
CERN/TC/BIDAI1I 66-4 
ll.7.1966 
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CERN - Goneva 

In view of the interest shom1 recently in such problems, we thought 

th::c.t it uould.bo useful to give a e;onoro.l review of work done on these 

lines and which has already been published in Russian (l 4 ) 

INTRODUCTION 

Hybrid waves propac;c,ting in n disc-loaded waveguide have severo.l 

useful and interesting propert:i.os, some of which have alreo.dy found 

practical applications. J?or ex~:,i;1ple, the hybrid mode EH11 , in special 

conditions, enables one to obt:J.in a uniform deflocting force over the 

waveguide aperture, and it is usod :for the separation of high energy 

particles. 

Tho question of hybrid waves in such structures has been treated 
(5 - 18) in several papors from a purely theoretic2l standpoint, as well 

ns from the point of view of practic2l applic2tions. 

In Refs. 5 and 8 c2n bo found general expressions for the 

deflocting force, and charnctorisJdcs of hybrid waves in imped~.nce 

ap:proximation are considered. A rigorous theory of n deflecting mode is 

given in 11.efs. 6, 7, 9, 10. Exporiu.ent2l results on hybrid modes cnn be 

found in Refs. 8,11,12,15,18. 

In the prosent pc,:i;ier, we give a consistent, systeI11atic nnaJ.ysis 

of tho dispersion relations of hybrid waves in a lossless disc-loaded 

w2veguido on the basis of smnll pitch approximntion. Such an approximation 

:l!:) Institute for High Energy Physics, Serpukhov, USSR. 

31:31:) On leave froi;1 the Hig'l:1 Energ·y Physics Institute, Serpukhov, USSR. 
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porrni ts one to f:Lnd o.11 types of dispersion ( nnor:in,lous, mixed nncl positive) 

o.nd o.llows tho study of pro:rnc;'n , evo.nescont cmd complex w2v0s. 

On tho basis of tho abovo-montionod n1Jproximo:cion, one considers 

questions related to tho choico and optimization of parameters for n disc-

londed waveguide, usod ns m1 RF sep:lrntor deflecting system. 

Rosul ts ccro obtninod whic~1 allow one to choose pc:rameters for the 

deflecting system, wi t~1 sufficient prc~ctical accurc~cy. 

Our ini tinl datn for the choice and tha opti:dzo1tion of pnro,notors 

are conpotred, whonovor possible 7 with rosul ts obtninod by othor nuthors 

on tho bo,sis of rigorous tlwory mid o:zporinontGl ro,sults. 

COMPLE~C '.!AVES HJ L DISC-10,JJED \LVEGUIDE 

In ,.,_ 1ossless disc-1octdocl w:woc,uido, thoro nro hybrid wavos 

corrospondinc~ to three ty:pos of constants 

1) re a,l ( pro P'-'f,'G ting 11r;:wo s ) , 2 ) ( evnnesccmt wnves), nnd 

3) cornpleJ ( conplox wo,ves). Pro; 1mves hccvo been investigocted 

in detail for tho given structure in Hefs. 5,8,16. We shnll give below 

0, conplote pictnre of dispersion properties for 0,ll given types of hybrid 

waves, specinl nttention will be rc;iven to complex waves. 

Complex wnvos h0,ve boon studied before in more simple wnve-g1.1ido 

structures (e.c~«, plc:.no with surfaco impodnnce(lS), mngneto-c,ctivo p1nsmn( 2o), 

etc. ( 21 )). I ' pnrticu1nr, it 110,s shown thn t they C1.PIJ02r in discrete 

frequency bnnd0. 'rl10 totccl flow of on orgy is o,lwrcys oqucc1 to zc;ro for 

conplex wnves. Furthornoro 1 sucll waves con exist in structures where tho 

prop0,gating waves gre hybrid. 

A doto,iled study of tho dispersion cho.rrn:;toristics of cor,1plox 

waves is mmlo more difficult owing to tho very coJ;1plic«:i,ted nmthern::i,ticoJ_ 

description of their behaviour ( es:pocinl1y for closed vmveguides), L 
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detailed study of the properties of complex waves in a simple model 

coupled to transmission lines has been made in Ref. 22. In Ref. 23 an 

attenpt was made to invostigate complex waves in a more complicated 

structure, namely a cylindrical waveguide with concentric dielectric rod. 

No dispersion solutions for cornplux waves were found by these o.uthors( 2:3), 

but they i;ointed out some of their regions of existence. 

From the point of view of the study of complex waves, the disc-loaded 

1tmveguide is the most convenient and practical of all comdal cylindrical 

waveguide structures in which tho propagating waves have a hybrid cho.ro.cter. 

Certo.inly, in small pitch npproxi1:10.tion it is charc.cterized by only two 

pnrametors a/b rm.d d/D (a is the r2dius of the centro.l hole in tbe disc, 

b is tho guide radius, D is tho pitch, and D is the slot width) and further-

more, the transverse wave number in the disc region is always real. Besides, 

one finds in a disc-loncled wo.veguide all kinds of dispersion (anomnlous, 

mixed and positive), which hns a strong influence on the diversity of 

behnviour and properties of conplox waves. 

In order to obtain a gonornl dispersion relation for nll kinds of 

hybrid waves, let us deter1,1ine the fields in the central region (region I, 

0 "' r :::; a) ond in tho dfac region (region II, a ~ r ~ b). For the sake 

of simplicity, let us restrict ourselves to the small pitch approxima.tion 

(A.>> D, "A. is the wavelength). As usual, let us consider the fields in 

the form 

~ ~ j(wt - Kz) -ivG 
E,H "' e • e (1) 

where r, ~, z are the cylindrico.l co-ordinates, K = y - jo: is the 

complex propagntine; constnnt. For convenience, letus split the (t,z) 

and ~ variables by introducinc; imnginary units j and i in a 

different form. 

Fields nre expressed by Herz vectors 

PS/5546/dmh 
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by nh (magnetic vector) : 

E ;: rot rot l:e - jk rot I\i , 
Z0H = jk rot Ile + rot rot I\i 

whoro Z = 377 oQ. 
0 
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(2) 

In ordor to find tho fields in the I region, it is convenient to 

USG the 

where 

tro.nsverse vector Q, introduced by Hnhn( 6): 

= 

r 
.i. J v+1(k1r) . -ivfl 

- k2 :;;r}1;1aj ie 

j .i. ~-1:~1.~kl~~, e -i vfl 
I k2 ylJv\kla; 

l 0 

kl 
ruld y = • .-:. 

1 k • 

-~ 

Putting in Eq_. (2) IT - Q h - D,11d 

I 
) 

-> 

-jKz 
e 

~ 

IT = iQ, we obtain the 
0 

(3) 

following hybrid solutions HJ':I and HE respectively. Fields in region I, 

omitting the fnctor ex1, j (wt - Kz), are representod by a sum of these 

solutions 

E ( + K ) J (kl r) -iv9 -(p~ + 
J (k1 r) -iv9 = e Z H = q) J~(k{a-Y ie z p kq yJ~a·) 0 z 

E 
• [ K Jv+l (~r) 

+{£ 
J v+l (kl r) v Jv(~r)JJ -ivQ = J Pk' :.C1-JJ~0 y1 iJ1c1 a}' 

+ ~ J-~k~ e r -k2 kr ' v 1 

·[KJV+l(~r) ,J,.l(~r) J (k r)J J . E v v 1 . -1v9 = J PE y1 J~\k1 aJ + q _ V{J- }·fr;BJ - ·m::ar ie g kr JV kla 

-j [ t: JV+l(klr) v J (k r)-· 
K JV+l (~r)J -iv9 Z H v 1 J = 

Y;:J}k{a) 
+ -~ 

J v(k~a}" + qk y 1 J) k1 a.1 ie o r kr 

' 
( -· J (lr r) :'..{Y~ J + q[. Jv+1~~~ J e-ivfl Z0 H9 'l I V+l "1 v = 

J P,_ Y1 J )T\:l a} 
- t::~ 

kr J v k1 a k y1 J v k1 a 

where p and q nre, in genernl, complex constm1.ts. 
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The reproseD_tD:cion of fiolds in Eq. ( 4) is very convenient. It pormi ts 

ono to obto.in immediately i fiold oxprossions for the vory inportnnt specio.l 

( ~ 
Vw 

case Y1 = 0 ::::: ··--•L- :::: 1, cp c 
where Vcp :Ls the phase velocity1 

cmd c is thG voloc:Lty of l ~ Pht) --..1.o • 

lfo shn.11 teJrn in the II region, tho node E only. 
VO 

Thorofore, wo 
·-7 

she,11 put rrh = O, for tho givon region, ccnd choose the Horz electric 
-> 

vector 11 
e 

where 

in its usuc,l foru : 

0 

-ivG 
e 

if; ( kr) = J (kb ) N ( kr) - N ( k lJ ) J ( kr ) • 
0 v v v . v 

In tho following, we she,ll 1.ISe the function 

= J (kb ) N 1 ( kr) - N (kb ) J .1 ( kr) , v v+ v v+ 

and the following relation exists between •/; 
y 0 and if; 1 

v 
= 

k:r if; - if; 0 1 . 

(5) 

(6) 

(7) 

(8) 

Note th~ct the Herz voctor ( 5) :Lr.3 written tc~king into nccount the 

boundary conditions at r = b, <.md it does not depend on the z co-ordinate. 

Thoroforo, fields in region II, k1c:Lng into account Eqs. (2) cmd (5), and 

omi tti_ng the time fccctm: exp jwt, can be represented in the following forr.1: 

if; (kr) 
-i ve v ¢ (kr) 

-ive 
E A 0 z H jA 

() 
ie = ¢TICa) e = "-'-~-..:.-= ·if;··n;a; z 0 r kr 

0 0 

if; (kr) ¢1 (kr) 
( 9) r- ] e -ive ZoHG -jA1 1'.'= 0 

H E E 0 = ¢ ,~0;2:; ·0~11c~a1 = = :;::: • j kr z e r 
0 0 
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( . I II 
Using the boundary conditions at r = a, i.e., E = ;E , 

z z 
HII EI = EII = O ) it is not difficult to find the following G ' g g 

system of equations for the complex constants p and q : 

p [ 'i' + ~a ( e - 1) J + q ~ ( \l1 ~) = 0 ' 

P =r: ~ + q(~ + ~) = o • ka 
\. 

where 

' and 

Let us introduce the following definition 

d e = D 

(10) 

(11) 

(12) 

where p11 p2, q1 , q2, cp1 , cp 2 are real quantities. Putting expressions 

(12) and k = y - ja into Eq. (10), and equating to zero the imaginary 

and real parts of each equation, we shall get as a result a syste:o. of 

four linear equations relating the p1 , p2, q1 , q2 constants. Then, 

equating to zero the determinant of this system, we shall find the general 

dispersion relation for hybrid waves, which, after a series of trans­

formations, takes the following compact form 

(13) 

where minors of second order 

' 

"{ a (14) 
1C <f>2 + = <f>i <f>2 k 

M2 = 
;r a (1 ) - ;cp + ;cp 1 II - e<p - - ~ - -2 k 2 k if; ka 

0 ' 
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- ~ lpl + 1~ lp 2 

lj;l 
~ + eco.. + .l!r=(e - 1) 
if; '..L La 

0 

- elp 2 
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II. .ANALYSIS OF THE GENERAL DISPERSION RELATION AND THE PROPERTIES 

OF IffBRID WAVES HT DISC-LO.AD1D WAVEGUIDES 

In order to obtain a dispersion equation for propaGating waves, let 

us put in Eq. (2) Thus, the minors 

the <p 2 function, identically become equal to zero, . and the dispersion 

relation (13) talces the well-known form (6 ,s): 

M = 0 
1 ' 

or 

(15) 

In an analogous way, putting in relation (13) 
K 

k = j £ and :r = O, - k k 

we shall get the M3' M4 minors and the qi2 function equal to zero. As a 

result, the dispersion equation of evanescent waves may be represented by 

or 

(1 + :~)~~ + ~a [~ - :~ • + ~a (e - l)J ~ 0 • (16) 

By comparing Eqs. (15) and (16), it is not difficult to see that they 

mutually transform into each other, if one replaces ~ by (-j ~ ) , and 

vice versa. 

In order to defh1e the possible regions of existence of complex 

waves, let us analyse the dispersion properties of propagating waves 

(Eq. (15)), and of evanescent waves (Eq. (16)). 

At cut-off ( ~ = 0) these dispersion relations degenerate, and 

split into two independent ancl simple equations for cut-off frequencies 

a) 
J 1 (ka) == O, 

v 

b) 
J (kb) + Q • 5 1T ka\fl ( 1 -' e) J I ( ka) 

v 0 v 
= 0 (17) 

LeJc us call gh -mode the hybrid wave, if its cut-off frequency 
vm th 

is equal to ka = t-' , where 1-t is the rrr--- -root of Eq. ( 17 a). Analogously, 
vm vm 

one introduces a modes, relative to roots of Eq. (17b). Such a 
vn 
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classification is convenient for further analysis and it has an illusory 

character in consequence of tho peculiarities in the behaviour of 

dispersion curves of hybrid waves in the neic;hbourhood of degeneracy of 

cut-off frequencies for the gh and ge modes(l, 8 , 26127). 'rl1e 
vm vn 

condition for such a dec;:eneracy i,s known, and it has the form 

µvm 

a 
vn 

(18) 

The evolution of dispersion curves is shown in Fig. 1, depending 

on a/b parameters at v :::: 1 and ~ = 1. One can point out three regions 

of dis:persion of the real branch of tho lower mode (upper llalf-plane), 

relative to the cl1an.g·e of the a/b -oarameter in the following limits 

1) 0.552 
a 

1 positive dispersion (Fig. la,b,c) ~ b 
::; 

2) 0.289 
a 

0.552 mixed dispersion (Fig. ld e f) < b < ' ' 

3) 0 < !'!:. ~ 0.289 anm:c_alous dispersion (Fig. lg,h). 
b 

At a/b = 0 .. 480 tho cut-off frequencies of the gh11 and ge11 

modes coincide ( soe Fi:':,;. le), whereas for a/b > 0. 480 of lower modes, 

the gh11 wave appears, and for r./b < 0.480, on tho contrary, there is 

the ge11 wave. 

At a/b > 0. 559 the evm10scent branclws of tho two lower rnodos 

··h 1ni.d o·e have a similcrLr chnracter to tho correspondinr;: curves of '-" 11 u·u ,, 
the usual waver;i.,lides (lower lialf-plane, Fig. la). At a/b = O. 559, the 

evanescent branches of ther::::e waves have a common point of contact A (:B1ig. lb) 

and then (a/b < 0.559) these brm1ches are divided into two separate loops 

1 and 2, (seo 1 e.g., Fig. le). IJoop 1 closes the real branches gh11 and 

go11 through the imaginary region at cut-off frequency points. Loop 2 has 

extremities going Jco infinity (at ka ~ 0, ~ ~ co). Between those two 
~z 

loops there is n discrete frequency band. LOO]) l disappears (Fig. le) when 

the cut-off frequencies coincide (a/b = 0.480). Subsequently, the given 

loop l nppenrs again on tho loft of the cut-off frequency of.the gh11 mode, 

(see Fig. lf). On Fig. lg, together with dispersion curves of the two 

PS/5546/dmh 
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lower modes, one shows the curve of the ge12 mode. This curve has a 

very complicated character L-1 the lOver half-plane and is divided here 

into two parts : an undulatints branch, going to infinity, and a separate 

branch 3, which originated when the go12 mode crossed the gh12 mode at 

its cut-off frequency point. 

At a/b = 0.280 the evanescent branch of the ge12 mode has, with 

loop 1, one common point B (Fig. lh). At subsequent decreases of the a/b 

parameter, the mode ge12 closes through the imaginary region with gh11 

(Fig. ii). More detailed evolutions of dispersion curves of lower hybrid 

modes, are shown in F'igs. 2a,b,c. Dispersion curves for several upper modes 

(ge13 , ge14 , ge15 , ge16 and gh12 ) are given in Fig. 3 for wider frequency 

regions at a/b = 0.3. 

The evanesce.nt. branches of these modes have an undulating charaoter 

and are separated by discrete frequency bands. These bands, as well as the 

corresponding bands of lower modes, are the regions of existence of complex 

waves. 

In order to obtain dispersion curves of complex waves, it is 

necessary to solve Eq. (13), which is equivalent to the following system 

of equations 

= 0 

= 0 
(19) 

Results of this calculation are represented in Fig. l by dashed curves. 

Three forms of the solution of complex waves for lower modes, correspond 

to three types of dispersions for such modes. (see, e.g., Figs. lc,f,g). 

In tho region of positive dispersion, the lower complex mode 

appears at a/b < 0.559, and then the region of existence of this mode 

becomes wider and the real part of the propagating constant increases, 

when tho a/b 'parameter decreases. In the region of mixed dispersion 

(0.289 < a/b < 0.552) the real branch of complex waves joins the propagating 

wave at the point where the group velocity is equal to 'zero.(see Figs.le,f,g). 

PS/5546/dmh 
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In the region of nnomo.lous dispersion, tho real branch of complex waves 

extends to all regions of phase velocities. (see Figs. lh, i). 

As rognrds higher complex modes which correspond to two neighbouring 

J:iropagating wo.vos, then, as is seen from Fig. 3, there is a large 

collection of thor:i. Each one of those higher complex modes must be 

characterized by an additiono.1 index, which indicates the place of solution 

in tho vertical sections ka = const. 

In the next Sectio;1.s we shall concentrate our attention on practical 

applications of hybrid waves, for instance, the RF separation of high 

energy particles. For these purposes, one uses the lower (deflecting) 

modes with v = 1, at phase velocity ~<p = 1. 

III. THE CifaRJiCTERISTICS OF DEFLEC'l'HJG MODES AT PHASE VELOCITY EqUAL 

TO THE VELOCI'l'Y OF LIGHT 

The dispersion relo:t:Lon (15) for propagating waves at phase velocity 

~<p = 1, simplifies considernbly : 

ka 
v+l C1 - e) .. 11 Ii - -P(7L2~" j---, 

ka I v v+l; · 
'--

(20) 

In Fig. 4 aro shown curves calculated with the help of Eq. (20) and which 

determine the conditions of propagntion for deflecting modes (v = 1), at 

tho different values of the g parameter. One sees in particular from 

Fig. 4 and Eq. (20) that in the approximation used by us, the r/b ratio 

does not depend on the i; paro.meter at point c/A. = 0.225 (ka = /2.). 

Ono can see in the right bottom corner of Fig. 4 the corresponding 

curves of the followin[;; two hybrid modes with v = 1 and ~cp = l. 

The fiola. comr>onents in the central region, at ~cp = 1, (the 

PS/5546/dmh 
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ej(wt - Kz) factor is omitted) can be represented as (see expressions (4)): 

E ::: 
z 

E = r 

E ::: g 

E kr cos G 
0 

E0 [(l~~y+ (1i)'] cos g 
' 

Z H = -E kr sin g 
0 0 0 ' 

[ / \2 ( '2 ka kr' Z H = Eo \~2) - ~~[) o r 

where E is the equivo.lent deflecting fiold. 
0 

i] sin 

I .2 ~·~ ~--2·-~ ..• 2 
'rhe electric field E = IEi + E + E reaches o. maximum on the ,\}r Q z 

disc radius (r =a, Q = 0), with respect to expressions (6) : 

E = max (22) 

G 

In order to obtain the power flux P, one integrates -the Foyil.tine~ 

vector on the waveguide aperture, and for ~cp = 1, one go ts 

p = (23) 

J\:c ka = /3~~ tho power flux is equal to zero. In this case the 

uaveguido n;)erturo is split into two regions. In these two rogj_ons the 

pnrtial power flmrns are eqtw.l to each other in absolute value, but hnvo 

opposite sic;-ns, (P + o.nd P _). 

To determine the boundary bt;tueen the regions with such partial 

(21) 

power fluxes, in an arbitrary case, lot us equate to zero tho time-averaged 

Poynting vector : 

PS/5546/dmh 
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:F'rom • ( 24) it follows th2ct, at ka = /2, the boundary botuoon 

pnrtial Jimrnr fluxos in opposite directions degenerates ond coincides with 

the disc aporturo. For lco. < J2, E(~. ( 24) has no solution. This :foct and 

tho analysis of tho dispersion curves in Fig. 2 allow us to conclude Jchnt 

in thu cut-off region kn< /2., tho positive flux P+ = O, and thoro is 

only a nogntive power flux P_. At kc:i, > J2 neither po.rtial power flux is 

equal to zero. In Fig. 5 is shmm the dtvision of the waveguide cross-

section in tho P + and P regions for ~c.p = 1, v = l, and o.t different values 

of a/A.. 

In order to obt~1in the group voloci ty, at ~ = 1, let us cp 
differentiD.te the dispersion equation (15) on K, and then put y1 = o. As 

a rosult one obto.ins the following equntion for the determinntion of group 

velocity 

At ~cp -· 

2 
dyl 

k ax ::: 

v ) + v .i. I iv + t- w + ( t _ i )!'.'..-_. -, = o 0 

kn ka aK I " 0 ka J 

1, one has 

2((3 - 1)' g 

tho following relntions 

= 

whore ~g is the group velocity (velocity of light units) nnd 

(25) 

(26) 

¢3 = J~ (kb) Nv(ka) - N~ (kb) Jv(ka), ¢4 = J~(kb) Nv+l (ka) - N~(kb) Jv+l(ka) 

(27) 

Tho functions ¢4 are connected by tho relation 

(28) 

Pu cting :Cq. ( 26) into • (25) nnd toking into account Eq. (20), 

o.ftor o. seriu::; of compliccc-Cod tran.sforrnntions, one go ts tho following 

PS/5546/dmh 
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group velocity equc1tion 

/3g = 

whore A = 

moreover lrn o.nd 

A + B 

e ["\+~~)~ 1 I 
_J 

=-1l-~~~-~~ 
2 2 

7T ( V+l) l/Jl 

' 

- e2( ka 
v+l 

kb satisfy Eq. (20). 
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v 
ka 

(29) 

In particular, for v = 1 nnd !;, = 1, Eq. (29) simplifies 

considerably : 

/:3 = g 

Fig. 6 shows as a function of n/'A the group velocity 

(30) 

~ co.lculo:ted 
g 

by formula (29) for ~<p = 1, for different values of the p0,rnmeter e 
(dashed curves). 

From Fig. 6, it follows thn t ;here are bnckwnrd wnvos in tho regio;;_ 

0 < a/'A < 0.2756, and tho;!; forward wrwes exist in the region a/t.. > 0.2756. 

Tho vo.lue n0 /r, = 0.2756, corresponding to ~g = 0 1 does not depend on 

parnmeter t;,. As one uuuld expo ct, the mmdmal value of the bcckward group 

velocity drops when the pr:ro,moter e docronses. 

Furthermore, one shows in Fig. 6 the group velocity, cnlcule,ted by 

Hahn(?) on tho b[l,sis of D, ric;orous thoory for different values of the 

parameter 'A/D and for !;, = 0.8 (full lines), nnd the results of 

experimental cnlculntions of ~ro for the deflecting mode, at 'A/D = 4,5 
~ 

and !;, = 0.8. A comparison of 2-11 thoso clat2- shows that whon the "A/D 

pnrnr11otcr i11croases ~ for fixed VO..llJ.OS of e, tl10 grouwp il610ci ty CTOSSGS 

the frequency mds more to tllo rj_ght, and the mn:ximnl value of the bnck-

ward c;roup velocity grows. 
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Thus for instnnco for tho cnsos f../D ~ 00 1 (smo.11 pitch approximation) 

nnd /../D = 4, the values of tho frec,uoncy uhere the group velocity crosses 

the nxis, D .. ro given, nro given, ros1Jec-i.;ivoly, by (e, //...) = 0.2756 
0 

and 

(a0 /f..) = 0.2505, i.o., thoy differ by 10%. In the region in which wo ;l.re 

interostod, -0.04 < ~ < +o.05, such a relative difference in frequencies 
g 

of these curves is npproximatoly conserved. 

The existence of regions of forw0,rd and backward waves :for a 

dofloct:Lng mode pormi ts ono to choose (in contrast to circularly ,symmetrical 

E waves), if nocossnry, n GTOup velocity as smnll as is uo..ntod and of 

either cign, wh:i..lo obtc:in:Lng at the same time a finite aperture 2a/"A. 

However, it may be shown tl1:::1t when tho group velocity decreases, the 

reo_uiremonts :for tho accuracy of fnbricntion nnd tho mnintonnnco of tho 

geometrical p:::trrnnoters of tho wmreguido and the frequency sto.1Jili ty sharply 

incronoe. 

Thus, tho dovi.:--,tion of tho ph:::\SG velocity from tho voloci ty of light t 

due to tho errors of the lmvoguid.o sizo rn1d frequency, ffi[W bo reprosontod by 

whore is rolntivo nwoight 0 corresponding to the geometrical 

parnmotor q .• 
l 

'l'ho deriv2t:Lvo a~,p 

tho group velocity decrensos 
01\, 

nt ~m = 1 1 incre1lses ns l/~ 
I g 

(31) 

when 

(32) 

Tho relative requirements for tho waveguide 1x1rC!.metors m0,y be 

found by co1~1pnring tho weighting function 

= 
(33) 

The weighting function::-~ c::m bo obtnined in a similur mnnner to th0 group 

velocity (see Eqs. (25), (26) nnd (27)). 
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For example, for v = 1, e = 1, and for a and b r1arameters 

the weic;hti11g functions are : 

( ka )2 
·--- - 1 " -c: 

(34) 

and 

I . \ 2 
] - .\kill. --- 6 

(35) - 2 --- , 
(ka \ J( 1 \ b/ ·~·3·:.L - 1 ~: - 1 I\ 

- - t) ) 

uhere a/A. and b/f\ are related • ( 15). On _ 7 or1e gives t11ese 

functions :Ln relation to a/I\. 

Tlw functions pd nnd pD rnay 1Je obtained only with the help of a 

rie;orous theory. 

Deflecting forces on a traversing particle with charge e can be 

expressed only longitudL1al field componerrts( 5 ) 

where 

\! E 
.L z 

p - ~(I) 
+ --- -~--~·. 

l - l?tp 2 

-+ n H JI l j (wt ( 1 - ~) + T J 
i z v .L z J e 1-'qJ o , 

-> -> 7 
i in, l are the unit vectors 
r' "" z 

the velocity of particles in units of the velocity of light, and 

the ini ti;;~l phase of flie;·ht * 

T 
0 

(36) 

~ is 

is 

In tl1e case when ~qi = ~ = 1, • ( 36) simplifj_es considera1Jly and 

tl1e rnaxirjaJ value of t:_ie force is represe~nted as follo1ivs 

PS/5546/dmh 

-> 
F = 

J.m 
(37) 
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Introducing into Ee;_. (27) the 
z 

frorc; I'Jq. (21), we 

at v = l : 

(38) 

One soos from the above that the deflecting force, at 

is constant over the whole aJ)erture, and . E is the equivalent deflecting 
0 . 

field at the feed point. 

I1et us give an ostillmte of the non-uniformity of the force over 

the a1;orture in the CRse of a shift of the phase velocity from the 

velocity of light ( l ~<p - i I « 1, B = 1). For this one uses formulae 

(36) and (37), Ecs. (15) 2nd (20), <emd expressions of the field components 

E and H (4) for an ariJitrary j)hase velocity. Taking into account the 
z z 

condition I~ - l j < < 1, a:J:'tor cecHous cnlcula tions, one c;ets the follouing (p 

simple expression 

1. 2 
2 (~cp - 1) (kr) • ( '70 \ 

:J::;) 

From the point of view of the characteristics of a practical 

deflecting wavegu.ide, a convenient parameter is the equivalent strength 

of electric field nornalized to power 

= 
E A, 
•. ..<L. 
JP (40) 

In snall pitch a:pprox:i.Lmtion, using the equation of power flux (23), 

we get the :following expression : 

= 
_j __ _ 

(ka) 2 
(41) 

In Fig. 8, are shown graphs of ·n for two values of the parameter 

c; = 0.8 and LO, as crnll as -Che relation E /E (dashed li:'.lo) as 
o max 

functions of group velocity. In this figure are also given the points of 

PS/5546/dmh 



CERN/TC/BEAN 66-4 

- 18 -

equivalent, normalj_zod. values of the field. 'rhey are obtained by a 

rigorous theory for = 4 and e = o.s. (?) 

A slight difference between the values obtained on the basis of a 

rigorous theory and sraall pitch a:;;rproximation respectively is observed 

only in the region of very low {~Toup velocities, (I~ j < 0 .005) in the 
g 

interval under consideration, i.e., -0.04 < ~ < +0.05. 
g 

IV. 
:!: ) 

K0eping in the l:i.uits of smal1 pitch tion, wo sha11 

consider Uw problmn of th0 optimi:.c3e.tion of a deflecting RF separa:tor 

s;1sten1. 

A dof10ctor imparts to m1 ultrarelativ:Lstic part:Lcle having 

longitudinal momentum p 0 , a t:ecw.sver:.::e 

€ (42) 

where P..1. is the tra,·1sverue mome:ntum. 

For an RF separator with two deflectors the required deflection J.s 

found f1°ora a well-known condition of the optimum utilization of the 

verticc:,l acceptance( 2B) 

( € = € t 

1 

0 

PJ. = .f1 ... .811 
p(' 

l 6 f, J 

(43a) 

(43b) 

whore 2€ is tho initial ansu.lar divergence of particles in t:w 
0 

3:) 'I'he problorn of the optimiz1:i:cion of deflector design has been also 

t ' d II 1 " -T 1 . · ' ' · (LB ) reo:ce · . · c:wn ancL La ama, in a very in-ceres·cing paper • 

PS/5546/dmh 
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vertical plane at input -co tho first deflector, f, = t /t.., f, is the 

length of deflector. 

Using the expross:Lons for a deflecting force (38), and taking into 

account tho attem-:ation i:i.1 tudo of tho wave in the waveguide, we 

find, for a transverse momentum 

= e E 
0 

(44) 

whore 6t = and Q is the quality factor of tho waveguide. 

~'or the following, it is convenient to introduce a normalized 

transverse momentum : 

_';;; lo _, ,- ,-,, v]---oe , 1110 
-----· o r1 Q [3 (1 - e )I -'-~-
~ P 1J~u , 
I~ 0 ~L~V 

(45) 

where the value OlJ is takm1 in (koVJ{ffiI) un:Lts. 

In Fig. 9 is shown the normalized momentum as a function of 
JP 

group velocity, calculated with • ( 45), taking into account Eqs. ( 20), 

(29) and (41), for different valnos of I and ~ = 0.8. 'rho quality 

factor Q is fixed and equal to io4, which is close to the value 

obtained in practice for S band (10 cm wavelength). 

lw is evident from Fig. 9, in the region of very low group 

velocities, tho efficiency of tho deflection drops sharply. This is 

explained by tho fact that - in spite of the increase of the normalized 

field strength YJ as ~ ~ O - the factor due to the attenuation of 
g 

the wave appears to be more important. On both sides of the value 

~ fJ' = 0, there .are maxima Hhich, when t increases, are displaced from _, 

tho ordinate axis (in particular, for small t , for example t = 10, 

tho maxima arG so close to the ordinate axis that they could not be 

shown on the chosen scale). 

PS/5546/dmh 
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In Fig. 9 are also e;:Lven tho corresponding points for 71./D = 4, 

e = o.s and Q 104, calculated a ri3'orous theory. A comparison of 

the results shovrn that in tl18 considered range of ~ g there is good 

c~~:;reornen t between ap-proximate curves and exact data, everywhere except 

in tho region of very sDall group velocities, 

Tlie presence of maxima for curves with transverse momenhun 

det12,rminos, for the fixed power 211d length of the guide, two optimum 

values for group velocity (smaller than and greater than zero). Which 

of these optimum values should be preferred may be decided upon after a 

more refined analysis of various additional factors, related to the 

total acceptance and tho transverse momenta, to the presence or absence 

of spurious modes which arc duo to the turning over of the dispersion 

curve. Howovor, such nn approach does not give the possibility of 

solving tho problm of the effective utilization of tho dofloctors. 

Unlike linear accelerators, in cting RF r:Jep2xator systens 

it is nocossary to p:rovide 01;oro;ting conditions on 0, limiting breakdown 

level. Only thon will ii:; bo possible to obtain maximum acceptu.nce for 

the deflector, and consequently a sufficient intensity of so1)aratod 

particles in a region of the energetic spectrum with maximum momentum 

of secondaries. 

Consideration of tho limiting electrical strength in deflectors 

is a very difficult problem, and it depends to a considerable degree 

on tho technology of fabrication, on tho conditions of the surfaces, 

on vncuum system clom1liness, and on tho geometrical configuration of 

the waveguide. 

Experimental values of tho limiting field strength E for 
raax: 

disc-loaded wuveguides at S band, are around 200 kV/cm( 24 ). Using 

this value, let us determine tho lim:L ting power P , and tho limiting 
max 

tro.nsverse momentum (p c) 
J. max 

accordo.nco vri th Eqs. (22) and 

PS/5546/drnh 

(E 7')2 
p ::::: _, -ffi[:L'C ' --

24 n z 
0 

expressing the power flux by E in 
ina:x:' 

(23) 

(46) 
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Putting in Eq. (46) the limiting value 

CERL\f/TC/BEAT11 66-4 

E A. = 2 Mv and 
max 

considering in Eqs. (2.5), ( 45) and ( 46), the frequency term ka as an 

intermediate variable, we shall find P and (p c) as functions 
max i max 

of the group velocity (see F':~.g. 10). In the considered region of values 

of ~ , the limiting power P varies practically linearly with the 
g max 

group velocity (dashed lines). 

For comparison, in the regiol'.1 ~ < O of Fig. 10 is plotted also 
g . 

a field strength value (black triangle) which could be applied in the 

deflecting waveguide od the Brookhaven RF separator( 25 ). 

Graphs for the -limiting transverse momentum (full lines) differ 

essentially from tho corresponding .curves pic /JP-', which are given in 

Fig. 9. Tl.10 region of low g!l:'ouri vo_ locities, ·where the values· (p. d 
l.' .1. max 

decrease, is considerably larger in Fig. 10. For P > 0 and fol:' g 

different fixed values of l, the limiting trnnsverse momentum ho.s a 

flat maximum. In Fig. 10 is shown also th(J function ( .fL.) 4 , ( curve ··· I) , 
a 

where a0 is the radius of the discs at ~ = O. 
g 

This vilue, for a 

fixed waveguide length, is proportional to the total acceptance of the 

deflector 

R (47) 

The circles represent the values of (a/ao)4 obtained on the 

basis of a rigorous theory for 'J\/D = 4 and e = o.s. In the region 

-0.02 < ~g < 0.06 one observes a good agreement between the results 

small pitch approximation and those of the rigorous theory. In this 

ra-rige of group velocity, the function (a/a )4 is represented, to a 
0 

very high degree of accuracy, by the linear function 

of 

= 11 ~r• + 1 
5 

(48) 

Using the results shown .in Fig. 10, onG can give a univnluGd 

choice of optimc,l par<"..moters for the def lo cting . waveguide. 

PS/5546/driih 
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Lot us exrunino., as an oxrnnple, the region ~ g > 0. The existence 

of flat ma,:dma on the curves (pJ.c:mmc for given e, provides a 

relr,tively free choice of gToup voloci ty. However, efforts to reduce 

tho level of power (do.shod line on Fig. 8) make it necesso.ry to 

decrease the group volo.ci ties. As o. compromise, one can choose vnlues 

of ( P c) for instnnco, at the level o .. 95 from tho maxima of the -.r.. mo.x' 
corresponding curves, towo.rds low group velocities. From this one 

determines the set of par0,meters (pJ.c, P, e, ~g). With Eqs. (29) and 

(43), one can find the dependence of this set of optimum parameters on 

the longitudinal momentum (see Fig. 11). 

Lot us compo.re the regions ~ > 0 and ·fj < O,· for instance for 
g g 

~ > 0 
g 

nnd a longitudinal momentum p . = 10 GeV/c one gets o.s parruneters 
0 

~ = 0~0195, g .. L ... 
p 

max 
20.5 MU, (p c) ·· = 20.4 MeV, and t == 31. 7 (see 

J. max 
Fig. 11). For those snrne values of the transverse momentum o.n:d level of 

power in the region ~ 
0

, < 0, tho corresponding parameters are 
b 

~ = -0.0195, ""i = 25.5 and R = 0.95 R • 
g - + 

From the point of view of full acceptance, n similar ,situation 

holds quite closely, o.s well ns for lo.rger values of tho longitudinal 

momentum. From this follows n prc.ctical equivnlence of the regions 

~ > 0 and ~ < o. Tho given scheme for choosing parruneters for a 
g g 

deflocting waveguide is oxho.ustive; in particular in the small pitch 

npproximation, the question of the choice of the pnrameter A./D, cannot 

be solved. An exnct theory allows ono in principle, to obtnin nn 

optimum vnluc of this parameter. Ari. exact theory cnn nlso introduce 

some corrections of the values of the sets of optimum parruneters obtained. 

However, if one takes into nccount the indefinite nature of the breclcdown 

field value, then one cnn consider thnt the o.ccurncy provided by small 

pitch approximation is quite sntisfci.ctory. 

One can extend tho results obtained to other frequency bnnds. 

For this it is necess0,ry to oxpross-the values E 
max 

and Q ns functions 
1 

of the wavelength (E ""' r;r.... end 
max VA 

Q "' Ji: ) in expressions ( 4 3), ( 45) 
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and (46), nnd to introduce the following gonero..lizod pnrnmeters 

I 
A. ' 

~ . r 

It is nlso not difficult to show thnn, stnrting with n definite 

vo..lue of tho longitudinal momentum, it is more o.dvo.nto..geous (from the 

point of view of full o.ccopto.nco, power, nnd pro.cticnl porfornmnco) not 

to allow unrestricted incroo.so of group velocity, but to use n deflector 

composed of sevor;:.i,l shorter sections with sepo.ro..te feed. 

In Section IV, vro ho.vo only outlined n scheme for tho choice of 

pnrnmeters of n doflo·ctinc:: wnvoguido, without clo.iming in nny wo..y that 

it is n universo..l one. 

A sorios of practico..l fo.ctors (such ns: power of RF tubes, cost. 

ratio between full accopto..nce of deflectors nnd bonm optics, intensity of 

secondo.rios, etc.) degroo cnn ho.ve nn influence, to n certnin extent, on 

this choice. 

Tho o.bovo-montionod optimization scheme np:peo..rs o.s n cons1stent 

and extreme co..se of tho full utilization of tho toto..l acceptance of o.. 

deflecting wo..veguido. 

Ono of the authors (V.A.V.) wishes to thank Dr. P. Bernnrd o..nd 

Dr. I-I. Lengeler for mnny useful discussions. Ho is gro.teful to 

Professor Ch. Peyrou for the hospitnli ty extended to him nt CERlJ, o..nd 

Mrs. M. Bell for n careful rec.ding of the manuscript. 
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Fig. 3. 
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Fig. 6. 

Fig. 7. 
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FIGUHE CAPTIONS 

Ev0,luo.tion of disporsion curves for v == 1 and for difforent 

vc1luos of tho p0,r0Jnotors o/b. (Tho solutions for complox 

wc:,vos e,ro prosented by d:-_:,shc;d lines). 

Dispersion curves of lower hybrid modes at v == 1. 

Dispersio,1 curves for higher hybrid, complex ::md ovL:.noscont 

vrnvos. (Tho solut:i.ons for complex wo.vos nre given for only ono 

frequency bcmd by dcrnhed lino.s) • 

Condition of propo.g:::d;ing hybrid wnves c,t v = 1, nnd 

Tho regions of positive (internal) nnd nogntive (cxtornnl) 

pouer fluxes for d:Lfforent v:1lues of 

Group velocity ns function of n/t.. o.t ~ ,:= 1. 
<fl 

Woicshting functions of ix:-cr[lmetors o, ccnd b, do ponding on n/"A. 

lformo.lized equivalent fiGld strength (full lines) o.nd the 

rolo.tion E / E (dashed lines) ns functions of group 
o n1a:x: 

velocity. 

rTormc,lized trcmsvcrsc momentum ns n dunction of group voloci ty 

( po.rrn11etor o/'A). 

Limiting power (dnshod lines) nnd limiting trnnsvorso raomontu.m 

(full lines) ns functions of group velocity. (Curve I 

roprosent's tho relo.tion (o/n )4 ). 
0 

Optimum ]Jrcrrcmetors of tLo deflecting waveguide, ns functions 

of the longi tudj_nnl momentum in tho region ~ g > 0. 
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