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ABSTRACT
Experiments in high-energy physics (HEP) and related fields
often impose constraints and challenges on data acquisi-
tion systems. As a result, these systems are implemented as
unique mixtures of custom and commercial-off-the-shelf elec-
tronics (COTS), involving and connecting radiation-hard
devices, large high-performance networks, and computing
farms. FELIX, the Frontend Link Exchange, is a new PC-
based general purpose data routing device for the data-
acquisition system of the ATLAS experiment at CERN. Per-
formance is a very crucial point for devices like FELIX,
which have to be capable of processing tens of gigabyte of
data per second. Thus it is important to understand the per-
formance limitations for typical workloads on modern hard-
ware. In this paper the analysis of FELIX packet processing
algorithm is presented. The role played by the PC system’s
memory architecture in the overall data throughput is dis-
cussed and motivated, both by measurements and theoret-
ical means. Finally, optimizations increasing the processing
throughput by a factor larger than 10x are analyzed.

1. INTRODUCTION
The ATLAS experiment [1] is one of the four experiments

at the LHC, the Large Hadron Collider, at CERN, Geneva,
Switzerland. During operation, ATLAS generates data at
O(100 Tb/s), mostly from well known physics phenomena.
Hence only a small fraction is stored for offline analysis. Of
the 40 MHz collision event rate that the LHC generates, only
about 1 kHz is preserved. It is the task of the trigger and
data acquisition system to process and filter events in quasi
real-time, before they are written to permanent storage.

The trigger and data acquisition system is organized in
layers. The L1 trigger system reduces the 40 MHz collision
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rate to roughly 100 kHz. As the L1 trigger needs to accept
or reject events within 2.5 microseconds, it is entirely im-
plemented using custom electronic components. Accepted
event fragments are forwarded from the on-detector electron-
ics to the back-end electronics (ReadOut Drivers, RODs),
located in a separate service cavern, over custom point-to-
point detector-specific links. The RODs perform data ma-
nipulation tasks like aggregation or compression before push-
ing the data to the circa 100 ReadOut System (ROS) PCs
over 1800 point-to-point optical links (S-Link.) ROS PCs
buffer event fragments and forward them upon request to
the High-Level Trigger (HLT) computer farm, consisting of
1500 servers. Here, the event rate is further reduced to the
target event rate of about 1 kHz.

The FELIX project is a novel approach in interfacing the
various ATLAS detectors to the data-acquisition system. Be-
ginning in the next long shutdown of the LHC in 2018, var-
ious detector links will be gradually replaced by links based
on the Versatile Link [2] and GBT [3] projects of CERN. The
idea of FELIX is to provide a device with data routing capa-
bilities interfacing the new detector high-throughput data-
links directly to a switched COTS network. This means that
the current layer of point-to-point connections is replaced
with a switched network. FELIX allows the use of dynamic
routing rules that enable load balancing, failure tolerance
and easier data-flow management. FELIX systems are in-
tended to be partially integrated in ATLAS first in 2018;
a full deployment is planned for 2025. An overview of the
architectural changes of the ATLAS data-acquisition system
with FELIX is given in Figure 1.

A typical FELIX connects to 24–48 optical detector links
operating at a data rate of 3.2 Gbps each. On the network,
side 40 Gbps Ethernet links can be used, but other high-
performance network technologies are also considered.

1.1 FELIX Implementation
FELIX interfaces the detectors to the data-acquisition sys-

tem, but also integrates monitoring, control, and calibration
systems via the switched network. This is shown in Figure 2.

In the current development FELIX is based on COTS
PC-hardware. The detector links connect to a PCIe Gen-
3 FPGA-based card, while 40 Gbps Ethernet NICs provide
the needed network connectivity (Figure 3).

An application runs on the FELIX hosts to read and write
data on the detector links. It manages network connections,
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Figure 1: ATLAS data-aquisition architecture with
and without FELIX.

Throughput per Link 3.2 Gbps
Links per interface card 24
Links per system 24–48
Throughput per system 10–20 GB/s

Table 1: FELIX demonstrator requirements

routing data to one or more network locations based on ex-
tracted meta-information. The application uses a pipeline
architecture with different processing steps, see Figure 4.

The large amount of data generated by the ATLAS exper-
iment imposes certain requirements. Almost 10000 detector
links will have to be connected to FELIX systems. To en-
sure a dense, cost- and space-efficient system, each FELIX
will need to interface as many links as possible. The project
demonstrator, which is estimated for Q1/2015, is designed
to interface at least 24 detector links. If each of these links
operates at a data rate of 3.2 Gb/s, 8B/10B encoded, the
FELIX firmware and software will need to be able to process
data at roughly 6.5 GB/s after 8B/10B decoding. Addition-
ally, data packets cannot be delayed infinitely and should be
forwarded within a short time frame. The requirements for
a FELIX system are also listed in Table 1.

1.2 Contribution
The focus of this publication is the specific part of the

FELIX software that handles the decoding of data packets
transmitted over the PCIe bus by the link interface card.
This piece of software plays a crucial role in the overall
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Figure 2: FELIX integrates in the ATLAS data-
acquisition system. On-detector electronics is con-
nected via bi-directional Versatile links (labelled
GBT). Readout, monitoring and detector control
systems (DCS) are connected via commercial net-
work technology. FELIX also manages LHC clock
information (TTC: Timing, Trigger & Control).

performance of the FELIX application. The paper intro-
duces first the data encoding for the PCIe transfers and
the software decoding algorithm. The performance optimiza-
tions and results of such a packet processing algorithm are
then discussed. Finally, further analysis of the software will
demonstrate that memory bandwidth is the primary bottle-
neck limiting the algorithm speed.

2. ANALYSIS OF PACKET PROCESSING
PERFORMANCE

In this section the evolution of the FELIX packet process-
ing algorithm is present. Guided by profiling tools, a simple
initial algorithm is optimized to be able to cope with the
throughput requirements of the FELIX use case.

2.1 The Packet Processing Algorithm
In the normal use case, a packet-based transfer protocol

is used on top of the physical detector links. Packets can
have variable length; their content is not standardized and
depends on the source. Usually packet boundaries are de-
fined by an 8B/10B encoding or a similar technique. It is the
task of the link interface card firmware to decode the packet
stream and transmit packets, which are called chunks in FE-
LIX terminology, over the PCIe bus into the host system’s
memory.

For technical reasons of the FPGA firmware, in order to
move chunks from the PCIe link interface card, the chunks
are packed into fixed-size blocks. Every block has a 4 byte
header (see Table 2a), which encodes a 2 byte start-of-block
word, a 5 bit sequence number and an 11 bit data stream



Figure 3: The architecture of a FELIX system. Mul-
tiple large buffers are used to enable multithreading.

Figure 4: FELIX application pipeline. File descrip-
tors expose the link interface card. Each file descrip-
tor is associated to one large data buffer.

Bit range Description
0-10 Stream ID
11-15 Sequence Number
16-31 Start-of-Block Symbol (0xABCD)

(a) Block Header (4 byte)

Bit range Description
0-9 Length in Byte
10 Reserved for length field extension
11 Chunk error bit
12 Truncation bit
13-15 Type field

(b) Subchunk Trailer (2 byte)

Table 2: The meta-data in block headers and sub-
chunk trailers included in the packets transmitted
over PCIe.

identifier. The variable-length chunks are split into so-called
subchunks to fit into the fixed-size blocks. Every subchunk
has a 2 byte trailer including the length encoded as 10 bit
integer, a truncation bit, an error bit, and a 3 bit field indi-
cating the type of this subchunk (Table 2b). The subchunk
type can either be first, last, or middle, indicating this sub-
chunk starts a new chunk, ends a chunk or is in the middle of
a chunk, both, indicating that this subchunk represents a full
chunk that has not been split up, null, indicating that this
subchunk does not carry data and is only used to fill up the
block, or out-of-band, indicating that the rest of the trailer is
to be interpreted as an out-of-band signal. The block format
is illustrated in Figure 5.

The algorithm starts processing the subchunks at the end
of a block. The subchunk trailer is read and a pointer to the
data part of this subchunk is stored in a stack data structure.
When a full chunk has been read, the pointers on the stack
are read in reverse order and stored in a data structure.
Note that only pointers to the actual data are stored. Using
scattered read and write routines (readv, writev on POSIX)
the data can be copied into a consecutive memory region
or, for example, passed on to a network card, enabling a
zero-copy application design.

2.2 Profiling
For the performance measurements, test data were gener-

ated with mixed-size chunks and processed with the packet
processing algorithm isolated and in-memory.

The Intel VTune Performance Analyzer utility [4] was
used to perform an initial profiling of an algorithm execu-
tion. Several issues were revealed by the profile and could
be fixed. See the next section for details on optimizations.

As a next step, VTune was used to measure memory trans-
actions while the benchmark was running. The results sug-
gested a high CPI (clocks per instruction) of more than 2.5
in parts of the code as well as a large number of LLC (last-
level cache) misses. The high number of LLC misses was
expected since the benchmark was designed to read block
data from main memory, as in a real-world scenario where
data is copied to main memory via PCIe. The high CPI rate
suggests that instructions are stalling and ILP (instruction-
level parallelism) cannot be used effectively. This indicates
the limited memory bandwidth of the test system to be the
performance bottleneck.

2.3 Benchmark Results
Benchmarks were performed on two different test systems,

see Table 3. System 1 is a single-socket system with 4 cores
and a modern CPU. System 2 is a dual-socket system with
more cores than System 1, but a slower memory. Results are
presented in Figure 6.

2.4 Optimizations
The first optimizations were guided by results of the VTune

profile. The usage of STL containers could be improved by
avoiding unnecessary allocations, reserving memory upfront,
constructing objects in-place (requires compiler support for
C++11), and trying different backends for the stack data
structure (see 2.1).

The runtime profile revealed that the usage of the stack
data structure is relatively expensive. In some cases, like
subchunks of type both, which represent a whole complete
chunk, the stack can be avoided entirely. Changing the im-



Figure 5: The block data format used to transmit data over the PCIe bus. The numbers indicate subchunks
and their containing chunks, e.g., chunk 2 consists of two subchunks 2.1 and 2.2. Each block starts with a 4
byte header (left-most rectangle in each block), each subchunk ends with a 2 byte trailer (slanted shape at
the end of each subchunk).

plementation to omit the stack in these cases could improve
the runtime significantly.

Other optimizations involved compiler option tuning, the
usage of NUMA-aware memory allocations and core-pinning
to ensure that memory accesses are always local, and ex-
periments with data prefetching using SSE intrinsics. These
optimizations are represented by the “optimized” line in Fig-
ure 6.

The packet processing benchmark results show that it
takes much longer to process a block containing many small
chunks than a block containing few, but larger chunks (see
Figure 6, “baseline”). This is expected since the amount of
processing and data acesses increases when more trailers
have to be parsed. On the other hand, the chance that a
short chunk has to be split up in several subchunks is much
smaller than for a large chunk. For example, 15 chunks with
a size of 64 bytes fit into the 1020 bytes payload of a block
without being split up into subchunks. As a result, only a
single data pointer has to be stored. For small chunk sizes,
this situation is common enough to have a dedicated spe-
cialized implementation. A new data type for short chunks
was introduced which only contains a single data pointer.
Construction of this object is significantly faster compared
to a variable-length lists of pointers. There are two differ-
ent data types now: (i) a complex data type consisting of a
variable-length array of pointers to subchunk data and sizes,
and (ii) a simple data type consisting of a single pointer and
a length field. As a result, the processing speed for blocks
with short chunks is reduced significantly (see Figure 6, “op-
timized, new data type”).

The optimizations discussed in the previous sections re-
duce the processing time per block significantly. The speedup
is larger for small chunk sizes, as some of the optimizations
are specifically targeted for this scenario, but also for larger
chunk sizes the processing time could be reduced. Speedups
of above 10x are achieved on both test systems.

Figure 6 shows a plot of the average processing time per
fixed-size block assuming that only chunks of equal size are
stored in blocks. For each data point 100 MB of chunk data
were generated and encoded in the fixed-size block encoding
described earlier. Note that the average processing time for
the System 1 is in all cases better than for the System 2. As
will be discussed in the next section this can be attributed
to the different memory speeds of the systems.
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Figure 7: Overall block processing throughput for
System 2 for different numbers of threads. The
speedup is linear in the number of threads as long
as HyperThreading is not used; the throughput sat-
urates for more than 12 threads.

In a second experiment the influence of multithreading on
the performance was analyzed. In the FELIX application,
packet processing is embarrassingly parallel since the link in-
terface card firmware is designed to support multiple buffers
each thread can operate on a separate buffer. In the experi-
ment this scenario is emulated by starting multiple threads,
each working on an independent buffers of test data. Simi-
larly to the previous experiment each thread is given 100 MB
of block data to process. Results are shown in Figure 7. The
speedup is almost linear in the number of threads used, with
the exception of System 2, where the speedup is less than lin-
ear for more than 12 threads due to HyperThreading. With
this system it is possible to process more than 106 blocks
per second, which is more than the minimum throughput
threshold for 24 Links at 3.2 Gb/s each (8B/10B encoded
data), i.e. the amount of links foreseen to be connected per
link interface card.



System 1 System 2
CPU Type Intel Core i7-3770 Intel Xeon E5645
CPU Clock Speed 3.40 GHz 2.40 GHz
Instruction Set Extensions SSE4.1/4.2, AVX SSE4.2
Nr of cores 4 12 (24 with Hyperthreading)
Nr of CPUs 1 2
Memory 8 GB DDR3 @ 1600 MHz 24 GB DDR3 @ 1333 MHz
Nr of Memory Modules 2 6 (3 per CPU)

Table 3: Specifications of the systems used for benchmarks.

24 25 26 27 28 29 210 211 212

Chunk size [byte]

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

P
ro

ce
ss

in
g

Ti
m

e
pe

rB
lo

ck
[u

s]

Baseline

Optimized

Optimized,
new data type

(a) System 1

24 25 26 27 28 29 210 211 212

Chunk size [byte]

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

P
ro

ce
ss

in
g

Ti
m

e
pe

rB
lo

ck
[u

s]

Baseline

Optimized

Optimized,
new data type

(b) System 2

Figure 6: Average runtime per processed block for two different test systems and for different stages of the
optimization process. Note that System 1 has faster memory modules.

3. MEMORY BANDWIDTH ANALYSIS
In this section a more in-depth analysis of the memory-

access aspects of the implementation is presented. First, the
memory access pattern of the decoding algorithm is char-
acterized and compared to a memory benchmark with a
similar access pattern. Second, a Roofline model analysis
is performed to determine the bottleneck of the algorithm
by theoretical means.

3.1 Memory Access Throughput
The PMBW [5] benchmark collection was used to charac-

terize the test systems for different memory access patterns
and test scenarios. PMBW allocates buffers of different sizes
and processes these buffers using different routines with dif-
ferent memory access patterns. The benchmarks include sev-
eral sequential scanning and random access routines. The
results for System 1 can be seen in Figure 8. System 2 be-
haves similar but is slightly slower. For single-threaded scans
from main memory 5–10 GB/s were measured on System 2,
compared to 10-20 GB/s for the same scenarios on System 1.

The effects of caching are visible in the PMBW bench-
marks: test scenarios with small buffer sizes benefit from
the differently sized CPU caches. On the other hand, caching
can be ignored in FELIX, since data are copied via PCIe to
main memory. Therefore scenarios with large buffers that are
fully stored in main memory will be used for the following
discussion.

The memory access pattern in the packet processing al-
gorithm consists of many short reads of 2 bytes for the sub-
chunk trailers and fewer reads of 4 bytes for the chunk head-
ers. Chunks are read sequentially, but since only trailers and
headers are processed, large parts of the data are skipped.
This particular access pattern is similar to the Scan/Read
scenarios with short data lengths in PMBW. These are de-
picted in Figure 8c.

One can see that better memory performance would be
possible with a different memory access pattern, for exam-
ple with reads of more than 16 bit, implying changing the
data format of the block encoding. On the other hand, the
current algorithm is significantly faster than scenarios with
a complete “random” memory access.

The measured read bandwidth during the packet process-
ing benchmark on System 1 was between 8 and 9 GB/s in the
optimized version. This is slightly less than the peak band-
width of ca. 11GB/s obtained by PMBW, single-threaded
Scan/Read/32Bit/SimpleLoop for this access pattern.

The memory access pattern results in a large number
of cache misses. In a typical scenario with relatively short
chunks the majority of reads will be 16 bit reads for sub-
chunk trailers. In most modern x86-based CPU architectures
memory is always read in 64 byte cachelines. As a result, to
process one chunk, always a whole cacheline has to be read,
even though only 2 bytes (the subchunk trailer) are used.
The memory read efficiency is therefore only about 1/32.
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Figure 8: An evaluation of test System 1’s memory
performance using PMBW. In (a) the effects of the
different cache levels are clearly visible. The packet
processing algorithm accesses data from main mem-
ory, which is shown in (b) and (c). The benchmark
uses different algorithms per read size to assess the
memory performance. Memory speed does not mul-
tiply with the number of threads used.

3.2 Roofline Model Analysis
The Roofline model, as described in [6], is a modelling

method used to describe the performance of an algorithm
implementation in the context of limited memory bandwidth
and computing speed. It is useful to identify bottlenecks and
can give directions for optimization.

For the Roofline model, the performance P of an algo-
rithm implementation is measured and related to its opera-
tional intensity I. The operational intensity is a property of
the implementation and measures the average amount of in-
structions that are issued per byte read from memory. The
measured performance P is then compared to two perfor-
mance ceilings, the memory ceiling and the compute ceiling.
Implementations with a low operational intensity are limited
by the memory ceiling, whereas implementations with a high
operational intensity are limited by the compute ceiling.

In the case of the packet processing algorithm the oper-
ational intensity was approximated by counting the num-
ber of operations that are needed to process one subchunk
trailer, and dividing this number by the amount of mem-
ory that has to be read for the computation. The subchunk
trailer is 2 byte long, but as indicated before a whole 64 byte
cacheline must be read in order to process the 2 bytes. The
operation count is estimated to be 6 operations per trailer,
thus I = 6/64 = 0.09375 Ops/byte. The memory ceiling is
measured by the PMBW benchmarks, the performance ceil-
ing is estimated as 2 Ops/Cycle per thread. This assumes
pipelined integer operations with a 2-fold instruction-level
parallelism. The Roofline model analysis of the packet pro-
cessing algorithm for chunks of 64 bytes is depicted in Fig-
ure 9.

The algorithm is clearly bounded by memory. This is ex-
pected since the algorithm is computationally not very de-
manding, but has many memory accesses and cannot benefit
from caches, and thus has a low operational intensity. An
increased operational intensity would therefore increase the
measured performance. This could for example be achieved
by an improved data layout. If the link interface card would
store subchunk trailers not interleaved with data, but in a
separate meta-data table, multiple subchunk trailers can be
read at once when accessing a cacheline. This hypotheti-
cal scenario is indicated in Figure 9 by the dotted red line.
According to the model, this optimization would shift the
algorithm nearly into the compute-bound region. However,
implementing this optimization would require support in the
firmware of the link interface card. It is also not clear that
the speedup would be as indicated by the model, since it
would also require changes to the algorithm, and therefore
to the number of operations needed.

4. CONCLUSION
In this paper, FELIX, a new data distribution and routing

device for the ATLAS experiment at CERN, was introduced.
The experiment operation imposes challenging requirements
on this system, especially in terms of throughput.

The implementation of packet processing algorithm com-
patible with the FELIX requirements required several levels
of optimizations. Advanced profiling tools were fundamen-
tal in achieving the necessary throughput performance. Fur-
thermore, it was demonstrated that the resulting algorithm
is limited by the test system memory bandwidth.
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Figure 9: A Roofline model analysis of the packet processing algorithm for 64 bytes long chunks. Due to the
low read efficiency (only 2 of 64 bytes read are actually used for processing) the benchmark is limited by the
memory speed.

In order to independently validate this result, a Roofline
model analysis was performed. This confirmed that the FE-
LIX packet processing algorithm is memory-bounded. This
analysis also provided additional insights on the Roofline
model. While it is certainly useful, the Roofline model can
only be seen as a first-order approximation, especially effec-
tive in classifying an implementation as memory-bound or
compute-bound. Quantities like the operational intensity are
hard to obtain, by measurement or just plain code analysis.
Moreover, as today’s CPUs get more and more complex and
include features like ILP, pipeline architectures or micro-ops,
it is hard to give a good estimate of a CPU’s peak perfor-
mance.

The FELIX demonstrator will be based on an Intel Haswell
architecture and DDR4 RAM technology with significantly
faster data transfer rates than the benchmark systems dis-
cussed in this paper. Since the memory performance is a
primary driving factor of the packet processing performance,
newer hardware is expected to provide an increased through-
put. Based on the results from this paper we estimate that
on the new hardware the packet processing performance will
continue growing linearly with the memory performance.
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