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CP Violation in Neutral Meson Systems
Neutral B Meson Mixing
Neutral B mesons oscillate between their matter and antimatter state.
Theoscillation frequency isproportional to∆m, which is themassdiffer-
ence between the heavy and the light mass eigenstate of theBmeson.
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Interference CP Violation
In a final state common to both the B and B, the interference of the direct decay and the
decay after oscillation leads to a decay rate asymmetry that depends on the decay time t

ACP (t) ≡
Γ(B(t)→ f )− Γ(B(t)→ f )

Γ(B(t)→ f ) + Γ(B(t)→ f )
=

S sin (∆m t)− C cos (∆m t)
cosh (∆Γ t/2) +A∆Γ sinh (∆Γ t/2)

,

with ∆Γ being the decay width difference between the heavy and the light mass eigenstate
of theBmeson. TheCP amplitudesS,C, andA∆Γ provide sensitivity to the phase difference,
φq = φMix − 2φDec, between direct decay and decay after oscillation.
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CP Parameter sin2β
The decay time-dependent CP asymmetry in the decay
B0→ J/ψK0

S
provides access to β = arg[−(VcdV ∗cb)/(VtdV ∗tb)],

one of the angles of the CKM unitary triangle.
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The B0 → J/ψK0
S
decay is dominated by a b → ccs transition,

where CP violation in decay is negligible (C ≈ 0) and the decay
width difference ∆Γ is compatible with zero.

ACP (t) = S sin(∆md t)− C cos(∆md t)

S =
√
1− C2 · sin(2β) ≈ sin(2β).

The measured averages of S and C by BaBar and Belle are [2][3]:

S(B0→ J/ψK0
S
) = 0.665± 0.024,

C(B0→ J/ψK0
S
) = 0.024± 0.026.

Dataset

The analysis is performed
using a dataset takenwith
LHCb, corresponding to
integrated luminosities of
• 1 fb−1 at 7 TeV
• 2 fb−1 at 8 TeV .

TheBmesondecays into a
J/ψ and aK0

S
meson.

The J/ψ meson is reconstructed in the dimuon final state, while
two oppositely charged pions are combined to form a K0

S
candi-

date.

Flavour Tagging
It is essential to determine the initial flavour of the neutral B me-
son. The flavour tagging algorithms provide:
• decision d on the flavour of theB candidate (tag)
• calibrated mistag probability ω ofB candidates
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The B0 analysis uses a combination of the OSK, µ, e, vertex
charge as well as the SSπ tagger. The effective tagging efficiency
εtag(1− 2ω)2 is the ratio betweenahypothetically perfectly tagged
number of signal candidates, leading to the same statistical pre-
cision, and the actually observed number with imperfect tagging.
In the B0 analysis an effective tagging efficiency of
εeff = (3.02± 0.05)% is observed.
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Measurement of CP Violation in B0→J/ψKS
The data sample used in the analysis consists of 41 500 flavour
taggedB0→ J/ψK0

S
decays.

Selection
Due to the long lifetime of the K0

S
meson, its daughter pions may

not leave hits in different detector components. The analysis uses
• reconstructed long track
• reconstructed downstream track

pions. Different requirements are applied for the two types of K0
S

candidates.
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After selection the data sample contains
• 29% long track and
• 71% downstream

reconstructed signal candidates.
Requirements comprise:
• kinematic variables and daughter masses
• quality of the reconstructed decay topology

Fit Model
Multidimensional unbinnedmaximum likelihood fit in:
• reconstructed mass and decay time
• per-event decay time error estimate
• mistag probability estimates
• flavour tagging decisions

Fit model considers:
• production asymmetry
• tagging asymmetry
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Systematic Uncertainties
Largest systematic uncertainties on S originate from
• ignoring tagging asymmetries in the backgroundmodel
• uncertainties of the flavour tagging calibration
• assuming a vanishing decay width difference ∆Γd .

Largest systematic uncertainties on C originate from
• systematic uncertainties on ∆md
• uncertainties of the flavour tagging calibration.

Results
The measurement of the time-dependent asymmetry yields [4]

S(B0→ J/ψK0
S
) = 0.731± 0.035 (stat)± 0.020 (syst),

C(B0→ J/ψK0
S
) = −0.038± 0.032 (stat)± 0.005 (syst).

This is the most precise measurement of CP violation in
B0→ J/ψK0

S
at a hadron collider, and in good agreement with the

results of theB factories [2][3].

Controlling Theory Uncertainties on sin2β
Imposing d ↔ s symmetry principles, B0s → J/ψK0

S
decays can

be used to determine the penguin pollution in B0 → J/ψK0
S
by

measuring the decay time-dependent CP asymmetry.
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In the B0s mode both, penguin and tree diagram, carry similar su-
pression factors. Major challenges of this analysis are:
• B0s 100 times less frequent thanB0 decays
• B0s oscillation frequency 35 higher thanB0 systems

Selection
Differences to theB0 analysis:
• employment of two neural nets to eliminate
• misreconstructedB → J/ψK∗ background decays
• combinatorial background

• requirements to omit wrongly associated primary vertices

Tagging
Compared to the B0 analysis, the B0s analysis includes the SSK
tagger. Additionally, the challenge is to dealwith a responseof this
tagger for theB0 candidates.
The total effective tagging efficiency is around

• 4% forB0s signal candidates
• 2.6% forB0 signal candidates.

Fit Model
The multidimensional fit is similar to the B0 → J/ψK0

S
analysis.

Though, besides the B0s signal candidates and the combinatorial
background, it is necessary to describe theB0 component aswell.
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The sample contains around 80000 B0 and 900 B0s signal candi-
dates.

Results
The measured CP parameters [5] are

A∆Γ
(
B0s → J/ψK0

S

)
= 0.49± 0.77

0.65 (stat)± 0.06 (syst),
C
(
B0s → J/ψK0

S

)
= −0.28± 0.41 (stat)± 0.08 (syst),

S
(
B0s → J/ψK0

S

)
= −0.08± 0.40 (stat)± 0.08 (syst).

Additionally, a measurement of the branching ratio has been up-
dated [5] to

B(B0s → J/ψK0
S
)

B(B0 → J/ψK0
S
)
= 0.0427± 0.0017 (stat)

± 0.0012 (syst)± 0.0025 (fs/fd),

where the dominant part of the systematic uncertainty comes
from the mass modelling andmass resolution.
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