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ON PROPERTIES OF HYBRID WAVES IN A DISC~LOADED WAVLGUIDE

*)

I.A. Alcksandrov ¥, V.I, Kotov ¥ and V.A, Vagin %
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In view of the interest shovn recently in such problems, we thought
A P ? g
that it would be useful to give a general review of work done on these

(1 ~4)

lines and which has already been published in Russian .
y I

THTRODUCTION

Hybrid waves propagoting in a disc-loaded waveguide have several
useful and interesting propertics, some of which have already found
practical applications, TFor example, the hybrid mode EHll’ in special
conditions, enables one to obtain a uniform deflecting force over the
waveguide aperture, and it is used for the separation of high energy

particles,

The question of hybrid waves in such structures has been treated
(5 - 18)

in several papers from a purely theoretical standpoint, as well

as from the point of view of practical applications,

In Refs, 5 and 8 can be found gencral expressions for the
deflecting force, and characteristics of hybrid waves in impedimce
approximation are considered, A figorous theory of a deflecting mode is
given in Refs, 6, 7, 9, 10, Experimental results on hybrid modes can be

found in Refs, 8,11,12,15,18,

In the present paper, we give a consistent, systematic analysise
of the dispersion relations of hybrid waves in a lossless disc=loaded

wavegulde on the basis of small pitch approximation., Such an approximation
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permits one to find all types of dispersion (anomalous, mixed and positive)

and ollows the study of pronagating, evanescent and complex waves,

On the basis of the above-mentioned approximation, one considers
questions related to the choice and optimization of parameters for a disce

loaded waveguide, uscd as an RF separator deflecting systen.

Results are obtained which allow one to choose parameters for the

deflecting system, with sufficient proctical accuracy,

Our initial data for the cheoice and the optimization of parancters
are conpared, whenever possible, with results obtained by other authors

on the basis of rigorous theory and experimcental results,

[
=
S

I. A GENERAL DISPERSION RELATION TOR PROPLG..TING, EV.ITESCENT
COMPLEX WAVES IN 4 DISC-LOLDED W.LVEGUIDE

o R S R R A N L e L R S e R R T ST M S i ad

In o lossless disc-loaded waveguide, there arc hybrid waves
corresponding to three types of propagating constants
1) real (propagatina wvov) 2) imaginary (evanescent Waves), and
3) complex (complox waves), Proyagating waves have been investigoted
in detail for the given structure in Refs. 5,8,16., We shall give below
a complete picture of dispersion properties for all given types of hybrid

waves, special attention will be given to complex waves,

Complex waves have been studied before in more simple wave-guide

(19) . ~(20)

tructures (e.g., plane with surface impedance , magneto-active plasma s

21 - . . , . .
etc.( )). I particular, it was shown that they appeor in discrete
frequency bands, The total flow of energy is always equal to zero for
complex waves, Furthermore, such waves can exist in structures where the

propagating waves are hybrid,

A detailed study of the dispersion characteristics of comnplex
waves 1s made more difficult owing to the very complicated mathematical

description of their behaviour (e specially for closed Waveguides>. L
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detailed study of the properties of complex waves in a simple model
coupled to transmission lines has been made in Ref, 22, In Ref. 23 an
attenpt was made to investigate complex waves in a more complicated
structure, nanely a cylindrical wavegulde with concentric dielectric rod,
Mo dispersion solutions for complex waves were found by these authors(ZB),

but they pointed out some of their regions of existence,

From the point of view of the study of complex waves, the disc-loaded
waveguide is the most convenient and practicai of all coaxial cylindrical
waveguide structures in which the propagating waves have o hybrid character,
Certainly, in small pitch approximation it is characterized by only two
parameters ao/b  ond d/D (a is the radius of the central hole in the disc,
b is the guide radius, D is the pitch, and D is the slot width) and further-
more, the transverse wave number in the disc region is always real., Besides,
one finds in a disc~loaded woveguide all Irinds of dispersion (anomalous,

nixed and positive), which has a strong influence on the diversity of

behavicur and properties of couplex waves,

In order tc obtain a gencral dispersion relation for all kinds of
hybrid waves, let us deteruine the fields in the central region (region I,
0 €r<a)aond in the disc region (region II, a <7< b). For the sake
of simplicity, let us restrict ourselves to the small pitch approximation
O\>> D, M is the wavelength). Bt usﬁal, let us consider the fields in
the form

=2 eg(oﬂ: - Kz) ~1ivk » (1)

where r, @, z arec the cylindrical co-ordinates, ¥ = vy = Ja 1is the
complex propagating constant, TFor convenience, let us split the (+,z)
and 6 varlables by introducing imaginary units j and 1 in a

different form,

ficlds are expressed by Herz vectors ﬁe (electric vector) and
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- -
by IIh (megnetic vector)
’_—2 -
E = rot rot u, - jk rot H£
- —f[ » >
ZH = jk rot L+ rot rot H£ | (2)

>

where ZO = 377 oQ,

In order to find the fields in the I region, it is convenient to

().

usce the transverse vector Q, introduced by Heohn

[ d v1;(31 ) so-1ve
k2 {iJv(k )t
- J hi =f”1(k_r) e—iv@ r e—sz (3)
’ X YlJv(kla) s
0 5
. J
-
Putting in g, (2) ﬂ% = § ond HO = ia, we obtain the
Ll

following hybrid solutions MM and HE respectively. Fields in region I,

omitting the factor exp j (wt - kz), arc representcd by a sum of these

solutions :

J (k r) .
k T) o1 . -ive
B, = (p+1a) 7t ZH = -(pf+ q) et 17T
Z k* s > Toz P 77 (i a) ?
Jv(‘k._La)
B i {pﬁ fiﬁlﬁfifz . {ﬁf Jﬂflfk r) v i;}k ) :}
r k yiJU(klé) L‘kZ YiJv(— aj kr (sgjj_}
(%)
E. = 5| pe fﬁﬂ(:}f) + !*J”;i(% ) - 2 :T_V(klr)m . ~iv6
e P ¥ J'T% a) q Y J (L a) kr j:tg”gj +e ’
-, |
ZH = -5ld% fjj;l.(lifz v Tlr) 4 Hgmg(}ﬁr) L mive
o' {kZ ﬁ?j}fﬂ kr JTka)J lcﬁ;<}aj
zi = il iztl(k,lff) v BT TaleT) g L
© { E YiJﬁT} ler Jv<m57 T % YiJv(EIZT J ° ’

where p and ¢q are, in general, complex constants,
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The representation of fields in Hg. (4) is very convenient., It pernits

one to obtain immediately, ficld expressions for the very important special
Vo . ,
case v, = 0 ( B = o= 1, where v, is the phase velocity,

and ¢ is the 01001ty of 1¢bhm)

We shall take in the II region, the mode Evo only. Therefore, we
fd

shall pat :Hk = 0, for the given recgilon, and choose the Herz electric

veetor He in its usual form :

r 0
= (
I = P 0 i ‘5)
[S]
1 ¥ (kr) _-ive
2 b (k€>
N J
where
g (kx) = 3 (1) W (k) - W (1) T (kr). (6)

In the following, we shall use the function

(kr) , (7)

1

g/fl(kr) Jv(kb) i

(kr) - Nv(kb)

v+ v+l

and the following relation exists between wo and wl

B¢

0 - 2 - (8)
o(kr) kr ¢o oo
Note thot the Herz vector (5) is written taking into account the
boundary conditions at r = b, and it does not depend on the =z co~ordinate,
Therefore, fields in region II, toking into account Egs, (2) and (5), and

omitting the time factor xp jwt, can be represented in the following form:

E =4 io«<krz- oI ZH = §AZ ’ (lt-r) e IVe
z (/fo ka, ’ or 9 kr z,f“;(uka‘j ’
(9)
7 H = —jA{ r. (/_jo,( CI‘) - d}l( Gf') e ive H =E. =% =0
08 kr ¢O(ka) wo(ka) g 4] T ‘
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: Ll BT . . I 1T
Using the boundary counditions at r = a, (1.e., EZ = §LZ ,
- 1T I IT Co . PR . - .
ﬂ@ = ﬂg s Eg = Eg = 0 ) it is not difficult to find the following

system of equations for the complex constants p and q :

) K v
|/ e o - — o —
PP D ]raf g - o0,
(10)
K v
A LA T
P& a(® + ka) =0
\
where
L JeallmE) o plee)
55,055 1T s Sl BN C
o)
Let us introduce the following definition s
P:P1"3P2;q:ql"jq?,@:q)l“jq)z: (12)

where Pyr Por Ay Do @1, ¢, are real quantities. Putting expressions
(12) anda k = Y = Jo into Lc, (10), and equating to zero the imaginary
and real parts of each equation, we shall get as a result a system of

four linear equations relating the pl, Pss ql, q2 constants, Then,
equating to zero the determinant of this system, we shall find the general

dispersion relation for hybrid waves, which, after a series of trans-

formations, takes the following compact form :

] Y2 - 2 3
(Mi - M2) + (M3 - Mh) = 0 , (13)
where Hl, MZ’ MB’ MA are the relative minors of second order :
Y (i v \ o < v \
ma | i - — 4 o= - . e
k<%) 6% lm/kkg@Z ‘ﬂ41m/
Ml =
$1 .y v (; 1 X ¢1 p v o
[t 4 e — ——— . S — e -
by o i (6-1) i <z,/:o e ka) ¢ |
Y X . 14
TP TN 2 ()
f2 = X ] ¢1 v \
Iy - A L.
¢ K §% - % v eyt )1
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1T, ANALYSIS OF THE GENERAL DISPERSION RELATICH AND THE PROPERTILS
OF HYBRID WAVES I DISC~LOADED WAVEGUIDES

A P R e B AW B W A

In order to obtain a dispersion equation for propagating waves, let

us put in Eq, (2) ﬁ = % and % = 0, Thus, the minors Mg’ M., I, and
4 A T
the @2 function, identically become equal to zero,. and the dispersion
. , 6,8
relation (15) takes the well-known form ( ! ):
Ml =0
or
YZ\ o Y2 » - 5 (15)
— e WU D 4 e | U e P e - = 0 ., 15
< 2/ ka 2 ka (¢ 12_
k - k ,
- ) s . e . a Y
In an analogous way, putting in relation (13) E‘ = =] E and e = 0,
we shall get the M3’ M4 minors and the ?, function equal to zero, As a
result, the dispersion equation of evanescent waves may be represented by
il - M —_
M PIZ 0,

or

2 - 2 -
o v a v
-2\ Y. N AN -
(é ! 2> ¢ - ka v 2 e ka ° l)*} 0.

k — k
By comparing Egs. (15) and (16), it is not difficult to see that they
. . , . .
mutually transform into each other, if one replaces %‘ by (-3 ? ), and

vice versa,

In order to define the possible regions of existence of complex
waves, let us analyse the dispersion properties of propagating waves

(Bq. (15)), and of cvanescent waves (Eq. (16)).

) K \ . . . B
At cut—off = = 0) these dispersion relations degenerate, and

o
split into two independent and simple equations for cut-off frequencies :
a) | b) '
J'(ka) =0, T (kb) + O0.57kag (1 = &) 3'(ka) = O (17)
v v 0 v
Let us call gh  -~mode the hybrid wave, if its cut-off frequency

11 a1

. . . . |- CIl - .
is equal to ka = p o’ where ﬂvn ig the m= -root of fq. (173). Analogously,
VX 1

one introduces o
vn

PS/5546/dmn
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classification is convenient for further analysis and it has an illusory

character in consequence of the peculiarities in the behaviour of

dispersion curves of hybrid waves in the neighbourhood of degeneracy of
(1,8,26,27).

cut-0ff frequencies Ffor the gh " and ge 0 modes
ViI Y

condition for such a degeneracy is known, and it has the form

<i\ . fm | (18)

b/ Vmn ) 24} .

The evolution of dispersion curves is shown in Fig,., 1, depending
on a/b parameters st v =1 and ¢ = 1, One can point out three regions
of dispersion of the real branch of the lower mode (upper half-plane),
relative to the change of the a/b parameter in the folloﬁiﬁg 1imits :

1) 0.552 < <1 = positive dispersion (Fig. la,b,c)

< 0,552 ~ mized dispersion (Fig, 1d,e,f)

2
2) 0.289 < %
a

3) 0 < Y € 0,289 ~ anomalous dispersion (Fig. lg,h).

At a/b = 0,480 the cut-off frequencies of the ghll and gell
modes coincide (see Fig, le), whereas for a/b > 0.480 of lower modes,
the gh wave appears, and for a/b < 0,480, on the contrary, there is

the ge wave,

At a/h > 0,559 the evanescent branches of the two lower modes
ghll and gell have a similar character to the corresponding curves of
the usual waveguides (lower half-plane, Fig. la)., At a/b = 0,559, the
evancscent branches of these waves have a common point of contact A (Fig. 1b)
and then (a/b < 0,559) these branches are divided into two separate loops
1 and 2, (seo, e.8., Fig, lo). Loop 1 closes the real branches ghll and
through the imaginary region at cut-off frequency points, Loop 2 has

11
extremitics going to infinity (at ka - 0, §'+ w). Between these two

loops there is a discrete frequency band. Loop 1 disappears (Fig, le) when
the cut-off frequencies coincide (a b = 07480). Subsequently, the given
locop 1 appears again on the left of the cut-~off frequency of the ghll mode,

(see Fig, 1f), On Fig. lg, together with dispersion curves of the two

PS/5546/amh
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Jower modes, one shows the curve of the ge]g mode, This curve has a
very complicated character in the lower half-plane and is divided here
into two parts : an undulating branch, going to infinity, and a separate

e

branch 3, which originatcd when the gelz mode crossed the fghlg mode at

its cut-off frequency point.

At a/b = 0,280 the evanescent branch of the 8¢5 mnode has, with
loop 1, one common point B (ﬂnb. lh). At subsequent decreases of the a/b
parameter, the mode gel2 closes through the imaginary region with ghll
(Fig. li). lore detailed evolutions of dispersion curves of lower hybrid
modes,bafe shown in Figs, 2a,b,c., Dispersion curves for several upper modes

(ge ge]4, gel , gelr and g ) arc given in Fig, 3 for wider frequency

13’
regions at a/b = 0,3,

The evanescent branches of these modes have an undulating character
and are separated by discrele froouency bands, These bands, as well as the
corresponding bands of lower modes, are the regions of existence of complex

Waves,

In order to obtain dispersion curves of complex waves, it is
necessary to solve Hqg. (13), which is equivalent to the following system

of cquations :

It
(@]
e

M1 - M2

- M3 - 1114

(19)

1
(@]

Rosults of this calculation are represented in Fig. 1 by dashed curves,
hree LOTMS of the solution of complex waves for lower modes, correspond

to three types of dispersions for such modes, (see, C.8a., igs. 1c,x,g).

In the regibn of positive dispersion, the lower complex mode
appears at a/b < 0,559, and thon the region of existence of this mode
becomes wider and the real part of the propag&ting constant increases,
when thé a/b ‘parameter decreéases, In thé region of mixed dlppOrSlOH
(0.289 < a/b < 0.552) the real branch of complex waves Jjoins the propagating

wave alt the point where the group velocity is equal to zero.(see Figs,le,f,g).
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In the region of anomalous dispersion, the real branch of complex waves

extends to all regions of phase velocities, (see Figs, 1h,i).

As regards higher complex modes which correspond to two neighbouring
propagating wavee, then, as ils seen from Fig, 3, there is a large
collection of them, Bach one of these higher complex modes must be
characterized by an additional index, which indicates the place of solution

in the vertical sections ka = const,

In the next Sections we shall concentrate our attention on practical
applications of hybrid waves, for instance, the RF separation of high
energy particles, TFor these purposes, one uses the lower (deflecting)

modes with v = 1, at phase velocity B@ = 1,

IIT, THE CHARACTERISTICS OI" DEFLECTING IMODES AT PHASE VELOCITY EQUAL
TO THE VELOCITY Of LIGHT

AR S A T W A A 0

The dispersion relation (15) for propagating waves at phase velocity

B@ = 1, simplifies considerably :
¥ : o
1 ke _ v. [ ke, |
¢o T (1-2¢) kaJ 1= V;ij‘_J . (20)

In Fig, 4 arc shown curves calculated with the help of By, (20) and which
determine the conditions of propagation for deflecting modes (v = 1), at
the different values of the ¢ parameter, One sees in particular from
Fig, 4 and Bq, (20) that in the approximation used by us, the r/b ratio

does not depend on the ¢ parameter at point a/A = 0,225 (ka = JE).

One can see in the right bottom cormer of Fig, 4 the corresponding

curves of the following two hybrid modes with v = 1 and B@ =1,

The field components in the central region, at B@ =1, (the

PS/5546/duh



CERN/TC/BEAM 664

- 12 -
ot =wz) o :
e factor is omliued) can be represented as (see expressions (4));
LZ = Eokr cos 6 , : ZoHo = ~Eokr sin 6 ,

sin & ,

O

l
=
o]
R
TN
N
\.
N
]
oiE
NS
no
I
=

-1 1\.
E = E <a> < >4005@,ZOHT~

— 2 - 2 2
_ ka kr\ . _ U /ka kr
Eg= E <2>—<2) s.rn@,ZOHQ—EO} <;2=«>+ <,§> -~ 1 |cos @,

where EO is the equivalent deflecting field.

(21)

D

The electric field B = Jm + B reaches a maximum on the

disc radius (r =a, 8 = O), with respect to expressions (6)

R M

_ ka2
B .= Eoka\/l + () (22)
In order to obtain the power flux P, one integrates the Poynting

vector on the waveguide aperture, and for @P = 1, one gcts

P = E02 s (xa) [%33)2 - 1—§ ) (23)

At ka =«f§ the power flux is equal to zero. In this case the
waveguide aperture is split into two regions., In these two rcgions the
partial power fluxes are equal to each other in absolute value, but have

opposite signs, (P+ and P ),

To determine the boundary between the regions with such partial
power fluxes, in an arbitrary case, let us equate to zero tho time-averaged

Poynting vector :

E2oE®? o, @2
- sin" 8 + cos 8 = O 2l
CORMLSE (%)% - () - )

PS/5546/dnh
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rom Hq, (24) it follows that, at ka =»/2, the boundary between

b
5

partial power fluxes in opposite directions degenerates and coincides with
the disc aperture, For la < 2, Ba, (24) has no solution, This fact and
the analysis of the dispersion curves in Fig, 2 allow us to conclude that

in the cut—off region ka < ME, the positive flux P+ =0, and there is

only a negative power flux P_., At ka > M? neither partial power flux is
equal to zero, In Fig, 5 is shown the division of the waveguide cross-—
gection in the P+ and P_ regions for QP =1, v =1, and at different values

of a/h.

In order to obtain the group velocity, at B =1, let us
differentiate the dispersion esuation (15) on «, wnd then put Yy = 0. ALAs
a result one obtains the following equation for the determination of group

velocity

2
! 4 ] - (25)
ek B(Y - =) E? T v Ee o+ (€ - 1)1@'J 0. >
At B@ = 1, one has the following relations
ay° & 4 b
k I 2(B ) koL _ | e Kb + == ka -~ (v +1) |8, ,
dk ¢i dw [ ¢1 21 g
- (26)
g ¢f 2
ko _| 3 -_2L g, £a®_ - 1))
¢o d P = [ 9/}0 1\_b ¢‘o 1{8. + VJ ‘L)g, (p dK - pg + (ﬁg l) 2 v+l U"I‘ZT 2

where Bg is the group velocity (velocity of light units) and

= J! (kb) Nv+l(ka) - W!(kb) J (ka)

¢3 = J7 (kb) Nv(ka) - N (xb) Jv(ka), ¢4 .
v | (27)
The functions ¢O and ¢1, ¢5 and ¢4 are connected by the tion
bty = by = - (e3)
’ 7 ka,kb v '

Pusting Lg, (26) into Eq, (25) and taking into account Bq, (20),

after o serics of complicated transformations, one gets the following

PS/5546/dmh
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group velocity equation
A
ﬁg = 2\~+B b (29)
2
The _ ~{ka
where A = ¢ ?T%mi)ET -1,

e _oayv(ve) L 2/ ka v\ v%&gfkl
B=|¢&+(1-¢ . - === . l(v4]l) + - (V1) + ==
L- ( >(ka)2 _J wz(u+1)¢§ ¢ <v+1 ka /( 1) + 26 - (va1) & (ka)2

moreover ka and kb satisfy Bq. (20).

In particular, for v =1 and &= 1, Bg, (29) simplifies

considerably :

2
Q%L o1
B, = — 5 (30)
& 1 - (ka) + 2
6 w2¢2
1

Fig., 6 shows as a function of a/k the group velocity Bgy calculated
=

by formula (29) for B(P = 1, for different values of the parameter ¢

(dashed curves).

Froﬁ Pig. 6, it follows that shere are backward waves in the region
0 < a/\ < 0.2756, and that forward waves exist in the region a/% > 0,2756,
The wvalue ao/h = 0,2756, corresponding to Bg = 0, does not depend on
parameter ¢, As one would expect, the maximal value of the backward group

velocity drops when the paramecter ¢ decreases.

Furthermore, one shows in Fig, 6 the group velocity, calculated by

(7)

paraneter A/D and for & = 0.8 (full lines), and the results of

Hohn on the basis of a rigorous theory for different valucs of the

experimental calculations of Bg for the deflecting mode, at X/D = 4,5
g

and ¢ = 0,8, A comparison of all these data shows that -when the X/D

paramcter increases, for fixed values of &, the group Velocity crosses

the frequency axis more to the right, and the maximal value of the back-

ward group velocity grows,

P8/5546/amnn
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Thus for instance for the cases k/D - o, (small pitch approximation)
and x/D = 4, the values of the frequency where the group velocity crosses
the axis, arce given, are given, respectively, by (ao/h) = 0,2756 and
(ao/k) = 0,2505, i,6., they differ by 10%. . In the region in which we are
intercsted, ~0,04 < Bﬁ < 40,05, such a relative difference in frequencies

g

of thesc curves is approximately conserved,

P

The existence of regions of forward and backward waves for a
deflecting mode permits onc to choose (in contrast to circularly symmetrical
B waves), if necessary, a group velocity as small as is wanted and of
either sign, while obtoining at tbe same tlme a finite aperture 2&/%.
However, it may be shown that when the group velocity decreases, the
reguirements for the accuracy of fabrioation and the maintenance of the
geometrical parameters of the waveguide and the frequency stability sharply

increase,

Thus, the deviation of the phase velocity from the velocity of light,

due to the errors of the waveguide size and freguency, may be represented by

4B, = rm&atgx + QLJﬂh AQ;J : (31)

where Py ig the relative Yweight® corresponding to the geomctrical

parameter a4y The derivative SEE, at By = 1, increases as 1/B  when
oA g
the group v01001uy decreases
3p ‘
%4
o (32)

The relative requirements for the waveguide parameters may be

found by comparing the weighting function

%y ) % - (
Py = Bq N

N
N
~

The weighting functions can be obtailned in o similor manner to the group

velocity (see Egs., (25), (26) and (27)).
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For example, for v =1, & =1, and for a and b parameters

the weighting functions are

ka 2
o (%) -1
. 7o (54)
(ka)™ L) e
R lJ(B ) 1> /A
and
2 .Qia_f_ l
LAk 3T
6 B
e S e (55)
’ ; (}_:;ald__ 1 Nl- - l\ b /7\
Ikl il

where a/k and. b/% are related by Iq. (15), On Fig., 7 one gives these

functions in relation to a/%.

The functions and may be obtained only with the help of a

pd Pp

rigorous theory.

Deflecting forces on a traversing particle with charge e can be

(5)

expressed only by longitudinal field componehts

1~ 8,8 B =By ™ [ B.
SN - (R A SO N B Jlot(l = &) +1 ]
Po= o { S VB4 A VLH%J e Bo ol , (36)
1=~ B(.p 1~ P
37 g. g :1". Q_. g K Irg - . . o . .
where vy, = 1.5 T % ag i1y iy, 1 ere the unit vectors ; B is

the velocity of particles in units of the velocity of light, and T is

the initial phase of flight,

In the case when B@ =B =1, iq. (36) simplifies considerably and

the maximal value of the force is represented as follows

F,o= 2975 (37)

PS/5546/dmh
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Introducing into Ea, (27) the component E from Ig, (21), we get,
. Z )

at v =1 :

7 = e & (Z cos 8 -~ % sin 9) (38)
Lin o r e *
One sees from the above that the deflecting force, at B@ =8 =1

is constant over the whole aperture, and EO is the equivalent deflecting

field at the feed point.

Let us give an estimate of the non-uniformity of the force over
the aperture in the case of a shift of the phase velocity from the
velocity of light (]B@ - ll << 1, B = 1). Tor this one uses formulae
(36) and (37), Ers, (15) and (20), and expressions of the field components
Ez and HZ(4) for an arvitrary phase velocity, Taking intoraccount the

condition [B@ - l[<< 1, after tedilous calculastions, one gets the following

simple expression

A AR . AR L 2 \
5 (f,,0) = =5 (B =~ 1) ()™, (39)

From the point of view of the characteristics of a practical
deflecting waveguide, a convenient parameter is the equivalent strength

of electric field normalized to power

n = 17%: . - . (40)

In small pitch approximation, using the equation of power flux (23),

we get the following expression :

(ka) (ka)® ~ 3

the parameter

In Fig., 8, are shown graphs of v <for two values of
& = 0,8 and 1,0, as well as the relation EO/Emax (dashed linc) as

functions of group velocity. In this figure are also given the points of
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equivalent, normalized values of the field, They are obtained by a

. : 7
rigorous theory for x/D = 4 and & = 0.8.( )
A slight difference between the values obtained on the basis of a
rigorous theory and small pitch approximation respectively is observed
only in the rcgion of very low group velocities, <lel < 0.005) in the
o

interval under consideration, i.e,, -0,04 < B_ < 40,05,
S

Iv, OPTTIUN PARAMETERS OF A DETLA [EGUIDE %)
Keeping in the liuwits of small pitch approximation, we shall

consider the problem of the optimization of a deflecting RF separator
system,

A deflector imparts to an ultrarelativistic particle having

£

longitudinal momentum p» & btransverse angle :
e = A (42)

where Dy ig the transverse momentum,

For an RF separator with two deflectors the required deflection is

found from a well-known condition of the optimum utilization of the

(28)

vertical acceptance

[ ¢ = ¢ ' ' (43a)

Z O

= a
E{ /A (470)
Q .

where 260 ig the initial angular divergence of particles in the

R

#£) The problem of the optimization of deflector design has been also

o8

treated by Hahn and Halama, in a very interesting pa

PS/5546/dmh
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vertical plane at input to the first deflector, 1= z/x, ¢ is the

length of deflector.

Using the expressions for a deflecting force (38), and taking into
account the attenvation in amnlitude of the wave in the waveguide, we

find, for a transverse momentum :

1 e—é@
p,c = e ho ST | (44)
where &f = %é“ , and Q is the quality factor of thec waveguide,

g
For the following, it isg convenient to introduce a normalized

transverse momentum

z
p,C

=D
-t 00 chap (1-e ﬂMVJ

’\/?uu i g \]\'TJ‘

where the value en is taken in (keVA/ MW) units,

]

In Fig., 9 is shown the normalized momentum Eii as a function of
group velocity, calculeted with Eg, (45), taking into account Eqs.‘(ZO),
(29) and (41), for different values of  and ¢ = 0.8, The quality
factor Q 1is fixed and equal to 104, which is close to the value

obtained in practice for S Dband (10 cm wavelength).

As is evident from Fig,., 9, in the region of very low group
velocities, the efficiency of the deflection drops sharply., This is
explained by the fact that ~ in spite of the increase of the normalized
field strength n as B » 0 = the factor due to the attenuation of
the wave appears to be more important. On both sides of the value
Bg = 0, there are maxima which, when z increases, are displaced from
the ordinate axis (in particular, for emall v , Tor example ¢ =10,
the maxima are so close to the ordinate axis thatrthey could not be

shown on the chosen scale).

PS/5546/dmh
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In Fig, 9 are also given the corresponding points for k/D =4,

& =0,8 and Q = 104, calculated by a rigorous theory. A comparison of
the results shows that in the considered range of Bg there is good
agrecment between approximate curves and exact data, everywhere except
in the region of very small group velocities, (lBgl < 5.10~3).

The presence of maxima for curves with transverse momentum
determines, for the fixed power and length of the guide, two optimum
values for group velocity (smaller than and grecater than zero), Which
of these optimum values should be prcferred may be decided upon after a
more refined enalysis of various additional factors, related to the
total acceptance and the transverse momenta, to the presence or absence
of spurious modes which are due to the turning over of the dispersion
curve, However, such an approach doecs not give the possibility of

solving the problem of the e¢ffective utilization of the deflectors,

Unlike lincar accelorators, in deflecting RF separator systems

’ g e J
it is necessary to provide operating conditions on a limiting breakdown
level, Only then will it be possible to obtain maximum acceptence for
the deflector, and consequently a sufficient intensity of separated
particles in a region of the encrgetic spectrum with maximum momentum

of secondaries.

Consideration of the limiting electrical strength in deflectors
is a very difficult problem, and it depends to a considerable degree
on the technology of fabrication, on the conditions of the surfaces,
on vacuum system cleanliness; and on the geometrical configuration of

the waveguide,

Experimental valuecg of the limiting field strength [ for

max
. . 2 .
disc~loaded waveguides at S band, are around 200 kV/cm< 4). Using

this value, let us determine the limiting power Pmay’ and the limiting

transverse momentun (Plc)mﬁy expressing the power flux by Emax’ in
CLuas. ol

accordance with Egs, (22) and (23)

7

2
2 2
(B )2 [0)® = 3] (46)
24m Zo (ka)2 + 4
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Putting in Eq,. (46) the limiting value E A =2 Mv and
considering in Egs, (25), (45) and (46), the frequency term ka as an
intermediate variable, we shall find P and (p.c) as functions

max 4 “max

of the group velocity (see Tg 10). In the considered region of values

‘& e

max

of Bg’ the limiting power P varies practically linearly with the

group velocity (dashed lines).

For comparison, in the region Bg < 0 of Fig. 10 is plotted also
a field strength value (black triangle) which could be applied in the
deflecting waveguide od the Brookhaven RF separator(ZS).

- Graphs for the -limiting transverse momentum (full lines) differ
cssentially from the corresponding curves p,C //ﬁm; which are given in
Fig. 9. Tic region of low group veclocities, where the values-(p;cﬂnhv
decrease, is considerably larger in fig, 10, For Bg > 0 and for
different fixed values of Z, the limiting transverse momentum has a
flat maximum, In Fig, 10 is sheyn also the function (§%04, (curve‘I),
where 2, is the radius of the discs at By = 0. This v%lue, for a

: g

fixed waveguide length, is proportional to the total acceptance of the

deflector

ST

a
1 onha N4
R“B(x)

/
a

| - (47)

sl >

The circles represent the valucs of _(a/ao)4 obtained on the
basis of a rigorous thedry for K/D =4 and ¢ =0,8, In the regibn
-0.02 < B_ < 0,06 one observes a good agreesment between the rosults of

o
small pitch approximation and those of the rigorous theory., In this
range of grbup velocity, the function (a/ao)4 is represented, to a

very high degree of accuracy, by the linear function
= 11 B, +1 (48)

Using the results shown in Mg, 10, one can give a univalued
1§ H >

choice of optimcl parcmcters for the deflecting waveguide,
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Let us examine, as an cxample, the region Bg > 0, The existence

of flat mexima on the curves (ch?mﬁv for given Z, provides a
relatively free choice of group vclocity. However, efforts to reduce
the level of power (dashed line on Fig. 8) make it necessary to
decrcase the group-volqcities. ls o compromise, one can choose values
of (plo)qu, for instance, at the level 0,95 from the maxima of the
corresponding curves, towards low group velocities, From this one
determines the set of parameters (p;c, P, Z, Bg). With Bgs. (29) and
(43), one can find the dependence of this set of opltimum paramcters on

the longitudinal momentum (soe Fig, ll).

Let us compare the regions Bm > 0 and Bg < 03 for instance for
o
Bg > 0 and a longitudinal momentum P, = 10 GeV/c one gets - as parameters
B =0,0195, P =20,5M0, (p.c) = 20,4 MeV, and ¢ = 31,7 (sce
g N ©omax 4 ‘max ’
Fig. ll). For these same valucs of the transverse momentum and level of
power in the region B < 0, the corresponding parameters are :
g

- 7 — P D — o)
Bﬁ' = 0.0195, ! = 2505 and R_ O._/5 R'l“.

=]

From the point of view of full acceptance, a similar gituation

r larger values of the longitudinal

&)
)
@]

holds quite closely, as well a
momentum, From this follows a practical equivalence of the regions
Bg > 0 and Bm < 0, The given scheme for choosing parameters for a

deflecting waveguide is oxhaustive; in particular in the small pitch

approximation, the question of the chéice of the paramefer X/D, cannot
be solved; An exactﬁtbeory allows onc in principie, to obtain an

optimum valuc of this paramcter, An cxact theory can also“introduce

some corrcctions of the volucs éf the sets of optimum parameters obtained,
However, if one takes into account the indefinite nature of the breakdown
field value, then one can considér thét the accuracy provided by small

pitch approximation is quite satisfactory.

One can extend the results obtained to other freguency bands.

(N

his id

=

4

<

or is necessary to cxpress-the values Enﬁx and Q as functions

Na.

of the wavelength (E _ ~ a . and Q-»:/T;) in expressions (43), (45)
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(SRS

and (46), and to introduce the following generalized parameters NJX R
b, pc

E 2 0
AR W/ r

It is also not difficult to show than, starting with o definite
value of the longitudinal momentum, it is more advantageous (from the
point of view of full acceptance, power, and practical performance) not
to allow unrestricted increasc of group velocity, but to use a deflector

composcd of several shorter sections with separate feed.

CONCLUDING. REMARKS

In Section IV, we have only outlined o scheme for the choice of
parameters of a deflceeting waveguide, without claiming in any way that

it is 2 universal one.

A scries of practical factors (such as: power of RF tubes, cost.
ratio between full acceptance of deflectors and beam optics, intensity of
secondaries, cte.) degroe can have an influence, to a certain cxtent, on

thig choice,

The above-mentioned optimization scheme appears as a consigtent
and extremc case of the full utilization of the total acceptance of o

deflecting waveguide,

One of the authors (V.A.V.) wishes to thank Dr, P, Bernard and
Dr, H., Lengeler for many useful discussions,., He is grateful to
Professor Ch, Peyrou for the hospitality extended to him at CERN, and

Mrs. M, Bell for a careful readiag of the manuscript.
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IPIGURE CAPTIONS

S R e N

Evaluation of dispersion curves for v = 1 and for different
values of the paramcters a/b. (The solutions for complox

waves are presented by dashed lines).
Dispersion curves of lower hybrid modes at v = 1,

Dispersiocn curves for higher hybrid, complex and evancscent
waves, (The solutions for complex waves are given for only onc

frequency band by dashed lines),
Condition of propagoting hybrid waves at v =1, and B = 1,

The regione of positive (internal) ond negetive (cxternal)

power fluxes for diffcrent values of a/h.
Group velocity as function of a/A ot B = 1.

Weighting functions of parameters o and b, depending on a/k.

iy

Normalized equivalent field strength (full lineS) and the

relation EO / E1 (dashed lines) as functions of group
max

velocity,

Normalized traonsverse momentum as a dunction of group velocity

(p&rametor a/k).

Limiting power (dashed lines) and limiting transverse momentum
(full lines) as functions of group velocity. Curve I
L . 4 N .
represents the relation (a/ao) ).
Optimum parameters of the deflecting waveguide, functions

as
of the longitudinal momentum in the region Bg > 0.



15,
16.
7.
18.
19.
20,
21,
22,
23

24,

25,

CERN/TC/BEAM  66~4

- 25 -

REFERENCE

VoA, Vagin, V,I. Kotov and M,M, Ophizerov, Dubna preprint P-2274 (1965).
I,A, Aleksandrov, V,A, Vagin and V,I. Kotov, Dubna preprint P~2503% (1965),
I.A, Aleksandrov, V.A, Vagin and V,I, Kotov, Dubna preprint P-2507 (1965).
V.A.Vagin and V.I, Kotov, Soviet Tech, Phys. 36, 453 (1966).

Y, Garault, Compt.rend, 254, 843 (1962); 254, 1391 (1962); 255, 2920
(1962),

H, Hahn, Rev, Sci, Instr., 34, 1094 (1963).

H, Hahn, Brookhaven preprint BNL AADD-54 (1964),

Y, Garault, CERN report 64-43 (1964),

H.G, Hereward and M, Bell, CERN report 63-33 (1963),

H.G, Hereward and 11, Bell, CERN report 65-37 (1965).

0.H, Altenmueller, R,R, Larsen and G.A, Loew, Rev, Sci. Instr. 35, 438
(1964).

P, Bramham, CERN internal report AR/Int.P Sep/63-4 (1963).

11, Bell, P. Bramhan and B,V, Montague, lature 198, 277 (1963%).

M, Bell, P, Bramham, R,D. Fortune, L, Keil and B,V, lontague, Proc.
Int.Conf., on High Inergy Accelerators, Dubna (1963), (Atomizdat, Moscow,
1964, p. 798).

R, Hirel, Itucl, Instr, Methods 26, 90 (1964).

V.A., Vagin, CERN preprint TC/BEAM 66=3 (1966).

H, Lengeler, CERN preprint TC/BEAM 65-4 (1965).

H, Hahn end H.I. Hcolama, Rev, Sci, Instr, 36, 1788 (1965).

M.A, Miller, Doklady icad, Nauk SSSR 85, 571 (1952).

B.N. Gershman, Pamiati Andronova, Ed., Acad. Nauk SSSR, 599 (1959).

V,I. Tolanov, Radiophysica 3, 802 (1960).

A M, Belijanzev and A,V, Gaponov, Radiotech. and Electr, 9, 1188 (1964).
P,I, Clarricoats and B,C, Taylor, Proc. IEE 111, 1951, (1964).

R.,P. Borghi, Al.L. Bldredge, G.A, Loew and R,B, Neal, Stanford preprint
SLAC-PUB-T1 (1965).

H, Hahn, H,I, Halama and H,W, Foelshe, Int, Conf. on High Energy
Accelerators, Iragcati (1965)7 to be published.

P.I, Clarricoats, Proc, IEE 110, 261 (1963%).

R.A, Waldron, Proc, IEE 111, 1659 (1964).

W. Schnell, CERW report 61-5 (1961).



Ghy

/

r

/
[ 5; a?! -

.

u///[/M

-

/
i
i

L 6o

4.0

é‘ T
2.0

o

¢

Z

s
g’%sg ? g€
-
s

,,,,,,

dora 4o

20 3Pk

4

{ T
L
& *‘i ) ﬁp/‘ﬂ
& £ ! ¥
] i
3 Snunsa

[

b e
, B8Hi
.{‘* ;
P J’; b m‘??; '@f&
¢l b ;

/'3;5

/i -
;‘1 £ i
. ; ﬁ%f ‘‘‘‘‘ | i
L N Iy ¢
[ A
JEr :
T $=0858 |

g3 ka

g
(ga,
7 ! i"‘\ Q/}%gﬁ!
i L
& N e
£ ?,W-f}g‘}(ﬂw -
§
§
£
F
= 0.490

kt"f??g










a8y : : r
i H :

!

1 H

# i




0.06

gﬂ M

.00

=G.02

~0.04

‘a« M

e et i st i o s v v o A




's&@@ wgw;% g foz asy 4o




A



ﬁf‘i { Mev]
PMwl, €

éo | Ip
i

v _ 0.04
W T
n 0.02

6.6¢






