the needed buffers (e.g. data members)
are read. Splitting is an automated way to create these columns.

CWS reduces the number of I/O operations and the amount of transferred
data, because it reads only the needed parts of each object. All other mem-
bers of the object keep the values defined by the class default constructor.
When iterating through the collection, data members that need to be read are
consecutive on the storage medium in the case of CWS. This allows block-wise
reading of the data for several entries (rows) in one go, something massively fa-
vored by all modern operating systems and storage media. Another advantage
stems from the fact that ROOT compresses the data buffers using Huffman
encoding [10], which benefits from seeing the same byte pattern more often,
because the same data member usually has similar values (e.g. a particle’s
type ID).

Because a TTree describes the objects it contains, one can read objects from a
TTree even without their original class definition. The TTree can even generate
a C++ header file representing the layout of the object’s data as stored in the
TTree. Combined with the power of the interpreter and ACLiC (§2.6.2) this
allows a smooth transition from stored binary data to C++ objects, even
without C++ libraries. TTrees can also generate a TSelector skeleton (§2.7.4)
for data analysis automatically.
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Fig. 5. Column-wise layout of TTree data in memory buffers.

Given the huge amount of data commonly processed by users of ROOT, TTrees
often do not fit into a single file, or the file grows to impractical sizes. In addi-
tion, in (parallel) batch system-based analyses, splitting TTrees across several
files facilitates the distribution of data. ROOT supports this with TChain,
by implementing a collection of TFiles that all contain a part of the same 13

TTree. The TChain inherits from TTree, hence making it irrelevant to the user
whether the TTree is stored in one or several physical files.

Analyses commonly access the same part of a TTree for all its entries. ROOT
implements an auto-adaptive pre-fetch mechanism reading the next entry
while the previous entry is still being processed. This reduces the effect of
high latency networks dramatically: reasonable sized analyses become viable
even over ADSL. Table 6 shows the duration of an example data analysis. The
280 MB data file is hosted at CERN with a 100 Mbit/sec network connection;
the analysis reads 6.6 MB. The bandwidth shown is the smallest bandwidth
found on the connection path. For a low-occupancy connection bandwidth is
clearly not the limiting factor.

13 With identical name and struture.
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Location of
Data Analysis

Bandwidth
(Mbit/s)

Latency
(ms)

Analysis CPU Duration (s)

Cache size (KB)

0 64 10240

local (no network) Pentium4, 2.4GHz 3.4 3.4 3.4

CERN 100 0.3 Pentium4, 3GHz 8.0 6.0 4.0

CERN wireless 10 2.0 Core Duo, 2GHz 12 5.6 4.9

Orsay, France 100 11.0 Pentium4, 3GHz 130 12 9.0

Amsterdam, NL 100 22.0 Opteron 280 230 12 8.4

ADSL 8 72.0 Core Duo, 2GHz 740 48 28

Caltech, USA 10,000 240.0 Opteron 280 > 1, 800 130 9.9

Fig. 6. Performance improvements by the TTree cache, see text.

2.1.4 I/O Formats

ROOT can store via its I/O interface any C++ objects in binary ROOT
files. It also supports the XML representation, though mostly for didactic
purposes 14 : it nicely demonstrates the layout, but its performance (due to
XML’s ASCII-based representation) and disk usage (due to XML’s verbose
meta-data) prohibits its used as a production storage format.

Data can also be stored into database tables through an abstraction layer;
the description of objects and their member is translated into tables and their
columns.

2.2 Mathematical and Statistical Tools

One may need to manipulate data in a number of different ways. Because
ROOT is a C++ framework, all C and C++ standard functions are avail-
able. In addition, ROOT provides a number of advanced mathematical and
statistical functions, well integrated into the framework, that allow to perform
virtually all possible operations with a few simple commands.

The minimal set of tools required for numerical computing is provided by the
MathCore library. It consists of the following components.

• Commonly used mathematical functions like special functions not provided
yet by the C++ standard and statistical distribution functions. For each
statistical distribution, the probability density, the cumulative and its in-
verse functions are provided. These functions are provided in the namespaces
ROOT::Math and TMath.

14 This format has been implemented originally as an exchange format with non
ROOT based applications, but only a few applications have made use of it.
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• Classes for random number generations (TRandom classes). The default
pseudo-random number generator is the Mersenne and Twister generator
(TRandom3 class) [11].
• Basic implementation and interfaces of numerical algorithms, like integra-

tion, derivation or simple (one dimensional) minimization.
• Classes and interfaces required for fitting all the ROOT data objects.
• Abstract interfaces and adapter classes for function evaluation in one or

more dimensions.

The MathMore library complements MathCore by providing additional math-
ematical functionality. It is based on the GNU Scientific Library (GSL) [12],
which is used as an external library. MathMore implements extra special func-
tions like Bessel functions of various types and fractional order, elliptic inte-
grals, Laguerre and Legendre polynomials, hypergeometric functions. Math-
More contains additional implementations of the numerical algorithms and
extra random number generators which are present in GSL.

Various libraries exist for numerical minimization and fitting. These libraries
include the numerical methods for solving the fitting problem by finding min-
imum of multi-dimensional functions. A common interface exists in MathCore
(the class ROOT::Math::Minimizer) for multi-dimensional numerical minimiza-
tion. Several implementations of this interface are present in ROOT:

• Minuit provides an implementation of the popular MINUIT minimization
package [13]. It is a direct translation from the original Fortran code to
C++ and provides a very similar API.
• Minuit2 is a completely new objected-oriented implementation of MINUIT

[14]. The same minimization algorithms like Migrad and Simplex are present,
but with new objected-oriented interfaces. Furthermore, it provides an im-
plementation of a specialized method for finding the minimum of a standard
least-square or likelihood functions, by linearizing the Hessian matrix. This
algorithm is called in ROOT Fumili2.
• Fumili: library providing the implementation of the Fumili fitting algorithm[15],

another specialized minimization method for least-square or likelihood func-
tions.
• MathMore offers minimizers based on GSL. These include various mini-

mization methods based on conjugate gradient algorithms, the Levenberg-
Marquardt algorithm [16] for non-linear least-squares fitting and a stochastic
minimization method based on simulated annealing.
• The TLinearFitter class implements linear least-squares fitting with a possi-

bility for using robust fitting.

ROOT contains two libraries providing matrices and vector classes and linear
algebra operations:
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• Matrix: general matrix package including matrix TMatrix and vector TVector
classes and the complete environment to perform linear algebra calculations,
like equation solving and eigenvalue decompositions.
• SMatrix: package optimized for high performance matrix and vector com-

putations of small and fixed size. It is based on expression templates to
achieve a high level optimization and to minimize memory allocation in
matrix operations. It derives from a package originally developed for HeraB
[17]. Performance studies of the matrix packages in benchmark applications
used in HEP have been shown elsewhere [18].

Two libraries exist in ROOT also for describing physics vectors in 2, 3 and 4
dimensions (relativistic vectors) with rotation and transformation algorithms:

• Physics: library with the TVector3 and TLorentzVector classes.
• GenVector: package with generic class templates for modeling geometric vec-

tors in 2 and 3 dimensions and Lorentz vectors. The user may control how
the vector is internally represented, by making a choice of coordinate system
and underlying scalar type.

Other mathematical and statistical packages in ROOT are:

• Unuran: universal algorithms for generating non-uniform pseudo-random
numbers, from a large set of classes of continuous or discrete distributions
in one or several dimensions 15 .
• Foam: multi-dimensional general purpose Monte Carlo event generator (and

integrator). It randomly generates points (vectors) according to an arbitrary
probability distribution in n dimensions.[19]
• FFTW: library with implementation of the fast Fourier transform (FFT)

using the FFTW package 16 . It requires a previous installation of FFTW.
• MLP: library with the neural network class, TMultiLayerPerceptron based on

the NN algorithm from the mlpfit package 17 .
• Quadp: optimization library with linear and quadratic programming meth-

ods. It is based on the Matrix package.
• Statistic classes for computing limits and confidence levels. Some of these

classes are currently provided by libPhysics.
• TMVA: toolkit for multivariate data analysis, providing machine learning

environment for the processing and parallel evaluation of sophisticated mul-
tivariate classification techniques. Though specifically designed to the needs
of high-energy physics applications, it offers general methods that can be
used in other fields, too [20].
• RooFit: toolkit for modeling statistical distributions (especially the ones

used in physics analysis). Models can be used to perform likelihood fits,

15 http://statmath.wu-wien.ac.at/unuran/
16 The “Fastest Fourier Transform in the West”, http://www.fftw.org/
17 http://schwind.web.cern.ch/schwind/MLPfit.html

14

http://root.cern.ch/root/htmldoc/TMatrix.html
http://root.cern.ch/root/htmldoc/TVector.html
http://root.cern.ch
http://root.cern.ch/root/htmldoc/TVector3.html
http://root.cern.ch/root/htmldoc/TLorentzVector.html
http://root.cern.ch
http://root.cern.ch/root/htmldoc/TMultiLayerPerceptron.html
http://statmath.wu-wien.ac.at/unuran/
http://www.fftw.org/
http://schwind.web.cern.ch/schwind/MLPfit.html


produce plots, and generate “toy Monte Carlo” samples for various studies
[21].
• RooStats: package providing the required advanced statistical tools needed

by the LHC experiments for their final data analysis in order to calculate
confidence intervals, to perform hypothesis tests and combinations of differ-
ent analysis channels. It provides common interfaces to the major tools with
implementations based on different statistical techniques, which have been
approved by the experiment statistical committees. It is based on the RooFit
classes for describing probability density functions or likelihood functions.

2.3 Histograms

When dealing with many events, one usually adopts statistical methods to
analyze them. Two different approaches are possible: statistical data analy-
sis of binned or unbinned data. The most frequently used approach involves
binned data, in the form of histograms, whereas unbinned data are saved into
instances of the TTree class (see §2.1.3).

In ROOT, 1-dimensional histograms are defined by the base class TH1: actual
classes inherit from TH1 with the type of the bin count (char, float, dou-
ble,...) defined by the derived class. TH1 is also the base class for 2D and 3D
histograms (again, supporting different types of entries) and for profile his-
tograms (TProfile, TProfile2D and TProfile3D). Profile histograms are used to
display the mean value of a variable and its standard deviation in each bin of
another dependent variable (or variables in case of multi-dimensional profile
histograms). Histogram classes can also be used to analyze weighted data sets.

ROOT histograms internally contain a pair (value, uncertainty) for each bin,
plus the numbers of entries which fall outside its limits (both overflow and un-
derflow). Additional information like the total number of entries and the inte-
gral of the histogram are also stored. Statistical information such as the mean
and standard deviation along the histogram axis can be obtained. The bin-
ning can be defined with constant or variable step size and higher-dimensional
histograms support projecting and slicing. Histograms can also be fitted with
a user provided function.

Many types of operations are supported on histograms or between histograms:
addition and subtraction, multiplication and division with histograms, func-
tions, or scalars. They can also be rebinned and compared using statistical
hypothesis tests like the chi-square test.

Histograms can be plotted by invoking the Draw() method and the result can
be interactively manipulated (see §2.4). Labels can be numerical or textual
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and the user can define titles 18 for the histogram and each axis.

Sets of (x, y) or (x, y, z) data can be displayed and analyzed in ROOT using
the TGraph or TGraph2D classes. The data errors can also be displayed using
the derived classes TGraphErrors and TGraphAsymErrors. In addition to fitting,
the TGraph classes provide the functionality for interpolating the data points
using different techniques such as cubic splines and for smoothing.

ROOT allows the user to fit both binned and unbinned data with paramet-
ric functions which can be displayed together with the data. The plottable
functions are represented by the classes TF1,TF2 or TF3 depending on the di-
mension. They can be created either from precompiled user code, using global
functions or class member functions or from mathematical expressions which
are handled by the TFormula class. TFormula is able to parse expressions con-
taining mathematical functions, including those in TMath and using a special
syntax for defining the parameters. Predefined expression representing func-
tions like polynomial, Gaussians, exponential or Landau are also available to
facilitate the usage.

In addition to invoking the Fit() method from a macro, the user can also
make use of the GUI provided by the fit panel (figure 7) during interactive
sessions. It can be opened directly from the ROOT TCanvas menu or via the
context menu of any ROOT object which is suitable for fitting, available after
a right mouse click on the object. With the fit panel, the user can select the
fit function, set the initial parameter and control all the available fit options.
It offers also the possibility to draw scan plots and contour plots of the fitted
parameters.

2.4 Graphics and User Interface

Whenever ROOT draws an object, it puts it into a TCanvas instance, repre-
senting an area mapped to a window directly under the control of the display
manager. One can save the TCanvas into several possible formats: for standard
graphics formats, publication quality is obtained by means of vector graphics
like PostScript or PDF, but raster graphics is usually a better choice for images
to be included into web pages. One can also store it as a C++ macro where
the C++ statements reproduce the state of the TCanvas and its contents. This
allows complete reproduction from within ROOT.

Of course, we can open multiple canvases if we want to display different things,
but it is often better to organize everything into a single TCanvas. For this
reason, a TCanvas instance can be subdivided into independent graphical ar-

18 LATEX-like strings are supported.
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Fig. 7. The ROOT fit panel: the General tab (left) for selecting function, fit methods
and options, the Set Parameter dialog (up right) for setting initial values and limits,
and the Minimization tab (bottom right) for selecting the minimization library and
method.

Fig. 8. Example of graphical output. The canvas contains 6 pads.

eas, called “pads” (by default, a canvas contains a single pad, occupying the
whole space — TCanvas inherits from TPad), as shown in figure 8.

All ROOT classes inheriting from TObject can be displayed on a pad with the
Draw() method. Graphical object sizes are usually expressed in user coordi-
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nates. For instance, after a histogram or a graph has been drawn, the user
coordinates coincide with those defined by the plot axes. The pad position
in its parent pad is expressed in normalized coordinates, in which the pad is
mapped to a unit rectangle. The TCanvas requires dimensions in pixels to be
positioned on the desktop.

In ROOT, the Draw() method does not actually draw the object itself. Rather,
it adds the object to the display list of the pad (so that it gets drawn every time
the pad is redrawn) and invokes the Paint() method, that draws the actual
graphics primitives. ROOT manages the repainting of the TCanvas automati-
cally when either the object is updated of the operating system requires.

Every ROOT object drawn on a pad can be edited interactively. In addition
to the pop-up editor (opened from the menu obtained by right-clicking on any
object), each canvas can also host an editor (opened by selecting “Editor”
from the “View” menu provided by the window). To modify any object shown
by the canvas, simply open the latter editor and click on the object.

2.4.1 2D Graphics

2D graphics include everything we can display on the monitor or print on
paper. ROOT needs to be interfaced with the operating system’s graphics
engine, in order to be able to display windows containing some plot, for ex-
ample. ROOT uses the X11 graphics engine on unix-like systems and Win32
on Windows, but can also use the multi-platform Qt library 19 .

Through the libAfterImage library 20 , ROOT is also able to load bitmap
images and to manipulate them. This package also allows to produce bitmap
output files in all common formats such as GIF, PNG, JPEG, etc.

2.4.2 3D Graphics

There are several ways to render 3D graphics in ROOT, the preferred one using
the OpenGL 21 graphics library, which is used in ROOT to display data using
lego and surface plots and to render detector geometries. Work is in progress to
also use it for 2D graphics and thus have a single, portable rendering interface
for 2D and 3D screen graphics.

19 Originally provided by Trolltech, that was renamed to Qt Software (http://www.
qtsoftware.com/) after acquisition by Nokia in 2008.
20 http://www.afterstep.org/afterimage/
21 http://www.opengl.org/
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2.4.3 Geometry and Event Display

Geometry in the 3D space is described in ROOT by means of basic solids
that can be joined, intersected or subtracted to create more complex shapes.
The possibility to visualize 3D objects is very important. ROOT implements
its own scene-graph management library and rendering engine that provides
advanced visualization features and real-time animations. OpenGL library is
used for actual rendering.

Event display programs are an important application of 3D visualization.
EVE, the event visualization environment of ROOT, uses extensively its data-
processing, GUI and OpenGL interfaces. EVE can serve as a framework for
object management offering hierarchical data organization, object interaction
and visualization via GUI and OpenGL representations and automatic cre-
ation of 2D projected views. On the other hand, it can serve as a toolkit
satisfying most HEP requirements, allowing visualization of geometry, sim-
ulated and reconstructed data such as hits, clusters, tracks and calorimeter
information. Special classes are available for visualization of raw-data and
detector response. EVE is used in the ALICE 22 experiment as the standard
visualization tool, AliEVE (figure 9), using the full feature set of the environ-
ment. In the CMS 23 experiment, EVE is used as the underlying toolkit of the
cmsShow physics-analysis oriented event-display. Both AliEVE and cmsShow

are also used for the online data-quality monitoring.

2.4.4 Graphical User Interface

The ROOT Graphical User Interface (GUI) integrates typical GUI functional-
ity with ROOT features, like storing the GUI as C++ source, interpreted GUI
via CINT and CINT-based signal/slot communication. The result is a flexible
GUI toolkit, rich of functionalities and offering all widgets that are provided
by other toolkits, including a GUI builder 24 .

The ROOT GUI builder provides tools for developing user interfaces based on
the ROOT GUI classes. It offers a palette of user interface elements. They can
be selected, positioned, and grouped, laid out in the main application frame.
According to the selected widget, a dynamically created context menu provides
detailed control of widget attribute settings. One can save on a ROOT macro
the result, and take such C++ code as starting point for further developments.

22 http://aliceinfo.cern.ch/Public/Welcome.html
23 http://cms.web.cern.ch/cms/index.html
24 The development of a dedicated ROOT GUI was required because when the
project started there were no good cross platform toolkit; Qt existed but had license
problems.
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Fig. 9. Screenshot of AliEVE showing a simulated proton-proton event at the LHC
collider as seen by the ALICE detector. The reconstructed particle trajectories are
shown as black lines and the measured particle passage-points as colored dots.

2.5 Simulation

TVirtualMC provides a virtual interface to Monte Carlo applications, allowing
the user to build a simulation independent of any actual underlying Monte
Carlo implementation itself. A user will have to implement a class derived
from the abstract Monte Carlo application class, and provide functions like
ConstructGeometry(), BeginEvent(), FinishEvent(), . . . The concrete Monte
Carlo implementation (Geant3, Geant4, Fluka) is selected at run time — when
processing a ROOT macro where the concrete Monte Carlo object is instan-
tiated. This allows for comparison between different engines (often used to
estimate the systematic simulation uncertainties) using a single application.
ROOT thus offers a single interface common to all of the most common simula-
tion engines; it offers a centrally managed, performant C++ geometry system
instead of a plethora of different, often incompatible and too specialized ge-
ometry systems as provided by the simulation engines. Its geometry system
offers I/O capabilities and an interface to ROOT’s event display. Examples of
VMC can be found in AliROOT[28] for the ALICE experiment at the LHC or
FAIRROOT[29] for the FAIR experiments at GSI, Darmstadt.

Monte Carlo simulations always have to describe the input particles, together
with their interactions, and the detector (geometry, materials and read-out
electronics). The definition of particles, available interactions and detector
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is done during the initialization phase. The main body of the application
is then a loop over all particles that are traced through all materials until
they exit, stop or disappear (by decay or annihilation). The tracing is done
in a discrete fashion: at each step, the detector volume is found in which the
particle is located and pseudo-random numbers are used to “draw” one among
possibly several physical processes, to simulate the interaction of the particle
with the matter. If an interaction occurs, the energy lost by the particle is
computed (again, it is usually a random process) and subtracted from its
kinetic energy. When the latter reaches zero, the particle stops, otherwise a
new step is performed.

Having computed the energy lost by all particles inside the detector, one has
to simulate the behavior of the read-out electronics. This is usually done later,
with another program that receives the energy lost in different locations as
input, but it can also be done by the very same application that is performing
the particle tracing inside the detector. Usually, the simulation of the read-
out electronics also involves some use of pseudo-random generators, at least
to simulate the finite resolution of any real measuring device.

In any detector simulation, the definition of its geometry has special impor-
tance. The ROOT geometry package is a tool to build, browse and visualize
detector geometries. It is independent from any Monte Carlo simulation en-
gine, though it has been designed to optimize particle transport in correlation
with simulation packages as Geant3, Geant4 and Fluka.

Most detectors in HEP have been modelled with the ROOT geometry (exper-
iments at LEP, LHC, FNAL, HERA, GSI, etc.). For example, the standard
ROOT test suite tracks particles to 35 large detectors. The Geometry De-
scription Markup Language (GDML) 25 system can be used to export/import
geometries from/to other formats (e.g. Geant3, Geant4).

The building blocks of any geometry are the volumes. Volumes may contain
other volumes, producing a hierarchy of volumes. The biggest one, called the
“world”, contains all other volumes and provides the master reference system
(MARS) in which the others are positioned. Each volume (except for the
”world”) needs to be associated with a medium, that can be a mixture of
different materials (whose weights are the relative densities).

Complex geometries can be built in a hierarchical way, through the concept of
containment: one has to define and position some volumes inside other ones.
Positioning is done with spatial transformations with respect to the “mother
reference system” (i.e. the system defined by the containing volume). Complex
volumes are built using basic or primitive shapes, already defined by ROOT
(e.g. box, tube, cone, etc.), through operations like join or subtract. Finally,

25 http://gdml.web.cern.ch/GDML/

21

http://root.cern.ch
http://root.cern.ch
http://root.cern.ch
http://root.cern.ch
http://gdml.web.cern.ch/GDML/


a given volume can be positioned several times in the geometry or it can
be divided accordingly to user-defined patterns, automatically defining new
contained volumes.

Once a geometry has been created, it can be saved into a ROOT file or as C++
macro with the Export() method of TGeoManager. Loading the geometry is
done with its Import() method. In addition, individual volumes can also be
saved into a ROOT file. Finally, ROOT provides a graphical user interface to
edit or build a geometry. The editor can be opened with the Edit() method of
TGeoManager.

Having defined the detector geometry, particles need to be tracked inside all
volumes, and their interaction simulated. The application can make use of
the ROOT geometry package to build a detector and the virtual Monte Carlo
interface to access one or more simulation engines. ROOT makes it possible
also to store and visualize tracks, as it is done inside the drawing package with
the TGeoTrack class.

2.6 Interpreters

CINT is an almost full ANSI compliant C/C++ interpreter. It serves as ROOT’s
non-graphical user interface, both for interactive use (through CINT’s prompt)
and in headless “batch” mode, where CINT processes C++ code without show-
ing any graphics. Other use cases are shown in §2.6.1.

In most cases, physicists develop data analysis programs gradually, through
repeated cycles of changing and running the code. Traditionally, the code
needed to be compiled, linked, loaded, and then again unloaded so the next
iteration could be started. The ability to use an interpreter is a fundamental
improvement for this approach of rapid development.

CINT allows interpreted and compiled code to interact: it can call compiled
code just like it can be called from compiled code, in a re-entrant way. With
that, code like histogram->Draw() can be interpreted, resulting in the func-
tion TH1::Draw() in one of ROOT’s libraries being called. On the other hand,
compiled code can contain the statement gROOT->ProcessLine("myobj->Go()"),
which could execute the interpreted function MyObj::Go(). The transition of
the call chain from interpreted to compiled code happens through stubs; CINT
keeps a function pointer to the stub for each function that can be called from
the interpreter. The stubs are generated as part of the dictionary, see §2.1.1.

ROOT also provides the Python interface PyROOT[23] that uses some of CINT
features. This allows it to do dynamic call translation instead of relying on a
fixed wrapper. Also provided is an interface to Ruby. Python and Ruby offer
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late binding and an easy to learn syntax. For a C++ framework, the major
advantage of providing a C++ interpreter (e.g. compared with a Python inter-
preter) is the homogeneity of languages: users write compiled and interpreted
code in the same language, they can transfer code or parts of it from the
interpreted “world” to the compiled one without any transition.

2.6.1 Interpreter Use Cases

While interpreters’ use cases are virtually unlimited, there are several key ex-
amples of use already in ROOT’s context. The graphical user interface imple-
ments the signal slot mechanism through the interpreter: the signal is emitted
as strings interpreted by the interpreter, which are evaluated dynamically.
This allows powerful expressions and loose coupling between the caller and
the callee, because the called function does not need to be resolved at link
time.

Another use case is ROOT’s auto-documentation component: it parses sources
on demand, extracting documentation strings. It can even interpret code that
is embedded in the documentation, run it, and embed the output and the code
into the documentation. This is an elegant way of keeping graphical output
up to date and of showing examples of use for the documented class.

As already mentioned for signal/slot, the interpreter allows a loose coupling
of libraries through strings resolved at runtime, instead of symbols resolved
at link time. ROOT makes use of this feature for its plugin manager: instead
of hard-wiring dependencies or implementations of interfaces at link time,
ROOT determines the plugin to use at run time, by executing a registered
piece of C++ code that will instantiate the plugin. This approach is dynamic
and extensible, eeven by the user. It saves resources because it does not load
unused plugins.

ROOT even relies on CINT for some parts of the I/O framework: the inter-
preter allows ROOT to call a helper function on an object given only its
memory address and type name. This, too, is an ideal use case for an inter-
preter.

2.6.2 Automatic Library Builds

Interpreting code is always slower than compiled code. Once code has been
developed it should thus be “moved into the compiled world” and the transi-
tioning of code should be seamless. But it is not: code needs to be compiled,
linked, and loaded. ROOT’s serialization framework and the interpreter re-
quire an additional build step, see §2.1.1. For that, the interpreter scans the
user’s header files and generates a source file containing the dictionary. These
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dictionaries, too, need to be compiled, linked, and loaded.

Tracking of dependencies is a common request, to only update the binary if
a relevant source file has been changed. Traditionally, users would write a
Makefile to compile the code which they then link into a binary, either into
a shared library to be loaded into ROOT, or into a stand-alone executable.
This is a symptom that the migration of code from the interpreter to a binary
is far from smooth.

ROOT removes this hurdle altogether, by completely hiding the complexity
from the user. To load the source file myCode.cxx into the interpreter, one
would usually call

.L myCode.cxx

This file’s functions and types are then available for interpretation.

To instead load the file as a shared library, and if needed to build it on the
fly, users issue this command:

.L myCode.cxx+

This invokes an integrated build system called ACLiC that works on all sup-
ported platforms. It is a powerful replacement for external build systems hiding
all of the build complexity. Multiple source files can be compiled into a library
by including them in a wrapper source file.

The smooth transition from interpreted to compiled code offered by ACLiC has
been so successful that ROOT is now considering the implementation of true
just-in-time compilation made possible e.g. though LLVM [24], [25], instead
of the invocation of external tools through ACLiC.

2.7 Parallel Processing Using PROOF

The Parallel ROOT Facility, PROOF [26], is an extension of ROOT enabling
interactive analysis of large sets of ROOT files in parallel on clusters of com-
puters or many-core machines. More generally PROOF can parallelize the class
of tasks for which solutions can be formulated as a set of independent sub-tasks
(embarrassingly or ideally parallel).

The main design goals for the PROOF system are:

• Transparency: there should be as little difference as possible between a
local ROOT based analysis session and a remote parallel PROOF session.
Typically analysis macros should work unchanged.
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• Scalability: the basic architecture should not put any implicit limitations
on the number of computers that can be used in parallel.
• Adaptability: the system should be able to adapt itself to variations in the

remote environment (changing load on the cluster nodes, network interrup-
tions, etc.).

PROOF is primarily meant as an alternative to batch systems for Central
Analysis Facilities and departmental work groups (Tier-2’s and Tier-3’s [27])
in particle physics experiments. However, thanks to a multi-tier architecture
allowing multiple levels of masters, it can be easily adapted to a wide range
of virtual clusters distributed over geographically separated domains and het-
erogeneous machines (GRID’s).

The PROOF technology has also proven to be very efficient in exploiting all
the CPU’s provided by many-core processors. A dedicated version of PROOF,
PROOF-Lite, provides an out-of-the-box solution to take full advantage of the
additional cores available in today desktops or laptops.

Apart from the pure interactive mode, PROOF has also an interactive-batch
mode. With interactive-batch the user can start very long running queries,
disconnect the client and at any time, any location and from any computer
reconnect to the query to monitor its progress or retrieve the possibly interme-
diate results. This feature gives it a distinct advantage over purely batch based
solutions, that only provide an answer once all sub-jobs have been finished and
merged.

2.7.1 PROOF Architecture

The PROOF system is implemented using a multi-tier architecture as shown
in figure 10.

The client is the user that wants to use the resources to perform a task.
The master is the entry point to the computing facility: it parses the client
requests, it distributes the work to the workers, it collects and merges the
results. The master tier can be multi-layered. This allows, for example, to
federate geographically separated clusters by optimizing the access to auxiliary
resources, like mass storage systems (MSS). It also allows to distribute the
distribution and merging work, which could otherwise become the bottle-neck
in the case of many workers.

PROOF-Lite, the version of PROOF dedicated to multicore desktops, imple-
ments a two-tier architecture where the master is merged into the client, the
latter being in direct control of the workers.

25



Fig. 10. PROOF multi-tier master-worker architecture.

Fig. 11. Schematic view of the PROOF workflow.

2.7.2 Event Level Parallelism

One of the ideas behind PROOF is to minimize the execution time by having
all contributing workers terminating their assigned tasks at the same time.
This is achieved by using fine-grained work distribution, where the amount
of work assigned to a worker, is adapted dynamically following the real-time
performance of each worker. In principle, the packet can be as small as the
basic unit, the event.

A schematic view of the execution flow is given in figure 11.
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Fig. 12. The PROOF packetizer distributes the work.

2.7.3 The Packetizer

The packetizer is responsible for load balancing a job between the workers
assigned to it. It decides where each piece of work - called a packet - should
be processed. An instance of the packetizer is created on the master node. In
case of a multi-master configuration, there is one packetizer created for each
of the sub-masters.

The performance of the workers can vary significantly as well as the file data
transfer rates (local or remote files). In order to dynamically balance the work
distribution, PROOF uses a “pull architecture”: when workers are ready for
further processing they ask the packetizer for a next packet, see figure 12.
The packetizer uses a worker’s processing rate to determine the size of the
next packet for that worker. The packetizer tries to size all packets such that
all workers will end at about the same time. At the beginning of a query the
packets will be small, to quickly get an idea of the performance of the workers.
Then the packet size will be increased to allow optimal disk access patterns
(avoiding small reads) and to best suite the workers CPU performance.

2.7.4 The Selector Framework

To be able to perform event-level parallelism, PROOF needs to be in charge
of the event-loop, i.e. the execution flow steering the job. This requires that
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the code to be executed must have a predefined, though flexible structure. In
ROOT this is provided by the Selector framework, defined by the abstract
class TSelector, which defines three logical steps:

(1) Begin, where the job definition (parameters, input data, outputs) is given;
executed on the client and the workers;

(2) Process, where the actual job is done; called for each event, on the work-
ers;

(3) Terminate, where the results are finally manipulated (fitted, visualized,
etc.); called on the client and the workers.

Process is the part that can be parallelized for the class of problems addressed
by PROOF.

2.7.5 Aggregation of Results

PROOF has a powerful feature that complements the use of the TSelector
framework. After each worker has executed the Terminate method described
above, it sends the set of named results back to its master. The master collects
these intermediate results and aggregates them depending on their type. For
several common types, like for example histograms, there is a natural way
to combine these results. The histogram obtained by adding all intermediate
histograms together is identical to the one that would have resulted from a
single worker processing all events. Similarly, event lists can be aggregated etc.
PROOF uses a well defined API for this process allowing user defined classes
to make use of this feature. Intermediate results that cannot be combined are
returned ”as is” in a single collection for each resulting object.

2.7.6 Real Time Monitoring and Feedback

The user can monitor the progress of a PROOF query or job in a number of
different ways. A widget shows the number of events and files processed, the
% completed and the estimated time to completion. This feedback is useful to
get a high level idea of the behavior and performance of the PROOF system
and its underlying components.

If the user registered histograms in the Begin method of the TSelector class,
PROOF can show these histograms, updating dynamically, during the running
of the query. This feature allows the progress of the query to be monitored
in detail, especially if a very large data-set is being processed. The dynami-
cally updating display is also very effective in educational and demonstration
settings.
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3 Installation Instructions

ROOT can be build from source on all supported platforms using the well
known Open Source tools like Subversion, configure and make.

3.1 Getting the Source

The ROOT source tar-ball can be obtained via ftp:

$ ftp root.cern.ch

User: anonymous

Password: <your-email-address>

ftp> cd root

ftp> bin

ftp> get root_<version>.source.tar.gz

ftp> bye

gzip -dc root_<version>.source.tar.gz | tar -xf -

Alternatively the source can be obtained directly from the public Subversion
repository:

svn co http://root.cern.ch/svn/root/trunk root

A specific tag can be obtained using:

svn co http://root.cern.ch/svn/root/tags/v5-24-00 root-52400

3.2 Compiling

Compiling ROOT is just a matter of:

$ ./configure

$ make

The ./configure script will discover the platform and check for the existence
of third party libraries needed for a number of optional plugins. To see all
available options do:

$ ./configure --help

For a complete description of the build procedure see the ROOT web site.
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4 Test Run Description

After installing ROOT one can find a large set of test programs in the tutorials
and test directories. The test programs in the tutorials directory are all
in the form of macro’s that can be either run via the CINT interpreter or
compiled via ACLiC. A standard test macro is benchmarks.C that can be run
via:

$ cd tutorials

$ root

root [0] .x benchmarks.C

root [1] .q

If ROOT is properly installed this macro should finish without errors and
report a ROOTMARKS number:

****************************************************

* Your machine is estimated at 1120.18 ROOTMARKS *

****************************************************

The programs in the test directory are all stand-alone programs that are
build by running make, like:

$ cd test

$ make

This will compile a number of “demo” programs like, guitest, threads, etc.
and “stress” programs, like stress, stressGeometry, stressGraphics, etc.
All “stress” programs will also return a performance ROOTMARKS number,
like:

$ ./stress -b 30

...

...

******************************************************************

* ROOTMARKS = 859.2 * Root5.23/03 20090226/1824

******************************************************************
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