To be submitted to Physics Letters $\begin{bmatrix} 5 & 261 \end{bmatrix}$ 63

CERN/TC/PHYSICS 63-10 21,6,1963

 $33/63$

\equiv Properties

L. Jauneau, D. Morellet, U. Nguyen-Khac, A. Rousset, J. Six Ecole Polytechnique, Paris

H.H. Bingham^{*}, D.C. Cundy, W. Koch, M. Nikolić, B. Ronne, O. Skjeggestad, H. Sletten CERN, Geneva

> A.K. Common, M.J. Esten, C. Henderson University College, London

C.M. Fisher, J.M. Scarr, R.H. Thomas Rutherford Laboratory, England

A. Haatuft, R. Møllerud, K. Myklebost Bergen University, Norway

 $\overline{\mathbf{x}}$ Ford Foundation Fellow

We have measured the mass, lifetime, and α parameter of the \equiv , on a sample of 320 $\frac{1}{2}$, produced in the Ecole Polytechnique 1 x 1/2 x 1/2 m³ heavy liquid bubble chamber $\binom{1}{1}$ by a beam $\binom{2}{}$ of 1.45 $-$,03 GeV/c K at the CERN PS. The liquid was freon 115 (C_2 F₅ Cl having a density of 1.2 gm/cm³, radiation length 25 cm); the magnetic field of the chamber was 1.7 W/m^2 . These events are from 210.000 scanned photos containing about 3 useful K- interactions per photo. (The *n-* contamination of the beam was less than $2 o/o$.

Selection of \equiv Events

These \equiv were produced in the reactions

 K^- + p --> \equiv + K^+ (π^0) or \equiv + K^0 + π^+ K^- + n --> \equiv + K^0 (π^0) or \equiv + K^+ + π^-

Two types of events were retained at the scanning stage·:

1) "Signed \equiv ": i.e. \equiv --> $\Lambda + \pi$ followed by Λ --> $p + \pi$ together with signature of K^0 --> π^+ + π^- or characteristic disintegration of stopped K^+ , all visible in the chamber fiducial volume.

2) "Unsigned \equiv ": as above but with no visible K^0 or K^+ decay.

We present here only results from 320 signed \equiv . The unsigned events are still being analysed.

The CERN events were passed through the THRESH-GRIND system⁽³⁾ and \equiv events selected on the basis of the usual χ^2 criteria. Similarly events from U.C.L. and N.I.R.N.S. were passed through the N.I.R.N.S. analysis system⁽⁴⁾. Essentially equivalent criteria were adopted for the Paris and Bergen events which

had to satisfy the obvious coplanarity, transverse momentum, and Q value tests to within two standard deviations.

Many of the secondaries (roughly $1/3$ of the π ⁻ from $=$, and 2/3 of protons from Λ^O) stop in the chamber liquid permitting precise estimation of momentum by measuring the range. For this purpose we have calibrated our range momentum relations

using the decays K^+ --> μ^+ + ν and K^+ --> π^+ + π^0 (assuming M_{K^+} = 0,4939 GeV) from K^+ at rest obtained in the same run. Thus for stopping particles, the momentum precision is limited essentially by straggling and measurement error (totalling typically \pm 2 o/o).

\equiv Mass

. We have 82 events where the π^- from the \equiv^- stops in the BC liquid, permitting a particularly accurate \equiv mass determination. They give a weighted mean \equiv mass of:

$$
M_{\text{max}} = 1321.4 \div 0.6 \text{ MeV}
$$

which we consider to be our best estimate, Note that any· possible systematic errors in the magnetic field table would have only a small effect on this value and that the exact value of the beam momentum is irrelevant. $(M_A = 1115.5$ Mev and $M_{\pi} = 139.6$ Mev
were used).

If essentially all $=$ are included we have

 $M_{\text{max}} = 1321.0 \pm 0.5$ Mev

These values are in good agreement with other recent determinations^(5,6).

PS/3875/jc

$- 3 -$

As a check we have calculated the Λ^0 mass for those Λ^1 s with stopping protons and *n-,* and find

$$
M_A = 1115.7 \div 0.3
$$
 Mev

and for essentially all Λ 's

$$
M_{\Lambda} = 1115.6 \div 0.3
$$
 Mev.

The agreement of this Λ mass with other recent measurements⁽⁶⁾, gives further. confidence that no significant bias is introduced by our various measurement and fitting proceedures and in particular by our range momentum relation. We find also that the analysis systems used by the various collaborating groups yield entirely compatible values and errors for the \equiv and Λ masses, and that \equiv masses calculated using only the fitted Λ and measured π^- variables (no constraint) agree well with those calculated using in addition the measured \equiv direction (two constraint fit).

\equiv Mean Life

Using for each event the fitted \equiv momentum (for M_I = 1321 Mev) we calculate the \equiv flight time and potential flight time for each event, allowing for slowing down of the \equiv in the chamber liquid. A maximum likelihood estimate of the apparent mean life of the \equiv gives the value: $\gamma = -1.82 \pm 0.16 \times 10^{-10}$ sec. Fig. 1 shows the time distribution without corrections for \equiv escape or absorption. The maximum likelihood estimate includes the escape correction, of course, but we must correct this value for loss of \equiv due to absorption in the liquid (see below).

We have taken as potential path length for each event, the shortest of the \ldots following 3 distances obtained by translating the event along the \equiv line of flight:

1) to the point where either the Λ^0 or the \equiv decay point would leave the chamber fiducial volume;

2) until the potential path length of the $=$ exceeds 15 cms (greater than 3 mean lives for the highest momentum \equiv obtained). (This avoids a possible scanning bias for long $=$);

3) to the point where the \equiv would have slowed down to 400 MeV/c. (This cut-off avoids an uncertain correction for absorption of slow \equiv . The choice of 400 MeV/c is arbitrary in so far as the absorption cross section is unknown, but we have verified that the choice is not critical $(fig.2)$. والموارد والمتوارد والمستعين

To avoid further possible scanning bias and large measurement errors we have also rejected those \equiv whose path length was less than 0,6 cms, or where the Λ^0 path length from the \equiv decay point was less than 0,3 cms or greater than 20 cms. We have verified that these cut offs do not influence our result significantly. (provided that the first one is $0,6$ cms or greater $(fig,2)$).

We must correct the above apparent mean life for absorption of \equiv in the bubble chamber liquid. This correction is about 5 o/o if we take 35 \pm 15 mb as a reasonable estimate of the total $=$ - nucleon cross section (this figure is consistent with some $14 \equiv$ interactions we have actually observed in the liquid).

$$
-4 -
$$

With this correction, our estimate of the Ξ^- mean life becomes:

ing Po

$$
\tau = -1.91^{+0.17}_{-0.15} \times 10^{-10} \text{ sec}
$$

As a check we find the corrected value of the mean life of the daughter Λ^0 's from the \equiv to be

$$
\tau_{\Lambda} = 2.44^{+0.20}_{-0.17} \times 10^{-10} \text{ sec}
$$

These values are consistent with our more preliminary results (7) and with
other recent determinations $(5,6,8)$, Thus our ratio (7) : $\tau = 2.0^{+0.7}_{-0.5}$ remains in good agreement with the $\Delta I = 1/2$ rule prediction. α_{\equiv}

It is well known⁽⁹⁾ that the probability distribution of the angle θ between the direction of motion of the proton (of the Λ^0) in the rest frame of the Λ^0 and the direction of the Λ^0 in the rest frame of the Ξ^- is of the form:

$$
L(\Theta) = L + \alpha_{\Lambda} \alpha_{\Xi} \cos \Theta
$$

irrespective of the spin of the Ξ .

Fig. 3 shows our distribution of cos Θ . A maximum likelihood method gives:

$$
\alpha_{\Lambda} \alpha_{\Xi} = -0.33 \pm 0.09
$$

Taking⁽¹⁰⁾ $\alpha_{\Lambda} = -0.62 \pm 0.07$
we have

$$
\alpha_{\Xi} = +0.53 \pm 0.16
$$

compatible with other recent measurements $(5,6,12)$

Our sample of 320 signed \equiv , taken as a whole, shows no significant polarization.
Thus we are at present unable to make any/estimate of the \equiv spin or of β and γ .

\equiv Leptonic Decays

Electrons are directly recognized at the scanning stage by their rapid spiralization due to bremsstrahlung in the heavy liquid (and occasionally by large δ rays or by materialization of a bremsstrahlung quantum). The detection probability of a = electron secondary is about 80 o/o. We have found no candidate = --> Λ + e + v among the $320 \equiv$ with signature. As one such event would correspond to the branching ratio $\frac{1}{2}$ - $\frac{1}{2}$ A + e^{-} + $\frac{1}{2}$ $=\frac{1}{250}$ we conclude that this branching ratio is less than 1 o/o with 90 o/o confidence.

\equiv^0 + n --> \equiv^- + p event

We have found an event which we interpret as a \equiv ⁰ charge exchange. (Fig. 4).
The \equiv ⁻ and the K^o signature fit well (Q_{\equiv} - = 79.4 \pm 8 Mev) and the \equiv , p and supposed \equiv ⁰ lines of flight are nearly coplanar ($\langle 1^0$, which is well within the deviation possible due to Fermi momentum).

第69页 (1) 100 mm (1) 100 mm

$-5 -$

\equiv Inelastic Interactions

 $\label{eq:3.1} \frac{1}{2} \sum_{i=1}^n \left\{ \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^$

 -30 -1

We have found 2 events which could be examples of the reaction

. *r* '

 $\left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right) \right\rangle$

 $\sim 10^{-1}$

 \equiv + Z \Longrightarrow \equiv $\frac{1}{6}$ + Z¹ followed by \equiv $\frac{1}{6}$ \Longrightarrow \equiv + π ⁺

 $\sim 10^{-1}$ M $_\odot$, $\sim 10^{-1}$

on a nucleus in the chamber liquid. (The notation is that of Glashow + Rosenfeld (11)). These two events give

 $\mathbb{E}_\bullet \times \mathbb{R}$

 $\label{eq:2.1} \frac{1}{2} \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^2 \left(\frac{1}{\sqrt{2$

 $\label{eq:2} \varphi^{\prime}=\frac{1}{2}\left\langle \frac{1}{M}\right\rangle _{M}\left\langle \frac{1}{M}\right\rangle _{M}\left\langle \frac{1}{M}\right\rangle _{M}\left\langle \frac{1}{M}\right\rangle _{M}$

 $M_{\text{max}} + 20 M_{\text{eV}}$ and (1515 \pm 20 Mev). Fig. 5 shows one of them.

 $\begin{split} \frac{d\mathbf{r}}{dt} & = \frac{1}{2} \sum_{i=1}^{N} \frac{d\mathbf{r}}{dt} \left(\begin{array}{cc} \mathbf{r} \\ \mathbf{r} \end{array} \right) \left(\begin{array}{cc} \mathbf{r} \\ \mathbf{r} \end{array} \right) \end{split}$

e dan silin.
Sebagai

 $\mathbf{A}^{(1)}$ and $\mathbf{A}^{(2)}$ are $\mathbf{A}^{(3)}$ and $\mathbf{A}^{(4)}$

 \hat{f}^{\dagger} , \hat{f}^{\dagger} , \hat{f}^{\dagger}

的复数 医囊肿 计类型 $\mathcal{L}^{\mathcal{L}}(\mathbf{Q},\mathbf{Q})$ and $\mathcal{L}^{\mathcal{L}}(\mathbf{Q},\mathbf{Q})$

 $\label{eq:2.1} \mathcal{L}=\left\{ \begin{array}{ll} \mathcal{L}_{\text{max}}(\mathbf{r}) & \mathcal{L}_{\text{max}}(\mathbf{r}) \\ \mathcal{L}_{\text{max}}(\mathbf{r}) & \mathcal{L}_{\text{max}}(\mathbf{r}) \end{array} \right.$

 $\begin{split} \mathbf{w}^{\text{in}}_{\text{in}}(\mathcal{E}_{\text{in}}^{\text{in}}) & = \mathcal{E}^{\text{in}}_{\text{in}}(\mathcal{E}_{\text{in}}^{\text{in}}) \\ \mathcal{E}^{\text{in}}_{\text{in}}(\mathcal{E}_{\text{in}}^{\text{in}}) & = \mathcal{E}^{\text{in}}_{\text{in}}(\mathcal{E}_{\text{in}}^{\text{in}}) \end{split}$ $\mathcal{L}^{\text{max}}_{\text{max}}$, which is a set of $\mathcal{L}^{\text{max}}_{\text{max}}$ Control Paradic الأمريكي
المركز المحكم المركز المركز المركز المركز
المركز المركز المر
المركز المركز المركز المركز المركز المركز المركز المركز المر in a Carl Charles
San Carl Charles (1994)
San Carl Charl Charles $\label{eq:2.1} \frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\left(\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{i=1}^{\infty}\frac{1}{2\pi}\sum_{$

 $\hat{\alpha}$

 $\gamma_{\rm c}$ and $\gamma_{\rm d}$ $\sim 10^{-11}$

tegen som

 $\label{eq:3.1} \mathcal{M}(\frac{1}{4} \mathcal{E}_{\mathcal{E}}(\mathcal{E}^{\mathcal{E}}(\mathcal{E}^{\mathcal{E}}))\mathcal{E}^{\mathcal{E}}(\mathcal{E}^{\mathcal{E}}))$

 $\begin{split} \mathcal{P}^{(1)}(t) &= \mathcal{P}^{(1)}(t) + \mathcal{P}^{(1)}(t) + \mathcal{P}^{(1)}(t) \\ &= \mathcal{P}^{(1)}(t) + \mathcal{P}^{(1)}(t) + \mathcal{P}^{(1)}(t) + \mathcal{P}^{(1)}(t) \\ &= \mathcal{P}^{(1)}(t) + \mathcal{P}^{(1)}(t) + \mathcal{P}^{(1)}(t) + \mathcal{P}^{(1)}(t) \end{split}$

'.'

a shi ya shekara 19 e a composição de la partidade.
Estado de la facta de la partidade de la facta de la partidade de la facta de la facta de la facta de la fact
Estado de la facta d

The city mile humor of the

1930 - Johann Marie Band, amerikansk fotball
1931 - Antonio Maria II, marsk fotballspiller
1931 - Johann Marie Band, amerikansk fotballspiller

TAD

网络 网络树

and the state of the state

光线 医超

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2} \mathcal{L} = \mathcal{L} \left(\mathcal{L} \right) \mathcal{L} \left(\mathcal{L} \right) \mathcal{L} \left(\mathcal{L} \right)$

 $\mathbb{R}^{n \times n}$.

 $\label{eq:2} \mathcal{L} = \mathcal{L} \left(\mathcal{L} \right) \otimes \mathcal{L} \left(\mathcal{L} \right)$

The Political Constitution the full way to pro-

(b) All Control (Booking) (B)

 $\mathcal{L}=\frac{1}{2}(\mathcal{L}^2+\mathcal{L}^2)^{-1}$, $\mathcal{L}^2=\mathcal{L}^2$

 $- 6 -$

Acknowlegements

MARY WE START

 $\label{eq:2} \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}}) = \mathcal{L}(\mathcal{L}^{\text{max}}_{\mathcal{L}})$

 $\label{eq:2.1} \left\langle \left(\begin{array}{cc} \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \end{array}\right) \right\rangle = \left\langle \begin{array}{cc} \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \end{array}\right\rangle$

Contract Contract

 $\mathcal{L}_{\mathcal{A}}(k)$ and $\mathcal{L}_{\mathcal{A}}(k)$

RESERVED BY A STATE OF STREET

We are very grateful to Professors L. Leprince-Ringuet, Ch. Peyrou, B. Trumpy, C.A. Ramm, R.G.P. Voss and J. Prentki for their sustained interest.

We thank especially Professor A. Lagarrigue who has headed our-collaboration.

The K^T beam was due to the CERN TC. NPA and MPS divisions. We thank especially Drs. H. Filthuth and A. Segar, ing.

The CERN group in particular are very grateful to many people in the DD Division, and especially Dr. R. Bock and Mile. A. Cnops, for their indispensible aid in setting up and in using our data analysis system. The N.I.R.N.S. and U.C.L. groups would like similarly to thank A.G. Wilson and J.M. Sparrow.

We would like also to thank the CERN PS Division, our linkman Dr. F. Bonaudi, the many people who operated the chamber and beam, and the scanning; measuring and computing staffs of the several laboratories.

 \mathcal{A}_\bullet the star in the star is \mathcal{A}_\bullet

 $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$

 $\label{eq:2} \mathcal{O}(\log n) \leq \frac{1}{4} \log \left(\frac{1}{n} \log \left(\frac{1}{n} \right) \right)$ $\mathcal{O}(\mathcal{A}_{\mathcal{A}}^{\mathcal{A}})$. The constraints are

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$

 \mathbb{C}^n and \mathbb{C}^n are the set of \mathbb{C}^n . The set of \mathbb{C}^n

and all health and company of the large

 \mathbb{R}^2

 $\label{eq:2.1} \mathcal{L}(\mathcal{H}) = \mathcal$

 $\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}$ and $\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}$ and $\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}$ and $\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}$ and $\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}$ and $\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}$ and $\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}$

 $\sim 10^{-10}$

and the process of

24-59 指挥,这次以前,

CERN/TC/PHYSICS 63-10

ill i filiket så

 $-7 -$

References

- $1)$ ' M. Bloch, A. Lagarrigue, P. Rançon, A. Rousset $\gamma_{\rm T} = 10^{-11}$ $\hat{\mathcal{F}}$ and $\hat{\mathcal{F}}$ are $\hat{\mathcal{F}}$. Then $\hat{\mathcal{F}}$ Rev. Sci. Instr. 32, 1302, 1961 $\label{eq:1} \mathcal{F}(\mathcal{A})_{\mathcal{A}} = \mathcal{F}(\mathcal{A})_{\mathcal{A}}$ الفرق كالأمريك فوق فالأنافذ
- 2) ^{· G}. Amato, H. Courant, H. Filthuth, E. Malamud, G. Petrucci, A.M. Segar, M.T. Toner, W. Willis, Nucl. Instr. and Meth. 20, p. 47, 1963
- 3) CERN GRIND Manual, R, Bock, Nucl. Instr. and Methods 20, p. 435 (1963) A.M. Cnops, THRESH, $DD/EXP/63/12$ CERN 62-37 Informal Meeting on Track Data Processing
- 4) $A, G, Wilson, NIRL/M/38$ J.W. Burren. J. Sparrow, NIRL/R/14
- 5) H. Schneider, Physics Letters 4, 360, 1963 D. Stork, B.A.P.S., N.Y. Meeting (1963) , MA4 L. Bertanza, V. Brisson, P.L. Connolly, E.L. Hart, I.S. Mittra, G.C. Moneti, R.R. Rau, N.P. Samios, O.I. Skillicorn, S.S. Yamamoto (Brookhaven); M. Goldberg, L. Gray, J, Leitner, S, Lichtman, J, Westgard (Syracuse); CERN Conference 1962, p. 437, Phys. Rev. Lett. 9, 229, (1962) .
- 6) M. Roos, Rev. Mod. Physics 35, 314, 1963 F.S. Crawford, CERN Conference 1962 p. 827
- 7) L. Jauneau, D. Morellet, U, Nguyen-Khac, P. Petiau, A, Rousset (Ecole Polytechnique); H.H. Bingham, D.C. Cundy, W. Koch, B. Ronne, H. Sletten, (CERN); F.W, Bullock, A.K. Common, M.J. Esten, C. Henderson, F.R. Stannard (u.c. London); J.M. Scarr, J. Sparrow, A.G. Wilson (Rutherford Lab.); Physics Letters 4 , 49, 1963
- 8) M.M. Block, R. Gessarole, S, Ratti (Northwestern); L. Grimellini, T. Kikuchi, L. Lendinara, L. Monari (Bologna); E. Harth, W. Becker (Syracuse); W.M. Bugg, H. Cohn (Oak Bridge); Phys. Rev. 130, 766, 1963
- 9) W.B. Teutsch, S. Okubo and E. Sudarshan, Phys. Rev. 114, 1148, 1959
- 10) J.N. Cronin and O,E. Overseth, CERN Conference 1962, p. 53 B.A.P.S. *1,* p. 68, 1962
- 11) S.L. Glashow *1* A.H. Rosenfeld, Phys. Rev. Lett. 10, 192, 1963
- 12) L.W. Alvarez, J.P. Berge, R. Kalbfleisch, J. Button-Shafer, F.T. Solmitz, M.L. Stevenson, CERN Conf, 1962 p, 433 M.L. Stevenson, private communication.

- 8 -

Figure Captions

- Fig. 1 Cumulative distribution of observed $=$ flight times $($ uncorrected). Bartlett method gives apparent $=$ mean life of 1.82 $^{+0.16}_{-0.14}$ x 10⁻¹⁰ sec. After correction for \equiv absorption in liquid, best estimate is $\tau_{\equiv} = 1.91_{-0.14}^{+0.17}$ x 10⁻¹⁰ sec.
- Fig. 2 Curves showing insensitivity of observed \equiv mean life with respect to various selection criteria ("cut-offs")
	- a) Minimum \equiv momentum;
	- b) Minimum \equiv flight path length from production point to decay point;
	- c) Minimum Λ flight path length from \equiv decay point to Λ decay point.

Fig. 3 Distribution of angle Q between proton direction in A rest system and A direction in \equiv rest system. Maximum likelihood estimate gives $\alpha_A \alpha_{\equiv} = -0.33 \pm 0.09$,

 $PS/3875$

Fig.4. \equiv charge exchange
 \equiv + n > \equiv + p

 $Fig.5. Ξ^- inelastic interaction$ giving $(\equiv \pi^+)$ with a $mass$ 1533 ± 7 Mev