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Abstract

The original contribution of this thesis to knowledge are novel digital read-
out architectures for hybrid pixel readout chips. The thesis presents asyn-
chronous bus-based architecture, a data-node based column architecture
and a network-based pixel matrix architecture for data transportation. It
is shown that the data-node architecture achieves readout efficiency 99%
with half the output rate as a bus-based system. The network-based so-
lution avoids “broken” columns due to some manufacturing errors, and it
distributes internal data traffic more evenly across the pixel matrix than
column-based architectures. An improvement of > 10% to the efficiency is
achieved with uniform and non-uniform hit occupancies.

Architectural design has been done using transaction level modeling
(TLM) and sequential high-level design techniques for reducing the design
and simulation time. It has been possible to simulate tens of column and
full chip architectures using the high-level techniques. A decrease of > 10
in run-time is observed using these techniques compared to register transfer
level (RTL) design technique. Reduction of 50% for lines-of-code (LoC) for
the high-level models compared to the RTL description has been achieved.

Two architectures are then demonstrated in two hybrid pixel readout
chips. The first chip, Timepix3 has been designed for the Medipix3 collab-
oration. According to the measurements, it consumes < 1 W/cm2. It also
delivers up to 40 Mhits/s/cm2 with 10-bit time-over-threshold (ToT) and
18-bit time-of-arrival (ToA) of 1.5625 ns. The chip uses a token-arbitrated,
asynchronous two-phase handshake column bus for internal data transfer.
It has also been successfully used in a multi-chip particle tracking telescope.

The second chip, VeloPix, is a readout chip being designed for the up-
grade of Vertex Locator (VELO) of the LHCb experiment at CERN. Based
on the simulations, it consumes < 1.5 W/cm2 while delivering up to 320
Mpackets/s/cm2, each packet containing up to 8 pixels. VeloPix uses a
node-based data fabric for achieving throughput of 13.3 Mpackets/s from
the column to the EoC. By combining Monte Carlo physics data with high-
level simulations, it has been demonstrated that the architecture meets re-
quirements of the VELO (260 Mpackets/s/cm2 with efficiency of 99%).
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Tiivistelmä

Tässä tutkimuksessa analysoidaan uusia digitaalisia tiedonsiirtoarkkitehtuu-
reita hybridipikseli-ilmaisimien lukupiireille. Väitöskirja esittelee asynkro-
nisen väylän, data-solmuihin perustuvan pystyriviarkkitehtuurin sekä verkko-
pohjaisen arkkitehtuurin pikselimatriisin lukuun. Tutkimuksessa näytetään
miten solmupohjaisella arkkitehtuurilla voidaan saavuttaa 99% tiedonluku-
tehokkuus käyttäen matalampaa nopeutta kuin väyläpohjaisessa arkkiteh-
tuurissa. Verkkopohjainen ratkaisu puolestaan lisää sietokykyä rikkinäisiä
pikselipystyrivejä vastaan, ja se jakaa piirin tietoliikenteen tasaisemmin pik-
selimatriisin sisällä kuin pystyrivipohjaiset ratkaisut. Yli 10% parempi lukute-
hokkuus on saavutettu verrattuna pystyriviarkkitehtuuriin.

Arkkitehtuurin suunnittelu on tehty käyttäen TLM- ja sekventiaalisia
korkean tason suunnittelutekniikoita. Käyttäen näitä menetelmiä on pystytty
simuloimaan kymmeniä erilaisia pikselipystyrivi- ja koko piirin kattavia arkki-
tehtuureita. Simulaatioiden ajoaika on lyhentynyt yli kymmenkertaisesti
näillä tekniikoilla verrattuna RTL-suunnittelutekniikkaan. Korkean tason
mallit ovat noin 50% kompaktimpia koodiriveissä laskettuna.

Kahta näistä arkkitehtuureista esitellään tarkemmin kahdessa eri pii-
rissä. Ensimmäinen piiri, Timepix3, on suunniteltu Medipix3-kollaboraatiolle.
Mittausten mukaan tehon kulutus on < 1 W/cm2. Piirin lukunopeus on 40
Mpikseliosumaa/s/cm2, joista jokainen sisältää 10 bitin varaustiedon sekä 18
bitin aikatiedon 1.5625 nanosekunnin tarkkuudella. Piiri käyttää asynkro-
nista kaksivaiheista väyläprotokollaa sisäiseen tiedonsiirtoon. Sitä on myös
onnistuneesti käytetty useammasta piiristä rakennetussa ilmaisimessa hiukkas-
ten jäljittämiseen.

Toinen piiri, VeloPix, on Euroopan ydintutkimuskeskuksen CERNin LHCb-
kokeen VELO-ilmaisimen päivitystä varten kehitetty pikselilukupiiri. Simu-
laatioiden perusteella piirin tehon kulutus on< 1.5 W/cm2. Piirin lukunopeus
on 320 Mpakettia/s/cm2, joista jokainen sisältää jopa 8 pikseliosumaa. VeloPix
käyttää solmupohjaista arkkitehtuuria saavuttaakseen lukunopeuden 13.3
Mpakettia/s pikselipystyriviltä. Yhdistämällä Monte Carlo simulaatioden
tulokset korkean tason simulaatioihin on näytetty, että arkkitehtuuri täyttää
VELOn vaatimukset (260 Mpakettia/s/cm2 99%:n tiedonlukutehokkuudella).
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Chapter 1

Introduction

Imaging sensors are being integrated into many applications due to CMOS
scaling and cheapening manufacturing of integrated electronics. One type of
sensor, a pixel sensor, is used in digital cameras [1] and applications requiring
dynamic vision [2]. Other fields like dosimetry [3] and medical imaging [4]
are starting to use CMOS circuits more widely than before. Other emerging
applications for pixel sensors are artificial retina prostheses [5], for example.

A typical readout chain for a pixel detector system is shown in Fig-
ure 1.1. In pixel sensors, incident radiation, such as X-ray photons create
small charge signals in a sensitive volume sub-divided into regularly-spaced
elements called pixels. The positional information of the incident particle is
thus given by the address of the pixel(s) containing signal. This allows the
formation of an image. Enhancements can be made using, for example, the
amplitude of the signal or counting the number of signals during exposure.

Pulses from a sensor are amplified and digitized using a dedicated read-
out chip. In the case of a monolithic detector, the same chip functions as a
sensor and a readout chip. Due to increasing demands for more information
per pixel and higher signal rates together with strong constraints on power
consumption, an efficient architecture is required to extract the digitized
data. This thesis looks for novel solutions for transporting data from pixels
to the output of the readout chip within an imaging sensor readout applica-
tion specific integrated circuit (ASIC). The focus is solely on the internal
readout architecture of a readout ASIC. As an additional restriction, these
architectures must be able to provide timing information with sufficient ac-
curacy attached to all data while keeping the pixel size as small as possible.
Each digitized pixel hit can consist of address bits only, for example 16 bits
per hit for 256× 256 pixels, or it can contain digitized time and charge in-
formation in addition, for example. This can increase the total number of
bits per digitized hit to over 50.

After the digitized data has been transported from the pixels to the
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Figure 1.1: A readout chain of a pixel detector.

output of the readout chip, it is transmitted off-chip for further processing.
This processing can be done by a field-programmable gate array (FPGA) or
a digital signal processor (DSP) or even a standard off-the-shelf micropro-
cessor. It is also possible to connect multiple sensor/readout ASIC pairs to
one data acquisition system. Finally, the data is presented to a user of the
application for analysis or inspection. The user can be either another ma-
chine or a human. An example of the first one is an automatic alarm system
which makes a decision to sound an alarm based on the data coming from a
data acquisition system, which in turn receives its data from a readout chip
connected to a light-sensitive sensor.

1.1 Applications of pixel detectors

Two possible applications for pixel detectors are shown in Figure 1.2. In
tracking applications, detectors are used for measuring the position and
time when a particle passes through a pixel. Track reconstruction always
requires more than one plane of pixels. In Figure 1.2, on the left side two
different tracks captured by pixel detectors are shown. Tracks A and B can
occur at different times or at the same time. By recording time information
relative to a common reference in addition to pixel coordinates, tracks can
be correlated with particular discrete events in time. These tracks can origi-
nate from an event which is typically a collision of particles in a high-energy
physics experiment, such as protons, or atoms such as lead. Incident par-
ticles registered by tracking detectors are usually decay products of other
particles, thus tracking information is used for reconstructing the patterns
of decay sequences.

On the right side of Figure 1.2, an imaging application using a pixel de-
tector is shown. The detector is used to capture energy information about
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Figure 1.2: Two applications of pixel detectors: Tracking (on the left) and
object imaging (on the right).

particles emitted by a radiation source. An object between the source and
the detector absorbs part of the energy of a particle depending on the thick-
ness and material of the object. Pixels shown in different colors will capture
different amount of charge, and this charge information can be used to re-
construct the image. Using this method, it is possible to determine material
inside the object, for example. One of the main differences between track-
ing and imaging applications is, that while tracking focuses on individual
particle tracks, in imaging the image can be formed by integrating several
tracks in a single pixel. Thus, in a tracking application, it can be beneficial
to transfer hit data off a readout ASIC as quickly as possible, whereas in an
imaging application data can be accumulated at the pixel-level for longer
periods of time.

Pixel detectors have been used for tracking at the European Organization
for Nuclear Science (CERN) in large applications such as Compact Muon
Solenoid (CMS) [6] and A Toroidal LHC apparatuS (ATLAS) [7]. Large
Hadron Collider beauty (LHCb) also uses pixel detectors in its ring imag-
ing Cherenkov (RICH) detector [8], and pixels are being investigated as a
detector option for the VELO detector [9] of the LHCb upgrade [10]. These
applications typically require tracking precision down to a few microns and
pixel sizes of a few tens of microns. As these applications operate in an envi-
ronment with radiation levels orders of magnitude higher than background
radiation, the choice of a type of pixel detector is also important, as will be
discussed later. This thesis focuses solely on readout architectures of ASICs
used in tracking applications.
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1.2 Hybrid pixel detectors

The focus of this thesis is on digital data readout architectures of ASICs
for a particular type of pixel detectors called hybrid pixel detectors (HPDs).
An HPD consists of two distinct chips called a sensor and a readout chip.
Both chips can be manufactured using different processes and optimized
separately, with the readout chip being generally fabricated in standard
CMOS process. The sensor chip is also a solid-state device, manufactured
using a semiconductor as the sensor material. Typical materials for sensors
are silicon (Si), germanium (Ge), gallium arsenide (GaAs) and diamond.
Semiconductor materials are self-supporting structures (unlike gas sensors,
for example), have an average energy of 3.6 eV for creating an electron-hole
pair and the signal is collected in the order of 10 ns [11].

A cross-section of an interconnected sensor and a readout ASIC is shown
in Figure 1.3. When a charged particle passes through the sensor, it creates
electron-hole pairs inside the sensor. The number of pairs depends on, for
example, the ionisation energy of the material, the energy of the incident
particle and the length of its path in the material. By applying a bias
voltage across the sensor, an electric field is created which causes electrons
to drift from lower potential to higher. Respectively, it causes holes to drift
towards lower potential and then being collected by the p+ -region. As can
be seen from Figure 1.3, a p-n diode is used for collecting the signal inside
the sensor. It is a reverse-biased diode with fully depleted region. Typical
signal magnitude is 23000 electrons for a silicon of 300 µm [12]. Another
value given in the literature is 20000 electrons or holes per 250 µm in a fully
depleted silicon sensor, corresponding to an input charge of about 3 fC [13].

Multiple pixels can receive a signal from one particle if it crosses several
pixels due to low incident angle. This effect, which creates a cluster of pixels
associated with one particle only, is called charge sharing. Charge sharing
is useful in tracking applications for finding a more precise location of the
track. By measuring the amount of charge in each pixel of the cluster and
taking, for example, center of the mass of these charges, improved spatial
resolution can be achieved. Without any charge information, the resolution
is given by p√

12
[12] for square pixels with a pitch of p. The drawback of

charge sharing is that the signals per pixel are smaller in amplitude because
the charge is split among several pixels and hence are more difficult to detect.

The p-n diode structure inside the sensor is connected to an intercon-
nection between the two chips. This interconnection between the sensor and
the readout chip is also called a bump-bond, and the chips are connected
together using a solder process called bump-bonding [14]. The bump is con-
nected to the readout ASIC and ultimately to the front-end electronics via
the full CMOS metal stack. The purpose of the front-end electronics is to
amplify and digitize signals generated by charged particles in the sensor.
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Figure 1.3: A cross-section of a sensor and a readout chip connected with a
bump-bond.

Figure 1.4 shows an example of a hybrid pixel detector of multiple chips.
As mentioned, the sensor chip is mounted on top of the readout chip using
bump-bonds. These bumps form the electrical connection between the two
chips. Connections from readout chips to a readout system are omitted
for clarity. These connections can be made using a technique called wire-
bonding or by using connections on back-side of the chip by deploying a
redistribution layer [15].

A readout chip of a pixel sensor typically has a pixel area called the
pixel matrix and a peripheral area. This division is shown in Figure 1.5.
The sensor is located on top of the active area and the periphery extends
over the sensor edges. Pixels inside the readout chip are occupied always by
analog signal processing functions and often digital logic. Analog processing
is required to convert signals from a sensor to full CMOS voltage levels. The
area available for electronics is constrained by the sensor pixel size. This
often introduces conflicting requirements between tracking precision (smaller
pixels are better) and functionality (larger pixels allow more electronics).

1.2.1 Noise

Both the sensor and the readout ASIC introduce noise into the system. A
leakage current in the sensor causes a signal to be generated even in the
absence of an incident particle. The most important contribution to the
leakage current is given by thermal generation at the surface of the device
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Figure 1.4: An HPD ladder consisting of 2 × 3 sensor and readout chips.

Figure 1.5: Periphery and active area of a hybrid pixel sensor and a close-up
of two sensor pixels and two readout pixels.
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and in the depleted volume of the sensor [12].

The leakage current of the sensor adds shot-noise to the signal which
is presented to the readout electronics. A leakage current compensation
circuitry can be implemented inside the readout ASIC by placing a current
source or sink, depending on signal polarity, between input and output of a
low-noise amplifier in the front-end [12].

The readout ASIC itself has several sources of noise. Cross-talk from
digital logic to analog is a contributor to the noise of the analog front-end.
This can be caused by direct capacitive coupling of frequently switching
digital signals or indirect coupling via digital power supply or ground bounce
through a silicon substrate. Because signals that can be detected by the
analog front-end may be only 400-500 electrons in magnitude [16] or even
smaller, the analog front-end is very sensitive to noise coming from the
digital logic. In fact, extra noise injected into the analog front-end will
increase the minimum detectable charge. The extra noise manifests itself as
extra pixel hits which are not caused by signals coming from a sensor but
from the readout ASIC itself. A typical measurement unit of noise for HPD
systems is equivalent noise charge (ENC) which indicates a point where
signal-to-noise ratio is equal to 1 [17].

For timing measurements, the rise time of a front-end amplifier combined
with the signal-to-noise ratio determines the timing jitter of the system
[17]. A quantization error occurs when the analog signal is converted into
a discrete, digital value. This error is simply the difference of the actual
analog value and the digitized value. This error is present, for example,
when charge of a particle or time of arrival are measured using a sampling
clock. The clock distribution itself also contributes to the quantization error
because the clock signal cannot be distributed across the full chip in zero
time thus arriving to different pixels at different times.

1.2.2 Radiation tolerance

HPDs are often used in environments with significant levels of background
radiation such as particle physics experiments. This radiation can poten-
tially affect the readout and sensor chips. Radiation effects in electron-
ics are usually divided into total ionising dose (TID) and single-event ef-
fects (SEEs). TID is an accumulating effect which becomes worse the longer
a device is exposed to ionising radiation. The leakage current of the device
increases due to charge trapped inside the shallow trench isolation (STI)
oxide. Even if the device is turned off, this charge can create a leakage cur-
rent path from drain to source. For 130 nm CMOS technology, this current
has been measured to be less than 1 µA per transistor [18]. The current
driving capability of transistors decreases, partly due to an increase in the
threshold voltage (Vt) of transistors, partly due to decrease in transcon-
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ductance of transistors [19]. A study on a 65 nm CMOS technology shows
that PMOS transistors are particularly vulnerable to such an effect [19].
However, effects of radiation in 130 nm CMOS are well-understood and the
technology shows an improvement in radiation tolerance when compared to
older technologies [18]. In this thesis, 130 nm CMOS technology is used for
implementing circuits. As discussed in [20], a commercial 130 nm CMOS
technology is sufficiently tolerant against TID effects even when using lin-
ear transistors instead of enclosed layout transistors (ELTs) which take up
more area. ELTs are typically used to improve the radiation tolerance of
transistors.

An SEE is the result of an instantaneous impact of radiation affecting
the state of the electronics, and can occur either as a single-event transient
(SET) or a single-event upset (SEU). The former causes a transient change
of voltage in one of the capacitive nodes of a logic gate or a memory cell.
The likelihood of an SET decreases with increasing node capacitance. If
this change is captured by a memory device, it becomes a persistent effect.
On the other hand, an SEU directly causes a memory element such as a
flip-flop to invert its state. Unless the device is self-correcting, a new state
will persist until a new value is written into the memory device. The new
state will also propagate to all the logic connected to the fan-out of this
device. Mitigation techniques for SEUs will be discussed later in this thesis.
Other effects such as single-event latch-up or transistor gate rupture can
also be caused by radiation. However, no evidence of gate ruptures has
been observed in 130 nm CMOS [21] during irradiation.

Bonacini et. al. [22, 19] have studied SEUs in 65 nm and 90 nm CMOS
technologies. It has been concluded that the probability of an SEU in a
single device decreases as transistor size is decreased. Although smaller
devices have less capacitance, the probability of hitting a sensitive node in
the device is also smaller. On the other hand, the number of devices on a
single chip also increases so the probability of the SEUs across the whole
system does not decrease or increase significantly due to CMOS scaling.

Design techniques such as triple modular redundancy (TMR) [23] and
error correction coding (ECC) can be used to make circuits very tolerant
to SEEs. TMR is based on triplicated logic in which the correct result is
a vote of the three outputs. If only one device has been upset, the output
of the voting is still correct. ECC such as Hamming coding can also be
used to correct single-event upsets or even detect multiple bit upsets. These
techniques, however, introduce area, power and timing penalties. Veeravalli
[24] reports 202% - 208% area overhead when using TMR for a 32-bit
arithmetic logical unit (ALU). It also reports 148% overhead for an ALU
using ECC. Generally it can be concluded that for a fully triplicated design,
the area overhead is always more than 200% as voting logic is required
in addition to the triplication overhead. Another useful property of these
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techniques is that they can also be used to improve the yield. In a case
where the chip has a manufacturing error in one of the protected nodes or
memories, the logic will still function correctly but the SEE tolerance is lost.

1.2.3 Power

Optimization of power in an HPD readout ASIC is important for two fol-
lowing reasons. Firstly, the material placed in front of a detector needs to
be minimized to distort the measurement as little as possible. When heavy
materials are placed on the tracks of particles, part of their energy gets
absorbed by the material and their trajectory can be perturbed. This pre-
vents usage of large heat sinks for cooling, for example. Additionally, if the
temperature of the readout ASIC increases, this increases leakage current
and electromigration within the chip. This may make the chip slower and
decrease the life-time of the device.

Secondly, due to geometry of the readout ASIC, power is brought into
the chip from the periphery. Power distribution for the pixel matrix must
be done from the periphery to the top of the chip. This results in long metal
wires having significant resistance. For example, a 1.4 cm long copper line
in 130 nm CMOS with a width of 25 µm has a resistance of around 4 ohms.
This puts a limit on the maximum amount of static and dynamic current
that can be drawn before the voltage drops have an impact on the operation
of transistors.

The power consumption of the readout ASIC can be divided into analog
and digital power consumption. Most of the power consumed by analog
electronics is typically static power [25]. There are also architectures with
dynamic components [26], mainly dynamic comparators that can be clocked.
Using more power at the analog front-end makes the front-end faster and
improves the timing resolution, but it also introduces more noise into the
front-end.

The digital power consumption is a sum of leakage power (static) and
switching activity (dynamic). Each of these elements can be optimized in-
dependently of each other, and the optimization depends on operation con-
ditions such as temperature and the expected activity in the application.
The leakage can be reduced by decreasing the power supply, using transis-
tors with higher Vt and shutting down the power completely (power gating)
from unused parts of the chip. Typical methods for controlling the dynamic
power consumption are clock gating, operand isolation and dynamic voltage
and frequency scaling (DVFS). The first two are supported by electronics
design automation (EDA) tools when using RTL design methodology, while
the latter usually required manual implementation. So far, no DVFS has
been deployed in hybrid pixel readout chips.

Minimizing the switching capacitance by avoiding long metal wires that
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constantly change their value also reduces the dynamic power consumption.
The architectural choices also have a large impact on the dynamic power
consumption. A simple example of this is a reduction of a 64-bit bus to
a 16-bit bus and sending four words in one transaction of four clock cy-
cles instead of one transaction of one clock cycle. This effectively reduces
the instantaneous power consumption by four (on average) but decreases
throughput of the bus. Note that this method does not save any energy.

In applications requiring low duty cycles, power gating (also known as
power pulsing or power cycling) can also be used to reduce the power con-
sumption. In this scheme, electronics are switched into a lower power state
by either switching off the power supply or by altering the bias voltages
of transistors to reduce their current consumption. The former option is
especially useful for digital logic in which no state information needs to be
saved. The latter option is more suitable for analog electronics because it
does not increase additional transistors and thus additional noise to power
supply lines.

1.2.4 Other types of pixel detectors

In addition to HPDs, there are other types of pixel detectors. Passive de-
tectors like charge-coupled devices (CCDs) contain no active electronics and
are not discussed in this thesis. Like HPDs, they use solid-state sensors for
collecting the charge.

Another type of active detectors besides HPDs is the monolithic active
pixel sensor (MAPS). Unlike HPDs, they consist of a single chip only, where
it functions as a sensor and a readout chip at the same time. A cross-section
of a MAPS detector is shown in Figure 1.6. The charge is collected by the n-
well diode. The sensor is only fully depleted under this diode, and the charge
collection is incomplete elsewhere in the epitaxial layer [12]. In addition to
charge collection, they contain signal processing functionality, typically an
amplification and digitization of signals. MAPSs cannot be implemented
using standard CMOS processes, and require additional processing steps,
for example triple wells, if CMOS logic is used.

Integrating the sensor and the readout electronics into the same ASIC is
an advantage in terms of cost compared to HPDs. In MAPS, pixels can be
implemented with as few as three transistors per pixel and the pixel pitch
can be smaller than 10 µm but have smaller signal-to-noise ratio (SNR) than
HPDs [27]. The noise is produced by a phenomenon called dark current [28].

A typical digital camera found in cell phones is usually implemented as
a MAPS because it requires smaller pixels, has to be cheap to manufacture
and requires only frame readout rates of the order of few kHz. The readout
rates of MAPSs are in general limited by the CMOS technology and the
relative simplicity of the circuitry inside a pixel. Layout techniques like
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Figure 1.6: A cross-section of an MAPS showing the n+ -well diode on the
p-epitaxial layer. [12]

triple-well can be used in MAPS to have the benefits of full-fledged static
CMOS design at the expense of extra process layers and the extra area taken
by the triple-well.

MAPSs are also less resilient to radiation effects than HPDs. This is
an important attribute, particularly for high-energy physics experiments,
where total dose of radiation can be hundreds of Mrads or even higher [29].
HPDs on the other hand are more expensive to manufacture than MAPSs
because they require additional processing steps for connecting the sensor to
the readout chip. Despite this cost, they have been deployed in applications
where the requirements of readout speed and radiation tolerance cannot be
met by MAPS.

1.3 Requirements

Figure 1.7 shows a set of performance metrics that need to be chosen for each
readout architecture designed for tracking applications. Each parameter is
shown with its typical unit. Generally, when performance in one category
is improved, the expected performance in some other category deteriorates.
For example, when the spatial resolution is improved (pixel size decreased),
all other things being equal, power density and thus power consumption
increases because power does not scale down with the pixel size. There are
other metrics such as radiation hardness which typically have an impact
on power consumption, chip area and indirectly to other metrics as well.
The most relevant metrics for this thesis are readout rate, power, chip area,
timing range and timing resolution. These will be discussed in more detail

11



Figure 1.7: Different performance metrics for a pixel readout ASIC.

Table 1.1: General requirements for digital readout architectures.
Pixel size 55 µm× 55 µm

Number of pixels 256 × 256

Chip area 2 cm2

Time resolution at least 25 ns

Timing range at least 9 bits

Latency < Timing range

Power < 1.5 W/cm2

Readout rate > 40 Mhits/s/cm2

particularly in Chapters 2 and 4.

Table 1.1 shows the general requirements for digital readout architectures
presented in this thesis. The pixel and the matrix sizes are fixed to specific
sizes but all the results presented later in this thesis are directly applicable
to larger pixels sizes and smaller matrix sizes. Also, where mentioned, the
results can be scaled to larger matrices as well. Time resolution must be
always at least 25 ns with a range extending to at least 9 bits. Notice that the
maximum latency here is simply the timing range. A detailed explanation of
this will be given in Chapter 2. Due to limited cooling options in the hybrid
pixel detectors, power consumption should be < 1.5 W/cm2. Finally, to
improve readout rates compared to existing architectures, a minimum rate
of 40 Mhits/s/cm2 is required. As will be seen in Chapter 6, a factor of 10
higher rates than this can be achieved.
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1.4 Scope and original contributions

This thesis focuses on the study and optimization of readout ASICs of HPDs
in tracking applications. The scope of the work is digital very large scale
integrated (VLSI) design, simulation and implementation. It studies digital
data transfer techniques and their optimization from the pixel matrix to the
periphery. It also studies on-chip data reduction techniques to overcome
the problems of limited output bandwidth. Three original contributions to
knowledge of the architectural design of HPD readout ASICs are presented:

1. The first contribution is a study to compare performance and imple-
mentation issues of several readout architectures, existing and new
ones. The conceptual ideas from this study have then been tested
by the author using high-level methodologies and simulation methods
such as TLM and C++ simulation models. A subset of these simula-
tions have then been performed at RTL. The physical implementation
details of these architectures such as area and power are then studied
in detail to estimate the feasibility of using these architectural tech-
niques on a readout ASIC.

2. The second original contribution of this thesis is a sparse readout ar-
chitecture capable of measuring time of arrival and charge of particles
using a pixel of 55 µm × 55 µm for a mixed-signal chip called Timepix3
using 130 nm CMOS technology. In this chip, analog and digital el-
ements are distributed uniformly across a chip of 1.4 cm × 1.4 cm,
analog occupying 30 % and digital logic 70 % of the area. The au-
thor has designed and implemented the digital logic of the pixel and
the super pixel. This includes all logic, buses and signal distribution
required to transport data from the pixel matrix to the periphery as
well as clock and time stamp distribution in the column. For the syn-
chronizer in the digital front-end, the author has taken an existing
design and adapted it to fit into new application. The author has also
designed End of Column (EoC) block and periphery data bus archi-
tecture and arbitration for this chip. This chip has successfully been
manufactured in silicon and its performance assessed. A comparison
has been made between the simulated performance and the measure-
ments.

3. The third contribution is the conceptual design, analysis and imple-
mentation of an architecture at the post-layout level for an HPD read-
out chip called VeloPix using 130 nm CMOS process. The author
has designed a novel architecture for transporting data from the pixel
matrix into the periphery. The periphery has also been designed to
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sustain rates of over 1 Ghits/s/chip. The major challenges in addi-
tion to limited area available are the unprecedented data rates for
HPD readout ASICs and the requirement of SEE tolerance which has
been addressed using TMR techniques. This solution is capable of
delivering more than 850 Mhits/s/cm2 from a pixel matrix, or 320
Mpackets/s/cm2 where each packet can contain 23 bits of informa-
tion. This chip also features a novel solution for equalizing hit traffic
from columns before they are sent off the chip.

Contributions presented here are based on RTL digital design principles
to make them transferable to newer CMOS technologies more easily than
custom circuit implementations. This implies reduced design time and cost
while offering digital simulation and timing analysis tools for the verification
of the designs. Higher level techniques such as TLM and behavioral (non-
synthesizable) modelling have also been used in the architectural studies to
allow exploration of larger range of design parameters in shorter time.

Timepix3 has been designed between 2010-2013, the chip being submit-
ted in 24th May 2013. The first 6 wafers were received at the end of August
2013. Apart from the author’s contribution, several designers from CERN
(Geneva, Switzerland), Nikhef (Amsterdam, Netherlands) and the Univer-
sity of Bonn (Bonn, Germany) have contributed to the implementation and
ideas of the chip. The design of VeloPix started in 2013 after the submission
of Timepix3. It is a joint effort between CERN and Nikhef to design a new
hybrid pixel readout chip for the upgrade of VELO of the LHCb experiment
at CERN.

The work discussed and presented in this thesis in based on and extended
from the publications listed below:

1. T. Poikela, J. Plosila, T. Westerlund, M. Campbell, M. De Gaspari,
X. Llopart, V. Gromov, R. Kluit, M. van Beuzekom, F. Zappon, V.
Zivkovic, C. Brezina, K. Desch, Y. Fu, and A. Kruth. Timepix3: a
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1.5 Related work and background

This section briefly summarizes the previous work done in the architectures
of HPD readout ASICs, and offers a short motivation why this study is
relevant. The technical details of these works are discussed in the following
chapters of this thesis where applicable.

1.5.1 Simulation studies

No extensive study and simulation of the HPD readout architectures has
been published linking the architectural studies to physical VLSI circuit
implementation details. Individual studies are usually targeted for a specific
application only [36, 37, 38]. These studies do not include comparisons
between different architectures. In [39], an architecture optimized for a
specific occupancy and hit distribution is presented.

15



Some studies offer tools for the evaluation of different architectures, but
do not study the actual architectures or link the physical implementation
details to them [40, 41].

1.5.2 Pixel readout architectures

In [12], an overview of mostly triggered readout architectures for hybrid
pixel detectors is given. This serves as a good starting point for this study,
and these architectures can be modified to operate continuously without a
trigger signal.

Spatial resolution, which is directly related to the pixel pitch p, is an
important parameter in pixel applications but not the only property of in-
terest. In the architectures presented in this thesis, micrometer-level spatial
resolution is combined with temporal resolution of nanosecond-level. The
last parameter is the number of pieces of information (the number of pixels
hit) with a given spatial and temporal resolution that can be measured and
transferred from the readout chip to the data analysis tools.

HPDs with the same or smaller pixel pitch of 55 µm have already been
manufactured [25, 42, 43, 44]. However, these chips are either lacking in
time measurement capabilities [42, 43, 44], or cannot do simultaneous mea-
surement of time and charge [25]. Chips with the simultaneous measure-
ment capability have bigger pixel size, and thus lack in spatial resolution
[37, 45, 46].

Some previous architectures are lacking in timing resolution and spatial
resolution, typically having a minimum timing resolution of 25 ns[47, 48, 49].

Simultaneous time and charge measurement has been implemented with
a pixel pitch of 25 µm [35] in 65 nm CMOS. However, this chip is at the
prototype stage spanning only 1.6 mm × 1.6 mm, and having short dynamic
range for timing measurement (4 bits at maximum of 100 MHz) because it
is targeted for one specific application.

None of the chips cited have a minimum timing resolution of 1.5625 ns,
which is targeted by one of the architectures presented in this thesis, except
[45] which has a timing resolution better than 100 ps, but it also has a
pixel 30 times larger than in the architecture presented in this thesis. None
of the readout chip architectures mentioned above can provide trigger-less,
continuous information with a rate of 40 Mhits/s/cm2 or higher while having
the spatial and timing resolution mentioned above.

By doing this PhD study, some missing features of related works are
addressed. However, it needs to be noted that the HPD readout ASICs are
usually highly customized for a particular application and its requirements,
so completely generic, “one-size-fits-all” solution is unlikely to be found for
all pixel detectors. Even so, information and outcomes of this thesis will be
useful for future studies and simulation of HPD readout ASICs. In the fol-
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lowing chapters, the technical details of existing architectures are analyzed
and new options are also given. The simulation methodology used in this
thesis is also presented, and its advantages and disadvantages discussed.
The thesis is concluded by a presentation of two readout chips and their
architectures targeting specific applications. One of them has been manu-
factured in silicon and tested to be fully functional. The other architecture
has been implemented at the layout-level but not manufactured yet.
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Chapter 2

Hybrid pixel detector
readout ASIC architectures

In this chapter, different concepts of readout architectures of HPD ASICs
are described. First, architectural details of a generic chip are shown. Defini-
tions are presented for several characteristics of HPD readout ASICs to allow
comparison of different chip architectures. Analysis of different readout ar-
chitectures using simulation is presented with the comparison of simulation
results between the architectures. Simulations in this chapter have been per-
formed using SystemC [50] and non-synthesizable high-level models (except
where stated otherwise) to facilitate faster modelling and simulation than
with RTL or gate-level techniques. TLM techniques [51] have been used
to connect the models together. The author has carried all the modelling,
simulation, verification and analysis work required for this chapter.

The novelties presented in this chapter are a time stamping method to
reduce the routing overhead and switching activity caused by sending the
time stamp up the pixel column, and two different pixel readout architec-
tures. The first one consists of data nodes communication locally with each
other and propagating the data down the column through registers in the
nodes. The second one is an extension of the data nodes to a network in
which data is sent either horizontally or vertically to a next node.

From the simulations and analysis design guidelines are drawn which
will be used later in this thesis for the architectural design of specific HPD
readout ASICs. At the end of the chapter, related work and existing HPD
readout ASICs are briefly summarized based on the definitions laid out
earlier in this chapter.
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2.1 Architecture of hybrid pixel detector ASIC

Figure 2.1 shows a general architecture which can be tiled from three sides.
This means that any 2 ×N sensor ladder can be constructed from it. The
advantage of the possibility to tile multiple chips together is to minimize
dead area between sensors while being able to construct larger sensitive
surfaces than from a single chip. Because yield of the sensor and readout
chips is related to the total area per chip, the largest possible chip size may
not always be desirable in terms of yield. On the other hand, there are
other considerations such as unit cost per area where larger chips may be
beneficial.

The chip is divided into two distinct parts, namely a pixel matrix and
a periphery. As can be seen, most of the area is taken by the pixel matrix.
Many HPD readout ASICs have this kind of division into a pixel matrix and
a periphery [47, 48, 49, 25, 37, 45, 35]. The matrix is also called an active
area because it corresponds to the sensitive part of the sensor. Ideally, the
area taken by the periphery would be eliminated altogether to have the
full chip covered by active area and to use it in four-side detector tiling.
This would require usage of vertical buried interconnections called through-
silicon vias (TSVs) [52], and would require having all input-output (IO)
functionality on the backside of the readout chip. Ultimately TSVs enable
3D-integration of separate readout ASICs for analog and digital electronics.

2.1.1 Pixel matrix

A pixel matrix contains pixel unit cells (PUCs) connected to a sensor using
bump-bonding techniques. A generic PUC is also described in [12]. Each
PUC contains an analog signal processing electronics and in most cases dig-
ital logic for measurements and reading out the measurement data. This
pulse processing chain is illustrated by Figure 2.2. The analog front-end is
used for amplifying electrical signals arriving from sensors. These signals are
typically short current pulses. It can also contain some pulse shaping func-
tionality, threshold calibration, digital-to-analog converter (DAC) function-
ality and a digitisation scheme such as an analog-to-digital converter (ADC)
or a discriminator. The pulse shaping is utilized to shape the signal suit-
able for ADCs or a discriminator. Local DACs are used to minimize the
pixel-to-pixel threshold variations due to mismatches arising from process
variations. Although most of these components are usually integrated inside
a single pixel, for example in [45] there is no digital processing inside the
pixel. Because HPD ASICs are very area-critical designs, front-ends and
sensor signal processing cannot always be fully decoupled from the readout
logic. One important concept related to the analog front-end is pile-up,
which means the accumulation of charge into the electronics. Every time a
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Figure 2.1: Structure of an HPD readout chip.
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Figure 2.2: Pulse processing chain in an HPD readout chip.

signal arrives from a sensor, it carries a certain amount of charge. If the rate
of the arrival of signals is high enough, the charge from the previous signal
cannot be discharged completely. This leads to loss of charge information,
and in the case of high rate, to a loss of all hit information.

The digital front-end typically contains synchronization logic, time-to-
digital converters (TDCs), counters for measurements and memories for data
storage and buffering. One essential function in chips utilizing a clock signal
is to synchronize asynchronous hit events to the measurement clock to avoid
glitches in counters that can cause errors in timing measurements. Upsets
can arise if a gated clock signal has a glitch which is seen by some counter
flip-flops but not all of them. The same situation occurs if an asynchronous
hit signal is directly used as a counter enable signal, and is seen by only some
flip-flops. Both cases lead to corruption of counter values and to incorrect
measurement.

The digital front-end can also contain some intermediate buffering stages
but the number of buffer slots is usually restricted by the area. While
buffering can reduce the inefficiencies from high activity events, it also adds
latency to the events before they are transmitted. Pile-up or hit overflow
can also occur in digital electronics, if the digital front-end cannot store hit
information from an event. This pile-up usually occurs due to dead-time in
reading out the information from the pixel.

Several digital front-ends can share a common structure which is called a
pixel region or a super pixel. These terms can be used interchangeably, and
only the super pixel is used in this thesis. This grouping is also illustrated
in Figure 2.1. A super pixel typically contains a common data buffer or
memory, arbitration logic and some logic to interface with a column bus. In
the case of a shift-register based column design, a super pixel can contain
extra logic for zero suppression such as a hit-flag register [35]. If automated
place and route (PnR) tools are used for laying out the super pixel, each
digital front-end may have a different physical layout. This “flattening”
of the design improves utilization and logic optimization between blocks
but may cause mismatches in timing and differences in crosstalk between
the digital and analog front-ends of the super pixel. These differences in
crosstalk then manifest as variations in noise of analog front-ends.
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Finally, pixels or super pixels are grouped together into a pixel column.
Because the analog and digital front-ends are usually split into separate
regions as shown in 2.1, the number of inter-column horizontal connections
is usually very limited between two columns. This problem can be slightly
alleviated by using a structure called a double column where the analog
regions from two columns are placed adjacent to each other. All digital
logic is then grouped between two analog double columns. By using a double
column, bias voltages can be distributed to two columns using one metal line
per voltage instead of two. Clock distribution across the double column can
also be shared by two digital pixel columns. The main drawback of the
double column is that input pads may have to be placed on top of a digital
area thus making the pads more susceptible to crosstalk and noise injection
from the digital logic.

2.1.2 Periphery

The periphery area of the chip consists of all peripheral blocks needed for a
functioning HPD readout chip. The peripheral area has traditionally occu-
pied a physical region of its own in readout chips outside the sensitive area.
Future developments plan to remove this dead area using 3-D integration.

Regardless of the location of the periphery area, it contains global func-
tionality, such as biasing circuitry and global configuration bits required in
pixels. It provides input and output pads and interface logic to a readout
system. This readout system can be another integrated circuit (IC) such
as an FPGA or a complete desktop computer. Blocks such as DACs are
used for the global biasing of the analog front-end circuitry. Bandgap refer-
ence circuits are utilized to provide temperature-independent voltages and
phase-locked loops (PLLs) can be deployed to generate higher on-chip clock
frequencies from an input reference clock. In large systems it is especially
useful to be able to distribute a lower frequency clock and then generate the
required high frequency on-chip clocks from this system clock. In some chips
[49], random access memorys (RAMs) are used for buffering of data before
sending it out of the chip. Typically, special radiation-hardened memory
cells have to be used in applications in a high radiation environment. One
chip provides an on-chip voltage regulator [37]. This makes the integration
of the chip into a large system easier because it relaxes the requirements on
the precision of the bulk power supply.

2.2 Readout ASIC data flow

Figure 2.3 shows the data flow inside an HPD readout chip. As mentioned,
pixels are the first blocks to receive signals from the sensor chip. There is
always a dead-time per pixel associated with processing of each arrival of
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Figure 2.3: Data flow of an HPD readout chip.

a signal. This dead-time depends on the analog as well as on the digital
front-ends. In the analog front-end, the dead-time is mainly determined by
return-to-zero or return-to-baseline time which indicates when the analog
front-end has discharged all signal received from the sensor and returned to
its initial state before the signal. After this dead-time, a pixel has stored
the measurement data either analogically or digitally, and this information
must be read out. It can be done using a shift-register or a common bus
between pixels.

If a chip uses the super pixel structure, data is transported from pixels
to super pixels first. The super pixel then transmits data to the End of
Column (EoC) block. This transmission can be done using shift registers
[25, 35] or using either a digital or an analog data bus [53, 54, 49, 37, 46].
A third option is to drive the discriminator signals directly from the analog
front-ends into the EoC [45]. This has an advantage of not requiring clock
signals inside the pixel matrix for timing measurement but requires a high
number of interconnections when the number of pixels increases.
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In the periphery, data are sent from EoC to a chip output via a periphery
bus or another suitable data fabric. This can be a network of data nodes
communicating via handshake protocol, for example. In the periphery area
there are usually more routing resources available for clock and signal dis-
tribution than in the pixel columns. The columns are limited in width by
the pixel pitch, and large repeaters for signals may not fit into the column
area. For this reason it may be possible to utilize a single parallel bus in the
periphery running at higher frequency than in the columns. For example,
if the column bus runs synchronously at 10 MHz and is 8 bits wide, the
periphery bus could be run at 160 MHz with 64-bit parallel bus to provide
sufficient bandwidth for 128 columns.

2.3 Measuring time

In tracking applications in which pixel hits are identified in time, timing
reference signals or time stamps for pixel hits must be generated either on-
chip or be provided externally. This generally takes the form of a counter(s)
synchronized to a local or system clock combined with hit signals in the pixel.
There are a number of different techniques each having its advantages and
disadvantages. The timing reference can be calculated from a single signal
or a timing reference bus can be distributed to pixels.

Figure 2.4 shows the two typical approaches for generating and register-
ing the timing information. In Figure 2.4a, the timing reference is generated
by a single global signal. When a pixel receives a hit, it starts an internal
counter and counts until the global reference signal stops it. The drawback
of this method is that the dead-time for calculating the time stamp can be
up to 2K − 1 clock cycles where K is the number of bits in the time stamp.
This dead-time can lead to inefficiencies and loss of data in the case of two
or more hits arriving to the same pixel close enough in time. This kind of
global timing reference is used for example in [25, 35]. The time stamp can
also be derived from the address of the hit and added to the hit at the EoC
if there is a known, fixed latency to transmit the hit from the column to the
EoC [12].

Another, commonly used method is shown in Figure 2.4b. The timing
reference is generated using a free running counter at the periphery of the
chip. The counter value is then distributed to all pixels, and latched into
a register at the arrival of a new hit. The dead time due to time stamp
generation is negligible in this case because the time stamp value is ready
one clock cycle after the rising edge of the discriminator. The drawback of
this method is the distribution of a multi-bit bus across the full chip. This
kind of time stamping is used in [47, 53, 49, 37, 46]. The time stamp bus
is often Gray-encoded to reduce the number of transitions per clock cycle,
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and hence minimize the digital switching activity.

The timing reference signals must be distributed over the distance of a
full column. For example, in [37] the distance is 336 × 50 µm = 16.8 cm.
The capacitance C of wires in Figure 2.4 can be higher than several pF (0.2
fF / µm in 130 nm CMOS [55]) which requires strong drivers for driving the
signals up the columns. The resistance R of the wires can exceed several kΩ
(1 Ω / µm in 130 nm, 10 Ω / µm in 28 nm [55]) slowing down the signal
propagation considerably. The difficulty of placing repeaters and eliminating
the quadratic delay is usually related to the implementation of the bus inside
a pixel column. In chips with hundreds of pixels per column, placing a
repeater in every pixel cell would introduce an unacceptable insertion delay.
Placing the repeaters less frequently breaks the pixel layout symmetry, and
may introduce mismatch between pixels. To avoid this distribution, the time
stamps can be also recorded at the EoC [54]. The drawback of this approach
is that once the buffer for recording time stamps is full, all arriving hits are
lost until a slot from the buffer is freed by reading the data out from all
pixels associated with that time stamp.

A combination of the two approaches is also possible where dead-time
is essentially traded-off for routing resources. It is possible to use a time
stamp bus of K − L bits, and use an L-bit counter inside a pixel. This
counter is started at the arrival of a hit, and stopped with a global timing
reference in the same manner as in Figure 2.4a. The difference is that the
maximum dead-time is now 2L − 1 clock cycles instead of 2K − 1, where
L <= K − 1. The problem of this approach is that a pixel must be read
out within 2L− 1 clock cycles or ambiguities in time stamps will arise. This
means that architectures with high throughput but also with high latency
cannot utilize this method.

A novel method for time stamping is presented in Figure 2.5. In this
scheme, the time stamp is generated using two counters. The least significant
bit (LSB) counter, which is an N -bit modulo-M counter, toggles at every
clock cycle. The most significant bit (MSB) counter is an M -bit binary-
encoded counter toggling whenever the LSB counter rolls over. Because the
MSB counter does not toggle at every clock cycle but every N clock cycles, it
is serialized using the LSB counter as a bit-select and sent to pixels using one
wire only. The LSB counter generates a global reference signal which stops
all counting pixels. The values stored in pixels can then be decoded using a
lookup-table (LUT). Note that if any arithmetic operations need to be done
on-chip inside the pixel matrix with time stamps, the LUT approach is not
feasible for even small values of k. This is true for Gray-encoded and pseudo-
random time stamps as well. Later in this chapter, an arbitration technique
using a time stamp comparison is shown which requires a comparison of two
binary values.

This time stamping approach has a dead-time of M clock cycles. This

26



Figure 2.4: Two methods for measuring timing information in pixels.

Figure 2.5: A novel method using serialization for generating a global timing
reference for pixels.
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is clearly better than exponential 2K . It is not negligible as with a free
running counter approach but the number of wires needed to distribute the
time stamp is only two instead of K. This also means that only two drivers
are required to drive the signals up the column. This approach also requires
less signal transitions per clock cycle than Gray-encoded counter. It has
been estimated from simulations that the average number of transitions per
clock cycle is 0.59 for K = 16 and 0.7 for K = 8. As the K gets bigger,
the global reference signal for the LSB counter switches less frequently, thus
leading to even bigger reduction in the average number of transitions.

The time stamping presented in Section 2.3 is closely related to the con-
cept of a bunch crossing. The Large Hadron Collider (LHC) at CERN uses
a 40 MHz machine clock, and all detectors are synchronized to this clock.
The time stamp in a detector in the LHC indicates from which bunch cross-
ing data came from. Physically a bunch crossing is a collision of particles
belonging to a specific bunch. The time stamp indicating the bunch cross-
ing number is called bunch crossing identification data (BX-ID). Typically,
when talking about the latency of data in a pixel chip, we are interested in
the latency in relation to the time stamping range. Generally, the latency
must be lower than the dynamic range of the time stamp to be able to
unambiguously identify ToA information outside the readout chip.

2.4 Occupancy, hit rate and output rate

Occupancy is an indication of the utilization of the front-ends or an indi-
cation of the data traffic inside a chip within a certain period. It indicates
which fraction of its resources a readout chip is using at a given moment.
Occupancy of an HPD ASIC is defined as:

O =
Npixelshit

T Npixelschip

× 100% (2.1)

where O is the occupancy, Npixelshit the number of pixels containing hit
information, Npixelschip the number of pixels in a full chip and T is a period.
In many applications, occupancy is a time-averaged quantity and the period
is not explicitly mentioned. Occupancy has an impact on the choice of
readout architecture as will be presented later in this chapter.

When a particle flux goes through an HPD, the detector is exposed to a
certain hit rate. This flux can be constant or it can vary according to the
environment in which the detector operates. The hit rate of an HPD ASICs
is defined as:

Rhit =
Npixelshit

Tacq Achip
(2.2)
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where Rhit is the hit rate, Tacq the acquisition time and Achip area of a chip.
Typically, hit rate is expressed as hits/s/cm2. Intuitively, the output rate
of a chip, Rout, must be at least equal to the input hit rate in order to avoid
data losses. As shown later by simulations, this is not always a sufficient
condition, as often the output rate must be at least slightly higher or data
buffers large enough to decrease data losses.

2.5 Efficiency

In this thesis, only the efficiency of the digital readout architecture is ana-
lyzed. This means, for example, that inefficiencies of analog amplifiers are
not taken into account. This cannot be ignored when calculating the ef-
ficiency of a full detector system but the analog front-end can be omitted
when comparing the efficiency of different digital readout architectures and
assuming the same analog front-end for all of them. The efficiency of a
digital readout architecture is then defined as follows:

Ero =
Noutput

Ninput
(2.3)

where Ero is the readout efficiency, Noutput the number of correct hits re-
ceived at the output of the chip and Ninput the number of hits received from
the output of the analog stage. Ero must not be confused with tracking
efficiency which is an attribute of a full detector system. Although not ex-
plicitly shown in (2.3), it must be emphasized that Ero is always measured
over a period. When counting the number of correct data packets transmit-
ted from a chip, the latency of the packets must also be taken into account.
Ambiguity in the time information can occur if the latency increases beyond
the dynamic range of the timing information in the packet. For example, a
packet with 14-bit time information recorded at 40 MHz can have a max-
imum latency of (214 − 1) × 25 ns = 409.6 µs before ambiguity in time
stamping arises. As mentioned in Chapter 1, a quantization error can also
be caused by the sampling of an analog signal with the digital clock. Before
calculating Ero, a maximum tolerable error must be defined. On the other
hand, when comparing different readout architectures with each of them
utilizing the same sampling or measuring technique, the quantization error
can be ignored.

Figure 2.6 shows the readout efficiency of a single pixel as a ratio of
Rreadout and Rhit. The 99 % threshold is shown with the red dashed line.
The choice of this value is motivated later in this section. The plot has
been obtained from simulation assuming exponentially distributed times-of-
arrival for hits with a mean time of 1/Rhit between hits. It is also assumed
that the pixel can buffer only one hit and discards all hits arriving between
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arrival of a hit and a readout operation. The readout operation is assumed
to start after a new hit arrives into an empty pixel buffer. It can be seen
from the Figure 2.6 that half of the hits are lost if Rreadout and Rhit are
equal. Notice the improvement from 50 % to 90 % when increasing the
readout rate by a factor of 10. Increasing the readout rate from 10 to 100
increases the efficiency by less than 10 %. The target of 99 % is reached
when the ratio equals approximately 100. The efficiency of a single pixel
Epixel determines the maximum achievable Ero of a full chip, when assuming
perfectly uniformly distributed hits, because for a full chip, the Ero can also
be expressed as:

Ero =
n∑

i=1

Epixeli

n
(2.4)

Note that (2.4) can be expanded to hold under any distribution of hits
by weighing the Epixel with a number of hits in that pixel against the total
number of hits for the full chip:

Ero =
n∑

i=1

Epixeli hitsi
n∑

j=1
hitsj

(2.5)

where hitsi and hitsj indicate the number of hits in a pixel i or j.

The minimum efficiency required is solely determined by the application.
For example, in [49], an efficiency of 97 % is quoted. [37] targets an efficiency
above 99 %. In [56] an efficiency of 98 % is deemed acceptable for efficient
track reconstruction. Efficiency of 99 % is targeted In [57]. In this thesis,
a minimum required efficiency of 99 % is used as a target. Because most of
the data analysis in pixel detectors is performed outside the readout ASIC,
factors related to external electronics also play a role in determining the
final required efficiency for a readout ASIC.

2.6 Continuous and sequential readout

Figure 2.7 illustrates the concept of sequential readout. When a chip is in
a data acquisition mode, it is accepting hits at its inputs for further pro-
cessing. These hits are shown as green arrows in Figure 2.7. In a sequential
architecture, the data acquisition can be disabled (Toff ), and incoming sig-
nals from the sensor are not fully processed by the readout chip (red arrows).
Signals from the sensor may still be processed by the analog electronics but
no digitization of this data is done.

Acquisition time Tacq indicates the duration of the data acquisition. Off-
time Toff indicates how long an architecture is insensitive to events after
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Figure 2.6: Readout efficiency of a single pixel with different readout and
hit ratios.

Figure 2.7: Acquisition, readout and power pulsing phases of the operation
of an HPD readout ASIC.
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acquisition. Toff may be divided into multiple phases such as readout
(Treadout) and power pulsing (Tpp) phases, discussed below. A duty cycle
of the chip can be defined using acquisition- and off-times as follows:

Tduty =
Tacq

Tacq + Toff
× 100% (2.6)

where Tduty is the duty cycle of the chip. For example, for 1 ms acquisition
time with 1 ms of off-time, the duty cycle is 50%. In theory, a continuous
readout is defined to have a duty cycle of 100% and Toff = 0 but in reality
for a continuous readout Toff << Tacq and Toff > 0. In some applications,
Toff can be significantly longer than Treadout. In such cases, the power
consumption of the chip can be reduced by powering down some parts of
the chip for the remainder of Toff . This functionality is called power-pulsing
or duty-cycling. This is in general only beneficial if the application allows a
small Tduty. So power-pulsing is not applicable as a generic power reduction
technique, like clock-gating for example. Architectures presented in this
thesis are optimized for very low Toff , and are designed for applications
requiring Tduty close to 100%.

2.7 Full and zero suppressed readout

Each pixel in an HPD can collect up to bpixel bits of information. Therefore,
for a full chip the maximum amount of bits can be defined as:

Nbits = bpixel Npixelschip (2.7)

where Nbits is the total number of bits to be read out. A pixel need not be
the smallest unit of readout on a chip but (2.7) holds even in the case of
larger unit (for example a super pixel). It can be said that a readout is zero
suppressed if Nbitsreadout < Nbits for some Npixelsreadout < Npixelschip . Zero
suppression always requires extra information to be added into the data, so
above a certain value of Npixelsreadout in a zero suppressed architecture, the
Nbitsreadout becomes larger than the Nbits would be for a full unsuppressed
readout. Instead of using the term zero suppression, a term data encoding
can be used as well. Zero suppression can also be thought of as a form
lossless compression, and can be applied to any bitmap.

2.8 Readout and acquisition control with a shutter

One significant benefit of active pixel sensors over passive ones like CCDs is
that an electronic shutter can be substituted for a mechanical shutter. An
electronic shutter can be precisely controlled inside an ASIC which makes it
possible to open and close the shutter in few nanoseconds. This allows for
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precise control of measurement and off-times. For example, if a chip cannot
cope with the hit rate it is exposed to, the shutter can be closed to give the
chip time to recover. As will be shown later, by precisely controlling the
shutter, for each ratio of Rout and Rhit, Ero can be improved by selecting a
specific Tacq.

2.9 Triggered and trigger-less architecture

A trigger signal can be used to select an event of interest inside a chip. In
general this means the amount of data produced by a readout chip can be
reduced by filtering with the trigger signal. The signal can be either external
to the system or generated internally on-chip.

In large-scale applications like high-energy physics experiments, dedi-
cated detectors generate the trigger signals after some latency for processing.
These triggers are then transmitted to the other detector systems. Triggers
are usually divided into several levels with the lowest level trigger having the
lowest latency. Its latency can be several microseconds, for example in [58],
but it is determined solely by the application. This requires more buffering
inside the readout chip than in a trigger-less approach as data cannot be
transmitted until the trigger arrives.

Reduction of data by using a trigger is not defined as zero suppression
as specified earlier. Architectures operating without a trigger cannot dis-
criminate between events of interest using time stamps and thus need to
transmit all data off the chip. The focus of this thesis is on trigger-less
readout architectures only.

2.10 Readout modes

Readout architectures can be broadly divided into three categories: frame-
based, packet-based and hybrids of these architectures. Each of these solu-
tions can be a full chip readout or zero suppressed as presented in Section 2.7.
In terms of hardware costs, the frame-based architecture has typically the
lowest cost. This is due to the fact that the same memory elements inside
pixels that are used in the data acquisition can be re-used as a shift register
for shifting the acquired data down.

2.10.1 Full-frame and packet-based modes

Data encoding for frame-based and packet-based architectures are shown in
Figure 2.8. There is no general definition of either mode so the following
categorization is assumed here. In a frame-based architecture in Figure 2.8
a): To decode the full position of hits, a structure of distributed address
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Figure 2.8: Frame- and packet-based data structures for encoding pixel hits.

bits must be assembled off-line and actual hit addresses decoded from this
information. Therefore, a logical structure of a full chip must operate to
encode all address information. Note that in the case of a full, non-zero
suppressed frame, pixel addresses are implicitly encoded into the position of
data bits in the frame.

In a packet-based architecture in Figure 2.8 b), the address information
of a pixel is directly encoded in a data structure transmitted off the chip and
can be directly read from the data-flow. In general this means that there
exists a logical readout structure inside a chip which is smaller than the full
chip itself. Note also that a chip utilising a packet-based architecture sends
out its information only if a pixel corresponding to that packet address has
been hit.

2.10.2 Zero-suppressed frame and hybrid mode

A zero-suppressed frame is shown in Figure 2.9. The structure is a frame-
based according to the previous definition because each pixel on a chip sends
its status bit in the structure. There is no way to know a location of a specific
pixel unless a full set of status bits is analyzed, and addresses decoded from
this frame. However, it is not considered as a full frame because each pixel
sends its hit data only in a case where its status bit is 1.

A hybrid solution is to send the data off the chip in a data structure based
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Figure 2.9: Zero-suppressed frame structure for encoding pixel hits.

on sub-sections of the matrix and incorporating hits from several pixels.
The number of sub-sections must be less than the number of pixels in a full
chip, otherwise the solution in question is a frame-based architecture. It
must also be larger than a single pixel to avoid falling into a packed-based
architecture. A hybrid solution between a frame-based and a packet-based
is shown in Figure 2.10. Note that the k shown in the figure can be an
arbitrary positive integer, and need not be the same for all data structures.
Figure 2.10a shows a structure with one address and several hit data from
pixels. The address of hit data is implicitly encoded into its position in the
data structure. The address must identify the position of the sub-section
within the pixel matrix. Note that every pixel in the sub-section must
send data bits, even if they do not contain any information. Figure 2.10b
shows a structure where addresses of hit data are explicitly shown in the
structure. This structure is especially useful if the packet has a fixed length
and always contains a constant number of pixel data but the data can come
from different addresses. Information from some pixels can also be removed
from the structure if an additional field indicating the number of hit data
is present (Figure 2.10c). As the fourth technique, a bitmap of pixels can
be included in the packet to indicate a valid data in the corresponding pixel
(Figure 2.10d). As these structures can also be considered as packets, from
now they are referred to as super pixel packets (SPPs) and the sub-sections of
the pixel matrix as super-pixels. There are also another options for encoding
the data such as used in [37] where a time stamp is shared between several
pixel data.

As the last architecture, a generic zero suppression scheme of a pixel
matrix is shown in Figure 2.11. There are x columns and y rows in the
matrix, and it has been divided into distinct regions and sub-regions of
pixels. At the lowest region, the number of pixels is h0v0. At the highest
level, the size of a region is a product of all region sizes: v0h0...vihj . Note
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Figure 2.10: A hybrid data structure for encoding pixel hits.

that here i = j, i, j ∈ N0.

Figure 2.12 shows a similar approach for zero suppression carried out at
the periphery level. The smallest blocks map directly to the largest width
of a pixel region. These top-most blocks are at the lowest level of periphery
zero suppression. If the largest pixel region is 4 pixels wide (h0...hj = 4),
each top-most block in Figure 2.12 represents these 4 pixel columns. If none
of these columns have at least one hit, a flag bit in this block is set to 0,
otherwise it is set to 1. Ultimately at the lowest suppression level in the
periphery, it is possible to have 1 flag bit indicating if the chip has any data
at all.

To distinguish different zero suppressed architectures from each other in
the following discussion, three different notations are defined:

V ertical region division : V (v0, v1, ..., vi) = {v0, ..., vi} (2.8)

Horizontal region division : H(h0, h1, ..., hj) = {h0, ..., hj} (2.9)

Periphery region division : P (p0, p1, ..., pk) = {p0, ..., pk} (2.10)

where i, j, k ∈ N0. These notations simply encode the size of the different
pixels regions. They are not functions and they do not map to any scalar
but simply list the sizes of different regions as a list of integers. To give an
analogy to an existing design, for the readout architecture in [35] we can
use notation V (8), H(2) as this readout architecture utilizes a 2 × 8 super
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Figure 2.11: A zero suppression scheme for a single pixel frame.

Figure 2.12: A zero suppression scheme for a chip periphery.
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Figure 2.13: Readout efficiency of frame-based readout with different acqui-
sition times.

pixel structure for zero suppressing the data. In that architecture, two pixel
columns are mapped into one flag bit at the periphery level. Because there
is no further suppression of these flag bits, there is no zero suppression at
the periphery level.

2.10.3 Analysis of frame-based readout mode

Packet-based and hybrid readout architectures in general introduce complex-
ity in the pixel circuitry, so the disadvantages of frame-based architectures
must be fully assessed before making any architectural decisions. Figure 2.13
shows the readout efficiency of a full-frame readout architecture with dif-
ferent acquisition times Tacq, simulated with different ratios of output and
input hit rates. In this case, it is assumed that Npixels is 256× 256 = 65536.
It can be seen that when the ratio of Rhit and Rout approaches unity, the
maximum achievable Ero drops below 40 %. It can be concluded from Fig-
ure 2.13 that to achieve Ero high than 90 % for example, the Rout must be
200-fold compared to Rhit, and

Tacq

Treadout
must be chosen accordingly. This

ratio can of course be chosen freely if an electronic shutter is implemented
inside a chip. In fact, software used in [59] to control a Timepix chip [25]
implements an online analysis algorithm which adjusts the shutter length to
the rate of detected particles for maximum readout efficiency.
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2.11 Comparison of zero suppression schemes

All packet-based architectures and hybrid solutions fall into the category
of zero suppressed architectures. As discussed in Section 2.7, there exists
a break even point at some occupancy below which the total data volume
read out using a zero suppressed architecture is less than the data volume
read out using a full readout.

Figure 2.14 shows the total number of bits produced with different zero
suppression schemes at different pixel occupancies. A full frame readout
is included for comparison. 32 bits per pixel hit are assumed with a pixel
matrix of 256 × 256 pixels. The physical dimensions of a pixel are irrelevant
for this comparison. Based on the definition in Section 2.10 and Figure 2.12,
the V (1), H(1) architecture skips all columns with no hits and reads all
status bits from columns with at least one hit. Each pixel contains a status
bit and the full 32 bits of a pixel are read out only if a pixel status bit is 1.

V (8), H(2) in Figure 2.14 indicates that only one bit per a 2 × 8 region
of pixels is sent off the chip if none of the pixels in that region are hit. If
there is at least one hit, all 16 pixels will send their status bits but only
pixels with status bit set to 1 send the full 32 bits. With V (8, 8), H(2, 1)
scheme, pixels are combined into 2× 8 regions first, then 8 of these regions
are vertically combined into one super region. Now there are 256

8×8 = 4 status
bits always sent from each column having at least one pixel hit.

P (4) in Figure 2.14 indicates that EoC regions are divided into groups of
4 and only 1 status bit per group is sent off the chip if none of EoC regions
in that group are hit. For Figure 2.14, a break even point between full-
frame and packet-based architecture exists with occupancies > 70%. For
zero-suppressed frame architectures this break even point is above 90%. It
should be noted that for occupancies very close to 100%, a full-frame readout
produces always the least amount of data due to the absence of any kind of
address or status bit information.

The V (8), H(2) scheme has been implemented in [35] using 65 nm CMOS
technology. In [25, 47] the full-frame readout is implemented. Packet- or
SPP-based architectures are presented in [37, 45, 49, 54]. It is also reported
in [36] that implementing V (8), H(2) scheme gives a reduction of 25% of
data rate when assuming 2× 2 pixel clusters.

2.12 Data buffering

2.12.1 Front-end efficiency and data buffering

Consider a system shown in Figure 2.15 having one data buffer with depth
N > 0. This is representative of a buffer in a single pixel. Two processes,
P1 and P2, operate on this buffer. P1 writes data into the buffer at rate
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Figure 2.14: Total number of bits versus occupancy.

Figure 2.15: A buffered system depicting a digital pixel front-end electronics.

RA and P2 reads data from the buffer at rate RB. It can be said that for
any finite N, if RA > RB, an overflow will occur eventually. If RB ≥ RA,
and rates are constants assuming also no burst-writes, for any N > 0, no
possibility of an overflow exists. Note that in the model used here, data is
removed from the buffer after the fixed service period 1

RB
has passed.

In many pixel applications the production of data is governed by Poisson
statistics and the rate A is not a constant but an average rate of occurrence
of writes into the buffer in this case [60]. In fact, the system in Figure 2.15 is
an instance of M/D/1/N -queue [61], where M indicates Markov process, D
indicates deterministic service time, 1 indicates the number of servers and N
indicates the size of the buffer. Figure 2.16 shows the simulated efficiency as
a function of ratio of RB and RA with different N. This plot indicates which
buffer size N and readout rate RB must be chosen for a rate RA so that
a specific efficiency can be achieved. When the buffer is able to hold only
one hit in memory (N = 1), a ratio RB

RA
must be > 100. When increasing

the depth of the buffer from 1 to 2 slots, a reduction of 20 in the RB can
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Figure 2.16: Readout efficiency of a digital front-end buffer as a function of
the buffer depth and the ratio of readout and hit rates.

be achieved for Ero > 99%. For an increase of the depth from 2 to 3, a
reduction of less than 3 is achieved.

A digital memory buffer with an overflow control is essentially a non-
paralyzable system [60]. An analytical formula for the efficiency of this kind
of system is [60]:

n =
m

1−mτ
(2.11)

where n is the true rate, m is the recorded rate and τ is the dead time of
the system. By substituting Ero = m

n , we obtain the function for the dead
time:

τ =
1− Ero

Ero n
(2.12)

This result is intuitive, as we decrease the requirements for Ero, τ can
be increased for the same true input rate n. Also, for the same Ero, if n is
decreased, the requirements for τ are also relaxed. The Equation 2.12 also
confirms the results obtained for N = 1 in Figure 2.16. This is an important
validation as the buffer model will be used as a basic building block for
larger systems in the following parts of this thesis.

2.12.2 Pixel column readout

Consider a system shown in Figure 2.17. In this system, k data buffers
are connected to a data fabric. The fabric can be a bus-based system or a
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Figure 2.17: A system with pixel buffers connected to a data transportation
fabric.

more complex network of switches, data buffers and registers. This system
can also be thought of as a k × 1 crossbar where k inputs are mapped to
one output. This is representative of a complete pixel column and its data
transmission scheme. If it is assumed that k × RB = RC , each buffer has
equal priority to the data fabric. This equal priority can be implemented
using a token ring arbitration. In this scheme each buffer contains a flip-
flop, and the token travels unidirectionally through the flip-flops. However,
this is inefficient allocation of bandwidth as a buffer may not have data
during each of its time slots while another buffer might need more than 1
time slot. Also, based on the analysis in the previous section, for N = 1, 2,
RB
RA

= 100, 7 respectively for k = 1. This implies a need to “over design”
the rate RC if readout efficiencies above 99 % are desired. For example,
assuming N = 1, k = 1, RC must be equal to Rb ≥ 100RA. It must be
noted that the requirement for this ratio is lowered when k is increased.

The effect of increasing k, the total number of buffers in a column, is
shown in Figure 2.18. It is assumed that N = 1. It can be seen that the
higher the k, the lower the ratio of RC to RA must be. Fair arbitration and
equal time multiplexing of bandwidth allocation is assumed here. In terms
of designing larger chips with more pixels per column, Figure 2.18 clearly
shows that the higher number of pixels per column is beneficial in terms
of the readout efficiency. On the other hand having a higher number of
pixels per column introduces other complications, for example longer signal
delays from the top of the column to the bottom, and increases the power
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Figure 2.18: Readout efficiency of a pixel column with different number of
buffers per column.

consumption per column.

As mentioned before, it is not particularly efficient to allocate a fixed
time slot for each of the data buffers. An ideal arbitration scheme would
allocate a time slot instantly to a buffer, and would read the buffers in a
strict first-in first-out (FIFO) order respect to the arrival times of hits. This
claim is not proven analytically here but only shown by a simulation. Two
different arbitration schemes are shown in Figure 2.19. In the Figure 2.19a, a
FIFO arbiter is shown. Requests from buffers are processed in FIFO order to
minimize the waiting times of buffers. In the case of simultaneous requests,
it is assumed that all requests are placed randomly into the arbitration
FIFO. In the Figure 2.19b, another arbitration scheme using a token ring
arbitration is shown. The scheme consists of two levels of token rings, and
is a special case of a tree of arbiters constrained to two levels. Variable G
denotes the number of token arbiters in the inner ring. A tree arbiter has
been presented in [62] for a 128× 128 pixel image sensor. A 7-stage arbiter
is created as a binary tree using small arbiter elements, and used to select
a column and a row among active requests.

A token circulates in the outer ring until it finds an inner ring with an
active request. In both the cases, it is assumed that Tarbitration+Tdata = 1

RC
.

Tdata is the time taken to send data from a buffer to the receiver. To be
more specific, in the case of a token ring, traversing one hop in the outer
ring takes Tarbitration and traversing one hop inside the inner ring takes the
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Figure 2.19: Two column arbitration schemes: a) FIFO arbitration b) Token
ring arbitration.

same amount of time. But the inner ring is only entered if and only if there
is at least one active request in that ring.

The impact of different arbitration schemes is shown in Figure 2.20. It
is assumed N = 1, k = 256 and exponentially distributed times-of-arrival as
before. As expected, when G = 1, Ero is the lowest due to the highest arbi-
tration delay. In this case, there is effectively no outer ring in the arbiter as
each hop always takes Tarbitration regardless of the state of the corresponding
request-signal. When changing G from 1 to 4, the 99 % Ero is achievable
with 4 times lower RC . A two-fold increase of G from 4 to 8 still gives
a reduction of 2 for RC but beyond that the gains are less significant. It
should be mentioned that higher values of G require signals to be driven
for longer distances. This is taken into account in the circuit-level analysis
in the following chapters. A study in [39] has implemented a token ring
scheme with G = 64 for a column of 256 pixels with a pitch of 55µm. How-
ever, no physical implementation details are shown nor post-layout analysis
is presented.

As the last option, a priority-encoded scheme may be used as presented
in [53, 63]. This scheme always selects the first pixel or super pixel having
data at the bottom [63] or at the top [53] of the column, and thus it is not a
fair arbitration scheme when using a continuous data taking mode. It works
well in a frame-based readout mode because the number of hits per pixel
is limited by the duration of the shutter and the readout mode, but in the
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Figure 2.20: Readout efficiency of a pixel column with different arbiters.

continuous mode this possibility does not exist. This option is attractive
for low-power applications though, because the digital power consumption
< 10mW/cm2 is reported in [63].

2.12.3 Super pixel buffering

From Figure 2.16 it can be seen that two means for improving efficiency are
increasing the buffer depth or increasing the ratio of readout to hit rate. As
an increase in the buffer depth can double the required memory per pixel,
and an increase in the readout rate will require faster clock speeds thus
consuming more power, another solution is examined. Consider a system in
Figure 2.21 with m pixels and one super pixel buffer. The minimum required
rate RC is then m×RA. Unless the rate RB > RC at least instantaneously,
using a second stage buffer larger than M = 1 serves no purpose as the
buffer will always contain one hit at most. In the case of Poisson arrivals,
the instantaneous rate for RB may be higher than RC although the average
rate of RB would be < RC .

Figure 2.22 shows the efficiency of the super pixel system presented in
Figure 2.21. The results have been obtained fixing the depth of the buffers
in the first stage to N = 1, and changing the depth of the second buffer (M).
It is also assumed that RB

m×RA
= 100. The mean hit rate is held constant and

the rate RC is changed. The variable m = 8 in this case, and a token ring
arbitration is assumed, where G = m. As shown in Figure 2.20, with G = 8
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Figure 2.21: A buffered system with m pixels and one super pixel buffer.

the rate RC
k×RA

must be 5 times higher than with ideal FIFO arbitration.
Compared to the case of a single pixel and Figure 2.16, it can be seen

that even when M = 1, the 99 % Ero is achieved using a RC
m×RA

of less than 4.
This result shows that with a shared buffer of one extra slot, a reduction of
the readout rate from 100 to less than 4 can be achieved without introducing
any losses to the readout efficiency. It is true that RB must still be chosen
according to the previous analysis based on Figure 2.16. However, when
analysed later in this thesis, it becomes clear that RB must only be a local
rate to the super pixel, while RC has to be a rate at the column level. When
comparing a single pixel case where the buffer size N = 2 to a super pixel
case with N = 1,M = 1,m = 8, the additional buffer slot is effectively
shared amongst 8 pixels. Assuming that buffers are of equal size and type
(one buffer slot = 1), and adding an extra overhead of one buffer slot to the
super pixel case, the area reduction can be expected to be

8× single pixel,N = 2

super pixel,N = 1,M = 1,m = 8
=

8× 2

8× 1 + 1 + 1
= 1.6 (2.13)

This is only a coarse analysis of the hardware resource required, and
this claim will be more accurately substantiated when the circuit-level anal-
ysis is performed in the following chapters. Using a buffer structure shown
in Figure 2.21 helps to achieve a high efficiency whilst reducing the clock
frequency and the required driving strength for repeaters which drive the
signals distances of over 1 cm up the pixel column.
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Figure 2.22: Readout efficiencies with super pixel buffer depths M = 1...8
and different readout to hit rate ratios.

After having established the means to decrease readout rate RC by intro-
ducing an intermediate buffering stage, a larger system using this intermedi-
ate buffering is analysed. The system under analysis is shown in Figure 2.23.
The full system has k pixels or buffers at the first stage and k

m super pixels
or buffers of the second stage, where m is the number of pixels connected
to one super pixel buffer. Each of these buffers is connected to a data fabric
which represents a bus or any other network suitable for transportation of
data.

2.13 Node-based data fabrics

2.13.1 Linear node-based data fabric

In this section, a novel architecture using a node-based approach is pre-
sented. In essence, this is a variation of a “conveyor belt” scheme mentioned
in [12], but with node-based arbitration and without having to implicitly em-
bed the time stamping into the readout scheme. It means there is no global
controller initiating the data transfer between the nodes. The scheme pre-
sented here is entirely data-driven, meaning that the nodes will start the
data transfer only if there is valid data to transmit. This also means that if
there are nodes with higher input data rate, they can send this data rapidly
to the next node if that node has much lower input rate.

For this novel architecture, consider a network of buffers and data nodes
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Figure 2.23: A buffered system with k pixels, m pixels per a super pixel and
k/m super pixels connected a data fabric.

shown in Figure 2.24. This network can also be seen as a hardware queue
with an insert-capability in each node. The node stores its state and the
data locally, and there is no global controller for the full queue. In this
scheme, data propagate from the top to the bottom, and each buffer has
to send its data through a number of nodes. There is no direct connection
from the top to the bottom in a bus-like manner, and several data can move
between different nodes simultaneously. The fabric differs from a typical
priority-queue hardware implementations [64] because it is used for data
transport, and not explicitly for sorting the data. An important assumption
made here is that packets passing through nodes are of equal length. In
fact, each node can be considered a specialized version of a register in a
shift-register based queue presented in [65]. An important distinction is
that in Figure 2.24 each node has two inputs instead of only one. This
indicates that an internal arbitration algorithm must be implemented.

This system also has similarities to pipelined bus structures [66, 67] which
can reach rates of Gpackets/s between two nodes in 180 nm technology. The
major difference is that the data fabric is a simplified version of these because
it is unidirectional, and each node will not transmit data back to the local
buffer but will only receive data from it. This will limit the rate achievable
for data fabric to RC0 as can be concluded from Figure 2.24 because each
data packet must eventually pass through the last node in the chain.

Again assuming a uniform input rate, RA for each data buffer, the mini-
mum requirements for the rates RCi are different for each i = {0, 1, · · · , k−
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Figure 2.24: A buffered data fabric with k buffers (pixels), and k data nodes.

1}, and are defined as follows:

RCk−1 ≥ RA

RCk−2 ≥ 2RA
...

RC1 ≥ (k − 1)RA

RC0 ≥ kRA

(2.14)

Each RBi is subject to the same restrictions as presented before. If
N = 1, the ratio RB

RA
must be greater than 100 for the readout efficiency

Ero ≥ 99%. A uniformly random distribution for buffer locations and an
exponential distribution for the times-of-arrival are assumed.

Each buffer has to gain access to its local node before it can transmit any
data. The arbitration between the local buffer and the previous buffer is also
shown in Figure 2.24. If an equal priority is given to the local and previous
buffer, an unfair arbitration is utilized. This has also been called a parking
lot problem [68]. The buffer at the bottom of the column has the highest
priority of 1

2 , the second buffer 1
4 and finally the nth buffer a priority of 1

2n .
The topology in Figure 2.24 cannot have a perfectly fair arbitration due to its
asymmetrical structure. However, there are approximation algorithms which
perform approximately fairly locally in each node. Based on an algorithm,
the arbiter selects data either from the local buffer or from the previous
buffer. This algorithm is only used in the case of conflicting requests from
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Figure 2.25: The contents of a data packet for different arbitration schemes:
a) WRR, b) LWF and c) OCF.

the two buffers. Different algorithms used in the simulations are:

1. weighted round-robin (WRR)

2. Longest-Wait-First (LWF)

3. Oldest-Cell-First (OCF)

In WRR, the local buffer is granted access to the data node only once
every t conflicts. This means each arbiter in the column is weighted using
the address of the data node. This removes some unfairness from the equal
round-robin algorithm. In LWF, each buffer and data node must also store
the waiting time for each packet. The access to a node is decided by com-
paring the waiting times of two packets, and choosing the longest waiting
time. In the algorithm used in this thesis for LWF, the wait counter is only
incremented in the case of a conflict. In OCF (see also [69], time stamps be-
tween two packets are compared, and the smallest is always selected. When
performing timing measurements with an HPD readout ASIC, these time
stamps may be already available in the data packets due to the require-
ments of the application. If they are not present, they must be generated by
other means. The drawback in OCF is that either the time stamp counter
cannot be allowed to roll over during the acquisition or a roll-over must
be detected. This problem is akin to the one found in real-time routers in
communication networks [70]. Note that an algorithm such as longest queue
first (LQF) (see [69]) may not be applicable here because the local buffer
may have different size than the node buffer, thus rendering comparison of
the queue occupancies meaningless.

Different data packets required by the data fabrics are shown in Fig-
ure 2.25. Naively, the WRR seems to have the least amount of overhead in
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terms of data in the packet. But this is only true if the architecture does not
already include time stamping information as a part of its data. If it does,
the data in the WRR and OCF are almost identical. The LWF requires an
extra field for keeping track of the waiting time in each node and in the first
slot of each buffer.

The node-based data fabric also has non-uniform latencies for packet
transmission from different buffers. The latency Tn for a packet from a
buffer n is thus

Tn =
1

RBn
+

n∑
i=0

1

RCi
(2.15)

If it is assumed that there is a data bus of constant width between each
node, it can also be assumed that RC0 = RC1 = · · · = RCk−1 = RC .
Now if it is also assumed that there are no conflicts and the nodes and
the buffers operate at the same speed, by simplifying (2.15), for a buffer n
Tnmin = (n + 1)R−1C . This is the minimum achievable latency for packets,
regardless of the arbitration scheme.

Figure 2.26 shows the readout efficiency Ero for different arbitration
schemes. It is assumed here that the number of buffers k = 64. No large
difference is observed between the WRR and the OCF schemes, and the ratio
of 1.5 is required to reach the Ero of 99 % or higher. The LWF has slightly
higher Ero given the same ratio compared to two other schemes. The ratio
to reach 99 % is 1.3. As LWF uses a local counter instead of a global notion
of time required in OCF for the arbitration, the hardware implementation
of LWF can be used even in applications without time stamping. The LWF
also does not suffer from the limited dynamic range of time stamping.

Two bus-based column architectures using the token arbitration are also
shown in Figure 2.26 for comparison. When the size of the inner tokenG = 8,
a similar performance to the LWF scheme is observed. The difference is that,
for a token arbitrated bus, the output rate RC must be a global rate across
the full column. Data must be sent from the top-most buffer to the bottom
in time R−1C . This imposes tighter global timing constraints than when using
the LWF scheme. In the LWF as in any distributed, node-based data fabric,
the rate RC is only a local requirement, and the timing constraints need to
be met only between two nodes, not across the full column. For a column
architecture with a token inner group size of G = 1, which is more similar
in terms of the timing constraints to a node-based data fabric, RC must be
approximately two times higher compared to other architectures.

The minimum achievable latency for a given buffer address was pre-
sented earlier. The maximum latency for a given ratio of RC

RA
is obtained

by simulation in this thesis. This ratio is set to 1 for these simulations.
Note that if the ratio drops below 1, a shutter-signal can be used to control
the amount of generated input data. Figure 2.27 presents the latencies of
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Figure 2.26: Readout efficiencies of the linear data fabric with different node
arbitration schemes (k = 64).

different node-based data fabrics and a bus-based column with G = 8.

It can be seen that with G = 8 and the LWF, the latency profile of the
two architectures is very similar. For the OCF and WRR schemes which
perform worse in terms of Ero than the others, a clear upper limit for the
latency can be seen. This limit is < 128 for the OCF, and < 150 for
the WRR. This is a desirable characteristic, especially if time stamping
information is collected, because it indicates that the dynamic range of the
time stamp does not have to be very large (8 bits) for k = 64 buffers per
column. 8 bits of time stamp is enough to unambiguously identify the hits
in time. For the OCF, an extra bit is needed to detect the rolling over of
the time stamp counters.

As the last point, the scalability of the distributed data fabric is con-
sidered. Some reticle-sized HPD readout ASICs have already been designed
and manufactured successfully [45, 37]. In chips of these dimensions, the col-
umn is typically more than 2 cm long. If a bus is utilized to send data from
the top to the bottom, the data must be driven a long distance through a
highly resistive and capacitive wire. Unless a tri-state bus is used, which has
a higher wire capacitance requiring larger drivers than other bus structures,
the gate delay further deteriorates the performance of the bus. Unlike in
a bus-based architecture, adding more nodes to the distributed data fabric
does not cause additional gate- or wire delays. However, it increases the
latency in terms of number of clock cycles, and this increase must be taken
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Figure 2.27: Latencies of the distributed data fabric with different node
arbitration schemes. Latency is measured in periods of packet transfers
(RC

−1).

into account when choosing the dynamic range of the time stamps.
The scalability can also be improved by deploying the super pixel tech-

nique presented in Section 2.12.3. Using this technique, several buffers or
pixels are connected to a single node in the data fabric. This decreases
the total number of nodes, and thus the minimum number of clock cycles
required to pass through the fabric. Depending on the number of buffers
sharing a node, the hardware overhead can also be reduced because the node
register, the node arbitration and data multiplexing logic are shared among
several buffers.

2.13.2 Hierarchical node-based data fabric

There are a number of techniques to reduce the latency of data coming from a
node-based data fabric. To reduce the fixed, non-congestion -based latency,
grouping of nodes can be used to create a hierarchical structure where the
longest chain of nodes is no longer determined by the total number of nodes
in the fabric. Using this grouping technique, packets sent from the last
node in the fabric need not pass through all nodes anymore. In this part,
only a fabric with two levels of hierarchy is considered, but in theory it is
possible to divide a data fabric with k buffers and nodes into log2(k) levels
of hierarchy. More than two levels is not practical for small pixel sizes, will
be discussed in Chapter 4 where physical implementation is considered.

A node-based data fabric with two levels of hierarchy is shown in Fig-
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Figure 2.28: A node-based data fabric with two levels. The first level has k
nodes and the second one k/G = m nodes.

ure 2.28. Notice that each node has a similar structure to that shown in
Figure 2.24. Again, to simplify the analysis, it is assumed that RCk−1 =
... = RC1 = RC , RDm−1 = ... = RD0 = RD, and also that REm−1 = ... =
RE0 = RE . After this assumption, the minimum latency for data packets
is (G RC + m RE + RD)−1. As in the case of the linear data fabric, the
upper limit for the latency is set by the size N of the buffers and the arbitra-
tion algorithm within the nodes. If the arbitration algorithm grants access
eventually to each node and buffer, this latency is upper-bounded. When
N gets larger and the arbitration algorithm becomes less fair, the latency
of packets increases in proportion. Note that the algorithm on each level
of nodes can be chosen independently of each other, and the optimal choice
of the arbitration algorithm may depend on the number of levels and the
size of each group (G). Unlike in the case of the linear data fabric, only the
WRR algorithm was used due to its simpler implementation compared to
the other methods.

The performance of the two-level fabric was simulated using the same
testbench as for the linear fabric. Again, address-wise uniformly distributed
packets were injected into the fabric. The number of packets per an interval
of time was generated using Poisson distribution. Figure 2.29 shows the
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Figure 2.29: Readout efficiencies of the hierarchical 2-level data fabric (k =
64, G = 4) using WRR arbitration in nodes.

readout efficiency versus the ratio of input and output rates with three sizes
of buffers (N = 1, 2, 3) and a group size G = 4. The ratio to achieve
efficiency of 99 % is around 1.2 for N = 1, < 1.1 for N = 2 and < 1.05 for
N = 3. The result for N = 1 indicates the hierarchical fabric can be even
more efficient than a linear data fabric or a token-based bus with a group
size G = 8 or smaller given the same output-input ratio. The difference in
performance is approximately 10 %, but the physical implementation details
may have an impact on the final choice.

The impact of the group size G to the efficiency was also estimated,
and is shown in Figure 2.30. There is no large impact on the choice of the
group size to the efficiency. Based on these results, it is always beneficial
to optimize the group size for minimal latency in clock cycles. However,
a larger group size G will have impact on the maximum clock frequency
(and thus the latency) and on the throughput as will be seen in Chapter 4
where physical implementation details are discussed. On the other hand,
if the clock frequency is set by the application due to timing resolution
requirements, and a higher frequency clock is not available for readout,
optimization of group size G can be done at no cost to maximum throughput.

The latency of the two-level data fabric was also estimated, and it is
shown in Figure 2.31. It is clear, as discussed above, that the average latency
is smaller in the hierarchical data fabric than in the linear fabric, when the
group size G is optimal. When the buffer size N = 1, the worst case latency
is reached in the event that the last packet of the last node loses the first
arbitration in each node. As unlikely as this event is, the impact of bursts
of arriving packets, which can cause this worst scenario, must be taken
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Figure 2.30: Readout efficiency with different group sizes G for 2-level data
fabric (k = 64) using WRR arbitration.

into account if a specific minimum latency is essential for the application
in question. In the case of k = 64, the smallest average latency is achieved
using G = 8. The most probable values of the latencies for G = 2, 4, 8,
16 were 34, 21, 16 and 20, and were obtained from the same simulations
as the efficiency figures. Based on these average latency values, it can be
concluded that the hierarchical data fabric offers attractive options over the
linear fabric for the latency reduction.

2.14 Network on-pixel chip

A novel way to transfer data from pixels to the periphery is to use a two-
dimensional network, in which packets are sent between nodes. While widely
used in network-on-chips (NoCs) for several years already, this technique
has not been deployed in pixel chips in the past. This is an extension of
the concept from the previous section, where data nodes communicated in a
vertical direction only. In a fully networked system, the nodes communicate
also in the horizontal direction. Vertical connections are implemented as
unidirectional due to the structure and function of an HPD readout ASIC.
In theory, it would be possible to distribute the configuration information
to the matrix also using the same network, but in practice shift-registers are
used for this purpose because high bandwidth is not required. All data must
be first moved to the periphery of the chip before transmitting them off the
chip as shown in Figure 2.1. On the other hand, allowing horizontal data
flow in both directions gives more flexibility in avoiding highly congested
nodes, and more importantly distributes the traffic more uniformly in the
horizontal direction. The network is also more robust to manufacturing
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Figure 2.31: The latency of packets in the two-level data fabric.

errors and noisy pixels that cannot be masked because it allows routing of
packets via neighbouring columns in the case of a broken data node in one
column.

There are also some drawbacks in using the networked architecture com-
pared to using a column-based approach only. The network requires routing
of digital signals over analog areas. This may cause coupling of signals from
digital area to the analog. As [71] mentions, a 2-V swing in a digital line
coupled to the analog via a capacitance of only 0.5 fF can inject a charge of
1 fC to this node. The networked system requires a larger area for arbiters
and controllers than a column-based system because the arbitration must be
done for all inputs and outputs. Each data packet in the network must also
contain the full address of the source of the packet. This increases the num-
ber of bits per memory slot by log (x) The network of k× x nodes is shown
in Figure 2.32. The analysis of this network needs to take into account more
things than in the case of the data fabric in the previous Section 2.13 for
several reasons:

1. Data can move in three directions instead of one.

2. Each rate Ri,j has an impact on a two-dimensional set of nodes. More
precisely, the rate Ri,j can impact nodes Ni′,j′ where i′ = 0...x −
1, j′ >= j.

3. There are 4 inputs and 3 outputs for each node instead of 2 inputs and
1 output.

4. Analytically choosing arbitration priorities cannot be done without
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Figure 2.32: A network of k × x data nodes.

full analysis of the two dimensional network. In this thesis, optimal
priorities are selected based on empirical simulations results.

The network must have at least an output rate

RO =

x−1∑
i=0

Ri,0 >= kx×RA (2.16)

For simplicity it is assumed that RC0,0 = RC1,0 = ... = RCx−1,0 = RC .
This assumption holds without loss of generality if the periphery has, for
example, a bus with fair arbitration. After the assumption, (2.16) can be
restated as RO = RC >= k ×RA.

A more detailed view of a single node of the network is shown in Fig-
ure 2.33. The node consists of a storage register for one packet, an input
arbiter and an output arbiter. The input arbiter selects the next input data
source for the register if the register is empty. Similarly, the output arbiter
chooses the next destination for a data packet in the register if any are avail-
able. As each arbiter must perform a handshake with adjacent nodes, there
is an overhead of several clock cycles for arbitration which cannot be uti-
lized for sending data. As is customary for network directions, four cardinal
directions are used to denote different directions in the network.
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Figure 2.33: A close-up of one data node of the network and a local buffer.

Unlike in the previous sections, the following simulations were performed
using synthesizable RTL descriptions instead of non-synthesizable models.
The main reason for this was that to simulate accurately the behaviour of
data nodes a clock cycle accurate model was needed. This is important be-
cause the data transactions between the nodes can take several clock cycles,
and the transactions can be interleaved in time. This means that when a
node has sent the first word of a packet to the next node, it can already read
in one word from another node. Thus, a data packet can have its words split
between two data nodes.

Unlike the previous architectures, the network has essentially two di-
mensions, and thus the results are presented as two dimensional matrices
instead of scatter plots. Figure 2.34 shows the readout efficiency per data
node and Figure 2.35 the average latency per data node of all measured
packets in a network of 64×64 nodes. The hits are randomly and uniformly
distributed with a total input rate of 642 × RA = RO. The WRR arbitra-
tion introduced in the previous section is assumed for local versus non-local
data. Non-local data arbitration works as follows: Select north input if it
is available. Otherwise, when in conflict between east and west, select the
next input in a round-robin fashion. This arbitration is done in the input
arbiter. The output arbiter always forwards the packet to south if possible.
Otherwise, it selects from east and west (if both are available) in a round-
robin fashion. To avoid useless live locks and bouncing of packets between
two data nodes, a packet cannot be sent back in the direction from which
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it came unless it has been routed to south at least once between transfers.
This requires keeping the direction of the last arrival in a memory in the
data node (one extra bit) but does not require any extra wires for connection
between nodes.

The efficiency is higher on top of the columns because there is less con-
gestion in the data nodes on the top. The local buffers in the data nodes
are able to access the data network faster due to the WRR-arbitration. As
all packets must be routed through the nodes at the bottom of the column,
these are areas with more congestion. The local buffers at the bottom of
the column thus have lower frequency of access to the network. The latency
is shown as the number of periods of RC

−1. The latency is as expected,
higher toward the top of the columns. On the top of the matrix, the latency
is directly proportional to the row address of the data node.

This proportionality is lost lower down the matrix. For example, packets
from the first (lowest) row can still have a latency of up to 13×RC which is
higher than the row address. This is a result of the WRR arbitration algo-
rithm (see Section 2.13) which assigns more bandwidth to the data coming
from the top.

Note that these plots are not used to make direct comparisons to the
column-based data fabric. They illustrate the expected characteristics of
the network only, and the trends in the efficiency and latency.

To assess the performance of the network compared to a column-based,
vertical-direction-only data fabric, the horizontal routing was disabled and
the results compared to a system where this routing is enabled. The com-
parison of two systems using randomly and uniformly distributed hits is
shown in Figure 2.36. The distribution of hits is shown in the plots on the
left. The readout efficiency is shown in the plots on right side. The only
noticeable difference can be seen in the region at the bottom of the pixel
matrix. When horizontal routing is disabled, the first few rows have much
lower efficiency than with the horizontal routing enabled. Because enabling
the horizontal routing allows packets to avoid hot spots and congested areas
more easily, packets arriving from the top do not need to utilize their column
of origin only. The simulated total efficiency without east-west routing is
91.4%. When the routing was enabled, the overall efficiency across the full
matrix is 92.6%. The used output-input rate ratio in the simulations was
equal to 1.

When using a non-uniform distribution (Gaussian with a mean of 16,
standard deviation 4), the difference of the efficiencies of the two systems is
more significant. This is illustrated by Figure 2.37. The overall efficiency
without east/west-routing is 76.9% and correspondingly with the routing
enabled 81.5%.

Finally, Figure 2.38 shows the total efficiency of three different 64 × 64
network simulations. “No pixels” -label indicates that each node consists of
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Figure 2.34: Readout efficiency per data node of a 64× 64 network.

61



Figure 2.35: Average latency (in RC
−1) per data node of a 64×64 network.
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Figure 2.36: Comparison of two 32 × 32 networks. The top row does not
have east/west routing, and the bottom row does.
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Figure 2.37: Comparison of two 32×32 networks. The top row does not have
east/west routing, and the bottom row does. The hits are non-uniformly
distributed.
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Figure 2.38: Comparison of efficiency of three 64× 64 networks.

only one buffer without pixels being modelled. When the east/west routing
has been disabled, the efficiency is lowest at low ratios. When the ratio
RC

k×RA
exceeds 2, the benefits of east/west routing start to be negligible in

terms of the efficiency. As expected, given the same input rate, this reduces
the efficiency compared to a case where pixels are modelled. In this case 8
pixels per data node are assumed.

Comparing the efficiency of the 64× 64 network with pixels to previous
readout architectures, the network architecture has the highest efficiency
with the lowest output/input ratio. At approximately a ratio of 1.02, the
99 % efficiency mark is hit. This means there is very little extra bandwidth
required to achieve a certain rate, thus reducing the power consumption and
requiring less hardware resources such as wide parallel buses.

In this section, it has been demonstrated that it may be advantageous
to deploy a network of nodes using two-dimensional connections instead
of moving data to one direction only. In the later chapters, an analysis
of the additional hardware resources required in comparison to a column-
based, vertical-direction-only solution is performed. Due to area constraints
imposed by pixel dimensions, the feasibility of implementing this kind of
network can be evaluated only after the full PnR of the design. The crosstalk
and coupling of digital signals routed across analog pixel area can only be
fully characterized from a manufactured device.

The network techniques and the data fabric techniques can also be com-
bined. For example, [72] presents a hybrid structure of global network with
local communication using rings and buses. This can be useful because
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Table 2.1: HPD ASICs with time/charge measurement. FF = full frame,
SEQ = sequential readout, PKT packet-based, TRG = triggered, CO =
continuous, ZSF = zero-suppressed frame, ToT = charge measurement, AN
= analog pulse height

Name Tech. Cols × Rows Pixel µm2 Readout Time resol. Ref.

Alice1LHCb 250nm 32x256 50x425 FF,TRIG 25ns [47]

CMS 0.25µm 250nm 52x80 150x100 PKT,TRG,AN 25ns [48]

FEI-2 250nm 18x160 50x400 TRG, 25ns [74]

FEI-3 250nm 18x160 50x400 PKT,TRG 25ns [49]

Timepix 250nm 256x256 55x55 FF,SEQ,ToT 10ns [25]

FPIX2 250nm 22x128 50x400 PKT,CO 132ns [54]

FEI-4 130nm 80x336 50x250 PKT,TRG,ToT 25ns [75]

TDCPix 130nm 40x40 300x300 PKT,CO,ToT 150ps [45]

CLICpix 65nm 64x64 25x25 ZSF,SEQ,ToT 10ns [35]

the local hit rate gradients in a pixel chip are rarely non-uniform but the
hit rate gradient across the full pixel matrix can change. Because the two-
dimensional network is best suited for equalizing the traffic globally, and the
unidirectional data fabrics require less area and are simpler to implement, a
mixture of these techniques could be adopted to arrive to the most optimal
solution in terms of throughput, latency, power and area. In general, as
[73] states, the optimization of this network only makes sense for a specific
traffic distributions, and source and destination address distributions. Un-
like in generic networks, in the case of a pixel chip only the source address
(input hit) distribution has to be considered because there is no necessarily
fixed destination address for the data. This last point also ensures that the
routing algorithm need not know the destination addresses.

2.15 Previous HPD ASICs

In Table 2.1, previous HPD ASICs related to this work are listed. Only chips
capable of timing measurement and in some cases also charge measurement
are listed. The pixel size is given as height (Y) × width (X).

In addition to the chips described in Table 2.1, several other HPD ASICs
exist [42, 76, 77, 43, 44]. These are mainly frame-based readout chips devel-
oped for very high occupancy (close to 100%) and for hit rates> 1GHz/cm2,
and for imaging applications with event counting and single photon counting
capabilities. The chips have no timing measurement capabilities, and are
summarised in Table 2.2.
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Table 2.2: HPD ASICs without time-of-arrival measurements. FF = full-
frame, CO = continuous

Name Tech. Cols × Rows Pixel µm2 Readout Ref.

Dosepix 130nm 16x16 300x300 FF, [77]

Eiger 250nm 256x256 75x75 FF, CO [76]

Medipix3RX 130nm 256x256 55x55 FF, CO [42]

Mönch 130nm 160x160 25x25 FF [44]

XPAD3 130nm 80x120 130x130 FF [78]

2.16 Prototype chips

A number of HPD readout ASIC prototypes have also been designed. This
section lists some of these relevant to this thesis. Because the architectural
challenges for small prototype chips are not the same as for full-fledged
systems, a full analysis of their capabilities is not done. They may still have
interesting architectural properties that can be scaled to full-sized chips.

In [46], double column buses are implemented as differential lines using
reduced swing pseudo differential CMOS signaling. The advantage of this
approach is lower power consumption than when using the full CMOS swing.
Due to the reduced swing, the speed of the bus is also improved. The
drawback of this method is that the implementation is full-custom thus
excluding the possibility of automatic static timing analysis (STA) tools. It
is mentioned in [46] that due to a connection error and too high a capacitive
load, the bus could not be run at targeted frequency of 160 MHz, and the
speed was reduced to 50 MHz.

2.17 Concluding remarks

This chapter introduced several concepts related to HPD readout ASICs. An
overview of the floorplan of an HPD readout ASIC was given, in which the
chip is divided into two main parts: The active pixel area or the pixel matrix,
and the periphery. A definition for readout efficiency of an architecture was
given, and the occupancy was presented as a measure for the activity within
the architecture.

A novel time stamping method was presented to reduce the switching
activity in global time stamp busses spanning the full pixel column. This
method also reduced the number of wires required for the distribution of the
time stamp to two. As a trade-off, the contribution of the time stamping to
overall digital dead time was increased in proportion to the time stamp size.

Different architectural solutions were compared using C++, SystemC
and SystemVerilog RTL simulations, and two novel architectural solutions
presented. Especially, two different data fabrics with locally communicat-
ing nodes were given. It was shown that these architectures could be used
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instead of the often used bus-based architectures without worsening the per-
formance in terms of efficiency and latency. As the second novel architectural
option, a full network inside the pixel matrix was proposed. Although the
network has some implementation issues such as routing of digital signals
over analog sections, it offers an option to improve the yield of the system
by routing data packets around digital sections with manufacturing defects
instead of having a full unusable column. It was also shown by simulations
that in the case of non-uniform occupancies, the network equalizes the data
traffic among all columns in the pixel matrix. The benefit of this is that
the architecture need not be designed to run at higher frequency or rate to
accommodate for local hotspots.

A list of existing HPD readout chips was compiled at the end of the chap-
ter, and the chips were characterized based on the definitions presented in
this chapter. From this characterization it could be seen that no pixel read-
out chip with nanosecond-level measurement capabilities with pixel pitch in
the range of 55 µm exists. This is one of the gaps that one of the architec-
tures presented in this thesis tries to address.
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Chapter 3

Simulation of HPD ASICs

This chapter describes the modelling and simulation techniques used during
the work done for this thesis. It also presents technical details of how the
simulations and the models were implemented by the author. The purpose
of the modelling in this thesis was to guide the design toward a specific
architecture meeting all requirements, which could then be implemented us-
ing logic synthesis and automated PnR. It also enabled the exploration of
several architectural options without having to go through more time con-
suming RTL design, debugging and functional verification stages. Different
architectural concepts were explored in Chapter 2, and the results were used
as the starting point of the simulations. A final goal of the simulation imple-
mentation was to allow the use of realistic test vectors generated by software
descriptions of the different detector applications.

As described in Chapter 2, there can be tens of thousands of pixel chan-
nels per HPD ASIC. Modeling each pixel very accurately at transistor-level
or even at RTL can increase simulation run-time drastically when com-
pared to higher level models. Analog front-ends can be modelled behav-
iorally as well as the digital, with some details being simplified. For the
rest of the chapter, a word ’model’ refers to a non-implementation level,
non-synthesizable model unless explicitly stated otherwise.

3.1 Simulation tools and methodologies

3.1.1 Methods in this thesis

This thesis uses RTL, TLM and behavioral abstractions for modelling the
hardware in simulations. RTL models are synthesizable and use bit-accurate
communication. TLM components communicate using transactions such as
pixel packet transactions and request-transactions for arbitration. Behav-
ioral models use a predetermined data structure for inter-component com-
munication such as a data packet modelled as a class.
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Optimal sizes for super pixels for achieving the highest data reduction
are determined using functional, non-timed simulations. A simple address
mapping algorithm for this is described in Section 3.2.3.

C++/SystemC and SystemVerilog (SV) are used as modelling languages.
SystemC has been used because of the flexibility and efficiency of C++ and
the access to free open-source simulator. The main reason for the deploy-
ment of SV has been the usage of Open Verification Methodology (OVM)
and Universal Verification Methodology (UVM) libraries which also contain
implementations of TLM 1.0 interfaces (UVM has also TLM 2.0). These
libraries contain useful functions like factory-method implementation which
allows a fast iteration of different models without changes in the existing
models by changing one line of code in the top-level test class which instan-
tiates the simulation models.

Also, no analytical models are used in the simulations. The main mo-
tivation for this is the complexity of deriving new models, and the diffi-
culty of introducing new parameters to the analytical model without fully
re-verifying and proving its validity. Using analytical models for front-end
buffers and other simple components also makes it more difficult to use them
as base classes for more complex models.

3.1.2 Methods used in related work

Some simulation and modelling work has been carried out related to HPD
readout ASICs. This section briefly summarizes previously published works.

In [40], a statistical approach is used to determine optimal sizes for a
super pixel to group multiple pixel hits into one packet. When a set of
pixel addresses is given to the algorithm, it computes how many packets
are created based on the size of a super pixel. The algorithm has a second
layer which performs a bit-level encoding for the hits and supports multiple
encoding schemes. In this way, the most efficient super pixel area and bit-
level encoding are found.

In [79], a generic pixel simulation framework VEPIX53 is presented. It
has been implemented using SV and UVM. Using this framework, behav-
ioral simulations of two super pixel buffering architectures are presented at
column-level level. No full chip simulations are presented.

One approach to simulating a full pixel chip has been to develop a
non-synthesizable very high-speed integrated circuit hardware description
language (VHDL) model and integrate this with a Monte Carlo (MC) hit
generator [36]. Because SV offers all required constructs for high-level sim-
ulation, no VHDL was used during this thesis.

In [37], a high-level C++-simulation framework has been developed. It
was used to study inefficiencies related to the pile-up at the front-end and
the overflows at the super pixel buffer. An integration with physics event
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data has also been done in [37]. It is also reported in [75] for the same
project, that some analytical models for the inefficiency calculations were
used.

An RTL simulation approach has been taken in [38]. They report a
simulation performance of 2800 clock cycles in one second of real-time. It
is described that the simulation contains 16 readout chips (52 × 80 pixels)
with a total data rate of 320 Mbps. However, it is unclear from the reference
whether a full chip RTL model has been used in this case.

A study of a 256 × 256 pixel matrix architecture [39] has been carried
out using a combination of C++ modelling and VHDL simulation. No
comparison of execution times between the C++ and VHDL models is given.

3.2 Architectural Simulation

In this section, several techniques used for architectural simulations are ex-
plained. The main goal of these simulations is to find suitable architectures
for HPD readout ASIC architectures targeting specific applications. An-
other aim is to create a suitable framework for comparing and studying
different architectural solutions.

Due to the large amount of parallel channels and increasing complexity
inside a pixel, simulation of a full HPD ASIC can be accelerated substan-
tially by modeling the chip above transistor-level or even above RTL. The
run-time improvements gained from high-level modelling approaches are pre-
sented later in this chapter.

Gajski and Cai [80] present nine different levels of abstraction for a
system. They divide the functionality into communication and computation.
These components then have three different levels of abstraction: untimed,
approximate-timed and cycle-accurate.

Based on the definitions in [80], three different levels of abstraction are
used in this thesis:

• Sequential, cycle-based communication, untimed computation (C++,
SV)

• Approximate-timed communication and computation (C++, SystemC,
SV)

• RTL simulation with synthesizable circuit models. (SV)

In a sequential model, the shortest simulation interval equals one cycle.
Communication latency is measured in these cycles and events shorter than
one cycle are not simulated. In this thesis one cycle is matched to the clock
cycle of a system but this need not be always the case. There is no notion
of time except a counter for calculating the number of executed cycles. This
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kind of simulation is similar to instruction-set simulators (ISSs) which can
be, and are often, written in sequential programming languages such as C or
C++. This kind of simulation can be executed in a single loop for a specific
number of cycles. The sequential model can also be implemented without
coroutines [81] because there is no need for event scheduling and support for
multiple processes. A coroutine is a function which can have multiple entry
points instead of executing in a strict sequential manner without exiting and
re-entering the function until it is finished. The sequential model, however,
is not always faster to execute than an approximate-timed model. This
depends on the number of processes executing in parallel in a timed model.
Also, if a sequential simulation performs a lot of useless computations in the
execution loop, it can run noticeably slower than a timed model. A useless
computation is a non-state altering functionality. For example, if each pixel
is polled for data during each execution cycle while a small fraction of pixels
hold data at any given cycle, this can slow the simulation down. Thus, a
more efficient solution is to keep a list of hit pixels, and only poll this list
during each cycle.

Approximate-timed models contain delays implemented using multiple
processes executing at the same time and wait-statements, and so a simu-
lation kernel supporting coroutines and process synchronization is required.
As the simulation kernel is usually concurrent rather than parallel, there is
only one active process at once. This means that each process must yield
control to the kernel, otherwise that process will keep executing without
giving control to other processes. This is called cooperative execution. To
decrease the simulation run time of a timed model, computation and pro-
cessing should only be done when there are data available. This means that
the evaluation of states of the components is not performed at every clock cy-
cle. In fact, the clock can be completely removed from approximately-timed
models and synchronization of processes performed using mutexes, mail-
boxes, semaphores and events other than frequently occurring clock edges.
SystemC [50] and SV [82] both have support for all these mechanisms.

RTL simulations can generally be executed using the same simulator ker-
nel as approximate-timed models. The difference is that they are described
by following a set of rules that make the descriptions synthesizable. It is also
possible to create an optimized simulator for RTL which does not support
timed simulations [83]. This optimization improves the run-time of simula-
tions considerably, and it has been reported that it can execute at least at
double the speed of a simulator supporting timed models fully. For a pixel
chip with tens of thousands of pixels containing digital processing logic, RTL
simulations can take hours to collect sufficient amount of statistics. This of-
ten means tens or hundreds of hits per one pixel in one simulation. Based
on this very rough estimate, it can be quickly calculated that for a 65k pixel
chip, a magnitude of 10M hits are required in total.
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A generic algorithm for sequential cycle-based and approximate-timed
simulation of the readout architecture of HPD ASICs has been developed.
This algorithm is specific for an architecture operating without a trigger-
signal. It consists of the following steps:

1. Generate hits for the current cycle or read them from an external file.

2. Inject hits into pixels.

3. Check the pile-up at front-ends.

4. Apply a grouping algorithm (clustering) for single hits to form ’clus-
ters’.

5. Check the availability of buffers at the front-ends (if any).

6. Do arbitration of all column buses (if any).

7. Read a hit from each column if it is a readout cycle.

8. Check the state of EoC buffers for each column. If a buffer is full,
write hit back into its column.

9. Arbitrate next EoC buffer(s) with data available to read.

10. For each output link, read corresponding number of bits (or hits) from
the EoC buffers.

11. Repeat from the step 1 until enough cycles have been simulated.

There are some steps which need to be executed in a strict sequential
order. For example, the grouping algorithm must be applied after checking
the pile-up. Other steps, such as output link simulation can be done at
any point. The algorithm described here can be further refined to include
functionality like trigger-signals. Also, the dead-time of front-end buffers can
be modeled similar to the front-end pile-up. In addition, because many of
the steps are orthogonal, they can be simulated or even modeled separately.
For example, the pile-up at the front-ends is proportional only to the hit
injection rate and can be simulated at a very early stage without the rest of
the model being implemented. The algorithm can be implemented in a fully
sequential manner or using coroutines and concurrent simulation techniques.

3.2.1 Hit extraction and generation

The input stimuli for readout architecture simulations can be generated ei-
ther by an external program or by the hardware simulation itself. A method
used in this thesis is to first analyze a data set generated by a program

73



Figure 3.1: The process for extracting hits for the simulations.

external to the simulator, and create a weighted random number genera-
tor (RNG) based on these values. This approach requires less work if, for
example, Monte Carlo physics simulations already exist for a specific appli-
cation than trying to accurately model the physical phenomena creating the
pixel hits. Because SV supports constrained randomization and generation
of arbitrarily weighted distributions, it has been used to create weighted
RNGs in the application specific simulations done in this thesis. Then, in-
stead of using the original Monte Carlo data, these RNGs are used to verify
the architectural performance. The advantage compared to the original data
is, that by changing the seeds of these RNGs, different randomized scenar-
ios can be created instead of repeating the same patterns of hits in every
simulation run. Using application-specific Monte Carlo data as a basis for
RNGs gives a more accurate simulation of the expected hit occupancy and
architectural data traffic than randomization without using Monte Carlo
data.

The process of hit generation is shown in Figure 3.1. Data are first pro-
duced using Monte Carlo simulations. These simulations do not contain a
single monolithic model but consist of a set of layered generators from dif-
ferent physical phenomena, for example the charge generation mechanism
in a silicon pixel detector. The important thing for architectural simula-
tions is that the output of Monte Carlo simulations contains either a pixel
coordinate or spatial information which can be converted to pixel addresses
that match a specific pixel geometry. The data should also contain charge
deposited per pixel for a pile-up simulation of the analog front-ends.

For the architectures designed in this thesis that are targeted towards
a particular application, a Perl script was written to extract the address
and digitized charge information from the Monte Carlo data. A simple
charge-to-ToT converter was written as a Perl module to perform the TDC
before actual hardware simulations. The characteristics of this converter
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Figure 3.2: A class for modeling front-end pile-up.

were obtained from transistor-level analog simulations. The Perl script was
used to produce an SV RNG and two arrays containing address and ToT
information. These files were then included and compiled with models before
the simulation. The advantage of an RNG is that it can be reseeded instead
of using the same list of hits over and over again.

For simulations of architectures with no specific targeted application, hits
were generated mainly using uniform random distributions for spatial infor-
mation and exponential distributions for times of arrival. SV has built-in
RNGs for these distributions, and they were created for SystemC simulations
by hand.

3.2.2 Front-end pile-up

The front-end pile-up was simulated to determine the response time or
return-to-baseline required for the analog front-end and the conversion time
for the digital front-end. This can be done using a behavioral, untimed
model of the front-end. Figure 3.2 shows the model used for this simulation.
The model contains functionality to add a single hit, remove all hits in one
time ID slot (referred to as bunch-crossing ID or bx id), and to check if a
hit with a given address exists.

A lookup table is used to store all pixel hit addresses related to a specific
simulation cycle. Each simulation cycle with hits in it contains an entry in
a lookup table which consists of a set of pixel addresses (Hits per BX ID). A
key to the lookup table is simply the time ID number. An important point to
note here is that the time ID number indicates when hits are removed from
the lookup table, and not when they were placed into the table. At each
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time ID interval, remove hits() must be queried and the corresponding entry
will be removed. To improve simulation speed, the model also contains a
fast-lookup table to check if a hit for specific address already exists. Without
this table all sets would have to be searched for an existing hit, making the
algorithm considerably slower and run-time dependant on the size of these
sets. With the fast lookup-table, an existing hit can be found in a constant
time.

The last method shown in Figure 3.2 is implemented to move a hit in a
given address from a specific time ID slot to a slot which is n slots forward
in time. This models the pile-up of a secondary charge in the analog front-
end, and indicates that the return-to-baseline of the front-end is extended
because of this charge injection.

3.2.3 Hit grouping and clustering

As studies have shown [75, 40], grouping several pixel hits into one data
packet can reduce the total data rate produced by the chip. Generally this
reduction depends on the angle of the particle tracks, and hence the average
size of the pixel clusters, and the amount of information that needs to be
recorded per pixel. If each packet coming off the chip must have the same
length, this can introduce overhead if a lot of unused information needs to
be included in the packet. Consider the following example:

For each single pixel hit, assume that each hit consists of the following
information: 16 bits for the address, 14 bits for a time stamp and 14 bits
of additional payload. For single, non-grouped hits the total amount of bits
is 44 × N , where N is the number of hits. If it is assumed then, that this
information is grouped into a packet of 8 pixels, the address (reduced to
13 bits from 16 bits) and the time stamp can be shared. For the grouped
packet, the total number of bits is 13+14+8×14 = 139. It can be calculated
that when N > 3, the grouping is a more effective strategy. If the same
exercise is repeated for 4 bits of information per pixel, the grouping is more
effective than using single pixel hits when N > 2.

In this thesis, an LUT is used to perform the hit grouping. A function is
created which maps each single pixel address into a region (group) address.
The LUT is initialized by calling this function once for each pixel address
and caching the values for later use. The region addresses are obtained from
the pixel address using the following formulas:

Region row address = pixel row address / region Y size

Region column address = pixel column address / region X size

During each simulation cycle, this mapping is performed for all injected
hits. After the regions have been determined for each hit, another function is
called to encode all pixel hits within the region into a number of bits. In the
case of a fixed length packet, encoding is trivial multiplication operation.
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If packets can have different lengths depending on the number of hits in
them, a function computing this number must be created. This kind of two-
pass method allows an independent evaluation of grouping and encoding
techniques.

3.2.4 Front-end buffering

Due to the limited area available in the pixel matrix, digital front-ends and
super pixels do not typically have more than two levels of data buffering
[48, 49, 75]. The first level is implemented at the pixel level and the second
buffer at the super pixel level. It was already shown in the previous chapter
that adding a super pixel buffer can reduce the performance requirements for
column level data transfer rate while maintaining the same readout efficiency
as with higher rate and no additional buffering.

The front-end buffers were modelled using mailboxes in SV and FIFOs in
SystemC. They both also have a TLM FIFO class (found inside an external
library in SV) which implements many of the TLM interfaces. A pixel
column was modelled as arrays of these buffers, one array for the pixels and
one array for the super pixels. This idea can be extended to more than two
levels of buffering if required. A counter per super pixel was used to model
a transportation delay from a pixel to a super pixel buffer in a cycle-based
simulation. Whenever a pixel has data available and the counter reaches
zero, a datum will be moved from a pixel to a super pixel. In a timed
simulation, a process per super pixel must be used for data transportation.
These can be started automatically at the beginning of a simulation, or
created dynamically on-request during the simulation.

3.2.5 Column bus and data fabrics

A column bus and its arbitration were modelled using a read pointer for
the arbitration and a counter or a timed delay for the transportation delay.
If a timed delay is used, one process per a column bus is required. The
arbiter and the bus can be created as separate classes using TLM interfaces
to make them more easily reusable. Another technique to model an ideal
FIFO arbiter is to use an unbounded FIFO for storing hit addresses exactly
in the order of arrival. Usually this kind of arbitration is very difficult
to implement in the actual chip but offers a starting point for comparing
different arbitration schemes. In this thesis, the FIFO arbitration was only
used in the high-level simulations.

Data fabrics consisting of a number of data nodes, which were mentioned
in the Chapter 2, were modelled using a for-loop which checks the status of
each node. In a pull-configuration, each node that has buffer space available,
checks the previous node for data. With this technique, the run-time is
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proportional to the number of nodes in the data fabric thus reducing the
scalability for large fabrics with many nodes in them.

3.2.6 End-of-Column modeling

In a timed model, each EoC was modelled using a FIFO and one process.
This process checks a column for data, blocks until data is available, writes
data into the EoC FIFO, and then requests access to the periphery bus.
A processing delay was also added to the process when a timed model was
used. In a cycle-based model, as described in the algorithm at the beginning
of this chapter, EoC is a passive block whose state is queried before writing
data into it. Before reading from the cycle-based EoC model, the reader
which is either output link or the periphery bus, queries if EoC has any
data.

The periphery bus is modelled exactly in the same way as a column bus.
Instead of pixels or super pixels, a number of EoC blocks will be connected to
this bus. It is also possible to use a data fabric instead of a bus to transport
data at the periphery as will be shown later. This can also be modelled
in the same way as a data fabric in a column. If the column bus and the
data fabric models are crafted carefully, they can be reused completely at
the periphery.

3.2.7 Output link simulation

Output links and serialisers, which send the data off-chip, and can be run-
ning at several GHz, have to be carefully designed at the layout level and
usually implemented in a full-custom manner. For the high-level models
however, a behavioral description is enough to assess the performance of the
architecture. In a timed model, each link was modelled as one process which
has a fixed delay per data hit if all hits have a fixed packet length. A delay
per bit was used in the simulations in which the packets didn’t have a fixed
length. From a data structure modelling a packet, the length of the packet
was calculated at run-time.

Modelling the output bandwidth limitations of the chip is especially im-
portant for obtaining correct results if the output bandwidth is the limiting
factor or bottleneck for the performance.

3.2.8 Simulation benchmarking

To evaluate the run-time of architectural models compared to correspond-
ing RTL blocks, a set of benchmarks has been established. Impacts of test-
benches and verification environments have been estimated to be less than
10% of the run-time using run-time profiling tools. The RTL simulations
have been run using a commercial simulator, and the sequential high-level
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Figure 3.3: Run-time of RTL and sequential cycle-accurate (CA) simulations
of the same model using different hit rates and different simulation lengths.
The number after each label shows the relative input rate compared to other
simulations.

models compiled using gcc. The simulations have also been run using one
processor core only.

Figure 3.3 shows the run-times of these simulations for a readout ASIC
VeloPix which will be presented in Chapter 6. The numbers from 1 to 16
after the labels RTL and CA show the relative input hit rate (data activity)
of different simulations. The important thing to notice is that the run-time is
a function of the number of cycles simulated and the hit rate per cycle. Not
surprisingly, a high-level, sequential model done using C++ performs better
than the SystemVerilog RTL model. Notice that a model whose run-time
was proportional only to the activity, and not the length of the simulation,
would be presented by horizontal lines in the plot. As there are always some
background processes and monitoring required, if not from the model but
the simulator kernel itself, it is difficult to create such a model.

The modelling and debugging efforts are difficult to estimate objectively
because they depend on the expertise of the system architect and on the type
of system being modelled. Complexity of a given block can be estimated
from the LoC to some extent however. If an architectural model needs
considerably more LoC than a corresponding RTL design, this acts as an
indicator that the model may be too detailed or complex. For the models
of Figure 3.3, the following LoC were obtained: RTL model 2670 and the
sequential high-level C++ model 1329 LoC implying a factor of 2 reduction
in LoC for the high-level model. No testbench code is included in these
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numbers. All other things being equal, increased number of LoC can result
in more defects and increased effort for debugging.

For another pixel readout architecture design implemented during this
thesis, the LoC for the RTL code was 6574, and the LoC for a TLM model
of the same architecture 2955, again both figures excluding the LoC for
testbenches. Over a factor of 2 reduction can also be seen in this example.
This is a clear indication that high-level models can reduce the coding effort
and the amount of debugging. For example, in [84] it has been found, that a
LoC metric can predict the number of defects in the code. There are other
metrics, such as Cyclomatic Complexity (CC) which is formed by observing
all possible paths of execution in the code, to measure the complexity of
source code. One difficulty in comparing the RTL and higher level code is,
that the execution of the RTL code mimics parallel execution of hardware
while a high-level model can be made fully sequential without complications
of multi-process execution.

3.3 Latency

The latency of a system is evaluated to determine the dynamic range of a
time stamp to unambiguously associate each event with a given time stamp.
If the latency exceeds the dynamic range of the time stamp counter, this
association cannot be done correctly. High-level simulations were used to
track the latency of a hit in certain locations in the architecture. If a hit is
modelled as a class, any amount of additional information for debugging and
performance measurements can be added to the hit. This is shown in List-
ings 3.1. In addition to the actual time stamp for ToA and the hit address, a
queue or an associative array of extra time stamps is included. Upon arrival
of a hit, each component in the hit processing chain can then add a time
stamp to the hit. In this way, bottlenecks for performance that cause the
latency to increase can be more easily determined than in RTL simulation
where high latency is observed only at the output of the chip. Determining
intermediate latencies using signals and a waveform viewer from RTL simu-
lation is slow and must be done manually. It is possible to add the latency
information into RTL model, but this requires adding extra monitoring reg-
isters and buses for transporting this data between components. Each RTL
component must also have access to the time stamp counter via a port to
obtain the time information.

Listing 3.1: An example of a hit with additional timing information.

c l a s s HitPacket ;
i n t time stamp ;
i n t address ;
i n t extra t ime stamps [ $ ] ; // Using a queue
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i n t extra t ime stamps [ s t r i n g ] ; // Or a map
endc l a s s : HitPacket

Generally there are two components for the latency [85]. The first com-
ponent is the time spent in the buffers by data, waiting for access to shared
resources. It is usually variable and depends highly on the resource utiliza-
tion or occupancy of the system. It is typical of this component to increase
exponentially when the system utilization approaches 100%. However, some-
times it is also possible to guarantee an upper limit for the latency by design.
In Chapter 2 it was shown that by choosing an appropriate arbitration al-
gorithm for a data fabric, a latency with an upper limit was observed. The
second component is communication or data transfer latency. This can be
either fixed or variable. When a buffered data fabric is used for the data
transfers in a system, the two components for the latency become inter-
twined because the data transfer will also have some waiting time.

3.4 Power consumption

Power consumption of a system cannot be solely determined from high-
level models, but the models can be used as tools to estimate the power
consumption of the full architecture. Once an architecture with sufficient
performance in terms of efficiency and latency has been found, a super pixel
or even a pixel block can be designed at RTL. This block can then be synthe-
sized and a prototype of the physical design completed. A back-annotated
netlist of this prototype can be used in simulation to obtain toggling rates
for all nets in the design in the form of value-change-dump (VCD) informa-
tion. Again back-annotating this information into a physical design tool,
accurate estimate for power consumption of this block is obtained. The
block can be characterized with different activity factors, for example idle
90% of the time and active 10% of the time.

A similar activity factor map can be obtained for a full design from the
high-level simulation. Using the power estimation from a single block and
the activity map from the full architecture, an estimation for the power
consumption can be obtained. Thus taking advantage of the homogeneous
structure of the pixel matrix and even the EoC blocks and the high-level
models, characterizing only a few blocks can give an accurate estimate of
the total power consumption. Because recording VCD files during a back-
annotated simulation adds to the run-time overhead of simulation, a longer
power profiles for a system can be obtained by combining the activity-based
power information and the high-level simulation.
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3.5 Simulation warm-up period

A warm-up period is a widely known problem in discrete-event simulations
[85]. The same problem is also present in sequential, cycle-based simulations.
The warm-up period means that when a simulation is started on an empty
system (in an initial state), the behavior can be significantly different at the
beginning than after a longer period of simulation, when the response of
the system has become steadier. There can of course be systems which are
constantly oscillating and never settle. In fact, the ’steady’ state often means
a convergence of the average of some measured value towards a range of
values. In systems with non-deterministic components in them, for example
economic systems or random arrivals of particles, a static steady state is
never reached. These systems can exhibit dynamic behavior over some short
period while the behavior may appear to be static or in a steady state over
longer period.

Unless this warm-up period is determined, and its impact on the final
results estimated, it may skew the results toward a certain direction. The
results for queueing and buffered systems can be too optimistic because all
buffers are empty at the beginning of the simulation, and thus have their
full capacity available. Note that choosing too long a warm-up period is not
detrimental to results but may increase the run-time of the simulation.

There are different ways to overcome the problem of the warm-up period,
also known as the initial transient [86]:

• Running a simulation for long enough to make the impact of the warm-
up period insignificant.

• Excluding the data from the warm-up period from the final data anal-
ysis.

• Choosing initial starting conditions that are close to the expected
steady state.

In this thesis, the first method is adopted due to its simplicity. It requires
no additional processing of data or manipulation of the system before the
simulation. The drawback of run-time overhead is compensated for by using
high-level behavioral models which run an order of magnitude faster than
synthesizable RTL models.

If the warm-up period is analyzed in the context of HPD readout ASICs,
issues described above can be found. Figure 3.4 demonstrates issues related
to this warm-up period in one of the simulations performed during the work
for this thesis. It shows cumulative moving average (CMA) of latency cal-
culated after every 1000 packets (in red) and the average latency of the
last 1000 consecutive packets (in green) in different points in time. It can be
seen that at the beginning of simulation, the variation of CMA is larger from
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Figure 3.4: CMA of the latency (red) and the average latency of 1000 con-
secutive packets.

one sampling to the other. This can be considered as a warm-up period in
which the system is started from an empty state. If simulation was stopped
during that period, and the calculated latency taken as the final result, the
steadier state and higher average latency would be missed. A steadier state
here implies that the variable of interest (CMA of the latency in this case)
is within a smaller range of values than in a less steady state. The other
possibility would be to take too large a value as the final result if the CMA
of the latency was sampled at the highest value of the red curve.

It can also be seen that the average latency of each sampling period of
1000 packets has a lot of variation throughout the simulation. This is not
necessarily always the case for a random variable but is only shown here
because the latency is relevant metrics for simulations in this thesis. It can
be seen that at the beginning of the simulation, this latency differs from
what is measured after the warm-up period.

Figure 3.5 shows the average latency plotted every 1000 packets for ten
simulations runs. The system parameters (buffer size, readout rates etc.)
are exactly the same, and only the seed number for the RNGs have been
changed. This seed number controls the generation of hit arrivals and the
address distribution of hits. In each run, 16 million hits were injected into
the system. It can be seen that the values fluctuate rapidly at the beginning
of the simulation before converging into narrower range of values, except
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Figure 3.5: CMA of the latency in clock cycles sampled every 1000 packets
versus time. Each colour represents a different seed number for the input
data generator.

for one of the plots. It is interesting to see that this plot seems to stabilize
between 240 and 260 clock cycles before shooting up. The root cause of this
behavior was not discovered, but it can be attributed to either a smaller
than the average times of arrival between hits or hit addresses that are close
to each other creating local congestion, or both. These kinds of events are
statistically more unlikely but not impossible, and should be accounted for
in the design of the system.

3.6 Concluding remarks

In this chapter, simulation techniques used in this thesis were described.
Some caveats and difficulties in performing full chip simulations for hybrid
pixel readout chips were described, and some solutions were given. Two
examples were presented in which the “higher than RTL” models were more
concise and described in less LoC than the corresponding RTL models. It
was seen that ”higher than RTL“ simulation and modelling techniques can
speed up the architectural simulation of a pixel chip. Especially, in the
presence of lengthy (in wall clock seconds) initial simulation transients, they
can in fact be the only feasible way to study different architectural options.
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As HPD readout ASICs start using newer CMOS technologies (65 nm
and beyond) instead of the now widely used 130 nm technology, more com-
plex architectures must be devised to meet the more stringent requirements
for performance. Architectural simulations can be used as a tool guiding
the design of these architectures to meet the specifications and managing
the architectural complexity. However, they are not panacea for all issues
brought by the complexity of these new technologies, and thus their deploy-
ment should always be considered for each use case separately.
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Chapter 4

Hardware implementation
studies of readout
architectures

4.1 Background

A system-level analysis of different digital readout architectures and their
data transfer characteristics of HPD ASICs was made in Chapter 2. In
that chapter, metrics such as the readout efficiency and the latency were
obtained using RTL and higher level C++ and TLM simulations. Chap-
ter 3 discussed simulation and modelling techniques to be able to simulate
large architectures while collecting sufficient amount of statistics for analy-
sis of the architectural characteristics such as the latency and the readout
efficiency. However, the full analysis requires taking into account physical
implementation details such as area, power and timing. Because the pixel
size is often dictated by the application, there is no option to increase the
pixel size and the die area, and thus integrate more functionality at the cost
of increased unit cost per die. While keeping the power consumption below a
certain level may not be as strict a requirement as the pixel size in all appli-
cations, limited routing area available for the on-chip power supply imposes
limits on the current that can be supplied to the pixel matrix. The timing
performance, or the maximum frequency, may also be fixed by the timing
resolution requirements of the application, and it is important to verify that
the architecture meets the demands for throughput using this frequency.
Thus, in this chapter, the architectures presented in Chapter 2 are analyzed
in terms of hardware implementations, and their physical characteristics are
compared.

All power, area and timing-related information has been extracted from
a commercial 130 nm CMOS process. This process uses a stack of 8 metals
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Figure 4.1: The metal stack of 8 layers of the CMOS technology used in this
thesis.

having 1 bottom metal, 3 thin metal layers, 1 thick metal, 1 thin aluminum
layer, 1 very thick metal layer and 1 very thick aluminum layer (see Fig-
ure 4.1). All layers are copper unless stated otherwise, and are referred to
as M1-M8 in later discussion. Simulations presented in this chapter have
been done using several process corners in different conditions. All delays
reported are obtained using slow process corner (SS), temperature of 125
C◦ and a power supply of 1.4 V. All dynamic power consumption figures
reported have been obtained using fast process corner (FF), temperature of
-55 C◦ and a power supply of 1.6 V. These values were used because the
commercial standard cell library was characterized by the vendor using these
conditions. Unless explicitly stated otherwise, these conditions hold for all
simulations.

Two 130 nm standard cell libraries were used for these estimations, a
commercial library and a customized standard cell library. The biggest
trade-off between the libraries is that the customized library is optimized
for area (×2 reduction) by reducing the driving strength of the cells, and also
optimized for leakage reduction using high Vt transistors. The commercial
library has more cells than the customized library (a factor of 10) but the
synthesis results have shown the cell count increasing by less than 5 %
when using the customized library. Leakage reduction of several orders of
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magnitude has been estimated by the digital library characterization tools
at room temperature or higher.

Gate-count is typically used in the literature to estimate the hardware
cost of a specific architecture. Because in this thesis the absolute size of
the pixel is a very important characteristic, all area estimates are expressed
in µm2. If desired, the equivalent NAND-gate count can be obtained by
dividing this area with the area taken by one 2-input NAND-gate.

Power consumption is divided into static and dynamic power consump-
tion. In this chapter, the main interest is on the dynamic power consump-
tion, which can be expressed as

Pdyn = αfCV 2 (4.1)

where α equals the activity factor or the toggling rate, f the clock frequency,
C the total switching capacitance and V the power supply voltage. The dif-
ficulty in applying (4.1) is that when the clock gating is used in many clock
paths, α will not be uniform across the full system, and it can be difficult
to estimate how much capacitance is switching at which activity rate in any
given moment. Also, if (4.1) is directly and homogeneously applied across
all capacitance with a constant α, this can lead to a pessimistic estimation.
Thus obtaining the power consumption using a synthesized netlist and a
VCD file from post-synthesis or post-layout simulations using an expected
stimulus of the application can give a more accurate prediction of the dy-
namic power consumption.

To evaluate and compare different architectures, two metrics are used.
To be able to compare heterogeneous architectures, power consumption must
be evaluated as effective power Peff = mW/Mhits/s. Peff is then a measure
of how much power must be expended to achieve a certain output rate.
Similarly, the area footprint is evaluated as Aeff = µm2/Mhits/s stating
how much area must be used to achieve a certain hit rate. In both the
cases, the unit Mbps can be substituted for Mhits/s if the number of bits
per hit is known. These are means to evaluate the architectural efficiency
in terms of area and power. All applications also have total area Atot and
power Ptot requirements. Thus, Peff and Aeff cannot be optimized without
taking these constraints also into account. Also, applications usually have
a minimum output rate RO requirement which must be taken into account
when choosing the architecture.

4.2 Digital pixel implementation

In the following discussion, the digital pixel logic is separated from the
readout logic. This separation is difficult because the readout logic and the
measurement logic (counters) can be tightly coupled. This is especially true
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for serial shift register implementations [43, 42, 25, 35]. Also in [75], digital
pixels compute their ToT values individually but the ToA value is handled
by a shared buffer. On the other hand, functionality such as synchronization
needs to be always done for each discriminator input separately, and thus is
considered part of the individual pixel logic.

In the past, many pixel chips have incorporated full custom digital logic
into the pixel [43, 25, 87]. However, using an area-optimized standard cell
library and digital design tools, similar density has been achieved using a
synthesizable Verilog description [42]. This is also the approach taken in this
thesis, and makes the results more easily reproducible because layouts are
generated mainly using scripts. Porting the architectures to newer CMOS
technologies will be more straightforward because the same Verilog code and
many of the implementation scripts can be reused. Note that the develop-
ment of an area-optimized standard cell library is still required when moving
to new technology, if an increase in transistor-density proportional to the
scaling is desired. Because the area-optimized library increases the density
by 2 compared to a non-area optimized library, without the development of
a new library, only a factor of two increase in density is achieved.

In [88] a comparison between on-pixel counters implemented using a
linear-feedback shift register (LFSR) and configurable counters is shown.
Two 15-bit LFSRs can be implemented using 530 transistors and the config-
urable depth counters using 626 transistors. Configurable counters support
either two counters of 14 bits (or smaller) or one counter of 24 bits. Thus,
with an extra overhead of 18 % in area, more general purpose approach is
reached. Using LFSRs instead of binary counters can give an area reduction
of 30 % [89]. The LFSR also supports shifting of data out of the pixel by
adding one extra multiplexer, while in a binary counter a multiplexer for
each flip-flop must be added.

One option utilized in the pixels for example in [46] is to latch time
stamps into parallel load registers on a leading and trailing edges of the
discriminator signal. This solution does not require any extra gates for
the flip-flops but does not support shifting of the data out of the pixel.
On the other hand, if there are enough routing resources available for full
parallel readout, this option is very useful for achieving a high throughput
and minimising gate area inside the pixel. This kind of parallel time stamp
latching can also be utilized with static random access memory (SRAM)-
based architectures [53].

If a counter is required instead of a parallel load register, an asynchronous
binary ripple counter can also be used to minimize the number of extra
gates. This counter does not support shifting without adding extra gates,
and requires also clock multiplexing in this case. Another feature of this
counter is that because external clock signal is connected to only one of the
flip-flops, it is robust against timing errors. If a clock pulse does not trigger
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the flip-flop because of synchronization error, it does not corrupt the value
of the counter. This corruption of data can happen in a fully synchronous
counter in which the clock signal is sent to all the flip-flops if some flip-flops
treat the clock signal as valid and some treat is as invalid. An example of
this is for example, when a binary counter holds value 4’b1011, and would
transition to state 4’b1100 when incremented by one. If only the first flip-
flop observes the clock pulse, the state will incorrectly be 4’b1010, so the
counter has been actually decremented by one.

Generally, asynchronous finite state machines (AFSMs) have been de-
ployed in the digital front-ends for synchronization instead of flip-flops and
synchronous FSM [25, 35, 75].

4.3 Architectures using shift registers

Although it was shown in Chapter 2 by simulation that shift register -based
architectures require large output to input rate -ratios to achieve readout
efficiencies of 99 % or higher, sometimes their usage is required due to very
restricted area available. Especially efficient implementation in terms of
absolute area is reached if it is possible to use the same flip-flops for shifting
that are used for counting. However, this is not always the case and there
are architectures which have dedicated flip-flops just for shifting [47].

Serial shift register architectures are used in [43, 42, 25, 35]. The draw-
back in serial shift register architectures is, that all registers forming the
shift register need to be clocked during the shifting, unless some kind of
zero suppression technique is used such as in [35]. Controlling the shift
register is simple in this case, and done using a multiplexer and a global
shift enable signal. A state machine is not required per pixel to control
the readout operation.

In [12], a “conveyor belt” architecture is presented. This is a parallel
shift register based architecture in which only address information of pixels
(6 bits) is stored in the register. The time stamp is derived from the fact
that the latency to shift the bits from a specific pixel is always fixed, and
proportional to the row address. For example, shifting address from a row 10
takes 10 clock cycles. It also includes time stamp correction bits in the case
that the hit cannot be written into the register at the moment of the hit. The
advantage of parallel architectures over serial ones is that they have more
throughput and the clock gating can be controlled for each parallel register.
The disadvantage is that without adding extra logic, the same flip-flops
cannot function as a counter and a shift register. Routing overhead is also
increased because multiple bits need to be connected between consecutive
registers.
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4.4 Column bus architectures

A shared data bus is a commonly used architecture for transferring data
between different modules on-chip. Typical data bus configurations are a tri-
state bus, a multiplexer-based and AND-OR-based bus [90]. Each bus has
a number of masters who initiate bus transactions and slaves who respond
to these transactions. A global on-chip bus can consist of wires which span
almost the full size of the chip in one dimension.

In pixel readout chips the buses are typically routed from the top of the
columns to the bottom [53, 54, 49, 37, 46]. Because the pixel matrix occu-
pies most of the chip area, these buses cover almost the full distance of the
chip. On the other hand, these buses are uni-directional having multiple
transmitters (TXs) (pixels or super pixels) and one receiver (RX) usually
located at the End of Column (EoC). Figure 4.2 shows two different im-
plementations of a uni-directional pixel column bus. Each TX is connected
with a wire of length L and width W . The length of the connection from
a TX to the bus trunk Lconn is assumed to be negligible. The arbitration
signals are omitted from the figure for clarity. Owing to the large aspect
ratio of a column, it can be difficult to create a tree of connections to reduce
the propagation delay through the gates (Figure 4.2a) because this requires
more routing resources. Using a tri-state bus (Figure 4.2b) this delay can be
avoided but the capacitance of the bus wires increases linearly in proportion
to the wire length.

In Figure 4.2, a single piece of wire with length L and width W ( capac-
itance Cw, resistance Rw) is modelled as a 3 π ladder circuit with 3 equal
resistances Rw

3 and 2 different capacitance (2 × Cw
6 + 2 × Cw

3 ) values. This
model is more realistic than a one-step L model with one lumped resistance
and one capacitance. The lumped RC-model has been found to be a poor
approximation for on-chip wire delays while the 3 π model shows only a
maximum error of 3% compared to a fully distributed RC-line [91]. The
relative error of an L ladder model can be up to 30% [91]. Note that while
the 3 π circuit model is preferable to a one-step L ladder in this case for
accuracy, in a circuit with hundreds or thousands of RC-wires it may give
rise to unacceptable simulation or analysis run-time overhead.

The wire delays in CMOS technologies are well-understood. In [92], for
a 0.1 µm technology, delays of 1.2 ns were estimated for wires up to 5 mm.
In [93], for a 5 mm bi-directional (tristate) bus, a delay of approximately
2 ns was estimated while transition times can be as high as 5 ns without
even reaching 100 % of the signal level. Because the signal delay of the wire
increases in proportion to the length squared, repeaters must be inserted to
reduce this delay. One issue in the design of pixel columns is that thicker,
lower resistance top-level metals are often reserved for power distribution
to minimise voltage drops and ensure correct functioning of the logic. This
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Figure 4.2: Schematics of two uni-directional buses: a) OR/mux-based b)
tri-state bus.

limits the possibilities to use these higher level metals with lower resistance
for routing of the signals. In this section, a bus length of 256 × 55 µm = 14.4
mm is considered. This is the column length in the readout chips presented
later in this thesis. Simulation results from 130 nm CMOS using 0.2-µm
wide metal shown in Figure 4.3 indicate that the delay can be up to 6.3 ns
for a 14-mm wire. This was measured from 50 % of the input voltage to
reaching 50 % of the maximum output voltage. By using repeaters inserted
every 880 µm, this delay can be brought down to 1.6 ns. This number
was used in one of the designs in this thesis, and was verified later from
measurements from a manufactured chip. The size of the buffer required to
achieve this delay was 4.8 µm × 14.8 µm with 20 fingers for NMOS (W =
570 nm) and PMOS (W = 1.8 µm).

To understand the difficulties of using a bus-based structure for trans-
ferring data from pixels to EoC blocks and the justification for using a data
node-based fabric which introduces latency to the output data, the signal
propagation delays were studied. The effective output rate RO (data pack-
ets/s) or the data bandwidth versus the output latency is an important
trade-off in this case. Given the same output rate RO for a bus-based and a
node-based architecture of equal area and power, a solution with higher ef-
ficiency and lower latency is preferable. There are other considerations such
as noise and digital-to-analog coupling which are not taken into account.
However, it will be seen that the bus-based solution introduces significant
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Figure 4.3: Simulated wire delays with wires from 2000 µm to 20000 µm.

Table 4.1: Transistor widths in output inverters of 2-input OR-gates (L =
120 nm).

Type W (PMOS) W (NMOS)

B 520 nm 330 nm

D 1.44 µm 860 nm

E 1.97 µm 1.13 µm

K 6 ×1.64 µm 6 ×1.03 µm

load capacitances and hence needs larger buffers to have a performance equal
to the node-based architecture. The large transient currents through these
buffers can increase the digital power supply noise. This noise may then
couple to the analog signals or to the analog power supply. Using larger
buffers also increases the power consumption as will be shown later in this
chapter.

A column length of 256 pixels of 55 µm is assumed because the architec-
tures under study in this thesis have that dimension. The column width is
assumed to be 2 × 55 µm because the double column architecture is used. It
is also assumed that there is one TX per 4 pixels, and a total of 64 TXs per
(double) column. Taking the column width into consideration is not crucial
for the timing of the column bus but has an impact on the area available
for buffering of the bus. Figure 4.4 shows the worst case delay of a 64 OR-
gate column bus (see Figure 4.2) and the average power expended per bit
using OR-gates of different driving strengths. The clock frequency used is
40 MHz. The sizes of the output inverters in each type of OR-gate are listed
in Table 4.1. Peff is lowest with the type E, being 0.85 µW/bit/MHz. The
type B has the worst Peff = 1.24 µW/bit/MHz. Using these numbers, a
comparison to other architectures can be made by scaling the number with
the number of bits in one hit event.

As was discussed in Chapter 2, an arbitration scheme of the column bus
can be implemented using a priority encoder or a token ring. Schemes such
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Figure 4.4: The worst case delay (slow corner) and average power per bit
for a column bus (fast corner).

as centralized arbitration are difficult to implement inside a column because
point-to-point connections cannot usually be made between the arbiter and
each requesting block due to the limited routing area available. A token
scheme for a column bus using alternating NAND- and NOR-gates between
pixels to minimize the propagation delay is presented in [94]. This kind of
structure is faster in terms of propagation delay than a structure containing
AND- or OR-gates only. For 64 modules connected to a token ring, a delay of
20.7 ns was obtained from simulation (slow corner) using alternating NAND-
and NOR-gates. NAND- and NOR-gates with the weakest driving strengths
(type B) were used.

For a fully synchronous system, the token must either reach any module
in the ring in one clock if there are no subsections in the ring. It was shown
in Chapter 2 how the ring can be divided into subsections to relax the
timing constraints at the cost of extra arbitration latency, and generally each
subsection introduces an extra clock cycle of latency and a corresponding
decrease of the throughput. If the subsections are used, this also means that
the token cells at the higher level of the ring must be connected with longer
wires to bypass all modules at the lower level of hierarchy in the ring.

4.5 Clock distribution in a column

The clock signal generally serves two different purposes inside a pixel col-
umn. First, it must provide an accurate, global timing reference across
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the full chip for timing measurements. Second, it is used to clock all the
synchronous logic within the column.

Typical requirements for clock distribution are [95]:

• Low skew and low jitter.

• Fast signal rise and fall times.

• Low distribution delay.

• Tolerance to process, voltage and temperature (PVT) and on-chip
variation (OCV), and meets all requirements in all simulation corners.

The first property is especially important if accurate timing measure-
ments need to be performed. The problem of skew in the clock distribution
comes from the fact that the clock needs to be distributed over long distances
of > 1cm in large pixel chips. Due to the large aspect ratios of pixel columns
(100-to-1 or even larger), vertical routing resources are scarce. This means
building a balanced clock tree by placing the first buffer in the middle of a
column is more difficult. Because low-resistivity top metal layers (for exam-
ple M7 and M8 in the 130 nm technology studied here) are usually reserved
for power distribution, these layers are not available for clock distribution.
Delay lines can be used to reduce the skew at the cost of extra area for
the cells [75]. The problem is that the lines need to be heterogeneous for
different areas of the column, being longer at the bottom and shorter at the
top of the column. Another option is to include programmable delay lines
for tuning the clock skew. However, this option requires extra configuration
registers and a DAC for controlling the speed of the delay line.

In [25], the problem of skew is neglected altogether, and each pixel has
an inverter driving the clock to the next pixel. This causes variation of the
clock skew up to the full period of the clock signal. This delay must then
be taken into account in off-line analysis.

Fast rise times can be ensured by inserting repeaters in the clock tree
instead of driving long sections which will slow down the edges. In this thesis,
all architectures presented here deploy a similar clock tree architecture. This
reduces the bottom-to-top skew to less than 2 ns even in the slow process
Corner. For the 130 nm technology, wire width of 0.4 µm was required to
reduce resistance of the line to meet this skew target. By using a similar clock
tree in all the architectures, the power consumed by the clock distribution
can also be more easily separated from the power consumed by the readout
logic. This clock tree architecture is shown in Figure 4.5.

This clock tree is divided into sections of 880 µm and the trunk is buffered
with a relatively large buffer (CLK Q) at the same intervals. This buffer
uses regular Vt transistors to reduce the delay. The width of the transistors
used were already given earlier in this chapter when discussing wire delays.
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Figure 4.5: The clock tree of a pixel column consisting of repeaters connected
in series.

The smaller buffers (CLK O) are used to buffer the clock to each super
pixel or pixel regions. No other connections to the clock trunk are allowed
to limit the capacitance of the trunk. This restriction can be achieved by
using set dont touch command. Note that the left section of the clock tree
has higher capacitance due to the relatively large input capacitance of the
CLK Q buffer.

When relying heavily on clock-gating techniques for dynamic power re-
duction, the insertion delay in the clock tree can become a problem. This
can create hold violations at the bottom of the column in the first pixels or
super pixels if the delays increase beyond a few nanoseconds. In this thesis,
this problem was solved by clocking the signals sent from the EoC to the
column at the negative edge of the clock. The drawback of this approach
is that it effectively cuts the available clock period in half for meeting the
timing requirements for global signals which must travel the full span of the
column.

4.6 FIFO implementations for storing pixel data

As was shown in Chapter 2, data (memory) buffers are needed in the sim-
ulated readout architectures. Buffers have been sparingly used in existing
pixel readout architectures to provide multi-hit capacity and to reduce losses
related to the digital front-end pile-up [75]. Their selection must be analyzed
in terms of area and power consumption. One important consideration is
the choice of FIFOs. A comparison of different FIFO types is presented in
[96]. It lists three main types for FIFOs:
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• Shift register based FIFOs.

• Exclusive read/write FIFOs.

• Concurrent read/write FIFOs.

The first option is not particularly useful for storing data while waiting
for access to a shared resource. Read- and write-operations must be always
performed at the same time into this kind of structure. The focus in this
chapter is on the second type, where reads and writes are synchronous with
the same clock, and may happen at the same time or during different clock
cycles. In the third option, the operations can be completely asynchronous
of each other. This option rarely needs to be used in the pixel matrix because
of the relatively restricted area using one clock domain. In fact, there are
no existing implementations using asynchronous FIFOs in the pixel matrix.

One particular feature of the FIFOs in the pixel matrix is that they
need to be small (typically less than 8 words) due to the restricted area
available. This means that SRAM-based solutions are not feasible due to
overhead caused by sense amplifiers and address decoding circuitry. Another
consideration is whether a FIFO has to be SEU tolerant or not. This can
effectively triple the amount of control logic required, thus increasing the
area footprint considerably. Finally, data stored in the FIFO can also be
protected. This can be done by encoding the data internally, and exposing
only decoded data to modules outside the FIFO. If data is externally en-
coded using ECC, and the FIFO is used only for storing the encoded data,
it does not change the internal structure of a FIFO.

Two typical FIFO architectures are a linear FIFO and a FIFO based
on pointer logic. The first one requires N control bits and the second one
log2(N) control bits, where N is the maximum capacity of the FIFO. The
first option has longer latency because each word must fall through all mem-
ory slots while in the second option the next word is available on the fol-
lowing clock cycle after write-operation, and in the case of the FIFO having
more than one word, also after a read-operation. In this case, latency means
explicitly the number of clock cycles, and not the absolute delays in the logic.
While a linear FIFO can be clocked at higher frequency, the clock frequency
in pixel readout chips is usually fixed by the application, and frequencies up
to 100 MHz are used [25, 49, 75].

4.7 Data fabric implementation

Although data fabrics could be considered as parallel shift register archi-
tectures, the fabrics are treated separately from shift registers here. This
is due to the fact that the control of the fabric is completely decentralized

98



and based on local handshaking, and there is no global enable signal.
The arbitration is also more complex but also allows some flexibility in the
implementation.

The functionality of the node-based fabric and the data network on-pixel
chip were already analyzed and their performance assessed in Chapter 2.
The goal of this section is to examine the physical considerations when
implementing one of these architectures. Because a number of additional
memory or flip-flops are required in each node of these architectures for
storing the data packets, this may increase the power consumption and area
footprint considerably. For example, in [97] a power consumption of over
25 µW for a flip-flop implemented in 130 nm CMOS running at 1 GHz has
been obtained. During the work for this thesis, approximately 1 µW at 40
MHz for a flip-flop of the same technology was obtained when the flip-flop
was clocked but the stored data did not change. For a matrix of 128 × 64
nodes this equals to over 200 mW of power when each node has a 24-bit
register. Adding these registers reduces also the area available for counters
in pixels. Thus, it may be necessary to share one register between multiple
pixels to reduce the area overhead.

Due to the large parameter space and limited amount of time for the in-
vestigation, in the detailed implementation studies for the data fabric only
the WRR arbitration scheme was used. This is also the simplest implemen-
tation because it requires only a binary counter which is then compared to
a hard-wired address. Other implementations require either comparing the
time stamps or adding additional registers for storing the waiting time of
the data.

The hierarchical data fabric has a slightly different area and power foot-
print compared to the linear or one dimensional data fabric. For any given
2-dimensional hierarchical data fabric with N nodes, there exists an optimal
group size K which reduces the number of operations needed to transfer a
packet out of the fabric. When the number of these operations is minimized,
also the data-related activity, and thus the activity factor α, within the fab-
ric is reduced. The optimal groupings in terms of latency were already given
in Chapter 2. Note that when K = N , the two-layer fabric is reduced to
one layer again.

From the implementation perspective, increasing the group size K while
keeping K < N increases the difficulty of meeting the timing in the outer
layer of the data fabric because the node distance is increased. The area per
super pixel taken by the outer node decreases when K is increased, and also
the number of memory bits required in each node is decreased. The reason
for this reduction is that the arbitration counter can be made smaller, and
the inner data nodes must only store the address related to the inner node
fabric instead of the full fabric address.

More than two dimensions for the data fabric were not considered in
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these studies, because increasing the number of dimensions also increases
the number of parallel wires required in a given area. Each dimension in
the fabric requires its own routing resources, and using a fabric with three
levels instead of one requires 200 % more routing resources. One option to
reduce the routing overhead would be to split data packets into multiple
words at the cost of reduced throughput. If the throughput can be reduced
but the latency needs to be minimized, multiple transfers can sometimes be
afforded. As an example, consider a linear fabric with N = 64 data nodes.
The latency in this case can be up to 64 clock cycles for packets from the last
node, not taking into account the waiting times in any intermediate buffers.
It was already seen that this kind of fabric offers a throughput which is
equal to f/3, which means that handshaking consumes 2 cycles and the
actual data transfer only one. If the packet was split into two transfers,
throughput would be reduced to f/4. But now the number of wires needed
for routing would be half of the original. Then consider selecting a group
size K = 4. This would make the outer layer in a two dimensional fabric to
have 16 data nodes. Then the maximum latency through this fabric would
be 4 + 16 × 2 = 36 clock cycles, not taking into account the waiting times
in buffers.

4.7.1 Area and power consumption

Due to additional routing required by the hierarchical fabric, a column width
of 33.6 µm was needed. This means that when assuming a pixel pitch of 55
µm, and a double column architecture, 76.4 µm is left for the pixel front-
ends on both sides. For the linear fabric, a column width of 28.6 µm was
enough to successfully route the design. The pin-level interface between two
groups or a group and the EoC when using the linear fabric is shown in
Figure 4.6. A 23-bit data bus between the data nodes can be routed, and
a 9-bit time stamp can be supported. No effort was made to extend these
numbers because this study was done for one of the applications presented
later in this thesis, and these ranges were enough for the demands of that
application. The clock tree was routed using a wire of twice the minimum
width to decrease the resistance and the bottom-to-top clock skew in the
column.

Figure 4.7 shows the dynamic power consumption of the linear and the
hierarchical data fabrics when N = 64,K = 4 as a function of the data
activity. The power of the clock and the time stamp distribution have been
excluded from these figures. The clock distribution consumes 120 µW per
group and the time stamp distribution approximately 10 µW per group.
For a column with N = 64,K = 4 this adds up to 1.92 mW and 0.16 mW
respectively. It can be seen from Figure 4.7 that group 0 has always the
highest power as expected because all data must pass through these groups.
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Figure 4.6: The pin interface between two groups in the linear fabric.
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Figure 4.7: Data-activity related power consumption of the two fabrics.

Extracting the corresponding effective power for both the fabrics, the fol-
lowing numbers are obtained for the linear fabric: Peff (6.7Mhits/s) = 0.25
mW/MHz and Peff (13.3Mhits/s) = 0.24 mW/Mhits/s. For the hierar-
chical fabric, the numbers are Peff (6.7Mhits/s) = 0.70 mW/Mhits/s and
Peff (13.3MHz) = 1.4 mW/Mhits/s. One of the main reasons for much
higher power in the hierarchical fabric is that the node arbiters at the sec-
ond level fabric need to arbitrate constantly between the local buffer and
the previous node. This happens because it is four times more likely that
there is data in the local buffer than when using a linear fabric.

If the contribution of clock and time stamping are omitted for compari-
son purposes to the bus-based architecture and only the data-related power
consumption taken into account, the following figure is obtained for the lin-
ear fabric: Peff (13.3MHz) = 1.02 µW/bit/MHz. This number is slightly
higher than for an OR-gate based column bus using E-type drivers for a
number of reasons. The arbitration is not included in the bus-based model.
The control signals required for the bus are also omitted.

4.7.2 Maximum clock frequency

The maximum clock frequency of the data fabrics was investigated using a
synthesis tool. No full PnR was done for this purpose but the wire loads were
specified for the data input pins using the Synopsys design constraint (SDC)
command set load. The distance between the data nodes was assumed to
be 220 µm, and this was obtained assuming 256 × 55 µm pixel, and one
node per 4 pixels. The load used was 50 fF/220 µm. The slow simulation
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Table 4.2: The synthesis results for the linear and hierarchical data fabrics.
Architecture Clock period (ns) Area / node (µm2)

Linear fabric 6.65 3680

Hierarchical fabric, K = 4 6.90 3730

Hierarchical fabric, K = 8 7.00 3594

corner was used for this study. Several group sizes K = 4, 8 were used for
the hierarchical fabric.

The results of the synthesis are summarized in Table 4.2. The table
contains names of the architectures, the maximum clock frequency and the
obtained cell area per one node. There is a difference of 0.25 ns in the
minimum clock period between the linear and hierarchical data fabrics when
K = 4 . This is expected because there is an additional multiplexer required
to select between the current group of K nodes and the previous nodes.
When K = 8, the clock period increased by 0.1 ns only. Although increasing
K increases the wire length between the nodes in the second level, as shown
Figure 4.3, the wires delays for wire lengths below 2 mm are relatively small.
It can be seen that the cell area per node is slightly decreased when increasing
the K. This is due to the reduced number of memory bits per node within
a group. While the second level node must store the full address always, the
first level nodes within the group need only store the local address.

The maximum clock frequency can also be limited by the power budget of
the application. Even though the effective power does not increase with the
higher clock frequency, the absolute power consumption scales up with the
increased clock frequency according to (4.1). Another limiting factor that
was observed are timing constraints of global signals such as readout enable
, the shutter or time stamping distribution, if such signals are used. These
are not specific or required features of the node-based architectures but are
also used in other types of architectures.

4.8 Network implementation

It was shown in Chapter 2 that a network has certain advantages over one-
directional data fabric, such as better tolerance to manufacturing errors and
to noisy areas generating additional traffic and hotspots in the pixel matrix.
The readout efficiency was also slightly higher for the same output rate
when using a network instead of a fabric. However, the network has extra
requirements in terms of implementation because digital communication is
also required between rows of digital logic. This implies routing digital
signals between or over analog regions causing potential coupling problems
from digital to analog domain.
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The network implementation presented here is targeted for pixel chips
with 55 µm × 55 µm pixels, also assuming a super pixel of 2 × 4 pixels,
but other super pixel dimensions, especially larger ones, are also feasible.
It utilizes a handshaking pull-architecture between two data nodes where
the communication is done via data valid and data read -signals. Only
8 bits are transferred at a time to minimize the utilization of the routing
resources.

Figure 4.8 shows a layout of a 4× 4 network of 16 data nodes connected
to each other. The upper right part of the figure shows the connections
between four data nodes. The area reserved for analog front-ends is marked
with red rectangles, each measuring 38.4 µm × 22.0 µm. This estimate is
based on the analog front-end implemented in the same technology [16]. The
area for digital logic is 64.8 µm, and this area must also accommodate the
digital front-end logic. The total cell area for each node is estimated to be
approximately 2400 µm2 by the synthesis tool. This means that the area
taken by the readout logic from the total area available for the digital logic is
16 % if a super pixel of 2 × 4 pixels is assumed. There are also digital rout-
ing channels between two double columns for horizontal data connections.
Each channel is 16.6 µm wide. Having multiple channels per super pixel
is not an optimal solution in terms of the layout area because the routing
occupancy is very low in the channels. In this network implementation, 2 ×
10 bits are required horizontally between the data nodes for data routing,
and additionally 4 bits are needed for the communication. With a routing
pitch of 0.4 µm, the most compact implementation could use one channel of
less than 10 µm.

Power-wise the digital logic in the network has higher power consumption
than the one-dimensional fabric. To accurately estimate this difference, a
full placement and routing of the pixel matrix would be needed. Because
neither of the two application presented later in this thesis uses the network,
this step was not done. However, because the network is effectively a more
complex implementation of the one-dimensional fabric, remarks about the
power consumption can be made.

Similarly to the fabric, each node in the network contains a register for
storing one packet at time. Data must be propagated from this register to
all possible data sinks increasing the power dissipated in wires compared
to the one-dimensional fabric. Because arbiters at the input and output
of the network nodes are more complex and need to arbitrate over several
clock cycles, this increases the power consumption. Each network node also
has a 4-to-1 input multiplexer for data packets instead of a 2-to-1 multi-
plexer. This increases the area requirements and adds to the extra power
consumption as well. Also, theoretically it is possible to reduce the power
consumed by clock trees by using the same clock tree in multiple columns of
nodes because the clock signal could be routed between the analog regions
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Figure 4.8: A layout of a network of 4 × 4 data nodes.
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horizontally. As this would increase digital coupling to analog electronics, a
test chip could be made to assess the impact of this coupling to the overall
performance of a readout chip.

4.9 Super pixel dimensions

It was mentioned in Chapter 2 that multiple pixels can form a super struc-
ture called super pixel. When considering physical implementation details,
there are several trade-offs in the choice of super pixel dimensions and the
design methodology. In this thesis, automated PnR tools were chosen for the
super pixel as well as for the digital front-ends. Unlike in [43, 25, 87] where
a single pixel layout was used to build the pixel matrix, a larger block of
pixels, a 2 × 4 super pixel, was used in this thesis. This means that a larger
common area can be used for optimization, routing and placement of the
logic. On the other hand, the pixels are not identical which can introduce
systematic performance variations, especially in the analog front-ends.

As presented in Chapter 1, the analog front-ends are connected to the
sensor by solder bumps on pads which utilize the topmost metal layer inside
the ASIC. The load capacitance at the input of the analog front-end should
be minimised because it increases the noise [98]. This capacitance should
also be equalized across all front-ends to reduce channel-to-channel spread.

Three different super pixel floorplans are shown in Figure 4.9. The first
one, a 2× 4 structure was used for both the applications presented later in
this thesis. This layout facilitates sharing of digital logic between 8 pixels.
The clear advantage of any 2×N super pixel is that the clock distribution
can be shared between two pixel columns. The analog front-ends can also
share biasing lines and the power distribution network because the analog
front-ends are back-to-back between double columns. The routing from the
bump pads to the analog front-ends can be identical for each pixel. The
main drawback of this layout is the placement of the pads on top of the
digital logic. This can cause digital-to-analog coupling unless the pads are
shielded using metal layers between the pad and the digital signals.

Figure 4.9b) shows a super pixel of 4 × 4 pixels. The advantage over
Figure 4.9a) is the increased area for shared logic and routing. The clock
distribution can also be shared between 4 pixel columns. This layout also
has the disadvantage of the pads placed on top of the digital logic. However,
the main drawback compared to the 2×4 layout is that the input capacitance
for the analog front-ends is not the same which systematically increases the
channel-to-channel spread. This capacitance can be equalized among the
front-ends at the cost of increased noise and additional routing.

A third possibility is shown in Figure 4.9c) where analog islands are used
to make the routing from the pads identical. In this case, the drawback is
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Figure 4.9: Super pixel floorplans: a) 2×4, b) 4×4 and c) 4×4 with analog
islands.

that analog buses for biasing and power distribution must be routed over
digital regions. Unless quiet logic is placed in these positions, this can cause
coupling of digital activity to the analog signals thus increasing the noise.
Some advantages for this layout are that it is possible to have digital com-
munication between adjacent columns thus making it suitable for networks
discussed in Chapter 2 and earlier in this chapter. The bump pads are also
routed identically for each analog island thus minimising non-uniformities
in the input capacitance to the front-end.

4.10 Concluding remarks

In resource-critical designs such as pixel readout chips, taking into account
physical design aspects is crucial. Due to the effort required in physical
design, architectures were first estimated using high-level techniques, and
based on the performance in these simulations, some were chosen to be
implemented and compared in terms of power, area and timing performance.

In this chapter the physical considerations of the readout architectures
presented in earlier chapters were considered. It was seen that there are good
alternatives to traditional bus-based data transfer architectures such as data
fabrics and even networks in the pixel matrix. The data fabrics are especially
attractive because they effectively localize the data communication between
two adjacent blocks instead of having a global bus between several blocks.
They also simplify the arbitration to a decision between two options instead
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of the group of all modules that utilize the bus or the fabric.
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Chapter 5

Timepix3 ASIC

5.1 Motivation and requirements

In this chapter, a pixel readout ASIC called Timepix3 is presented. Be-
fore going into the details of this chip, a short motivation for designing the
Timepix3 is given. The Timepix3 chip is a successor to the Timepix [25]
readout ASIC. Timepix is a 65k channel HPD ASIC with charge/time mea-
surement capabilities, and it can also operate in photon counting mode in
which the number of detected particles withing a time window is recorded. It
has been successfully used in several applications (for example [59, 99, 100] ).
It incorporates a global shutter-based operation and a full frame readout
with a pixel-pitch of 55 µm. However, the chip also has some shortcomings:

1. minimum readout related dead time of 300 µs even for very low pixel
occupancies (1 - 5 %)

2. lack of simultaneous time (ToA) and charge (ToT) measurement per
pixel

3. no on-chip zero suppression (causing longer dead-time/lower hit rate)

4. resolution of the time measurement limited to 10 ns

5. no simultaneous event and charge measurement

6. no detections of overlapping hits in ToA and ToT modes

Most of these shortcomings were addressed using the architectural con-
cepts presented in Chapters 2, 3 and 4. The implementation of Timepix3
therefore allowed verification of these concepts in hardware. Timepix3 re-
duces the dead time per pixel to 475 ns and provides simultaneous ToA and
ToT measurements in every pixel (points 1 and 2). Dead time reduction is
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Figure 5.1: An application of Timepix3 in a particle tracking telescope. The
photo taken from the LHCb upgrade testbeam program.

achieved using on-chip zero suppression (point 3) and a super pixel struc-
ture utilizing an intermediate FIFO buffer for hit storage. The targeted
timing resolution is 1.5625 ns (point 4) and the measurement is made us-
ing a voltage-controlled oscillator (VCO) oscillating at nominal frequency of
640 MHz in each super pixel [101]. Due to its dynamic current consump-
tion of 300 µA, the VCO is only switched on if a pixel in a super pixel
asserts an enable-signal. A measurement mode where the ToT is integrated
while the total number of hits is also calculated is implemented (point 5).
Timepix3 also has hit overlap detection (point 6) in the digital front-end
which can be enabled by sacrificing 4 bits of 640 MHz time measurement.
Due to a design error in the pixel clock gating logic, this overlap detection
is not working correctly, but it has been demonstrated that area-wise the
feature could fit there.

One usage for Timepix3 is shown in Figure 5.1 as a particle tracking
device. The telescope includes 8 Timepix3 ASICs on both sides, and one
Timepix3 chip as a device-under-test. The telescope has been constructed
as a joint effort between CERN and Nikhef.

The Timepix3 requirements are shown in Table 5.1. The chip is sensor-
compatible with other Medipix family chips [43, 25, 42] by using a 55 µm×
55 µm pixel size, and a pixel matrix of identical dimensions. ToT range is 10
bits at 40 MHz and the time stamp range is 14 bits for the coarse ToA and
4 bits for fine ToA. These measurements can be done independently of each
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Table 5.1: Timepix3 requirements.
Pixel size 55 µm× 55 µm

Number of channels 256 × 256

Operating frequency 40 MHz

ToT range 10 bits

ToA range 14 bits + 4 bits

Minimum time resolution 1.5625 ns (640 MHz)

Power consumption < 1 W/cm2

Hit rate per pixel 1.2 kHz (average)

Maximum hit rate 40 Mhits/cm2/s

Output bandwidth 5.12 Gbps (SLVS)

other. In fact, in addition to measuring time, the 4 bits of fine ToA can also
be used to improve the ToT resolution. A maximum power consumption
of 1 W/cm2 indicates that roughly 1 W/chip is reserved for analog, and 1
W/chip for digital logic. The average sustainable hit rate per pixel is 1.2
kHz which equals 40 Mhits/s/cm2. This maximum output rate is limited by
the periphery (and not the matrix) due to the maximum output bandwidth
of 5.12 Gbps. There are 8 scalable low-voltage signaling (SLVS) output links
in Timepix3 running at a maximum of 640 Mbps per link, producing 8b-
10b encoded, serialized data streams. Each link has an independent packet
data stream so the number of links can be adjusted to the requirements
of the system (for example 1 gigabit ethernet (GBE) throughput, available
tracks on a printed circuit board (PCB), maximum power consumption due
to limited cooling capacity).

5.2 Architecture overview

The readout architecture of Timepix3 is a zero-suppressed (packet-based),
trigger-less, continuous readout according to Sections 2.10, 2.7 and 2.9. The
chip can operate with a duty cycle of 100 % (after configuration), meaning no
separate readout cycle is needed, thus making it sensitive to hits at all times.
This increase in duty cycle also reduces the occurrence of measurement errors
which happen when a discriminator output is high at the time of the shutter
opening, because the shutter can be kept open during the readout. The pixel
matrix consists of 128 double columns, with 64 super pixels each. Each super
pixel contains 2× 4 pixel front-ends.
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Figure 5.2: A schematic of the front-end of Timepix3.

5.3 Front-end description

The front-end of Timepix3 including the super pixel is shown in Figure 5.2.
It consists of 8 analog and digital front-end pixel circuitry connected to a
shared super pixel logic. The super pixel input and output rates were cho-
sen according to the simulations presented in Chapter 2, but also taking the
physical constraints into account. The super pixel is used only for readout
purposes, not for reducing the data rate by grouping several hits into one
packet. Because each pixel must store 28 bits of information, grouping mul-
tiple hits into one packet would make the length of the packet more difficult
to handle than single-hit packets. Even if the time stamping information
(14 bits) was shared between 8 pixels, each pixel would require 14 bits inside
the grouped packet. A fixed size packet would have 126 bits of information
excluding the address bits. Setting maximum number of hits per packet
to 3 (see Section 2.10 would decrease the total length but would require
additional packet formatting circuitry within the super pixel.

5.3.1 Analog front-end

The hit processing starts from the analog front-end, which receives and
amplifies the current pulses arriving from the sensor before comparing the
output value of the amplifier against a pre-set discriminator threshold. If
this value is exceeded, the discriminator output generates a logic one which
is sent to the digital front-end for synchronization. The analog front-end
consists of a pre-amplifier with leakage current compensation, a 3 fF feed-
back capacitor and a discriminator. It also contains circuitry for test pulse
injection and local threshold tuning of 4 bits. These bits can be programmed
per pixel basis. The analog front-end of the Timepix3 has been described in
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Figure 5.3: A block diagram of a digital pixel of Timepix3.

detail and characterized in [16], and is not discussed here.

5.3.2 Digital front-end

The digital pixel logic of Timepix3 is shown in Figure 5.3. This pixel is a
building block for a larger structure of 2 × 16 pixels which is repeated to
form the full matrix.

The AFSM is implemented to reduce dynamic power consumption of
the pixel. Because one flip-flop used in the standard cell library consumes
approximately 1 µW running at 40 MHz even when its output value does not
change (internal power), a two flip-flop synchronizer is not used. Using an
AFSM, dynamic power consumption is reduced to < 0.5 µW per pixel when
there is no hit activity present. This technique is deployed similarly in digital
front-ends in many other HPD readout chips [25, 35, 75]. The AFSM is
essentially a clock gate, having two inputs, enable and clock and outputting
a gated clock signal. The main difference to a latch-based clock gate is that
it does not produce any glitches on the gated clock output regardless of the
arrival time of the input clock and the clock enable-signal. This behaviour is
frequency-dependent and must be verified in analog simulations. No glitches
have been observed when simulated at the targeted operation frequency of
40 MHz.

The AFSM provides the gated clock to the synchronous FSM which
controls the counters and the readout of the pixel. The state chart of this
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Figure 5.4: Synchronous state machine of the digital front-end of Timepix3.

FSM is shown in Figure 5.4. In any of the three modes, the FSM is not
clocked and is idle until the first rising edge of the discriminator. The FSM
is activated when the rising edge of the discriminator output arrives, and it
transitions into the state R EDGE. See Figure 5.5. This state is held until one
of the conditions described in Figure 5.4 is met, depending on the operation
mode of the pixel. For example, in ToA/ToT mode the transition happens
when the falling edge of the discriminator arrives. The processing is different
in all modes but the readout operation is performed similarly. It can be seen
that the pixel cannot transition back to the state R EDGE once it is ready.
This means that only one shutter-opening can be recorded in the event-
counting mode, and in the other two modes arriving hits are discarded until
the current data has been read out. A pixel can accept a new hit every three
clock cycles, thus having a dead time of 75 ns, but this is possible only in
the event-counting mode due to the additional dead time contributed by the
super pixel readout logic. In the event-counting mode, the pixel need not be
read after every hit. After the readout operation, the FSM returns to the
IDLE state and the AFSM disables the clock again. During a configuration
data readout, the FSM transitions directly from IDLE and READY, and the
configuration data can be read out after this similarly as the event data.

A standard technique of latch-based clock gating is used to provide gated,
glitch free clocks to the pixel counters. This ensures that the counters con-
sume power only when a pixel is processing a hit. Another well-known
advantage is that the feedback muxes are removed from the flip-flops thus
resulting in reduced area. The reset functionality in the counters is imple-
mented by shifting the reset values into counters. This reduces the area
required for the counters but increases the duration of reset. The counters
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Figure 5.5: Timing diagram of the digital front-end of Timepix3.

are implemented as LFSRs instead of binary counters because this technique
typically saves at least 30 % of the area [89]. LFSRs also run faster than
synchronous binary counters but the speed is not a critical attribute in this
case. Binary ripple counters could also be used if the bits in the counters
were read in parallel, but configuring a ripple counter into a shift register
for serial readout requires an extra multiplexer per flip-flop thus increasing
the area footprint.

To further optimise the design, the design hierarchy was flattened inside
the synthesis tool, and an optimal state encoding in terms of area for the
synchronous FSM was iterated. This was done by synthesizing the pixel
using all possible combinations of state vectors. Another optimization was to
assign macros to all values of control signals, then try different combinations
of these values to find which needs the smallest area. Using the macros
instead of hard-codes values, the active level of these signals could be rapidly
changed. An example of this is shown in the listing below:

‘ d e f i n e PIXEL SHIFT ENABLE ON 1 ’ b0
‘ d e f i n e PIXEL SHIFT ENABLE OFF 1 ’ b1

Before the optimizations, the estimated cell area was 1575 µm2 and the
estimated area for routing 2184 µm2. After the optimizations, the cell area
was 1536 µm2 (a reduction of 2.5 %) and the area for routing 2089 µm2 (a
reduction of 4.5 %). Although the impact of these optimizations seems to
be small, in fact the design could not be placed and routed without them.
Before starting the routing, the placement density was already over 90 %.
For example, it was not possible to add overflow control to the 14-bit coun-
ter/register anymore. The overall transistor density (900 ktransistors/mm2)
was over two times larger than in [75], for example. The length of the pixel
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RTL description is approximately 1300 lines of Verilog hardware description
language (HDL).

5.4 Super pixel

The super pixel logic of Timepix3 is shown in Figure 5.6. This logic operates
as a data concentrator and readout logic for 8 digital front-ends. The readout
is controlled by an FSM with a counter, and it reads one pixel at time. The
arbitration is done using a token ring, in which the token can travel between
any two locations in one clock cycle.

Because the super pixel logic utilizes standard cells that are optimized
for area, the number of routing channels in the cells is also decreased. To
compensate for this loss of routing resources, bits from pixels are transferred
to shift registers using a 2-bit bus only. This adds 14 clock cycles to the
dead time of the digital front-end. The dead time is 19 clock cycles in total,
consisting of the shift time (14) and time to initiate the shift (2) and reset
the pixel (3) after reading the data. The parallel readout of all 28 bits from
a pixel was not possible due to the limited routing resources available.

A linear FIFO is used to store up to two pixel data packets. This FIFO
architecture is smaller in terms of area than a FIFO with multiplexers in-
ferred at the inputs and outputs. Even if the FIFO is full, the super pixel
can still initiate a shift-operation from a pixel and store this data into the
shift registers until a slot from the FIFO is freed for writing. The FIFO is
read by a TX FSM which requests the bus access from an EoC block. After
the request, the FSM must wait until it receives the token from the previous
super pixel block (or from the EoC if it is the first in the ring). Each packet
is split into 4 words of 10 bits to reduce the number of wires required for
the bus. A two-phase handshake is performed for each word between the
TX FSM and an RX at the EoC.

Simple state charts for two FSMs required in the super pixel logic are
shown in Figure 5.7. Some conditions and transitions are omitted for clarity.
As described, the Shift FSM controls the readout operations from pixels, and
starts shifting data from a pixel selected by the token ring after it receives a
request. After the counter reaches value 13 ( shift done ), the pixel data is
written into the super pixel FIFO unless the FIFO is full. In that case, the
FSM waits until the FIFO has a free slot to write into. This FIFO acts as
a buffer between the Shift FSM and the TX FSM. The TX FSM starts its
operation when the fifo empty -flag is deasserted. After this it requests
the token and starts the bus transaction after having received the token.
The transaction is complete when the send done -condition is reached.

The readout architecture of one double column of Timepix3 is shown in
Figure 5.8. The full column consists of 64 super pixels connected to an OR-
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Figure 5.6: A block diagram of a super pixel of Timepix3.

Figure 5.7: State diagrams for the super pixel FSMs.
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Figure 5.8: A block diagram of the double column of Timepix3.

based bus using a 2-phase asynchronous handshake protocol [102]. Data are
single-rail encoded meaning only one wire per data bit is used. This imposes
strict timing relationship between request- and data-signals. The data must
always be ready before the request arrives to the receiver. This protocol
works in a globally-asynchronous locally-synchronous (GALS)-manner [103]
because each super pixel uses a locally synchronous clock but the commu-
nication between the super pixels and the receivers is asynchronous. The
timing requirements for the request and data signals have been defined by
using a virtual clock in the SDC file.

Figure 5.9 shows the timing diagram related to a bus transaction. The
transaction is started when a requesting TX FSM receives the token (
token in ). Because the handshake is performed using transitions on Ack
and Req , an XOR-operation can be used to detect the transitions. Both
the TX and the receiver use a double flip-flop synchronizer to avoid synchro-
nization failures. The clocks on both ends can be completely independent,
and can come from non-related sources. Note that the receiver and the to-
ken are also independent of each other. The token always operates in the
same clock domain as the TX. However, Request must be synchronized
before giving it to the token logic. This is required because Request is an
OR-function of 64 bits and the timing for this signal is not guaranteed.

5.4.1 Choice of super pixel dimensions

A geometry of 2×4 pixels per super pixel has been chosen for several reasons.
Firstly, the intermediary FIFO used to reduce the dead time could not be
used per pixel-basis due to a limited area available. However, even by sharing
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Figure 5.9: Timing diagram of the column bus of Timepix3.

this buffer between multiple data producers, as was shown in Chapter 2, the
efficiency can be improved. The column bus timing is also improved by
connecting only 64 super pixels to the bus instead of having 256 or 512
pixels connected to the same bus. Because the arbitration of this bus is
based on a synchronous token ring, the traversal time of the token through
the ring is also reduced.

Secondly, a larger super pixel was avoided to limit the routing distances
between digital blocks. Because the standard cells used are optimized for
area by decreasing the width of the transistors in the cells, they are slow and
have lower driving capability compared to commercial libraries in the same
technology. By limiting the super pixel to 110µm × 220µm, it is ensured
that no signal from pixels needs to be driven further than this distance. By
restricting the size to two pixels in the row direction, the input capacitance
to the analog front-end is minimised and uniform across the pixels. Unequal
capacitances increase the systematic offsets between analog front-ends and
increasing the input capacitance adds additional noise to the front-end [98].

As was discussed in Chapter 4, there are a number of trade-offs when
choosing the super pixel size and the design methodology. For Timepix3,
automated PnR tools were used for the super pixel as well as for the digital
front-ends. More precisely, the matrix was constructed from a block of 4
super pixels containing a rectangle of 2× 16 pixels. This has the flexibility
of faster modifications to the layout and direct correspondence of the layout
with the RTL description. The drawback is increased mismatch in the analog
front-ends because the layout of the digital pixel front-end is not identical
for all pixels anymore. Another drawback, which was already observed in
simulations, are timing mismatches in the digital logic while measuring the
fine time stamp. To alleviate this problem, a synchronizer and clock gating
block for the digital front-ends was created as a macro block, and placed at
the same position in all pixels. Despite this optimization effort, the binning
of fine time stamps measured from the manufactured Timepix3 was not
equal in all pixels in 2× 16 pixel structure.
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Figure 5.10: The digital periphery of Timepix3.

5.5 End-of-Column and Periphery

The digital periphery of Timepix3 is shown in Figure 5.10. The data path
is divided into 4 buses and 4 token rings. 32 EoC blocks are connected to
each bus-ring combination. The connections between EoCs and each bus
segment (0 - 3) are omitted for clarity. The main blocks of the periphery are
EoC block, the bus manager, the output block, slow control and command
decoder and the configuration registers. There are other control units which
are not shown in Figure 5.10, such as power pulsing control and a command
decoder for pixel matrix commands.

The EoC block has two main functions. The first is to receive data pack-
ets from columns by synchronizing the data to the periphery clock domain
after a completed handshake. An EoC block adds a double column address
to each packet for later identification. Packets are stored in a FIFO until the
EoC is granted access to a 48-bit periphery bus. After gaining access to the
bus, one packet from the FIFO is sent to the output block for serialization.

The second function is to perform control operations for the pixel matrix.
Reading and writing configuration data to the matrix is handled by the EoC
command decoder, resetting the pixel matrix is sequenced by EoC blocks,
and readout modes are enabled and disabled through this logic. As a last
control function, the test pulse injection on a column basis is controlled by
a configuration register in the EoC block. The clock gating to the column
is also controlled by the EoC clock manager, which shuts down the clock
propagation during sequential readout operation from columns which are
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not being read out. The main purpose of this logic is to reduce the power
consumption by not reading out all columns simultaneously. This does,
however, sacrifice readout speed, but is useful if Timepix3 is connected to
a system that cannot handle the full output bandwidth of 5.12 Gbps. The
number of columns read out in parallel can be chosen with a programmable
mask.

All data packets from EoC blocks pass through a bus manager controlling
the 4 EoC buses. These buses consist of 4 rings each of 32 EoCs and a central
arbiter which chooses the next ring. The arbitration within each of the rings
is done using token arbitration. This implies that the central arbiter has
no control over the token while it is inside one of the 4 rings. The token
can travel from one station (a flip-flop) to the other within one clock cycle
(80 MHz) in a ring, but it takes one extra clock cycle to change the ring.
This is done to improve the timing of the bus, and to be able to run it at
80 MHz, effectively delivering 3.84 Gbps. The OR-based bus follows the
same structure as the token rings, meaning that 32 EoCs are connected to
the same bus. All control packets from the slow control logic also propagate
through the arbiter meaning that the control data is always mixed with the
data packets.

The bus manager passes received packets on to the output block. This
block can control the data flow by setting Full -flag, if it cannot keep up with
the stream of incoming packets. This can happen if the clock frequency of the
links is lowered from 320 MHz double-date rate (DDR) or if some links are
disabled. The output block also encodes the data using 8b/10b encoding to
create a double column (DC)-balanced data stream from which a receiver can
recover the clock. Similarly, as in [56], the number of enabled serialisers in
the output block can be configured to accommodate applications with higher
or slower hit rates. This also means that the Timepix3 can be operated with
one output link only, if the readout system cannot incorporate more links
due to area restrictions on the chip board.

Timepix3 also has an on-chip PLL generating a 320 MHz clock from
an input clock of 40 MHz. Besides generating the 320 MHz needed for
serialization of the pixel packets, it generates a control voltage for VCOs that
are used for fine time stamps measurements. This PLL has been described
in detail and has been characterised in [104].

5.6 Physical implementation

For the physical implementation of Timepix3, a 130 nm commercial CMOS
process was used. The CMOS technology and its 8-layer metal stack were
already described in Chapter 4. In the design of digital logic for the pixel
matrix of Timepix3, layers up to M4 were used in the routing of digital
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signals and the upper layers were completely reserved for the power distri-
bution. Two different standard cell libraries were used, with row height 2.4
and 4.8 µm respectively. The former option allowed much higher integra-
tion of gates into the pixel matrix by reducing the width of the transistors
used in the cells with a corresponding reduction in switching speed. These
cells were also created using high threshold voltage transistors to reduce the
leakage current of the matrix. The larger cells were used at the periphery of
the chip where higher frequencies were required (up to 320 MHz). Because
the cell count at the periphery was an order of magnitude smaller than in
the pixel matrix, no leakage power optimization was done.

Timepix3 was implemented using a mixture of automated digital design
tools and analog custom layout design flow. The analog and digital devel-
opments were done in parallel. The following steps were carried out to build
the layout of the full chip:

1. Analog front-end layout was done in a full-custom manner.

2. The VCO used in the super pixel was done in a full-custom manner.

3. A synchronizer block for the digital front-end was created using PnR
tools.

4. The layout of 4 super pixels (2 × 16 pixels) was created using PnR
tools, 4 VCO layouts and 32 synchronizer layouts. The global sig-
nals such as the clock and the time stamp bus were fixed to specific
positions.

5. The layout for a full column was created using 64 super pixel layouts
and 512 analog front-end layouts. The columns on the both edges of
the matrix were done separately.

6. The matrix was created by replicating the column layouts 128 times.

7. The EoC block was created using PnR tools.

8. The layout was created for a 640 Mbps channel in the output block.

9. Ready-made intellectual property (IP) blocks, such as DACs and a
bandgap reference, were used for analog peripheral components.

10. A PLL was created in a full-custom manner.

11. The periphery was created using PnR tools, instantiating all layouts
and the IO pads.

12. The matrix and periphery layouts were combined in an analog layout
editor. This is also called analog-on-top approach.
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Figure 5.11: The layout of the front-end synchronizer in Timepix3.

In this section, only points 3, 4 and 7 are discussed. However, point 11
was also relevant for this thesis because architectural optimizations of the
RTL code were required to meet the timing constraints on the periphery
token and bus. As was shown in Figure 5.10, 32 EoC blocks were connected
to one bus segment. This number was mainly dictated by the physical
design constraints and the clock frequency of the bus (80 MHz). Because no
tristate gates were used in the design, an OR-based bus was used to merge
data signals from 32 blocks into one bus. As was shown in Chapter 4, for a
64-module OR-based bus, the worst case delay was 12.3 ns using the most
power efficiently sized transistors. To guarantee the timing with a clock
period of 12.5 ns, a 32-module bus was used.

In Figure 5.11, the layout of the digital pixel front-end synchronizer block
after PnR is shown. This block has been created separately to reduce the
timing mismatches between pixels instead of placing and routing it with the
super pixel layout. The dimensions of the block are 9.6 µm × 16.0 µm,
and the local routing has been restricted to the three lowest metal layers.
This is done to facilitate easier integration of this block at the next level of
the hierarchy where higher level metal layers are required in global routing.
The power is distributed using M1 horizontal stripes (shown in dark blue
in Figure 5.11), and are connected to the column-level power grid when
integrated with the layout at the next level of hierarchy.

The layout of one super pixel is shown in Figure 5.12, and it has been
rotated 90 degrees to the right. The area taken by this block is 110 µm × 220
µm. All global routing is shown with the horizontal metal lines (M4). The
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Figure 5.12: The layout of a super pixel of Timepix3.

most routing area is taken by the two 14-bit time stamp buses, and the clock
signal is routed using a wider wire (0.4 µm) to reduce the resistance of the
wire. To ensure identical signal distribution, the routing of the global signals
was carefully designed and their placement done by hand rather than with
the automatic router. The buffering of all signals, except the clock signal,
is done at the EoC block, and thus is not shown. Note that all signals going
to the EoC (from right to left) are not manually routed.

There are 8 synchronizer blocks and one VCO within the super pixel
layout, which also contains all counter logic for pixels and the readout logic
of the super pixel. Due to the large aspect ratio, the full building block of
the pixel matrix, a layout of 4 super pixels, cannot be shown. The super
pixel layout is not identical for all 4 super pixels due to automatic PnR.
Some features such as macro blocks, global routing and the power distribu-
tion are implemented manually, and are identical in all super pixels. The
power distribution which is not fully shown (see Figure 5.13), is done us-
ing M5 in a row-direction (up-down) and the two top metals, M7 and M8
in a column-direction (left-right). Standard cells were placed freely by the
digital placement tool to optimise the area, and the gaps between standard
cells were mostly filled with decoupling capacitor cells. The estimated dis-
tributed decoupling capacitance from these capacitors is 9 nF. Similarly, in
[74] only 90 % of the area was used by the analog and digital functionality,
so decoupling capacitors were used to increase robustness against varying
current consumption.

The power distribution of the column is shown in Figure 5.13. The top
metals M7 and M8 are 25 µm wide to minimize resistive voltage drops on
the power supply lines. The M5 routing is 4 µm wide and is connected as a
grid over the analog front-ends. The width of the top metals is limited by
the bump pads which are located between two M5 pairs, and almost on top
of the synchronizer blocks. Despite all the efforts made to shield the pads
from digital activity, increased noise was observed when the time stamp bus
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Figure 5.13: A segment of the digital power distribution for a column.

was turned on. This increase is quantified and analyzed in the following
sections in this chapter.

5.7 Test setup

The measurements from a manufactured chip were performed to assess the
performance of the architecture. An FPGA-based readout system called
Speedy PIxel Detector Readout (SPIDR) [105] was used for all the measure-
ments. The readout board features a 10 Gb Ethernet (10GbE) for reading
out the chip at full of speed of 5.12 Gbps. This test setup for measurements
of Timepix3 is shown in Figure 5.14. All measurements were performed from
a single chip only. The Timepix3 was mounted to a circuit board and the
chip I/O wire-bonded to the board.

All tests for measurements were written using Python scripts and the
test application programming interface (API) was built on top of a library
of C++ functions. The development of C++ library and the test API was
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Figure 5.14: The test setup used for the measurements of Timepix3.

not part of this thesis. A soft-core Leon processor is used inside the FPGA
to enable some functions to be implemented in software. To control the
temperature of the chip during the measurements, a large external fan was
used, and the temperature variation observed during the measurements was
from 55 C◦ to 58 C◦.

5.8 Power consumption

The digital current consumption was measured using a 4-wire measurement
technique. The board-level power supply is bypassed, and the chip connected
to an external power source with measurement capabilities. The current
drawn from the source by the chip can be sampled via a standard commands
for programmable instruments (SCPI)-bus.

Based on analog transistor-level simulations, the power consumption for
the clock distribution of the pixel matrix was estimated to be 220 mW, at
room temperature and 1.5 V. The transient current drawn by a block of
16 double columns is shown in Figure 5.15. The rising edges are denoted
as R0 − R14 and the falling edges correspondingly as F0 − F6. Phase
difference between two consecutive double columns is 22.5 degrees, or 1.5625
ns when the clock period is 25 ns. The peak current consumption occurs
when a rising and a falling edge coincide, and is approximately 18 mA for
16 double columns. This equals to a maximum current of 144 mA for the
full chip.

The power consumption of the clock tree was measured from the chip
with different clock frequencies of 20, 40, 80 and 160 MHz. Firstly, the
digital power consumption of the periphery was measured while the shutter
was closed. In this way, clock distribution to the pixel matrix was gated
and consumed no power. After this, the shutter was opened and the power
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Figure 5.15: The dynamic current consumption for the clock distribution of
16 double columns.

consumption measured again. The analog front-ends were masked to en-
sure that no other activity than the clock was present in the matrix. By
subtracting the two figures, a number for the clock distribution of the pixel
matrix was obtained. The digital current consumption of the chip is shown
in Figure 5.16. The measurement at 40 MHz (142 mA) is in agreement with
the transistor-level simulation. The increase in the current consumption is
linear with the clock frequency as expected. The power consumption of the
ToA distribution in columns was estimated to be less than 55 mW (40 MHz,
1.5 V, 25 C◦) based on analog schematic simulations. The measured current
drawn by ToA counters can be calculated by subtracting the consumption
of the periphery and the consumption when the ToA counters are enabled.
At 40 MHz, this current was measured to be 44 mA, or 66 mW. This con-
sumption is slightly higher because the simulation estimate does not include
the actual counters at the periphery or the registers at the EoC.

5.9 Crosstalk and digital-to-analog coupling

When integrating the analog and digital parts in proximity of each other,
digital-to-analog coupling is an issue. The typical ways that the noise can
couple to analog sections is either via a noisy substrate or by direct metal-
to-metal capacitive coupling. In the digital domain, the first problem can be
addressed by reducing the voltage drops in digital power supply and ground
lines by using a low-resistance power grid. Also, avoiding large current
spikes reduces the substrate bounce. The second problem can be addressed
by using some metal layers for shielding the nodes that are seen as vulnerable
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Figure 5.16: The current consumption measured from the Timepix3 chip.

to the coupling.
The difference in the minimum achievable threshold in two pixel opera-

tion modes and readout modes is shown in Figure 5.17. The x-axis indicates
the threshold and the y-axis indicates the number of pixels having hits due
to noise. A minimum threshold of 400 e− was obtained when using event
counting and integral ToT mode. In this mode there is no timing mea-
surement, and the 14-bit time stamp buses are not toggling in the column.
Readout of the data was also performed using a sequential readout mode
meaning that the readout was disabled during the data acquisition. When
the same measurement was repeated in simultaneous ToA/ToT mode using
continuous data acquisition, a minimum threshold of 500 e− was reached.
By turning off the ToA counters at the periphery, it was verified that the
increase in the minimum threshold was caused by the activity of the ToA
counters, and not the usage of the continuous readout mode.

5.10 Column architecture characteristics

Figure 5.18 shows the packet readout rates from one double column in
Timepix3. 256 pixel packets have been read out, and the periods between
two successive packet arrivals are measured. The rate plotted in Figure 5.18
is then inverse of these periods. These packets contain configuration data
and the packet traffic has been created using a slow control command. Due
to the logical structure of the two token rings, one inside the super pixel and
the other connecting super pixels together, the pixel 0 of the super pixel 63
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Figure 5.17: The impact of the ToA counter to the minimum threshold.

is read out first. This corresponds to packet 0 in Figure 5.18. The packet 1
then corresponds to the pixel 0 of the super pixel 62 and so on.

Because the data transmission starts from the top of the column, the rate
is lower at first due to the larger wire- and gate-delays. The rate noticeably
increases towards the packet number 63 (pixel 0, super pixel 0) and then
drops again for the packet 64 (pixel 1, super pixel 63). The same periodic
pattern is seen four times because there are 64 super pixels, and each super
pixel sends only one packet for each of these four patterns. The plateaus in
the plot are regions where the latency in clock cycles stays constant because
all super pixels in the plateau are within one clock period in terms of timing
of the handshake signals. In the transition region, the clock signal and the
handshake signals coincide. Because there are 4 transitions per handshake
and 4 transactions per packet, there are 16 possible events to synchronize.
In the case of setup- or hold-time violation, the simulation model of the flip-
flop randomly chooses the next value. The values of packet rate measured
on the chip match exactly the simulations with the typical parameters.

Average simulated rates for a column using different super pixels (SPs)
are also summarized in Table 5.2. The simulations have been performed
using three process corners presented in Chapter 4: slow corner (SS), typi-
cal corner (TT) and fast corner (FF). The first two columns indicate that
the deterioration in performance caused by wire- and gate delays is approx-
imately 10 %. In the case of a single super pixel being hit, the largest delay
is caused by the synchronous token ring which takes 64 clock cycles for a
full round trip.
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Figure 5.18: Measured/simulated readout rates of packets from a double
column of Timepix3. The rate is an inverse of arrival times observed between
two consecutive packets.

Table 5.2: Simulated average readout rates of super pixels 0 and 63, and
average of one column in Timepix3.

Corner

SS/1.4V/125C TT/1.5V/25C FF/1.6V/-55C

SP 0 only 450 kHz 450 kHz 450 kHz

SP 63 only 410 kHz 450 kHz 465 kHz

SPs 0-63 1.36 MHz 1.50 MHz 1.60 MHz
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5.11 Main limitations of Timepix3

One of the main limitations of Timepix3 is that because each pixel has 28
bits of information, a bandwidth of 5.12 Gbps is only sufficient to deliver ap-
proximately 80 Mhits/s/chip, or 40 Mhits/s/cm2. Two ways to improve the
rate are increasing the output bandwidth and reducing the number of bits
per pixel. All other things being equal, changing either of these parameters
increases the total achievable hit rate linearly. For example, by increasing
the output bandwidth to 20.48 Gbps and reducing the number of bits in the
output packet from 48 bits to 40 bits, 512 Mhits/s/chip could be delivered.
Knowing that the power efficiency in modern serialisers, in 65 nm CMOS
technology for example, can be easily below 1 mW/Gbps using SLVS [106],
the power budget of Timepix3 would allow many more additional serialisers.
On the one hand, the limiting factor would then be the available I/O pins,
but on the other hand, the power consumption of the internal readout ar-
chitecture would also increase because it would have to accommodate much
higher rates.

Another limitation is that the pixel hit rate cannot exceed the readout
rate of one super pixel. This rate is severely limited by the synchronous token
ring which was chosen as the arbitration due to its simplicity. Regardless of
the hit occupancy inside a double column, it takes at least 64 clock cycles for
the super pixel to reacquire the token after it has released the token. When
assuming an average rate of 1.2 kHz per pixel, this is not an issue. Because
in real applications the occupancy may not be uniform, there may be local
hot spots which produce data at a much higher rate. The maximum rate
for a super pixel is approximately 400 kHz, and this rate is split between
8 pixels, meaning a rate no larger than 50 kHz per pixel can be sustained
at local level. Because there is no additional buffering at the pixel-level,
when the input hit rate in the pixel approaches the output readout rate, the
efficiency drops quickly to 50 % as was discussed in Chapter 2.

When the hits are uniformly distributed across the double column, the
maximum achievable rate from one double column is 1.5 MHz in the typical
process corner. In this case, the architectural bottleneck is the handshaking
between a super pixel and an EoC block, and the latency of the token
contributes approximately 1/20 of the total latency only. By using a node-
based data fabric, the rate could be increased to more than 6 MHz per
column, when assuming 2 clock cycles for handshaking between nodes and
4 clock cycles for the data transfer (4 × 10 bits). This would increase the
latency of the transfer to 4 clock cycles per each node on the transfer path.
For example, data from the super pixel 63 would have a minimum latency
of 64 × 4 = 256 clock cycles.
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5.12 Concluding remarks

This chapter presented an HPD readout ASIC Timepix3, a successor to the
Timepix HPD readout ASIC. Timepix3 introduced several new features
when compared to existing readout ASICs. The architecture of Timepix3
offered simultaneous time and charge measurement capabilities with a pixel
pitch of 55µm. It also offered a throughput of almost 80 Mhits/s per chip
in a trigger-less readout mode. The chip also incorporated a simultaneous
event counting and integral ToT mode.

Measurements and simulations are in agreement about the performance
of the architecture. The chip has been manufactured, and has been ob-
served to be fully operational in silicon, and to operate in adherence to the
simulations.
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Chapter 6

VeloPix ASIC

6.1 Motivation and requirements

The LHCb experiment at CERN will undergo electronics upgrades in the
coming years [10]. In particular, the electronics of the VELO detector [9]
of LHCb will be upgraded to handle higher hit rates. The VeloPix pixel
readout ASIC is being designed to address this issue of unprecedented data
rates which is a result of two major changes to increase the physics output of
the experiment. The first change is a factor of 5 increase in the intensity of
the proton-proton collisions and hence many more particle tracks producing
hits in the pixel detectors. The second is the requirement to transmit the
hit information from all collisions and not apply a hardware trigger filter.

Before delving into the architectural details and the performance of the
ASIC, a short overview of the context where VeloPix will be deployed is
presented. An artistic representation of the upgraded VELO detector is
shown in Figure 6.1. The detector will contain 624 VeloPix ASICs in 26
sensor planes. It is a forward tracking detector with the closest chips being
only 5.1 mm from the particle beam. The chips with the highest data rates
are expected to see 8.5 particle tracks on average at a rate of 40 MHz [29].
Each of these tracks can create a cluster of hits producing event information
in multiple pixels. As discussed later, this proximity of multiple hit pixels
is used to reduce the overall data rate produced by the chip. The data rate
handled by the hottest chips will be greater than in any previous pixel ASIC
at CERN, and the chip has to transmit all events, without having access to
a trigger signal for hit filtering, with a readout efficiency higher than 99 %.

A module of 12 VeloPix ASICs is shown on the left side of Figure 6.2.
Each plane shown in Figure 6.1 consists of two of these modules. There
are three ASICs per each sensor tile, and two sensors per each side of the
module. The pixels in sensors covering the gaps between two adjacent ASIC
are larger in area than rest of the pixels. The module has two sides, and the
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Figure 6.1: An artistic impression of the upgraded VELO detector contain-
ing 624 VeloPix ASICs. [29]

substrate is shown as transparent to show the ASICs on the backside, and
the ASICs on the front-side are covered by the sensor tiles. The right side of
this figure shows the track rates per ASICs seen by the hottest module. The
radiation seen by different chips is very non-uniform, and this also results
in a lot of variation in pixel occupancies.

Table 6.1 shows the requirements for VeloPix. The pixel size and the
number of channels are identical to the Timepix3 ASIC presented in Chap-
ter 5. This also conforms to the pixel size of other Medipix family chips
[43, 25, 42], thus making it possible to use the same sensors with VeloPix
already tested with these chips. The matrix operates with a 40 MHz clock
which is also the frequency of the proton-proton collisions in the LHC. The
chip will only record binary hit information from each pixel to minimize the
data rate, and will time-stamp each hit with a precision of 25 ns. One orbit
of the LHC is 3564 clock cycles or bunch crossings, and a 9-bit time stamp
is used to identify one of these cycles by keeping the latency of the time
stamped packets below 512 clock cycles. In this chapter, the time stamp
will also be referred to as BX-ID.

One of the critical constraints of the design is the power consumption due
to limited cooling possibilities. One of the objectives of the new module is
to minimize the mass in the detector volume which prevents the use of large
heat sinks for heat transportation. A micro-channel CO2 cooling [107], also
shown in Figure 6.2, will be used to prevent thermal runaway and to keep
the chips at a temperature of around -20 C◦, while minimising the material.
The hit rates impose dead-time constraints on the design of the analog
front-end, and on the bandwidth requirements for design of the readout
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Figure 6.2: A module of 12 VeloPix ASICs designed for the VELO upgrade.
[29]

architecture. A total bandwidth of 20.48 Gbps will be used to meet all the
readout requirements above.

6.2 Architecture overview

A novel architecture for the VeloPix chip has been defined, simulated and
implemented as part of this thesis to address the challenge of the high data
rate and the restricted power budget. This architecture is a zero-suppressed,
trigger-less, continuously operating packet-based architecture according to
the definitions presented in Chapter 2. The architecture can operate with a
duty cycle of 100 % thus being constantly sensitive to hits. In the following
sections, the key parts of this architecture are discussed, and simulation
results of the architectural performance are presented and compared to the
requirements. The chip has not yet been manufactured in silicon.

The transport of the large volume of data produced by VeloPix has
been investigated and then optimized based on the principles presented in
previous chapters 2, 3 and 4. Timepix3, as presented in Chapter 5 was
designed prior to VeloPix, and experience gained from that design is also
used here. More precisely, issues found during the design and testing of
Timepix3 such as digital-to-analog coupling of the time stamp bus, high
packet latency due to column bus wire delays and hand-shaking protocol,
and relatively low throughput per column have all been addressed in the
design of VeloPix. Apart from the coupling, none of these were issues in
Timepix3 due to longer ToA range (14 bits) and lower overall hit requirement
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Table 6.1: VeloPix requirements.
Pixel size 55 µm× 55 µm

Number of channels 256 × 256

Operating frequency 40 MHz

ToT range No ToT, binary

ToA range 9 bits

Minimum time resolution 25 ns (40 MHz)

Power consumption < 1.5 W/cm2

Hit rate per pixel 50 kHz (peak)
10 kHz (average)

Maximum hit rate 460 Mhits/s/cm2

Output bandwidth 20.48 Gbps (SLVS)

(40 Mhits/s/cm2), but they must be addressed in the design of VeloPix.

6.3 Front-end description

The block diagram of the front-end including the super pixel logic is shown in
Figure 6.3. The analog front-end processes current pulses arriving from the
sensor input pad by amplifying the signal and comparing the output voltage
of the amplifier against a programmed threshold value. The digital front-
end processes the discriminator output by calculating the ToT value of the
pulse and then comparing that value to a preprogrammed digital threshold.
A valid signal is passed to the super pixel logic if the ToT value exceeds
the threshold. This is done to reduce the effects of time-walk, and remove
hits from small charges that could cause an extra packet to be created in
the next clock cycle. Each super pixel logic module is connected to 8 digital
front-ends.

6.3.1 Analog front-end

The analog front-end consists of an amplifier with a feedback capacitor of
3 fF implemented as a finger capacitor, a leakage current compensation
and a discriminator. Leakage compensation is required to sink the constant
leakage current coming from the sensor. Without the compensation, this
current causes a DC offset which can move the amplifier out of its operating
range. There is also functionality for test pulse injection which is digitally
controlled. The expected detector capacitance Cdet is approximately 50 fF.
The front-end has a 4-bit DAC for threshold tuning, and these bits are set
locally per pixel.
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Figure 6.3: The block diagram of the front-end including the super pixel
logic.

6.3.2 Digital front-end

The digital front-end has a synchronization logic for the asynchronous dis-
criminator output, and a clock gating logic to reduce the power consumption
of the digital front-end. A clock gating is especially important because the
full chip contains over 65k pixels, and each logic gate and flip-flop consum-
ing power is multiplied by this total number of pixels. As an example, one
ungated flip-flop in 130 nm CMOS technology consumes 1 µW even when
not changing its state. Thus preventing the propagation of the clock to one
flip-flop in each pixel when that pixel is idle decreases the dynamic power
consumption of the chip by 65 mW. Also, based on this figure, it can be
concluded that the majority of the flip-flops have to be clock gated most of
the time to reach the targeted power budget of 1.5 W/cm2.

There is also a 6-bit LFSR per pixel for computing the ToT value of a
hit, and a comparator for comparing the LFSR output to a preprogrammed
digital value. This value can be programmed separately for each super
pixel block of 8 pixels. The digital front-end also contains logic to set the
threshold voltage for the discriminator via a threshold DAC. The LFSR
can also be used to shift configuration data into the pixels, to read the data
back or to read the ToT values from the chip. Under normal data acquisition
operations, ToT values are not included in the output data, and are only
used internally in the chip for vetoing time-walked hits.
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Figure 6.4: The data packet and the output packet frame of VeloPix.

6.4 Super pixel

6.4.1 Super pixel architecture

The main function of a super pixel block is to store the current BX-ID as
a time-stamp if any of the 8 digital front-ends sends a hit signal. The state
of all 8 pixels is also stored by the rising edge of this hit signal. An 8-bit
OR of the digital front-end outputs functions as a latch-enable signal. Each
pixel has a mask bit to set its output to 0 in case of a noisy pixel. The
super pixel will add its address information to these data, and then send the
packet down the column using a 1-D network of data nodes.

The full data packet of the chip is shown in Figure 6.4 along with the
output data frame containing 4 packets. The packet and the framing scheme
have been implemented to be robust against SEU by having fixed-length
packets always at the same position in the frame. Each packet contains 30
bits of information including the time stamp, full address information of
a super pixel and a hitmap of 8 pixels belonging to that super pixel. In
addition to 4 packets, the frame contains a header for synchronization and
a parity bit for each packet.

The super pixel has 5 logical blocks: a hitmap buffer, a clock manager, a
data node, an arbiter and configuration logic. Each of these blocks is briefly
described in the following paragraphs.

The hitmap buffer stores up to two super pixel packets. When at least
one of the outputs from digital front-ends is high (an 8-bit OR), a packet
is written into this buffer containing all information described above. The
buffer has no dead time if it was the first packet written into it, and can
accept a new packet on the following clock cycle. If the buffer is full, new
information will be discarded and not recorded anywhere. To optimize the
buffer for area, a linear FIFO is used, in which there are no input or output
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muxes, and a one bit control register per packet slot is required. Other
features of the linear FIFO were already described in Chapter 4. For small
FIFO depths, the additional latency and the number of control registers
required are negligible. The routing of this FIFO is also simpler than with
a FIFO equipped with muxes and read- and write-pointers because writes
are always done to the same register, and the reads are done from the same
register.

The arbiter has been implemented using a binary counter of 6 bits. In
the case of a conflict for access to the data node, when the counter has a
value 0, the hitmap buffer will be chosen as a data source for the data node.
Otherwise, the previous data node is chosen as a data source. The counter
is modulo 63 − super pixel address, and is thus slightly different in each
super pixel. There is also a failsafe mechanism which clears the counter to 0
if an SEU flips the counter to higher than its modulo value. In this way, an
SEU will only have a minor, transient impact on the arbitration priorities
but the correct functionality of the logic is not compromised.

The clock manager in the super pixel serves two purposes. Firstly, it
triplicates global reset and clock signals making the local routing robust to
SETs. Because both of these signals are edge sensitive, any transient caused
by SET can cause timing error or unintentional reset of the state registers.
With the triplication, any state machine will recover on the next clock cycle
as long as only one of the signals is upset. Secondly, it reduces the dynamic
power consumed by the super pixel. The manager controls the clock gating
by switching off the clock propagation to the super pixel module in the
absence of any activity. The condition for enabling the clock is any of the
following:

• Any pixel has its rising edge output high.

• The hitmap buffer has any packets in it.

• If the previous super pixel has any data in its node.

• If the data node has a packet to send.

• A read-operation between data nodes is in progress.

Figure 6.5 shows the comparison of the power consumption of the super
pixel with and without custom clock gating. This custom logic has been
hand-crafted because the compiler could not extract the conditions above.
In [108], some techniques for refactoring the enable-conditions are presented
to make the clock gating conditions recognizable to the compiler. Up to 50
% decrease in dynamic power is reported, but this generally depends on the
type of the design, and on the application. One simple technique presented
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Figure 6.5: Power consumption of a super pixel with different hit rates.

there is to detect a change in the state register of FSM, and propagate the
clock to the register only when the state is changing.

The targeted hit rate for a super pixel is approximately 0.3 MHz, and it
can be seen in Figure 6.5 that with this rate the custom clock gating helps
to reduce the power consumption. It is also notable that triplicated logic is
included in the custom clock gating but not in the automatic one, and the
custom clock gating consumes less power up to a hit rate of around 8 MHz.
Additional techniques, such as data-driven clock gating [109], in which an
XOR-gate is connected between inputs and outputs of a register and an OR-
function of the output of the XOR-gate used as a clock enable, could also be
employed to optimize the power consumption. However, generally there is
very little correlation in the data between two successive super pixel packets
making this clock gating technique ineffective for large register sizes. For
smaller sizes, the overhead of having extra gates inserted cannot be afforded
due to the restricted area available.

The data node handles all data communication external to the super
pixel. Each node stores up to one data packet, and tries to pass it to the
next node if the next node is empty. The interface between two nodes is
based on a pull-architecture where the next node pulls a packet from a
previous node. This happens only if the previous node has valid data, and
if the next node has capacity to store the packet.

6.4.2 Choice of super pixel dimensions

The choice of the super pixel size can have significant impact on the data
rate produced by the chip. The data reduction is achieved by sharing time
stamp and address information between several pixels. The magnitude of
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Table 6.2: Data rates with different super pixel geometries. N is log2(pixels
in super pixels).

SP geometry Data rate (Gbps) Packet size (#bits)

256× 256 14.785 28 + N ×16

4× 4 16.477 28 + N ×4

2× 4 16.806 28 + N ×3

2× 4∗ 16.945 33

1× 4 17.758 30

2× 2 17.857 30

1× 4 18.283 28 + N ×2

2× 2 18.373 28 + N ×2

4× 4 18.661 40

1× 2 19.703 29

1× 2 19.878 28 + N ×1

single pixel 23.916 28

this reduction depends heavily on the cluster size, and can be even negative
if most of the tracks consist of single pixel clusters.

Table 6.2 shows the data rates produced by different super pixel sizes.
These numbers have been used by using algorithmic grouping techniques
described in Chapter 3, and then forming the actual packets based on the
groups obtained. These numbers were obtained using a 12-bit time stamp
which was later optimized down to 9 bits. The left-hand side indicates the
super pixel geometry, the middle column the data rate produced using that
geometry and the right-hand side how the packet size is calculated. The N
in the packet size indicates a number of pixels that were hit in that super
pixel region. Note that these variable-sized architectures are more complex
to implement as they need counters or other monitoring logic to keep track
of the packet lengths. The first entry, a 256×256 super pixel is shown as an
ideal reference in which all hits from one bunch crossing are captured under
a single time stamp. In this case the packet will contain 12 bits for the time
stamp, 16 bits for the number of pixels hit and a 16-bit address for each
pixel hit. As the last entry, a single pixel case is shown where each pixel
captures a time stamp on its own. The chosen solution, marked with *, has
a data reduction of 30 % compared to a single pixel case.

So far, these kinds of encoding techniques for data reduction have not
been widely employed in pixel readout chips. A 2× 2 super pixel has been
used in [75] using a fixed packet length, also adding ToT information for
each hit. They report a data reduction of approximately 15 %. Although
the choice of a 2×4 super pixel architecture seems to result in 30 % reduction
of data, the 4× 4 super pixel or even larger dimension would seem to offer
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even more reduction. In this case however, the choice is also dictated by the
implementation details.

Both the 2×4 and 4×4 architectures showed a similar reduction in data
rate. However, the 4×4 super-pixel and also larger dimensions were rejected
after looking at the implementation details. To have identical routing from
the input pads to the analog front-ends requires symmetrical layout. This
symmetry minimizes the mismatch between different pixels. In a 4 × 4 or
larger architectures, analog islands would be required to support this kind of
symmetry. The trade-offs and issues related to 4× 4 layout and the analog
islands were already discussed in Chapter 4.

There are other means for data reduction, for example, lossless compres-
sion techniques like run-length encoding and Huffman encoding [110]. One
drawback of these techniques is that symbols in the encoded data stream
depend on each other, and if one of the symbols gets corrupted by an SEU,
all following symbols are corrupted as well. Thus, their usage would require
ECCs to ensure the correctness of data. Another property of these tech-
niques is that their compression efficiency decreases when the entropy or
randomness of the data increases. To determine the entropy of a stream of
data, a formula developed by Shannon [111] is used:

H = −
n∑

i=0

P (n) ∗ log2(P (n)) (6.1)

where H is the (Shannon) entropy of n different symbols and P (n) is the
probability of a specific symbol appearing in a data stream. As an example,
if the Equation 6.1 is applied to a byte stream, H will indicate how many
bits are required per byte to encode the data stream with an ideal, lossless
compression. For practical algorithms like the run-length encoding and the
Huffman encoding, this number will be higher. If Equation 6.1 is applied to
a data stream from VeloPix, it can be seen from Figure 6.6 that the entropy
is high in relation to the symbol size. The calculations were done using 20.7
M packets from VeloPix output data which means that no sufficient amount
of statistics is available for symbols greater than 24 bits.

It should be understood though, that H is above all a measure of entropy
of RNGs used in the simulations as those are the only source of randomness
present in the simulation. Assuming that the RNGs are good representative
of the actual application environment for VeloPix, it can be concluded that
no efficient lossless compression algorithm exists which could be used to
further decrease the data rate.

In simulations related to the VELO upgrade and track reconstruction
[112] it is also mentioned, that the processing of clusters could be made two
times faster by including an additional flag in the data packets. This flag
would indicate that a region of 2×4 pixels had no hits in any of the 8 neigh-
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Figure 6.6: Entropy of the data from VeloPix.

boring super pixel. This functionality has not been implemented because it
requires additional routing resources between the super pixels, and it is not
a crucial optimization for the tracking performance. Also, if done within the
ASIC, no cluster split between two ASICs could be detected in this man-
ner. Recall that each sensor in the upgraded VELO will be connected to 3
separate ASICs by bump-bonding which can result in a cluster of hits being
split between two readout ASICs. Detecting these split clusters has to be
done in a system receiving data from three separate ASICs.

6.5 Column readout architecture

The column readout architecture of VeloPix is shown in Figure 6.7. The
architecture uses a scheme presented in Section 2.13 where the arbitration
of the node access between the local buffer (a super pixel hitmap buffer) and
the previous node is done using weighted round-robin (WRR) scheme. As
previously described, this scheme assigns a weighted priority for each local
buffer which depends on the total numbers of nodes and the address of the
local buffer. It can be seen that the only global signals utilized are reset and
clock. The communication distance between two nodes is at most 220 µm,
which equals 4 × 55 µm pixels, so meeting the timing constraints is easier
than when using a synchronous bus spanning the full column.

Communication between nodes is done by first asserting a valid-signal if
a node has received data from a local buffer or from a previous node. The
next node in the chain then asserts its read-signal to notify the previous
node of the acceptance of the packet. After the transmitting node registers
that the read-signal has been asserted, it deasserts its valid-signal, and the
receiving node then deasserts its read-signal. This same sequence is per-
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Figure 6.7: A block diagram of a column architecture of VeloPix.

formed between all neighboring nodes until the packet reaches the node 0,
and ultimately the periphery logic. In effect, this kind of communication
results in latency proportional to the physical location of the original source
of the packet.

To make meeting the timing easier, a fully asynchronous approach could
also be used. In [113], an SEU robust approach is presented for asynchronous
pipelined communication links. The disadvantage of this approach to the
fully synchronous one adopted for VeloPix is the hardware overhead. Such an
asynchronous approach requires twice the number of wires if using latency-
insensitive protocol and dual-rail encoding. Note that the data must be
fully protected because the completion of the transaction is encoded in the
data itself. In the fully synchronous communication between nodes, only the
control signals need to be triplicated to ensure the correctness of commu-
nication between the data nodes. Another advantage of the asynchronous
approach is obviously that the throughput is not determined by the slowest
timing path which determines the maximum clock frequency.

6.6 End-of-Column and Periphery

The first part of the periphery data path is shown in Figure 6.8. A novel
feature of this architecture is that it has been split into two sides. Each
side has four data fabrics, each consisting of 16 nodes. The nodes have been
connected such that every fourth EoC connects to the same data fabric
per side. This has an effect of distributing the packet traffic more evenly
between the data fabrics. Each fabric is connected to the center node which
arbitrates between channels arriving from left and right. A left-right channel
pair is matched to one of the four output channels. The matching is static,
and if one of the pairs has no valid data, the corresponding output is also
left unused. This happens even in the case where multiple other pairs may
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Figure 6.8: The periphery data path of the VeloPix showing 128 EoCs and
the data fabric.

have congestion. This is done to simplify the logic instead of always trying
to match exactly 4 available inputs to the 4 outputs. The simplification is
also done because the topology of the EoC connections to the fabric already
distribute the traffic very evenly.

This data fabric is similar to the column architecture but each node con-
tains a FIFO instead of a single register. This makes it possible to send and
receive a packet every clock cycle without blocking. The arbitration for each
node is done as in the column by using a binary counter and selecting the
local buffer, in this case EoC, instead of the previous node. The difference
in this case is that each arbitration counter counts up to its node address
on the left side, and up to 15 − node address on the right side. The left-
most node in each of the data fabric channels has an address of 0 and the
rightmost one an address of 15.

The second part of the periphery is shown in Figure 6.9. Inputs shown
on the left of the figure are connected to the 4 outputs of Figure 6.8. The
first block is 4 × 4 cross-bar switch which is used to map any of the input
channels to any of its outputs. The benefit of this is that any channel can be
turned off to reduce the power consumption if the full bandwidth need not
be utilized. For debugging purposes, a 128-bit readout register is connected
to the router. All data can be read out through an 80 Mbps serial link
instead of using the faster 5.12 Gbps links.

After routing, data in each packet is scrambled for better DC-properties.
Then after scrambling, packets are framed into 128-bit frames containing 4
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Figure 6.9: The output logic of the VeloPix periphery.

data packets of 30 bits. These frames contain a 4-bit fixed header for frame
synchronization at the receiver side and a 4-bit code containing the parity
bits of each packet. These frames are then converted into 8-bit words in the
following serialiser. The final serialiser performs 8-to-1 bit serialization. 8
bits are loaded at 320 MHz DDR, and this results in a serial stream of 5.12
Gbps. More details and the architecture of this serialiser can be found from
[114].

6.7 Monte Carlo data sets and hit generation

Results shown in the following sections are partly based on the MC physics
simulations of the VELO upgrade. The MC simulation methods of the
VELO upgrade are explained in [112]. At first, the event data is produced
by using GAUSS [115] application which produces the primary events. As
mentioned in [112], this part of the simulation does not require any VELO
specific parts. The second application, BOOLE, maps the generated events
to a detector of specific geometry, and produces the coordinates of the actual
pixels. This output data from BOOLE is used as an input to the architec-
tural simulations.

Due to the module structure of 12 VeloPix ASICs presented before, the
hit occupancy in the hottest chips is highly non-uniform. These distributions
were extracted from the MC data, then these data were formatted into
packets using an algorithm to pack hits into 2× 4 super pixel packets. The
address distributions of these packets were recorded, and a weighted RNGs
in C++ and SystemVerilog created out of these.
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6.8 Architectural simulation

This section summarizes the most important simulations related to the ar-
chitectural performance of VeloPix. As stated in the introductory section,
a readout efficiency higher than 99 % for a full chip is targeted. It will be
seen that under non-uniform occupancy, some parts of the architecture may
locally have efficiency lower than 99 % while the overall efficiency is still
higher than this limit.

It was already shown in Chapter 3 in Section 3.2.8 that high-level sim-
ulation models can be used instead of RTL models to reduce the run-time
of simulations considerably (more than 20×) and to increase the number of
cycles simulated for collecting more statistics. Particularly, it was shown for
VeloPix models, that a reduction of two in LoC was achieved using sequential
high-level model.

6.8.1 Front-end pile-up

The efficiency of the analog front-end is shown in Figure 6.10. The plot
has been obtained by creating a high-level model of the front-end based on
characteristics obtained from a transistor-level simulation. The preparation
of the model and the simulations were carried out for this thesis. The model
has been created using a LUT technique described in Chapter 3. It can be
seen that the losses in the hottest region of the chip are up to 1.6 %. The
loss occurs every time a front-end is still processing a hit while another hit
arrives. This hit also extends the dead-time of the front-end to model the
charge pile-up, so it is a paralysable front-end architecture [60]. In the high-
level model, a counter is loaded with a value proportional to the arriving
input charge, and decremented by one during each simulation cycle. Thus,
pile-up occurs every time a hit arrives and this counter is not 0.

6.8.2 Readout efficiency

The readout efficiency of the architecture was measured using different input
packets rates. It is shown in Figure 6.11 together with the ideal response
having no super pixel pile-up, and infinite time stamp range. No analog
front-end pile-up is taken into account in this figure. It can be seen that
the linear super pixel pile-up region extends up to a rate of 600 Mpackets/s.
The rate of the efficiency loss beyond that could be reduced by increas-
ing the buffering capability of super pixels in the architecture chosen for
the VeloPix. After this linear region, starting from an input rate of 600
Mpackets/s, losses start occurring due to too high a latency. The losses
start increasing more rapidly after this point, and can be decreased only by
extending the time stamp range or increasing the output bandwidth. An
extreme simulation case with an input rate of 1.28 Gpackets/s shows that
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Figure 6.10: Efficiency of the analog front-end.

148



Figure 6.11: Readout efficiency of the VeloPix architecture with different
input rates.

the readout efficiency drops below 10% because most of the packets come
out with a latency exceeding the time stamp range of 9 bits.

6.8.3 Latency

The time stamp range for VeloPix was chosen to be 9 bits recorded at 40
MHz. This range was extracted from the simulations by changing the input
rate, and measuring the efficiency with different time stamp ranges. It was
assumed, that if the latency in a packet exceeded the time stamp range, that
packet would be marked as lost. The latency with different input packet
rates is shown in Figure 6.12. Due to the column readout architecture and
the non-uniform distribution of hits, the most frequent value is around 64.
This is caused by the fact that there are 64 nodes in one column, and the
rate is highest in the node at the top-level.

It can be seen from Figure 6.12 that the 9-bit time stamp range is suffi-
cient for the targeted rate which is less than < 540Mpackets/s.

6.8.4 Model validation

High-level simulation techniques used in this thesis for pixel chips were de-
scribed in Chapter 3. The benefits of these models were already described in-
cluding shorter run-time and easier implementation, and a non-synthesizable
model was also used for VeloPix to validate the performance of the archi-
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Figure 6.12: Latency of the VeloPix architecture with different input rates.

tecture. After an architecture was chosen and implemented in RTL, the
performance of the RTL model was validated to conform to that of the
high-level model. The cycle-accurate simulation was run for 1.6 Mcycles,
the RTL simulation for 0.8 Mcycles and a packet rate of 520 Mpackets/s
was used. This is the expected peak rate of the hottest chips in the up-
graded VELO based on the MC physics simulation data. The running of
the RTL simulation took 36786 s which equals to a simulation speed of
0.3 kpackets/s. The cycle-accurate model took 583 s equaling simulation
speed of 36.7 kpackets/s. The readout efficiency in the RTL simulations
was 99.6% with a measured output rate of 518 Mpackets/s and it was 99.2%
(515 Mpackets/s) in the cycle-accurate simulations.

The latency of the packets from both the simulations is plotted in Fig-
ure 6.13. Based on the plot, and the similarity of readout efficiency values,
it can be concluded that the cycle-accurate model and RTL model are in
agreement with respect to the simulation results. This is an important val-
idation to do after the actual circuit description has been done, either in
RTL or in a full-custom manner.

6.9 Post-layout analysis

In this thesis, the column architecture was also verified after the PnR, and
metrics such as power, area and timing were measured. The analysis was
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Figure 6.13: Latency of the two chip models with targeted input rate.

done at a double-column level as timing, power and area in one column
are independent of other columns. A partial floorplan of the column is
shown in Figure 6.14. It shows that the structure of a super pixel is 2 × 4
pixels, split into analog and digital front-ends, and the super pixel logic
area. Only signals related to data transmission are shown in the figure, and
the configuration signals are omitted. The signals traversing up the column
are buffered every 880 µm. The event data is transported from one data
node register to the next, and this distance is always less than 220 µm.
An important consideration was the replacement of the BX-ID bus more
towards the center of the column and the digital logic. In Timepix3, this
bus was routed under the bump pads but in VeloPix it has been moved to the
center of the double column. Because the bus need not be distributed into
the digital front-ends, this relocation does not consume horizontal routing
resources.

6.9.1 Power consumption

As the VeloPix is targeted for an application with a relatively high duty
cycle of > 66 %, minimization of activity-related dynamic power consump-
tion is the first priority in power optimization for the digital architecture.
Firstly, an estimate of the blocks consuming most of the power must be ob-
tained, and then secondly, corresponding power optimizations to minimize
consumption in these parts must be implemented.
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Figure 6.14: A floorplan (2 super pixels) of the column of VeloPix with
global signals.
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An estimate for the power consumption of the digital blocks was obtained
by running digital simulations with a post-layout netlist and corresponding
standard delay format (SDF) file. From these simulations, a VCD file of the
digital activity was created, and imported back to the PnR tool. Based on
the activity in the VCD file, the power calculation engine of the PnR tool
calculates dynamic power consumed by each digital cell. All power figures
have been obtained using a fast process corner, a power supply of 1.6 V and
a temperature of −55 C◦.

As shown in Figure 6.5, the power consumption of a single super pixel
was first obtained, and the super pixel characterized with different rates of
activity. After this, based on the activity per column obtained from RTL
simulations, power consumption for a full column was obtained. The power
of this column was scaled with the activity obtained for all columns. Power
consumption independent of the data activity, like global signal distribution
and power consumed in an idle state with no data to process, were also
added to the final estimate.

To reduce the leakage power of the chip, high-Vt transistors were used
in the library cells deployed in the pixel region. It was estimated from the
output of the synthesis tool, that the total leakage for one super pixel block
was less than 12 nW, at temperature of 125 C◦ and voltage of 1.4 V. From
this number it can be concluded that the leakage power is not an issue if
the chip is kept under this temperature.

Power consumption for a clock tree per column was estimated to be
476 µW , and 273 µW for the BX-ID distribution. Note that the dynamic
power is independent of the number of bits in the BX-ID bus because Gray
encoding is used. The estimation was made by placing and routing a full
column of 64 super pixels using an identical layout for all super pixels, and
inserting repeaters for the clock and the BX-ID between the super pixels in
a manner shown in Figure 6.14.

Activity-related power consumption of the digital data path in the pixel
matrix (excluding digital front-ends) is shown in Figure 6.15. This is derived
from the hit patterns produced by the MC simulations of the VELO. These
numbers do not include power consumed by the logic in the absence of
any hit-related activity, because the power consumed in this idle-state is
the same for all super pixels. The activity-related consumption is directly
proportional to the packet rates in these columns. The spike in the last
column (127) is due to the bigger sensor pixels connected to this column
which detect a higher rate of hits because of their size.

6.9.2 Timing

Although VeloPix is foreseen to operate with a 40 MHz clock in the pixel
matrix region, the maximum clock frequency for the design was determined.
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Figure 6.15: Digital power consumption of the pixel matrix per column.

This was done to study the scalability of the system for applications demand-
ing even higher rates, 1 GHz/cm2 and beyond. As shown in Figure 6.14,
the area allocated for the super pixel logic is 28× 110 µm, and it was kept
constant for the timing studies.

The column was successfully placed and routed at 100 MHz. This would
bring the total packet rate delivered by the pixel matrix to more than 4.2
Gpackets/s. Reading out packets at this rate would require an output band-
width of more than 120 Gbps. This in turn would require 24 output links
running at 5.12 Gbps. Assuming a power consumption of 60 mW per link
[114], the total power of the links would exceed 1.4 W. In addition to this,
the increase in dynamic power consumption due to increase in the clock
frequency has to be taken into account. Thus, it can be concluded that the
timing in logic would permit an increase in the clock frequency, but there are
other limitations such as power which do not permit increasing the packet
rate by this kind of approach.

Other critical paths for the timing are the global signals (clock, reset and
time stamp) distributed along the column, shown in Figure 6.14. The delays
for each of these signals are shown in Table 6.3. The quoted numbers have
been obtained using a slow simulation corner, temperature of 125 C◦ and
a power supply of 1.4 V (SS/1.40V/125C◦). The signals are transmitted
to the column using the negative edge of the clock to prevent hold time
violations in the first super pixels. Although the time stamp and the reset
would not meet the timing for 100 MHz, this does not prevent increasing
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Table 6.3: Timing of global signals in a column.
Signal Skew (rise) Skew (fall)

Clock 1670 ps 1830 ps

Reset 7130 ps 8540 ps

BX-ID 8110 ps 9950 ps

the readout frequency. The time stamping could still be performed using a
40 MHz clock derived from the distributed 100 MHz clock.

6.9.3 Single-event upset tolerance

Special design techniques must be adopted to protect the logic against func-
tional errors due to SEUs. The basic techniques for improving the computer
reliability by using TMR are presented in [23]. A number of other design
techniques have also been described in literature for SEU mitigation of dig-
ital logic. In [116], a word-based voter is presented. This voter checks all
voted outputs and reports an error if at least two outputs are not equal. This
gives an extra safeguard against single-event multiple-bit upsets (MBUs). A
TMR flip-flop is presented in [117] which embeds a voter and error detection
circuitry. It was already concluded in the Chapter 1 that the area overhead
for a full TMR is always more than 200 % compared to a non-TMR option.
In addition to TMR, the so-called dual interlocked cell (DICE) [118] can
be used to increase the tolerance of latches to SEUs. In these cells, each
memory node has 4 cross-coupled inverters instead of 2, and an SEU in any
node can be corrected automatically by the feedback logic in the DICE.

Due to its simplicity and ease of integration into the RTL design flow,
a full TMR scheme was chosen in which all voters, logic and registers are
triplicated on critical paths. The triplication was embedded into the RTL
description of the logic to have a full control of the triplication. Because of
the limited area in the pixel matrix, only FSMs, control and state registers
such as FIFO state flip-flops are triplicated. Also, the configuration latches
in the pixel matrix are triplicated, and automatically self-correcting latches
are used in the pixel matrix. These latches do not use the DICE technique
but are triplicated latches instead, which refresh themselves with a voted
output of the three latches in the case any of the three outputs differs from
the other two. The triplicated latches were found to be smaller in area than
the DICE, and were already implemented in the standard cell library used
for this work. There is no error correction for data within the data packets
themselves. Only a parity bit will be transmitted off-chip but it cannot
detect internal bit-flips that occurred before adding the parity bit. An error
rate of 1 per 1000 packets is deemed to be acceptable, and is estimated to
have no impact on the overall tracking efficiency of the upgraded VELO.
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A specific naming convention was adopted for triplicated nodes in the
RTL code to indicate to the synthesis tools that these nets should be pre-
served. All these nets were labelled with a suffix tmr. Using the SDC
command set dont touch, the optimization of the triplicated nets was pre-
vented.

An SEU generator was also used to verify the SEE tolerance of the
logic, and the preservation of triplicated signals by the synthesis tool. The
generator was produced by parsing post-layout netlists of the modules, and
generating an SV module containing a randcase-statement including all
registers, latches and nets in the design. This statement contains force-

and release-statements to inject SETs into these nets, and simple inversion
of latch and flip-flop values in the case of SEUs. The SEE verification had
to be done at subblock-level only (for example the super pixel, the EoC
block, the packet router) due to slow parsing of netlists, and due to large
number of wires and instances in larger, top-level blocks. For each block,
the generator was instantiated at the top-level testbench of that block along
with other testbench logic, and post-layout simulations performed to ensure
correct operation even in the presence of SEE. One shortcoming of this
method was that no node capacitance was taken into account, and all nodes
had an equal probability of being upset, and equal duration for SETs. This
could be corrected by using a standard parasitic extraction format (SPEF)
file to provide the node capacitance information for the parser.

6.10 Concluding remarks

A novel HPD readout ASIC architecture was presented in this chapter which
will be incorporated into the VeloPix chip. This chip will be used as a
readout chip of the VELO detector of LHCb after its electronics have been
upgraded to handle higher luminosities. The architecture, which is also SEU
tolerant, delivers up to 600 Mpackets/s with a readout efficiency greater than
99 % when using a 9-bit time stamp. It was also shown that the latency
of data with this rate is below the range of the time stamp guaranteeing
unambiguous off-line event identification.

In Chapter 3 it was seen that using high-levels models above the RTL
abstraction can reduce the simulation time by orders of magnitude. In this
chapter it was shown also that the accuracy of the simulation results is very
close to the RTL model. Using high-level models was an essential part of
the optimization process because parametrized simulations could be run in
a matter of minutes instead of hours or days using high-level models. That
being said, the performance of the chosen RTL architecture was nevertheless
verified using a simulation run lasting for tens of hours.

Finally, critical metrics such as timing and power for the architecture
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were estimated. It was concluded that the column readout architecture
would scale from 40 MHz to 100 MHz clock frequency thanks to the localized
communication between data nodes but at the cost of increased power. Also,
the increase in the packet throughput of the pixel matrix would have to be
handled by other means than simply increasing the number of the output
links.
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Chapter 7

Conclusions and Future
Work

The goal of this thesis was to find out how digital data transfer in a hybrid
pixel readout chip could be improved in terms of absolute rates given a
limited area, and how the power efficiency could be enhanced. Naturally,
when more precise measurements and better image quality are desired in
imaging applications, more data and thus higher output bandwidth are a
consequence.

The thesis has discussed and presented various options of digital data
transfer in the readout chips of HPDs taking into account area and power
limitations present in these applications. Particularly, readout architectures
for applications requiring a pixel pitch of 55 µm were presented. The pre-
sented techniques, which are especially adapted for area and power limi-
tations of mixed-signal pixel readout ASICs, can be used to improve the
readout efficiency of readout architectures. The techniques presented here
are also compatible with modern digital ASIC design techniques and stan-
dard cell design flow making it possible to quickly port them into new CMOS
technologies. As the complexity of HPD readout ASICs has also been in-
creasing, these techniques are important in reducing the design times and the
number of design bugs. As on-chip wire delays do not scale down similarly
as gate delays when moving to newer CMOS technologies, the presented
architectural techniques have also addressed this problem either by using
asynchronous communication (Timepix3) and data-node based architecture
(VeloPix).

7.1 Empirical findings

Following the design principles laid out in Chapters 1, 2 and 4 and analyzing
the resulting readout architectures for the two readout chips presented in
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this thesis, namely Timepix3 and VeloPix, the following observations can be
made:

• It was shown by post-layout simulations, analog simulations and a
synthesis tool in Chapter 4 that the traditional bus-based architecture
is not an optimal choice for the readout architecture of a pixel column
in terms of throughput-to-power ratio. It was also shown that achiev-
ing a similar throughput for a bus as for a node-based data fabric is
difficult in practice, especially with pixel pitches 55 µm or smaller.

• Despite the area constraints in the pixel matrix, it is possible to im-
plement a network of nodes inside the pixel matrix, even with a pixel
pitch of 55 µm. This technique must be combined with the super
pixel grouping technique to fit the area, which has been proven in the
implementation and functional success of Timepix3.

• An architectural solution to reading out 80 Mhits/s from a single read-
out chip was presented in Chapter 5, namely in the readout chip
Timepix3. Simulations and tests showed that in terms of measure-
ment accuracy, the presented solution was equal or better than the
previous chips, while it improved the throughput, readout efficiency
and offered simultaneous measurement of charge and time.

• A readout architecture delivering 640 Mpackets/s, up to 8 hits in each
packet, was presented in Chapter 6. This architecture is used in the
readout chip VeloPix, which will be used for the upgrade of the VELO
detector at CERN. The architecture is tolerant against SEUs and de-
livers data from the pixel matrix using a data fabric based on locally
communicating nodes. It can achieve 13.3 Mpackets/s per double col-
umn, with a column width of 110 µm. A similar approach is also
followed at the periphery of the chip.

The bottlenecks in architectures have also been identified. Generally, the
bottleneck is either found from the pixel-to-EoC data transport or at the
output of the chip. Using techniques in this thesis, the former bottleneck
can be easily eliminated. However, in future applications, when facing hit
rates of multiple Ghits/s/cm2, it may not be feasible to transmit this data
off-chip, even if the internal architecture could sustain the rates. More
intelligent and more efficient data reduction techniques are thus required.
This is becoming a more common requirement in systems where triggering
is no longer desired, as seen in the study for VeloPix.

The most relevant characteristics of Timepix3 and VeloPix are summa-
rized in Table 7.1. It can be seen that Timepix3 offers much more precise
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Table 7.1: Summary of features in Timepix3 and VeloPix.
Feature Timepix3 VeloPix

Pixel size 55 µm× 55 µm 55 µm× 55 µm

Matrix size 256× 256 256× 256

Super pixel 2 × 4 pixels 2 × 4 pixels

Power < 1 W/cm2 < 1.5 W/cm2

Time resol. 1.5625 ns, 18 bits 25 ns, 9 bits

Max. hit rate 40 Mhits/s/cm2 > 320 Mhits/s/cm2

Charge/ToT 10 bits @ 40 MHz Binary

TID N/A Up to 400 Mrads

SEU tolerant NO Yes (simulated)

Data packet 48 bits (37 bits) 30 bits (23 bits)

Architecture Asynch. bus Synch. data fabric

charge and time measurement possibilities than VeloPix, while VeloPix fo-
cuses on delivering larger volume of data in higher particle fluxes. The
packet length inside a column is shown in parentheses.

It can be concluded that an asynchronous bus is a robust architectural
option for lower rates giving full separation of the clock domains between
the pixel matrix and the periphery. This fact was exploited in Timepix3 by
using 16 different clock phases in the pixel matrix to reduce current spikes
due to the clock buffering. The bus-based architecture is also more suitable
for split data transfers required for a higher number of bits per data packet
because an RX module is only required at the EoC. For the data fabric,
each node must contain RX and TX modules.

Synchronous data fabric is a high throughput solution for moderately
sized data packets. The hardware implementation is especially simple if the
full packet can be transferred in parallel. It is also useful for absorbing data
rate fluctuations when the hit occupancy is non-uniform and focused on the
top of the matrix. In this case, the nodes in the fabric act as a distributed
data buffer.

7.2 Theoretical implications

This thesis has emphasized the importance of high-level simulations when
choosing the architecture for an HPD readout ASIC in Chapter 3. The
main reasons for using these high-level simulations are reduced simulation
run-time, design and debugging effort and the ability to run simulations for
long enough to reduce the impact of initial transients and measurements
fluctuations.

Another implication of this study is to move away from bus-based ar-

161



chitectures to improve the power efficiency of the readout architectures in
hybrid pixel chips. Node-based fabrics and networks are scalable with re-
spect to the size of the pixel column because their performance does not
suffer from increased wire delays in newer technologies. In fact, closely
placed data nodes can be run at even higher frequencies in new technologies
because the speed of the logic improves due to CMOS scaling.

7.3 Limitations of study

This study has not addressed fully asynchronous, clock-less techniques which
could be used inside the pixel matrix. The main reason for this is that a
clock signal is typically present in tracking applications in which timing
measurements are required. This means that because the clock is already
present due to the measurement requirements, it can also be used for readout
purposes without extra power or area. Another reason is that protection
against soft errors like SEEs is more costly in asynchronous logic in terms of
area. On the other hand, very few chips [63] have used completely clock-less
readout architectures.

This study also has not investigated thoroughly the digital-to-analog
coupling effects which occur in the pixel matrix either via the power supply
noise or through capacitive coupling from switching digital signals. These
effects have been clearly observed in the manufactured chip Timepix3, but at
the time of writing, the effects have not been reproduced fully in simulations.

The architectural techniques presented here also have their limitations
with respect to the minimum pixel size. Given the same CMOS technol-
ogy that was used in this study, namely 130 nm CMOS, they cannot be
easily used when smaller than 55 µm pixels are needed due to area limita-
tions. This limitation can only be overcome by moving to smaller CMOS
technology nodes or implementing architectures with less hardware. The
latter usually implies worse readout efficiency, as was discussed in Chap-
ter 2. Fortunately, the presented solutions can be scaled to fit into smaller
pixels using newer CMOS technologies, although at the price of higher non-
recurring engineering (NRE) costs. Because presented architectures have
been designed using RTL design techniques, they are also more portable to
newer technologies than full-custom designs.

The techniques are also not suitable for applications with power require-
ments of < 100 mW/cm2 without some modifications. Modifications to the
analog front-ends are required, because they contribute almost half of the
power consumption in the two presented chips. However, speed (and per-
formance) in digital logic can be traded off for power. Because all power
figures presented have been obtained at a frequency of 40 MHz or higher, a
reduction of 40 in digital power could be achieved by using a 1 MHz clock

162



or even lower. This would effectively cut down the throughput of the archi-
tecture but would also reduce the power consumption below 40 mW/cm2.
Running at lower frequency makes it possible to reduce the power supply
from 1.5 to 1.2 V thus yielding an extra reduction in power by 36 %.

7.4 Future outlook

Performance requirements for hybrid pixel chips are constantly increasing.
This means more complex and better performing readout chips are required.
Even though the architectural optimization offers some possibilities for im-
proving the performance, eventually newer CMOS nodes must be used to
meet the performance requirements. Because the complexity of the design
increases when moving to newer CMOS technologies, by making a read-
out chip more programmable, several projects could share a common read-
out chip architecture and program it to their specific application. In this
way, the projects could combine their design resources for shorter design
turnaround times.

The usage of programmable processors has increased tremendously in
integrated circuits due to CMOS scaling. Domain-specific processors such as
DSPs, network processors and baseband processors have also seen increased
use. However, pixel readout chips benefit from massive parallelism of pixels,
while processors are generally sequential in nature. Thus, a multi-processor
solution is called for, if this kind of programmable processor is used. Due
to the higher density of integration in processes of 65 nm and beyond, it is
feasible to integrate many of these processors even to the periphery of the
pixel chip.

Even having many processors to reduce the data rate either by data com-
pression or using trigger does not remove the need to have efficient column
and periphery architectures for getting the data into the processors in the
first place. Thus, the results of this thesis can be used as a starting point
for an investigation into architectures with lower power, higher efficiency
and throughput, and lower latency. Because this study has been done using
130 nm CMOS technology, it is expected that possibilities for new solutions
emerge when moving to newer technologies with higher transistor densities.
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