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Abstract

The complex nature of the nucleon-nucleon interaction and the wide range of systems covered

by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear struc-

ture. Among the most prominent ones is the occurence of shell closures at so-called ”magic

numbers”, which are explained by the nuclear shell model. Although the shell model already

is on duty for several decades, it is still constantly extended and improved. For this process

of extension, fine adjustment and verification, it is important to have experimental data of

nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the

motivation for the work performed in this thesis: the measurement and analysis of nuclear

ground state properties of the isotopic chain of 100−130Cd by collinear laser spectroscopy .

The experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy

apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cad-

mium from A = 106 to A = 126 and extends the measured isotopes to even more exotic

species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler

and buncher for background reduction and by using the strong 5s 2S1/2 → 5p 2P3/2 transition

in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength

of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of

an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second

harmonic generations, leading to the production of deep-UV laser light up to about 100mW.

The acquired data of the Z = 48 Cd isotopes, having one proton pair less than the Z = 50

shell closure at tin, covers the isotopes from N = 52 up to N = 82 and therefore almost the

complete region between the neutron shell closures N = 50 and N = 82. The isotope shifts

and the hyperfine structures of these isotopes have been recorded and the magnetic dipole

moments, the electric quadrupole moments, spins and changes in mean square charge radii

are extracted. The obtained data reveal among other features an extremely linear behaviour

of the quadrupole moments of the I = 11/2− isomeric states and a parabolic development

in differences in mean square nuclear charge radii between ground and isomeric state. The

development of charge radii between the shell closures is smooth, exposes a regular odd-even

staggering and can be described and interpreted in the model of Zamick and Thalmi.

i



Zusammenfassung

Die komplexe Natur der Nukleon-Nukleon Wechselwirkung und die große Bandbreite zusam-

mengesetzter Systeme, die sich in den etwa 3000 bekannten Nukliden wiederspiegelt, führen zu

einer Vielzahl beobachteter Kernstruktureffekte. Einer der markantesten unter ihnen ist das

Auftauchen von Schalenabschlüssen bei den sogenannten ”magischen Zahlen”, welche durch

das Kernschalenmodell erklärt werden können. Obwohl dieses Modell bereits seit mehreren

Jahrzehnten in Verwendug ist, wird es immer noch fortlaufend erweitert und verbessert.

Elementare Grundlage für diesen Prozess der Erweiterung, Feinjustage und Verifikation ist

der Vergleich mit experimentellen Daten zu Kernstrukturgrößen. Dies gilt insbesondere für

kritische und zentrale Stellen, wie sie beispielsweise die Umgebungen der magischen Zahlen

darstellen. Diese Tatsache ist die Motivation für die im Rahmen dieser Arbeit durchgeführten

Messungen: die Vermessung und Analyse von Grundzustandseigenschaften der Isotopenreihe
100−130Cd mittels kollinearer Laserspektroskopie.

Das Experiment wurde an ISOLDE/CERN mit der Apparatur zur kollinearen Laserspek-

troskopie COLLAPS durchgeführt. Die Messungen stellen die Fortführung einer Strahlzeit an

neutralen Atomen der Cadmiumisotope zwischen A = 106 und A = 126 dar und erweitern die

damals gemessenen Nuklide um noch exotischere Kerne. Die hierfür erforderliche Steigerung

der Nachweissensitivität wird im Wesentlichen durch die Verwendung eines Radiofrequenz

Cooler and Bunchers zur Unterdrückung des Untergrundrauschens und die Spektroskopie des

starken 5s 2S1/2 → 5p 2P3/2 Übergangs im einfach ionisierten Cadmium erreicht. Letzteres er-

fordert ein Dauerstrich-Lasersystem mit einer Wellenlänge von 214.6 nm, welches im Rahmen

dieser Arbeit entwickelt wurde. Hierbei wird die vierte Harmonische eines Titan-Saphir-Lasers

durch zwei aufeinanderfolgende Verdopplungen in Überhöhungsresonatoren erreicht, wodurch

bis zu 100mW Laserlicht im tiefen UV produziert werden können.

Die gewonnenen Daten von Z = 48 Cd-Isotopen, welche ein Protonenpaar weniger als der

Kernschalenabschluss bei Z = 50 besitzen, erstrecken sich von N = 52 bis hin zu N = 82.

Damit decken sie fast die gesamte Region zwischen den beiden Schalenabschlüssen N = 50

und N = 82 ab. Die Isotopieverschiebungen und dir Hyperfeinstrukturen dieser Isotope

wurden gemessen und daraus die magnetischen Dipolmomente, die elektrischen Quadurpol-

momente, Spins und Änderungen der mittleren quadratischen Kernladungsradien extrahiert.

Diese Daten zeigen unter anderem ein extrem lineares Verhalten der Quadrupolmomente im

isomeren Zustand mit Spin Iπ = 11/2− sowie einen parabolischen Verlauf in der Differenz der

mittleren quadratischen Ladungsradien zwischen Grundzustand und Isomer. Der Verlauf der

Ladungsradien zwischen den beiden Schalenabschlüssen ist kontinuierlich, weist ein reguläres

odd-even staggering auf und kann sehr gut im Rahmen des Modells von Zamick und Thalmi

beschrieben und interpretiert werden.
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1. Introduction and Motivation

The nuclear shell model is one of the most successful descriptions of atomic nuclei. First

proposed by M. Goeppert-Mayer and J. H. D. Jensen [GMJ55], it is capable of explaining

the shell closures of protons and neutrons. There, binding energy is increased relative to

surrounding nuclei, adding stability and decreasing their size. Consequently, the shell model

is most accurate in the vicinity of those closed shells, where the independent particle approx-

imation, upon which the shell model is based, is most applicable. The nuclear shell model

has good predictive power for e.g. spin, parity, energy, and magnetic moment of the existing

states. Additionally, it is intriguingly simple and intuitive, as many basic calculations can be

solved analytically.

Nevertheless, increasing the number of particles outside of closed shells, especially for pro-

tons and neutrons simultaneously, leads to residual interactions and thereby to deviations

from the nuclear shell model, which can be compensated by introducing perturbational ef-

fects, for example core-polarization. In this region, usually assumed to be about up to 2

particles away from the closed shell, the limits of the model can be probed by measurements

of experimental observables. The experimental determination of nuclear ground state prop-

erties is essential for the development and improvement of nuclear models. New effects and

their systematics can be studied and the properties of exotic species are used for fine tuning

of the existing model parameters.

Laser spectroscopic determinations of the changes in mean-square nuclear charge radii,

magnetic moments and electric quadrupole moments are of high quality since they are ex-

tracted in a nuclear-model independent way from the observed spectra. Even though there is

usually some uncertainty in the determination of the hyperfine fields, the systematic uncer-

tainty caused by this is in most cases sufficiently small to provide benchmark tests for nuclear

structure theory. This thesis describes the measurement of the cadmium isotopic chain with

the collinear laser spectroscopy apparatus COLLAPS at ISOLDE/CERN. With 2 protons

less than the magic proton nucleus tin, cadmium should be well described by the nuclear

shell model, yet it should be already significantly influenced by the missing proton pair. It

is therefore an ideal candidate for testing this theory. Additionally, the accessibility of nuclei

far from stability at radioactive ion beam facilities in this mass region allows to cover almost

the complete neutron shell between the magic numbers N = 50 and N = 82.
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2. Theory

2.1. Atomic Theory

Investigation of the distinct structure of the electronic energy levels of atoms and molecules

reveals important insights into these systems. Usually this is done in the form of spectroscopy,

where transitions between levels are probed and thereby their differences in energy are mea-

sured. This started with the discovery of the spectral lines themselves by Fraunhofer and,

with increasing resolution, subsequently revealed the fine and hyperfine structure. While the

initial energy levels and the fine structure can be explained with electrons in a coulomb field,

i.e. a point like electric charge in the center, the hyperfine structure is caused by the nu-

clear structure and the coupling of the electrons to it. Thereby spectroscopy with sufficiently

high precision, which is provided today by laser spectroscopy, allows extraction of nuclear

properties from the atomic spectra. The basic theory is discussed in this section.

2.1.1. Selection Rules and Line Shapes

As the energy levels can not be measured directly, spectroscopy investigates transitions be-

tween them and thereby energy differences between an initial (i) and a final (f) state. The

electric dipole transition (E1) is the strongest and most common type. Its strength is propor-

tional to the matrix element of the dipole operator d = e < r > [Dem05]. It connects levels

of unlike parity πf = −πi, δL = ±1 1 and δJ = 0, ±1 except J = 0 → J = 0, as can be

deduced from conservation of angular momentum and the intrinsic spin of the photon being

1.

The deexciting atom can be described as a fast oscillating electromagnetic dipole with

exponentially decreasing amplitude

A(t) = sin(ωt) · e−t/τ (2.1)

1In this thesis δ is used for differences, while ∆ marks uncertainties

3



2. Theory

with the transition frequency ν = ω/(2π) and the lifetime of the upper level τ . For simplicity

the lower level is assumed to be the ground state. The fourier transformation of the time

spectrum results in a lorenzian in the frequency space

S(ν) =
1

π

γ/2

γ2/4 + (ν − ν0)
2 . (2.2)

The natural linewidth γ is determined by the transition strength Aki = 1/τ : γ = Aki/2π.

Additional lifetime decreasing or phase disturbing processes lead to a broadening of this

linewidth, but do not alter the shape.

Another common effect is the Doppler broadening. The gaussian velocity distribution, as

present in the case of thermal equilibrium, influences the line shape through the Doppler

effect. This leads to a voigt profile, which is a convolution of a lorenzian and a gaussian

S(ν) =

∫
G(τ)L(ν − τ)dτ =

∫
e

−τ2

2σ2

σ
√
2π

· γ/2

π((ν − τ)2 + (γ/2)2)
dτ . (2.3)

In spectroscopy usually the important quantity is the central frequency of the transition.

Although it is not necessary to always fully understand the line shape, for accurate results

it is at least necessary to have a good mathematical description. Here, the voigt profile is a

good choice as it is very flexible and covers a lot of possible influences on the line shape.

2.1.2. Isotope Shift

Due to the electron-electron interaction it is usually impossible to calculate absolute transition

frequencies in multi-electron systems with sufficient precision to directly extract the influence

of the nucleus on the central line position. However, if the line positions of different isotopes

of an element are compared a frequency shift is observed. This is the so called isotope shift

δνA,A′

IS = νA − νA
′
. It is the sum of the mass shift δνA,A′

MS and the field shift δνA,A′

FS and can

therfore be written as

δνA,A′

IS = δνA,A′

MS + δνA,A′

FS . (2.4)

The mass shift is caused by the recoil motion of the nucleus, which influences the reduced

mass of the electron in the center of mass system (barycenter). In a simple one-electron

system, this effect is proportional to

δνA,A′

NMS = KNMS ·
mA −mA′

mAmA′ (2.5)

4



2.1. Atomic Theory
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Figure 2.1.: (a) Sketch of the deviation from the coulomb potential for different charge radii
and principal influence on the energy levels. (b) S-waves have a larger probability
to be inside the nucleus than higher angular momentum states and therefore are
influenced stronger by the finite size effect.

with the nuclear masses mA and the normal mass shift constant KNMS = meν. This is altered

by the correlation between the electrons and the corresponding shift can be expressed by

δνA,A′

SMS = KSMS ·
mA −mA′

mAmA′ . (2.6)

To calculate the specific mass shift constant KSMS, the electronic wave functions have to be

determined to a high degree, which usually leads to insufficient accuracy for the extraction of

nuclear properties. As it has the same mass dependence as the normal mass shift, both can

be combined to the total mass shift:

δνA,A′

MS = (KNMS +KSMS) ·
mA −mA′

mAmA′ = K ·M . (2.7)

The field shift on the other hand is caused by the deviation of the electric field from

the coulomb potential inside the nucleus as shown in Fig. 2.1. It is proportional to the

differences of the mean square nuclear charge radii and the change of the probability density

of the electron inside the nucleus:

δνA,A′

FS =
Ze2

6hϵ0
∆|Ψ(0)|2δ⟨r2⟩A,A′

= F · δ⟨r2⟩A,A′
. (2.8)

Here, the probability density |Ψ(x)|2 is assumed to be constant within the nuclear volume,

which is a good approximation for light and medium heavy nuclei. Hence it usually influences

the energy of S-levels strongest and S → P transitions are most sensitive to changes in ms

charge radii, as there the difference ∆|Ψ(0)|2 = |Ψf (0)|2 − |Ψi(0)|2 is rather large.

Taking these effects into account, the isotope shift can be expressed by

δνA,A′

IS = K ·M + F · δ⟨r2⟩A,A′
. (2.9)
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2. Theory
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Figure 2.2.: Development of mass and field shift with atomic number Z. Plotted points are
experimental values for elements up to Z = 11 (Na). For higher Z they are
extrapolated. [Bla13] While for light masses the mass shift is dominating the
isotope shift, around Z = 30 the field shift becomes the larger contribution.

For light isotopes the relative mass difference between isotopes is large, so the mass shift

is the dominating contribution to the isotope shift. For heavy nuclei, |Ψ(0)|2 becomes larger,

while relative mass differences get smaller, so the field shift becomes dominant. The approx-

imate scaling of this behaviour is shown in Fig. 2.2. Thus, higher accuracy is required in

isotope shift measurements for light elements while for heavier elements it is not as demanding

to extract changes in mean square charge radii.

The mass and field shift factor can be determined by the Kingplot procedure. This is

explained in detail in Sec. 4.3, where it is conducted for the Cd isotopes.

2.1.3. Hyperfine Splitting

An obvious effect of the hyperfine structure is the splitting of the fine structure lines caused

by the magnetic dipole interaction of the nuclear magnetic moment

µI = gIµN
I

~
(2.10)
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2.1. Atomic Theory

with the magnetic field created by the electrons at the position of the nucleus

Be = B0
J

~
. (2.11)

Here, µN = e~/2mp is the nuclear magneton, mp the proton mass, I the nuclear spin and

J = L + S the total angular momentum of the electron from the coupling of the orbital

momentum L and the spin S. This interaction shifts the level energies by[SH08]

HMD = µI ·Be = gIµNB0
(I · J)
~2

. (2.12)

The last term couples the vectors I and J to the new total angular momentum F = I + J .

Allowed quantum numbers are

|I − J | ≤ F ≤ |J + I| (2.13)

and their eigenstates |F,mF ⟩ characterized by F and it’s projection onto the quantization

axis mF fulfill the relations

F 2|FmF ⟩ = ~2F (F + 1)|FmF ⟩ (2.14)

Fz = mF~|FmF ⟩ . (2.15)

The vector product can then be rewritten as

I · J =
1

2

(
F 2 − I2 − J2

)
. (2.16)

This leads to the energy shift of the magnetic dipole interaction

HMD =
A

2
(F (F + 1)− I(I + 1)− J(J + 1)) =

A

2
K , (2.17)

with the magnetic-dipole coupling constant A = gIµNB0.

In this simple picture, the different electronic levels have a constant A-factor ratio which

is determined by B0(0) and J . This is only exact for a point-like magnetic dipole. In the

nucleus, the magnetic dipole moment is distributed over the whole nucleus, which has an

impact on the hyperfine structure. This effect is called Bohr-Weisskopf-Effect and, as it can

effect different fine structure levels in a different way, leads to a change in the A-factor ratio

between different isotopes, which is called hyperfine anomaly. It is usually below 1% and can,

in most cases, not be resolved by laser spectroscopy. Instead, it is usually investigated using

NMR.

Another contribution which shifts the hyperfine levels against each other originates from

a non-spherical charge distribution ρ(r) inside the nucleus. This leads to a spectroscopic
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Figure 2.3.: The relevant hyperfine levels of the cadmium ion and allowed transitions between
them for different nuclear spins and their expected magnetic moment. Energy
levels are not to scale.

quadrupole momentQs and interacts with the electric quadrupole field caused by the electrons

at the position of the nucleus

⟨Vzz⟩ =
∂2V

∂z2

∣∣∣∣
r=0

. (2.18)

The result is a shift in energy levels of

HEQ = B
3
4K(K + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(2.19)

with the electric-quadrupole coupling constant B = eQs⟨Vzz⟩. The detailed calculation can

be found for example in [SH08]. One should note that ⟨Vzz⟩ = 0 for J ≤ 1/2, so there is

no quadrupole shift in those levels. Furthermore, there is no quadrupole shift in nuclei with

I ≤ 1/2, as is explained in Sec. 2.3.

2.1.4. Spectra

The hyperfine levels for the lowest lying levels of an alkaline-like system (as Cd+ is) are

shown in Fig. 2.3. The evolution from gross to hyperfine structure is shown for the S1/2

and P3/2 levels relevant for this work for nuclear spins from 1/2 to 5/2 with the sign of

magnetic moment assumed for those nuclei from the shell model. The P1/2 level shows the

same splitting as S1/2. As already discussed in Sec. 2.1.1, spectroscopy accesses transitions

and therefore measures energy differences between the levels. The electric dipole allowed E1

transitions are plotted in the figure as arrows. The selection rule in the hyperfine levels is

8
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Figure 2.4.: Spectra calculated for nuclei with I = 1/2, I = 3/2 and I = 5/2, Al = −2000MHz
and Au/Al = 0.05. The number of lines is unique for I = 1/2, whereas differences
between higher spins are less obvious.

∆F = 0, ±1, additionally to the selection rules for fine structure transitions. Each of the

resulting lines has the same lineshape as without hyperfine splitting. If one of the energy

splittings of upper and lower state is much larger than the other, this leads to multiplets

in which several lines are clustered together. The intensities are proportional to the matrix

elements of the dipole operator. They can be expressed with the Wigner-6j symbols [Dra06]

SFF ′ = (2F + 1)(2F ′ + 1)

{
F F ′ 1

J ′ J I

}
SJJ ′ , (2.20)

where SJJ ′ represents the transition strength of the pure fine structure transition.

With these assumptions one can calculate the expected hyperfine spectra for the different

nuclear spins discussed above. The result is plotted in Fig. 2.4. A magnetic hyperfine coupling

constant of Al = −2000MHz is assumed for the lower level and an A-factor ratio of Au/Al =

0.05. The electric quadrupole interaction is neglected. The model lineshape is a pure lorenzian

with a natural linewidth of γ = 45MHz. One can see that the difference between I = 1/2

9



2. Theory

and I = 3/2 is immediately obvious due to the different number of allowed transitions, while

for higher spins the number is limited by J and only the relative intensities change slightly.

It is important to note that the relative intensities of a spectrum can be altered to a large

degree by optical pumping. The theoretical relative intensities are only accurate in the limit

of vanishing laser power, which is of course unfeasible as it reduces sensitivity.

2.2. Collinear Laser Spectroscopy

High resolution spectroscopy can be performed by shining in a laser with a well defined

frequency into a sufficiently thin gaseous sample. By tuning the frequency and detecting

the response, for example by measuring the photon scattering rate (fluorescence detection),

one can determine the transition frequencies. However, accuracy is limited by the Doppler

broadening due to the temperature-related movement of the sample, which causes a linewidth

of

∆νD =
ν0
c

√
8kBT ln 2

m
, (2.21)

which is typically on the order of several GHz for hot ion sources, 2-3 orders of magnitude

larger than a typical natural linewidth of dipole-allowed transitions. Many different techniques

have been developed to solve this problem like saturation spectroscopy, Doppler-free two-

photon transitions or trapping and cooling [Dem07], either using a spectroscopic technique

which is independent of the Doppler effect or by better preparation (cooling) of the sample.

For short-lived radioactive isotopes, sample preparation is in most cases impossible or at least

complicated due to the often very low preparation efficiency.

In collinear laser spectroscopy the radioactive isotopes, which are transported as ion beam

with energies of 30-60 keV, are in flight superimposed with a laser in collinear geometry. Here,

one utilizes the fact that during an electrostatic acceleration of the ion beam in the source the

energy spread is constant. This leads to a decrease in the width of the velocity distribution

δvU
δv0

=

kBT√
2eUm√
2kBT
m

=
1

2

√
kBT

eU
, (2.22)

which has first been shown by Kaufmann[Kau76]. The resulting Doppler broadening is in

the order of typical natural linewidths, allowing high-resolution laser spectroscopy on species

with half-lifes down to several ms [Kri12]. A disadvantage is a systematic error of the absolute

transition frequency due to the uncertainty of the acceleration voltage. This can be largely

compensated, although not for the lightest elements, by measuring frequency differences. This

is the case for hyperfine splitting and isotope shift measurements.
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In collinear laser spectroscopy usually instead of scanning the laser frequency the ion ve-

locity is changed, leading to a shifted laser frequency in the rest frame of the ion due to the

Doppler effect. This is known as Doppler-tuning.

2.3. Nuclear Models and Properties

Since the discovery of the atomic nucleus by Ernest Rutherford in 1911 [Rut11] physics

tried to describe its composition and structure. The subsequent discovery of the proton (E.

Rutherford, 1920) and the neutron (W. Bothe, H. Becker and J. Chadwick, 1932) [Pea89]

answered the question of which particles the nucleus is composed of. Several models were

developed to explain the structure of nuclei, yet even today no single model is capable of

accurately describing the wide variety of effects observed throughout the nuclear chart. In

this section the two models most relevant for this thesis as well as their predictions for nuclear

moments and radii are summarized.

2.3.1. Liquid Drop and Droplet Model

One of the most clear and descriptive models is the liquid drop model [BWW01]. This

macroscopic model assumes that the nuclear matter forms a liquid drop of constant density

with a sharp surface, where neutrons and protons are distributed equally. It leads for example

to the semi-empirical mass formula, which describes the approximate development of binding

energies throughout the nuclear chart.

An improvement of the liquid drop model is the droplet model[MS83]. It differentiates be-

tween the distribution of protons and neutrons and takes the surface diffuseness into account.

It thereby has more parameters and is capable of a more accurate description of nuclear

properties like mass (and thereby binding energy) and radial moments. The necessary set

of parameters is obtained from a fit to known nuclear properties, as done for example in

[BT85]. It is applicable for most of the nuclear chart with generally good agreement. Yet

in its simplicity it is incapable of describing, e.g., the distinct drops in binding energy and

radii for certain proton or neutron numbers caused by the complex nature of the nucleus. An

explanation of these effects requires the nuclear shell model.

2.3.2. Nuclear Shell Model

The particles in the nucleus do not move in a given central potential, as is the case e.g. for

the electrons in the atomic shell. Instead the attractive force is caused by interaction among

the nucleons. Nevertheless, the fermionic nature of nucleons prevents them from colliding.

Thanks to this Pauli-blocking, one can assume that each nucleon is an independent, free
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particle moving in the mean potential of all the others. If the central potential is chosen

carefully, the remaining residual nucleon-nucleon interaction is small and can be treated by

perturbation theory. A popular choice is for example the Woods-Saxon-potential [BWW01],

which comprises a square well with diffuse surface and is described mathematically by

V (r) = − V0

1 + e
r−R
a

. (2.23)

This approach together with the assumption of a strong spin-orbit coupling in the nucleus

leads to single-particle energy levels as depicted in Fig. 2.5, which are filled by neutrons

and protons independently. The most important feature of this distribution is the existence

of groups of energy levels close to each other with larger shell gaps in between at neutron

or proton numbers 2, 8, 20, 28, 50 and 82. As these energy gaps are typically much larger

than energies caused by the residual interactions, approaching the shell gap results in filling

remaining holes in partially filled shells until they are finally closed, forming a so called

”magic” nucleus. Similar to noble gases in atomic physics those nuclei are more stable than

surrounding ones. This can be observed for example by looking at binding and excitation

energies. Due to the simple symmetry of the closed shells, the remaining residual interaction

among nucleons is small and does not distort neither the single particle nature nor the energy

levels too much. This allows very accurate predictions with the nuclear shell model in the

vicinity of the shell gaps, which is one of the motivations of the investigation of Cd isotopes

as performed in this thesis.

Due to the attractive force between nucleons, protons and neutrons usually occupy quantum

states with large spatial overlap. Especially the formation of pairs with opposing spin is

energetically favored. This can be described by an additional pairing energy. This energy

is not constant, but increases with angular momentum of the state [GMJ55]. Depending

on the particular size of the effect, the order of energy levels can be different for a single

nucleon and for a pair, with high spin states being energetically lower than low spin states

for pairs and opposite for single nuclei. Therefore when nucleons are added to a system, e.g.

along an isotopic chain, one sometimes can find a given valence nucleon more often than the

multiplicity of the shell would allow, as pairs are transferred to a state with higher spin state.

Those different states might then be filled without ever accomodating a valence nucleon.

As for paired nucleons the overall spin of the pair as well as induced quantities like magnetic

moments cancel out, those properties are zero for even-even nuclei. Furthermore, for odd-even

nuclei they are solely determined by the single unpaired valence nucleon.

2.3.3. Magnetic Moments

The magnetic moment is the expectation value of the z-component ⟨I,m = I|µz|I,m = I⟩
of the magnetic dipole operator µ[NN06]. It is related to the spin by µI = gµNI/~, where
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2.3. Nuclear Models and Properties

Figure 2.5.: Single particle energy levels in the nuclear shell modell for the Wood-Saxon poten-
tial without (left) and with spin-orbit coupling for protons (middle) and neutrons
(right).[BWW01]
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level µ(ν) / µN µ(π) / µN

3s 1/2 -1.9 2.8
2d 3/2 1.1 0.1
2d 5/2 -1.9 4.8
1g 7/2 1.5 1.7

1h 11/2 -1.9 7.8

Table 2.1.: Schmidt moments of the nuclear shells between 50 and 82.

µN is the nuclear magneton. Due to the pairing of nucleons the magnetic moment of an even

number of protons or neutrons does not contribute to the magnetic moment in the nuclear

shell model. For odd-even nuclei the magnetic moment is thereby solely determined by the

valence nucleon. It consists of two parts originating from spin and orbital angular momentum

of the particle

µ = µN (gll+ gss) /~ (2.24)

with the basic g-factors for neutron and proton [NN06]

Proton : gp,l = 1 gp,s = +5.587 (2.25)

Neutron : gn,l = 0 gn,s = −3.826 . (2.26)

To obtain the magnetic moment one can calculate the projection onto the quantization axis

µI =
µ · I
|I|

· eI = gIµNI/~ (2.27)

which leads to

µI =

[(
I − 1

2

)
gl +

1

2
gs

]
µN for I = l +

1

2
(2.28)

µI =
I

I + 1

[(
I +

3

2

)
gl −

1

2
gs

]
µN for I = l − 1

2
. (2.29)

These are the so called Schmidt moments. As an example the ones for the shells between 50

and 82 are shown in Tab. 2.1. In the nuclear shell model the magnetic moment is constant for

each subshell. This neglects residual nucleon-nucleon interaction and is therefore more precise

for lighter nuclei and in the vicinity of closed shells. Additional terms like core-polarization

can be added to the theory to accommodate for this deficiency.
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2.3. Nuclear Models and Properties

2.3.4. Electric Quadrupole Moments

As there is no static electric dipole moment due to symmetry, the leading term of an electric

multipole expansion is a nuclear electric quadrupole moment. The according operator is

defined as

Q =
∑
k

ek
(
3z2k − r2k

)
(2.30)

in cartesian coordinates and can be expressed with the spherical harmonics as

Q =

√
16π

5

∑
k

ekr
2
kY

0
2 (θk, ϕk) (2.31)

with the charge e and the summation over all k nucleons[Ney03].

The experimentally accessible observable is again the expectation value of the z-component

⟨Qz⟩, which is called spectroscopic quadrupole moment and can be expressed by the reduced

matrix element using the Wigner-Eckart theorem [Ott89]

QS = ⟨I,m = I|Qz|I,m = I⟩ =

√
I(2I − 1)

(I + 1)(2I + 3)
⟨I||Qz||I⟩ . (2.32)

One can see from the formula that it is zero for nuclei with I ≤ 1/2.

The quadrupole moment is a valuable tool for the investigation of nuclear deformation. In

the so called strong-coupling limit, which can be applied for well deformed nuclei with axial

symmetry, the spectroscopic quadrupole moment can be linked to the intrinsic quadrupole

moment Q0 through

QS =
3K2

I − I(I + 1)

(I + 1)(2I + 3)
Q0 . (2.33)

Here, KI is the projection of the total spin I onto the symmetry axis of the deformed nucleus.

The intrinsic quadrupole moment can then again be linked to the nuclear shape in the pic-

ture of a rigid body, with negative quadrupole moments for oblate deformation and positive

quadrupole moments for prolate deformation. Additionally, the quadrupole moment is linked

to the nuclear deformation parameter β2 by

Q0 =
3√
5π

ZR2β2 (1 + 0.36β2) (2.34)

with the radius R as described in the next section.

In the shell model picture the properties are solely determined by the valence nucleons,

which reduces the sum over all particles to the sum over all valence nucleons. As free neutrons

have no charge, they would not produce any quadrupole moment in this picture. However,

empirically this is not the case. Due to particle-particle and particle-core (i.e. core polar-
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ization) interaction the valence nucleons influence the distribution of the remaining nucleus

including the protons and thereby produce a quadrupole moment beyond their direct impact.

This is taken into account by using effective charges eeff for protons and neutrons which are

mostly mass dependent and vary between eeffπ ≈ 1.3e− 1.6e and eeffν ≈ 0.35e− 0.96e [NN06].

The quadrupole moment induced by a single particle in the nuclear shell model depends on

the angular momentum j of the particle and is given by [GMJ55]

Qsp = −eeff
2j − 1

2j + 2
⟨r2j ⟩ (2.35)

with the mean square radius ⟨r2j ⟩ for a particle in the respective orbit. A particle in a

state mj = j has a probability distribution concentrated in the equatorial plane. Thus, it

is expected to cause an oblate deformation and therefore a negative quadrupole moment. A

hole in this state accordingly creates a prolate deformation, leading to a positive quadrupole

moment of the same size. As the different mj levels of the shell are filled consecutively,

the quadrupole moment will develop from Qsp to −Qsp (which implies from negative to

positive values). A detailed calculation leads to a linear dependence on the occupation number

λ[GMJ55]

Q(λ) = Qsp

(
1− 2(λ− 1)

2j − 1

)
. (2.36)

2.3.5. Nuclear Charge Radii

The size of the nucleus is an important property for understanding nuclear structure. In the

liquid drop model the nucleus has a sharp surface and therefore the size can be expressed by

the radius. As this model also neglects differences between proton and neutron distribution

and assumes incompressibility of nuclear matter, it directly leads to a nuclear radius of

R = R0A
1/3 (2.37)

with the atomic mass number A and R0 = 1.2 fm. Here, the increase in radius is solely

caused by an increase in volume due to the larger number of nucleons. This parametrization

is refined in the droplet model. For more realistic models without sharp surface, a measure

for the nuclear size is the nuclear mean square charge radius

⟨r2⟩ =
∫
ρ(r)r2dr

Ze
. (2.38)

It can be seen as the monopole moment of the charge distribution. For a solid sphere the

relation to the surface radius is ⟨r2⟩ = (3/5)R2.
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Taking deformation into account, the nucleus can be viewed as a quadrupoloid. This can

be expressed with spherical harmonics with a radius depending on the angle by

RD(θ) = R[1 + α+ β2Y20(θ)] . (2.39)

α = −1/(4π)β2
2 is a compensation term to keep the enclosed volume constant for all deforma-

tions. A change in deformation of δ⟨β2
2⟩ results in a change in the mean square charge radius

by

δ⟨r2⟩ = 5

4π
⟨r2⟩δ⟨β2

2⟩ . (2.40)

Obviously, the ms charge radius for a given volume is smallest for a spherical nucleus. Fur-

thermore, changes in mean square charge radii which deviate from the expected volume effects

can be interpreted as a change in deformation and yield complementary information to the

measurement of the quadrupole moment created by the deformed nucleus. It especially en-

ables access to intrinsic deformation even for I = 0 nuclei, which do not expose quadrupole

moments. A large deviation between β2 obtained from the HFS and β2 required to explain

the increase in charge radius points towards dynamical deformations caused by an oscillation

of the nucleus around an average static deformation.

17





3. Experiment

3.1. Setup

3.1.1. The Cd-Experiment

The goal of the Cadmium experiment is the investigation and measurement of the isotopic

chain from N = 100 to N = 130 and possibly beyond. In the first part of this experiment

a beamtime was used to investigate stable and neutron rich isotopes close to stability up

to 126Cd. Spectroscopy has been performed on a transition from a metastable state in a

continuous beam of neutral Cd. They were produced at ISOLDE at the general purpose

separator (GPS) target station, which allows fast switching between masses and is well suited

for isotopes with relatively high yield. The setup as well as the data analysis and results are

described in detail in [Fr3]. For simplicity this part of the experiment is further called the

atomic run.

For the rest of the isotopes an increase in sensitivity was necessary. This has been mainly

achieved by using the radiofrequency quadrupole cooler and buncher (RFQ) ISCOOL for

background supression and by probing a strong transition in Cd+ ions at 214.6 nm. Two

further runs have been performed, one for neutron rich and one for neutron deficient isotopes.

The experimental setup is described in this chapter.

3.1.2. ISOLDE

The Isotope Separator OnLine DEvice is a radioactive ion beam facility at CERN. The layout

is shown in Fig. 3.1. There, short lived nuclei are produced by a pulsed proton beam with

1.4 GeV from the Proton Synchrotron Booster (PSB) impinging on a thick target. Isotopes

are created mainly through fragmentation, spallation and fission processes. The target was

heated to accelerate the diffusion out of the target material and the effusion through a transfer

line into the ionization region. Different combinations of targets and ionization schemes are

used to access specific regions of the nuclear chart.

For the run on neutron deficient Cd a molten tin target with a plasma ion source provided

a high production yield as well as a high ionization efficiency.
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ISCOOL

COLLAPS

TARGET

Figure 3.1.: The ISOLDE layout. In this experiment, protons hitting the HRS target station
produce radioactive ions which were mass separated, bunched and transported
to the COLLAPS aparatus, where spectroscopy was performed. [ISO13]

For the neutron rich isotopes uranium carbide targets provide the highest yield. In this

case, beam purity was a main concern as long lived species, especially Cesium, usually have

yields that are several orders of magnitude higher. This is particularly a problem since the

amount of ions that can be handled by the following RFQ is space charge limited. Several

measures have been taken to improve beam purity:

• Instead of bombarding the target with protons, the beam was directed onto a tungsten

rod next to the uranium carbide[Cat03]. There, protons are converted into neutrons

which then hit the target. Thereby fission becomes the dominating production process.

It has a high yield for the desired species, but much less for heavier neutron deficient

ones and therefore provides a purer beam, although the overall yield is reduced by a

factor of 3–10 due to geometrical constraints.

• Chemical selectivity was added by inserting a quarz tube at lower temperature than the

target into the transfer tube [Kt08]. This is isothermal vacuum chromatography, where

the chemically highly reactive species like Cs and Rb are retained on the surface of the

quartz tube long enough to decay due to their high adsorption enthalpy, while volatile

species such as Zn and Cd are not significantly influenced. A suppression of 2–4 orders

of magnitude is possible with this approach.

20



3.1. Setup

continous

ion beam

buffer gas

bunched

ions

V

z

20V

100V

35V

-250V

+ +
+ +

cooling

+

++++
+

U=UDC(z)+URFsin(ωt)

 

U=UDC(z)-URFsin(ωt)

side view front view

extraction

capture

Figure 3.2.: Scheme of the radiofrequency cooler and buncher. Ions are injected into a gas
filled linear Paul trap. With the segmented electrodes a longitudinal trapping
potential is created, so ions accumulate at the end and thermalize by gas colli-
sions. Afterwards, the end electrode potential is switched down and the ions are
extracted as short intense bunch [Gor13].

• The Resonance Ionization Laser Ion Source (RILIS) uses pulsed lasers to selectively

ionize a single element by exciting the electron of the atom through several steps into

the continuum. For cadmium a three step scheme is used with a resonant first and

second step at 228.8 nm and 642.8 nm respectively and a non-resonant third step at

532 nm with an overall efficiency of up to 10%. The laser ionization allows to reduce

the source temperature to maintain just a sufficient vapor pressure, thereby reducing

the amount of surface ionized contaminants [K0̈3].

The ionized particles were extracted and accelerated electrostatically to about 30 keV. Af-

terwards, they pass the high resolution mass separator (HRS) and were injected into ISCOOL

[Man09], a gas filled linear paul trap as shown in Fig. 3.2, which is mounted on a high voltage

platform and kept at a potential slightly less than the ion energy. Four metal rods with

applied static and radiofrequency voltage potentials create a radial trapping field in the time

average. In longitudinal direction the rods are segmented to allow the creation of a potential

minimum along this axis for longitudinal trapping as shown in the lower part of Fig. 3.2.

High purity Helium is injected into this region with a pressure of about 0.1mbar. The ions

entering the RFQ are slowed down by collisions with the gas and trapped in the potential

minimum close to the exit, where they are accumulated over a timespan of about 100 ms and

thermalize with the gas. After that, the voltage at the ejection side is lowered and the ions
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Figure 3.3.: Time of flight spectrum of 101Cd (left) and 114Cd (right) ion bunches measured
with the signal from the photomultipliers and a multichannel scaler. The applied
coincidence gates are marked inside.

are extracted as a short, intense bunch of some µs, as can be seen in Fig. 3.3. These time of

flight spectra were taken for 101Cd and 114Cd during the beamtime. Pulses are 2–4 µs long

and by gating the photon detectors on the time window of the passing bunch, the background

originating from scattered laser light can be suppressed by a factor of about 10000, given by

the ratio of the accumulation time and the length of the time-window. The signal noise is

accordingly reduced by the square root of the background reduction (a factor of about 100)

without signal loss. The space charge limit of the trap is about 106 ions and care has been

taken not to exceed this limit by cutting away excess beam for isotopes with high yield.

The cooled and bunched beam was subsequently transported to the beamline of the COLLAPS-

experiment.

3.1.3. COLLAPS Beamline

A schematic drawing of the COLLAPS beamline is shown in Fig. 3.4. First, the incoming ion

beam passes a 10◦-bender, where it is superimposed with the laser beam. Several deflector

and quadrupole electrodes are used for fine adjustment of the overlap and collimation of the

ion beam. Afterwards, the ion beam enters the detection region, where the scan voltage is

applied to change the ion velocity for Doppler tuning. Two sets of two opposing detectors

collect the fluorescence photons [Kre13]. Each of them consists of two aspheric 4” lenses in

f-f configuration and a photomultiplier tube.

The high voltage is created by a chain of two power supplies. A KEPCO BOP 100 voltage

amplifier is capable of scanning very fast across the resonance of each isotope, while a FLUKE

410B high-voltage power supply provides the necessary offset to cover the range necessary for
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Figure 3.4.: Scheme of the COLLAPS beamline. The ion beam from ISOLDE is overlapped
with the laser beam. The optical detection region is on high voltage for post-
acceleration. Fluorescence photons are focused by lenses onto the 4 photomulti-
plier tubes.

all cadmium isotopes. The total voltage can be measured and recorded with a JRL voltage

divider and a Prema 6040 digital multimeter.

Several apertures inside the beamline as well as a faraday cup and a multichannel plate

detector at the end are used for diagnostics of the spatial distribution, intensity and time

structure of the ion beam.

3.1.4. Laser System

A considerable increase in sensitivity compared to the first run on neutral Cadmium arises

from the change to the strong 52S1/2 → 52P3/2 electric dipole transition in Cd+, which

is shown in the level scheme in Fig. 3.5. Contrary to the atomic spectroscopy no charge

exchange for neutralization was necessary and the transition starts from the ground instead

of a metastable state, so all ions were available for spectroscopy. An increase in sensitivity

by about one order of magnitude was estimated, but it requires the production of 214.6 nm

laser light, which is quite demanding. The advantage of the D2 line compared to the D1 line

214nm 227nm

[Kr]4d105s 2S1/2

2P1/2

2P3/2

Figure 3.5.: The level scheme of Cadmium. Due to the closed 4d subshell it is alkali-like with
a closed 5s → 5p transition.
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is the higher spin J = 3/2, which allows the observation and determination of spectroscopic

quadrupole moments.

To produce laser light of this wavelength, frequency quadruplication of a 859 nm tita-

nium sapphire laser is necessary. This can be achieved by two subsequent second-harmonic

generations, which can be explained using nonlinear optics.

Only the first order of the response of the electrons inside the material to the electric

field is usually considered for the interaction between light and matter. Hence, the electric

polarisation is assumed to be linear in the exciting field

P = ϵ0χE , (3.1)

with the complex electric susceptibility χ. This allows the description of absorption and

refraction.

While this is accurate for small light intensities, the high electric fields reachable by focused

laser light induce additional contributions. This is the field of nonlinear optics, where the

interaction is expanded to higher orders according to

P = ϵ0
∑
n

χnEn = ϵ0

(
χ(1)E + χ(2)E2 + χ(3)E3 + ...

)
. (3.2)

If excited by an electromagnetic wave of the form

E(t) = E0(exp (iωt) + exp (−iωt)) (3.3)

the second-order response of the material includes a constant (optical rectification) and os-

cillations with twice the frequency of the electromagnetic wave[ST07]

P = ϵ0χ
(2)E2

0(1 + exp (i2ωt) + exp (−i2ωt)) . (3.4)

Without dispersion in the medium, these oscillations would have a well defined phase over

the size of the material and therefore an electromagnetic wave with twice the frequency of the

exciting fundamental one is generated, the so-called second-harmonic. However, dispersion

leads to a rapid decoherence of the waves created at different points and therefore prevents

efficient production of higher harmonics. Dispersion compensation, called phase-matching, is

usually achieved using birefringent materials. for the so-called critical phase-matching, the

optical axis of the crystal is aligned in such a way that the effective refractory index for both

frequencies ω and 2ω is identical. This approach is less efficient, but applicable over a large

frequency range. For non-critical phase-matching, the crystal is heated to a temperature

where dispersion disappears. This yields higher efficiencies, but is not as often applicable
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3.1. Setup

because of the limited number of available crystal materials and the wavelength range is

additionally restricted since the temperate must lie within reasonable limits.

To achieve high efficiency, a material with a large nonlinear susceptibility χ(2) has to be

chosen. Furthermore, the power of the second-harmonic scales with the square of the fun-

damental power. As the χ(2) of even the best crystal is still quite small, continuous wave

lasers, even with powers of several watts, require enhancement cavities to achieve a conver-

sion efficiency of several 10 percent. There, the laser light is coupled into a stabilized optical

resonator with a nonlinear crystal positioned in the focal plane inside, which leads to power

densities about 150 times larger than without the cavity.

As a consequence, frequency quadrupling of a continuous wave laser beam requires two

enhancement cavities, one for each second-harmonic generation. In our setup a Verdi-V18

diode-pumped Nd:YAG laser doubled to 532 nm was used to pump a Sirah Matisse TS Tita-

nium:Sapphire ring laser. The laser frequency was measured with a Bristol Instruments 621

Series wavemeter and stabilized to a stable helium neon laser via a transfer cavity. The main

part of the laser output was coupled into the cavity of a Tekhnoscan FD-SF-07 frequency

doubler. To achieve high coupling efficiencies and thereby high internal power densities, the

laser beam has to be manipulated using optical units to exhibit the same focal parameters

as the eigenmode of the resonator. This is called mode matching and is critical in achiev-

ing reasonable second-harmonic generation efficiencies. Inside the enhancement cavity, whith

a length actively stabilized by a Haensch-Coulliaud lock to match the laser wavelength, the

second-harmonic at 430 nm was generated in a lithium triborate (LBO) crystal. The resulting

elliptic output beam has been collimated with two cylindrical lenses and was subsequently

mode matched into a second frequency doubler, a Pound-Drever-Hall locked Spectra-Physics

Wavetrain. Using a barium borate (BBO) crystal the frequency was doubled once more to

reach the desired wavelength of 214.6 nm. The generated fourth-harmonic radiation was col-

limated using a cylindrical lens, an anamorph prism pair and a telescope and subsequently

transported to the COLLAPS experiment 15 m away, where it was coupled through the beam-

line after passing a mode cleaner and an exchangable degrader for final power adjustment. A

scheme of the setup with all information about the lens assembly is shown in Fig. 3.6 and a

photograph in Fig. 3.7.

Typical laser powers during the experiment were 1.2 W from the Ti:Saph, 260 mW after the

first doubler and 5 mW after the second doubler, leading to an overall quadrupling efficiency of

about 0.5%. This is close to the performance reached for this power during development and

commissioning tests in Mainz, as can be seen in Fig. 3.8. Spectroscopy itself was performed

with 100-500 µW to limit the influence of optical pumping.

The stability of the laser system was very high during the beamtime. The stabilizations

worked well and relocking was necessary only a couple of times during the runs. Unfortunately,

the crystal for 215 nm degraded fast at the spot where the laser passed, resulting in diminishing
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3.1. Setup

Figure 3.7.: Picture of the frequency quadrupling setup by light and in the dark. In the lower
left is the Ti:Saph laser, on the right the first doubler and in the back the second
one. Only the second-harmonic laser light of 430 nm is visible.
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Figure 3.8.: Higher harmonic generation efficiency of the setup during commissioning in black
[Kri12] and during the online run in red with fourth order polinomial fit in blue.
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3. Experiment

doubling efficiencies after about 2 days. Therefore, it had to be translated horizontally several

times during the beamtime to retain sufficient laser power for spectroscopy. A second crystal

was used during the second run, exhibiting the same behaviour. As this never occured during

the several months of commissioning, it is likely that this was caused by the less than optimal

environmental conditions in the laser laboratory at ISOLDE.

3.1.5. Data Acquisition

The data acquisition logic of the COLLAPS experiment runs on a VME controller. A scheme

of the logic layout is shown in Fig. 3.9. It scans the spectrum of the ions several times by

adjusting the scanning voltage. Each spectrum may consist of several voltage ranges which

are scanned sequentely a specified number of times. This allows skipping of voltages in

between hyperfine structure multiplets and accumulating a variable amount of statistics to

compensate for differing strengths of the lines. After scanning each voltage range the offset

voltage is measured with the digital voltmeter and saved. Additionally, care was taken to

have different numbers of pulses in the proton supercycle and voltage steps to average possible

yield fluctuations caused by the unregular distribution of protons from the PSB.

From the measured time of flight spectra of the ion bunches a gate including most of the

ions was determined for each isotope. With a delay-gate-generator a pulse according to this

measurement was produced. The signal from the photomultipliers was discriminated into a

digital signal and the coincidence between ion bunch and photons was created by applying a

logical AND between the two signals. For each PMT the initial signal as well as the coincidence

signal was fed into a scaler. Those scalers were read out and reset for each voltage step.

RFQ Detection

Pulse

Sequencer
Voltage

Amplifier

HV Power

Supply

Voltage

Divider

Voltmeter

Delay &

Gate Generator

VME

DAC & Scaler

Logic

AND

PCProton trigger

PMT

Ion

beam

Ion

bunches

Figure 3.9.: Data acquisition system of COLLAPS as used in this experiment. The RFQ is
controlled by a pulse sequencer and the photomultiplier signal is recorded after
the coincidence logic. The scan voltage is applied to the detection region through
a two stage power supply and measured by a voltage divider and a voltmeter.
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3.1. Setup

Accumulation and ejection of the ion bunches was controlled by a pulse sequence gener-

ator. Two basic modes were used. For isotopes with half-lifes longer or in the order of the

time between proton pulses, the buncher was running continuously and the scan voltage was

incremented one step after a certain amount of bunches. For isotopes with shorter half-lifes,

the buncher was triggered by the proton pulse to deliver several bunches depending on the

half-life and the scan voltage was incremented after each proton pulse.
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4. Analysis and Interpretation

4.1. Fitting the Spectra and Spin Determination

4.1.1. Calculating the Rest Frame Frequency

The data obtained from the experiment include the counts registered in each photomultiplier

for every applied scan voltage. To convert the voltage to a rest frame frequency, the velocity

has to be calculated from the kinetic energy relativistically and inserted into the doppler

formula for collinear geometry between laser and ion beam:

v = c ·

√
1−

(
mc2

e (Usource − Uscan) +mc2

)2

(4.1)

ν = νLaser ·
√

c− v

c+ v
. (4.2)

Obviously, additional information is necessary.

The laser frequency νLaser was logged with a HeNe-stabilized wavemeter with an accuracy

of approximately 60MHz. The measured values are averaged over each beamtime, as it was

constant within the accuracy of the wavemeter.

The RFQ voltage Usource was measured with a voltage divider and a precision digital mul-

timeter. The result is shown in Fig. 4.1. A relative error of 1× 10−4 is estimated from

calibration measurements of the divider chain, resulting in about 3V absolute error. During

the first run the power supply had to be switched off for a planned maintenance, after which it

recovered to almost the same value. It is not possible to tell from this measurement whether

it is the power supply or the voltage divider that has to settle afterwards. Therefore for

analysis of the data the average of the stable plateau was used (shown in red). During the

second run conditions where less stable, but the fluctuations still well within the accuracy of

the voltage divider. Therefore again the average of the run has been used for the analysis.

The single freak value at the bottom was caused by a power loss.

The offset voltage of the detection region was automatically measured after every track as

explained in 3.1. For each scan those values were averaged.
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Figure 4.1.: Measured RFQ voltages of the two runs and average values. See text for
explanation.

To determine the amplification factor of the scan voltage amplifier, a voltage ramp across

the complete operational range of the Kepco-amplifier was applied and for every set value the

potential of the detection region was measured with the same high precison voltage divider

as the offset voltage. Afterwards a linear function was fitted to this scan. As the results

showed no significant variation over a beamtime, the values were averaged with a resulting

amplification factor of 100.181(4) and 100.189(3) for the two runs. The relative systematic

uncertainty of the voltage divider is 1× 10−4. As the two power supplies are connected in

a chain it is easy to see that the resulting sum voltage Uscan = UOffset + UAmplifier as well as

voltage differences have a relative systematic accuracy of 1× 10−4 as well.

The ion masses required in Eq. 4.1 are taken from AME [WA12] and newer penning trap

mass measurements [Kan12] where available as listed in Sec. A.1. For 127Cd and 129Cd, for

which neither the isomeric mass nor the spin is known, the mass of the ground state was used

and the uncertainty was estimated as the largest excitation energy of the known isomers in

the vicinity, namely 300 keV.

With these values the rest frame frequency according to each scanning voltage is calculated

and the scale thereby transformed into frequency space.

4.1.2. Uncertainty Estimation of the Number of Counts

The error of the number of counts in each channel has been estimated by the maximum of its

square root and 1, to accomodate for the case of zero counts in a channel. This happened off-

resonance due to the background suppression by gating on the RFQ bunches, where usually

very little events were registered. Although this approach neglects the asymmetric errors

predicted by Poisson statistics for numbers below about 8, such low numbers only occur off-
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Figure 4.2.: Two spectra of 114Cd. The voigt describes the lineshape quite well. Some spectra,
one of them shown on the right, show a small shoulder on the low frequency side.

resonance and thus only have impact on the – in this experiment irrelevant – background

rate. For the determination of the line center, which is the required physical property to be

extracted, the approximation is sufficient and symmetric errors simplify the fitting procedure.

To accomodate cases with different measurement times on the tracks within a scan, the

count rates as well as the errors have been scaled by the respective ratio.

4.1.3. Lineshape Determination

For fitting the Minuit2 package included in root was used. First, using the large amount

of scans of the stable reference 114Cd, which has a nuclear spin of I = 0 and therefore

only one transition in its hyperfine structure, the agreement in line center between the four

photomultipliers was confirmed. This allows to sum the counts of all of them to increase

the signal-to-noise ratio. Next the lineshape has to be determined to accurately extract the

parameters from the fit, especially for exotic isotopes for which the statistics is insufficient

for a large amount of free parameters. As described in 2.1, from atomic theory a voigt-

profile with the natural linewidth of 44.56MHz [NIS12] as lorenzian part is expected under

the assumption of a gaussian velocity spread and neglectable power broadening. Fixing the

according parameter results in an average gaussian contribution of 33.4MHz and 35.2MHz,

obtained from the reference scans of the neutron deficient and neutron rich run respectively.

The gaussian width parameter is fixed for all further fits as well. The resulting lineshape

agrees quite well with our observation, although in some spectra a small shoulder at the low

frequency side is visible as can be seen in Fig. 4.2. The influence on the extracted properties

of this is neglectable, since isotope shifts are evaluated and the lineshapes of the reference

isotope and the exotic one were similar in all cases.
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Figure 4.3.: The result of hyperfine structure fits with free A-factor ratio (left) shows an
unphysically strong deviation around 107Cd caused by correlation with the B-
factor. Fixing the A-factor ratio to the average of stable, odd Cd isotopes does
not influence the lower A-factor but resolves the issue. This can be seen on the
right, where the ratio of the A- and B-factors obtained with free A-factor ratio
(analysis 1) and fixed A-factor ratio (analysis 2) is shown.

The hyperfine spectrum of each isotope is calculated using the selection rules from nuclear

and atomic angular momentum. The positions of the N allowed lines relative to the center

of gravity can be calculated from A- and B-factors. The final spectrum is the sum of a voigt

profile at every line position. As starting parameter for the peak heights relative intensities are

calculated using the racah coefficients. Due to optical pumping relative line intensities deviate

visibly from the theoretical values, an effect which depends on the laser power used for probing

the transition. Such a hyperfine spectrum has up to 4+N free parameters, namely center of

gravity, upper and lower A-factor, upper B-factor and the intensity of each transition. If an

isomeric state is present, the sum of the two structures is fitted simultaneously.

4.1.4. A-ratio and Hyperfine Anomaly

From the stable, odd Cd isotopes the ratio of upper and lower A-factor can be extracted. In

this transition it is Aup/Alow = 0.02738(3). The small A-factor ratio leads to hyperfine spectra

with widely spaced multiplets of lines. The relative accuracy of the lower state splitting is

much higher. According to atomic theory the A-factor ratio is almost constant between

different isotopes. Only small differences in the distribution of the magnetic moment lead to

the so called hyperfine anomaly, an effect usually smaller than one percent. As this is less

than the accuracy in the upper A-factor, it is not observable in our experiment. Furthermore,

fitting of the light isotopes reveals a strong deviation of the A-factor ratio around 107Cd as

shown in Fig. 4.3 on the left, which can not be explained by any physical effect. Fitting

the same data a second time with fixed A-factor ratio does not influence the lower A-factor,

but leads to a change of the B-factor of 107Cd by avout 15% as shown on the right side
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Figure 4.4.: Energy levels of odd-A Cd isotopes relative to the ground state. Spins only ten-
tatively assigned before this work are represented by open symbols. The isomeric
state is marked grey. [Nat13]

in Fig. 4.3. This indicates a strong correlation between upper A- and B-factor, leading to

inaccurate results. This is supported as well by known quadrupole moments, which favor the

B-factors extracted from the analysis with fixed A-factor ratio as will be explained in the

according section. Therefore, the latter approach was chosen for this data analysis, reducing

the number of free parameters by one. The handling of the hyperfine anomaly in respect to

the extraction of the magnetic moments is discussed in section 4.2.

4.1.5. Spin Determination and Identification

The ground state of all even Cd isotopes has nuclear spin zero and thereby no hyperfine

structure. For the odd isotopes close to stability the nuclear spin is known, for the ground as

well as for the isomeric state, the others were only tentatively assigned previous to this work.

The energy levels are plotted in Fig. 4.4 and show the transition of the ground state of the

valence neutron between the 5/2, 1/2 and 3/2 shells. In the 52S1/2 → 52P3/2 transition under

study nuclear spins of I = 0 and I = 1/2 can be assigned unambiguously by the number

of components in the hyperfine spectrum, which is one or three respectively. For a nuclear

spin of I = 3/2 and above, the number of components is limited to six by the J of the upper

electronic state, resulting in two multiplets with 3 lines each. Since relative intensities for

different nuclear spins calculated from the racah coefficients are very similar and the observed
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ratios are altered by optical pumping, a spin assignment based on those observables is not

reliable. Instead, the development of the spectra along the chain can be investigated. This

allows to distinguish between I = 11/2 and I = 1/2 and I = 3/2 further away from stability.

To demonstrate this, spectra from 119Cd, 121Cd and 127Cd are shown in Fig. 4.5. Since mass

or excitation energy of a nuclear state can not be extracted from laser spectroscopy, it is

not possible to determine which state is the ground state and which one the isomer beyond
125Cd. The same continuity of the development suggests that the spin does not change from
109Cd to 101Cd and is therefore 5/2. This goes as well for the high-spin state from 111mCd

to 129mCd and the 3/2 state from 121Cd to 129Cd, which was firmly assigned for the first two

odd isotopes of the row in the atomic run [Fr3].

Those spin assignments are also strongly supported by the resulting magnetic moments,

which are discussed in the next section.

4.1.6. 129Cd

The yield of 129Cd is very low and the hyperfine structure decreases sensitivity further by

reducing the population in each hyperfine state as well as the average number of transitions

in a single ion due to optical pumping. This results in overall smaller peaks. For accurate

determination of A- and B-factors at least three lines have to be measured, for good accuracy

all six are necessary. Hence, one has to scan a large area and gather sufficient statistics

to see even the smallest peak, making this isotope even harder to investigate than 130Cd.

Additionally, in 129Cd the left multiplets of ground and isomeric state collide as plotted in

Fig. 4.6 at the bottom, obscuring the structure which even leads to unphysical negative peaks

as fit result, clearly impeding the accuracy. To counter this, the spectra have been fitted

with relative peak intensities fixed to the average of 125Cd and 125mCd, respectively, where

all peaks are resolved and similar laser power was used as can be seen in Fig. 4.6 at the top.

This enhances the fit result and gives more plausible values. To account for the uncertainty

introduced by fixing parameters to experimentally determined values, half of the shift induced

by fixing them is added quadratically to the error of the extracted results after averaging as

described below.

4.2. Moments

For the final determination of a single set of A- and B-factors, all measurements of one isotope

are averaged weighted with the statistical error of the fit. The maximum of the propagated

error and the standard error of the mean of the sample is used as statistical error. Comparison

with an independent analysis with different lineshape, A-ratio and averaging procedure shows

a mean difference of 1.3MHz and 3MHz for A- and B-factor respectively [Yor13c], which is
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Figure 4.5.: Fitted spectra of odd cadmium isotopes from A = 119 to A = 129. Vertical lines
mark the center of gravity of the hyperfine structures. One can clearly see the
spin change from I = 1/2 to I = 3/2 in the ground state between 119Cd and
121Cd. Other than that, the spectra are very continuous. The dominant changes
are the isotope shift and the change in A-factor.
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Figure 4.6.: Spectra of 125Cd (top) and 129Cd (bottom). The relative line intensities from the
former isotope are used for fitting the latter to limit the loss of accuracy due to
the collision of the left multiplets.
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added to the error quadratically to reflect the influence of choices made during analysis on

the resulting parameters.

As the determination of A- and B-factors happens basically from voltage differences within

one scan, the systematic uncertainties are dominated by the accuracy with which those can

be measured. Thereby, the relative systematic error is the same as for the scan voltage. The

results are summarized in Tab. 4.1 and Tab. 4.2.

4.2.1. Magnetic Moment

As explained in 2.1, the A-factor is linked to the magnetic moment by A = gIµNB(0) =

µIB(0)/I. Without knowledge of the local magnetic field B(0), only the ratio of magnetic

moments between isotopes can be determined. Using reference values available for stable

isotopes from NMR measurements, which have much higher precision than those from laser

spectroscopy, absolute moments can be calculated according to

µ = A · µref

Aref
. (4.3)

Additionally, the ratio A/Aref is insensitive to systematic errors, because they cancel as

they are linear in A. The remaining errors are the statistical errors of the magnetic cou-

pling constant and of the reference magnetic moment as systematic error, where the latter is

neglectable due to the high precision of the NMR measurements.

It is observed that the literature values are well reproduced if a reference isotope with the

same spin as the isotope under investigation is chosen, but a systematic deviation occurs if all

isotopes are referenced to the same isotope regardless of their spin. The largest deviation is

found between the 1/2 and 5/2 isotopes, where 1−(A1/2/A3/2)/(µ1/2/µ3/2) = 1.1 ·10−3. This

behaviour can be explained by different distributions of magnetization in nuclei with different

spin. This is called hyperfine anomaly and alters Eq. 4.3. It is assumed that the hyperfine

anomaly can be neglected within each set of isotopes with equal spin, which is supported by

the comparison with the known magnetic moments. While reference isotopes exist for the

spin values 1/2, 5/2 and 11/2, there is no reference moment for the I = 3/2 isotopes. Here
111Cd has been used as reference and the largest observed hyperfine anomaly as stated above

has been added as relative systematic error.

The measured magnetic moments agree well with the literature data as well as with the

moments derived from the atomic transition. A comparison is plotted in the appendix. A.2.

The magnetic moments reproduce the sign expected from the Schmidt moments, but are

about 40-50% smaller than predicted by the single particle levels, which is not uncommon.

Usually one would expect the moments to develop towards the single particle predictions as
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Z + N I Al / MHz µ / µN µAtom / µN µLit / µN

101 5/2 -4395.6(14)[05] -0.8985(3)[00]
103 5/2 -4158.2(13)[05] -0.8500(3)[00] -0.8100000(300000)
105 5/2 -3615.7(14)[04] -0.7391(3)[00] -0.7393000(002000)
107 5/2 -3009.1(14)[03] -0.6151(3)[00] -0.6154(3) -0.6150554(000011)

*109 5/2 -4049.9(13)[05] -0.8278461(000015)

*111 1/2 -14535.9(27)[16] -0.5948861(000008)
113 1/2 -15204.7(18)[17] -0.6223(1)[00] -0.6224(1) -0.6223009(000009)
115 1/2 -15839.6(37)[18] -0.6482(2)[00] -0.6483(1) -0.6484259(000012)
117 1/2 -18166.2(36)[20] -0.7435(2)[00] -0.7437(1)
119 1/2 -22483.6(29)[25] -0.9201(2)[00] -0.9199(2)

121 3/2 5101.4(47)[06] 0.6263(6)[08] 0.6268(11)
123 3/2 6434.1(36)[07] 0.7900(5)[10] 0.7900(14)
125 3/2 7012.0(37)[08] 0.8609(5)[11]
127 3/2 7158.9(43)[08] 0.8789(6)[11]
129 3/2 6916.9(55)[08] 0.8492(7)[11]

111 11/2 -2456.5(13)[03] -1.1049(8)[00] -1.1052(4) -1.1051000(004000)
*113 11/2 -2418.5(13)[03] -1.0877(4) -1.0877840(000020)
115 11/2 -2313.4(14)[03] -1.0405(8)[00] -1.0410343(000015)
117 11/2 -2217.2(15)[02] -0.9972(9)[00] -0.9969(4)
119 11/2 -2142.5(13)[02] -0.9637(8)[00] -0.9636(5)
121 11/2 -2243.9(15)[03] -1.0093(9)[00] -1.0098(5)
123 11/2 -2224.9(14)[02] -1.0007(8)[00] -1.0008(6)
125 11/2 -2077.7(14)[02] -0.9345(8)[00]
127 11/2 -1934.5(13)[02] -0.8701(8)[00]
129 11/2 -1569.1(18)[02] -0.7057(9)[00]

Table 4.1.: Measured A-factors of the ionic ground state and derived magnetic moments µ.
Round brackets enclose the statistic, square brackets the systematic uncertainties.
Magnetic moments from the atomic run and from literature [Sto05] are shown
as well, the isotopes used as reference for the according spin are marked by an
asterisk. 111Cd is used as reference for the spin 3/2 isotopes and the uncertainty
due to the hyperfine anomaly is added as systematic error as explained in the text.
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Figure 4.7.: Magnetic moments of the Cd isotopic chain. The values are about 40-50% smaller
than the single-particle Schmidt values, which is not uncommon.

they come closer to the shell gap, since core polarizability is reduced by the lack of particles.

This is not observed in Cd, where the magnetic moment of 129Cd is further away from the

single particle values than 127Cd and 125Cd. This could be caused by the missing proton pair,

leading to stronger residual interaction in those nuclei. Another observation is the linear

trend in the lower half of the 11/2 shell and the small difference of the magnetic moments in

the 11/2 and the ground state before the spin change in the ground state at 119Cd. After this

happens, the linear trend of the I = 11/2 moments is altered for several isotopes, until it is

restored at 129Cd.

4.2.2. Quadrupole Moment

The quadrupole moment is linked to the B-factor by B = eQ⟨Vzz⟩. To extract it, one

needs either a reference value for one isotope or knowledge of the hyperfine field created by

the electron shell. Since a technique to measure quadrupole moments of stable nuclei with
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A I) B / MHz Q / b QAtom / b QLit / b

101 5/2 -117.3(034)[0] -0.176(05)[07]
103 5/2 -3.4(035)[0] -0.005(05)[00] -0.80(70)
105 5/2 250.2(032)[0] 0.376(05)[15] 0.43(04)
107 5/2 398.6(033)[0] 0.599(05)[24] 0.593(07)[25] 0.68(07)
109 5/2 399.9(031)[0] 0.600(05)[24] 0.604(04)[25] 0.69(07)

121 3/2 -191.8(086)[0] -0.288(13)[12] -0.288(15)[12]
123 3/2 28.6(060)[0] 0.043(09)[02] 0.063(07)[03]
125 3/2 144.6(068)[0] 0.217(10)[09]
127 3/2 158.5(082)[0] 0.238(12)[10]
129 3/2 93.0(052)[0] 0.140(08)[06]

111 11/2 -489.1(036)[1] -0.734(05)[30] -0.742(05)[31] -0.85(09)
113 11/2 -405.2(034)[0] -0.608(05)[25] -0.612(04)[25] -0.71(07)
115 11/2 -314.1(047)[0] -0.472(07)[19] -0.478(04)[20] -0.54(05)
117 11/2 -212.1(066)[0] -0.318(10)[13] -0.319(02)[13]
119 11/2 -90.9(039)[0] -0.136(06)[06] -0.136(03)[06]
121 11/2 5.9(066)[0] 0.009(10)[00] 0.007(06)[00]
123 11/2 88.2(056)[0] 0.132(08)[05] 0.128(11)[05]
125 11/2 178.5(049)[0] 0.268(07)[11]
127 11/2 224.9(064)[0] 0.338(10)[14]
129 11/2 369.1(105)[0] 0.554(16)[22]

Table 4.2.: Measured B-factors and derived quadrupole moments Q evaluated with ⟨Vzz⟩ =
666(27) MHz/b [BF13] obtained from Dirac-Hartree-Fock calculations using the
GRASP code [Jt13]. Literature values are taken from [Sto05].

similar precision as it is possible for magnetic moments is not available, we use a theory value

of
∂2V

∂z2
= 666(27)MHz / b , (4.4)

calculated by S. Fritzsche and J. Bieroń [BF13]. The value is obtained from Dirac-Hartree-

Fock calculations [Gra94] utilizing the atomic structure code GRASP [Jt07][Jt13]. The final

result is shown in Tab 4.2. The statistical error is propagated from the electric coupling

constant, while the systematic error is dominated by the 4% uncertainty of the theory value.

Although the relative quadrupole moments of our measurement agree very well with the

literature data, the absolute values are about 15% smaller. This can be attributed to a

different value for Vzz of the literature moments. The agreement with the quadrupole moments

obtained from spectroscopy of the atomic transition [Fr3] is good as shown in Sec. A.2.

The most striking observation of the measured quadrupole moments is the extremely linear

trend in the I = 11/2 state with a zero-crossing around 121Cd, plotted in detail in Fig. 4.9

on the left. This is exactly the behaviour expected from simple shell model single-particle
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Figure 4.8.: Quadrupole moments of the Cd isotopic chain. The most striking observation is
the linear behaviour of the 11/2 state, whith only 127Cd deviating.

calculations as explained in Sec. 2.3, but has never been observed with such significance before.

One other occurence is the I = 11/2 state in tin isotopes as plotted in Fig. 4.9 on the right.

Unexpetedly, in cadmium the trend extends over 10 odd nuclei, equivalent to a capacity of

20 neutrons in the shell. As the natural capacity of the 11/2 shell is 12 neutrons, it has to

be extended by sharing pairs with adjacent shells, yet acting exactly like a larger 11/2 shell.

The only isotope that exhibits a clear deviation from the linear trend is 127Cd. This might

be correlated to the observation of abnormal 2+ energies as determined by γ-spectroscopy

[Rod08] and should be closer investigated.

An empirical single particle moment can be extracted by averaging the single-neutron and

single-hole values at the edges

Qsp =
Q(111)−Q(129)

2
= 644(12)mb . (4.5)

It can be compared to the shell model value according to Eq. 2.35 using 5/3 of the literature

charge radius of 111Cd determined in Sec. 4.3 as radius of the last orbital Qsp = eeff · 291mb.
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Figure 4.9.: Quadrupole moments of the I = 11/2 states of cadmium (left, this work) and tin
(right, [At86; Dt75; Le 04]). While Cd shows an almost perfect linear behaviour
with only 127Cd deviating, the trend is less significant in Sn.

This leads to a very large effective charge of the neutron of eeffν = 2.2e, which is a sign of

strong first-order core polarization. Thus it seems that the missing proton pair makes the

Cd-nuclei strongly susceptible to core-polarization.

4.3. Radii

To extract the isotope shift from the measurements of the individual isotopes, one must take

into account that the absolute positions extracted in the fitting routine are prone to changes or

drifts in the laser frequency, the high voltage at the RFQ and the gas pressure inside the RFQ.

Thus, the weighted averages of all 114Cd reference scans directly preceding and succeeding the

scan of the relevant isotope are calculated. Those two values are linearly interpolated in time

to get the reference frequency at the moment of the measurement, which is then subtracted

from the center of gravity of the isotope under investigation. All individual measurements of

both runs are averaged, weighted with their statistical uncertainty, to get the final isotope

shift for each isotope. The results are presented in Tab. 4.3.

To obtain a reasonable value for the statistical uncertainty of the isotope shift, the ratio

between the error resulting from gaussian propagation and the standard error of the mean of

the sample is calculated. If it is larger than one, which here usually is the case, the propagated

statistical error is increased accordingly. For the small number of isotopes with a number of

measurements insufficient to determine the standard error of the mean, the average ratio of

all other isotopes is used. Additionally an error of 2.1MHz is added quadratically. This value

is the mean difference from comparison with a completely independent analysis of the same
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dataset [Yor13a] using, e.g., a different A-factor ratio. It represents the influence of different

analysis approaches on the result. The systematic error is calculated according to

∆Syst(δν
A,A′

IS ) =ν0

(
eUSource

2mc2

)1/2

·{(
1

2

(
δUScan

USource
+

δm

m

)(
∆USource

USource

))2

+

(
δUScan

USource

(
∆(δUScan)

δUScan

))2

+

(
∆m

m

)2
}1/2

(4.6)

where δ denotes the differences between the different isotopes and ∆ denotes the uncertainties.

∆USource/USource, e. g., is the relative uncertainty of the source voltage. This is derived from

the nonrelativistic isotope shift formula [Mt83].

4.3.1. King-plot

The difference in charge radii is linked with the isotope shift by

δνA,A′

IS = K ·M + F · δ⟨r2⟩A,A′
(4.7)

as shown in Sec. 2.1. The mass shift factor K and the electronic field shift factor F for the

specific transition can not be extracted solely from optical measurements. Therefore, known

charge radii (usually of stable isotopes) are used to perform a so-called King-plot. In this

procedure modifying δ⟨r2⟩ and δν with the inverse mass factor results in a straight line with

the electronic factor as slope and the mass-shift factor as y-intercept [Kin84]

δνA,A′

IS M−1︸ ︷︷ ︸
y

= K + F · δ⟨r2⟩A,A′
M−1︸ ︷︷ ︸

x

. (4.8)

In this analysis the radii from [FH04] as listed in Tab. 4.3 were used. They were obtained

from the Barrett-radii extracted from muonic measurements using the V2 coefficient from high

energy elastic electron scattering and the relation

Vn = Rkα⟨rn⟩−1/n . (4.9)

Since the correlation of the systematic errors of the muonic radii is not reported, a worst-case

approach is used here assuming them as completely uncorrelated for calculating the δ⟨r2⟩1.
The fit was performed with minuit2 including x- and y-errors. Only statistical errors of the

1It is expected that the systematic uncertainty of the absolute charge radii will largely cancel when calculating
the differences in mean square charge radii δ⟨r2⟩ .
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Figure 4.10.: King-plot of the measured Cd isotope shifts against the differences in charge
radii of stable isotopes. Small black errors are statistical, the larger grey ones
systematical. K0 shows the mass shift factor at x = 0 and the resulting confi-
dence band is shown in blue. It obviously overestimates the uncertainty since
the slope and the axis crossing are strongly correlated. This is improved by
using K1050 as free parameter, leading to the green confidence band which is a
much better representation of uncertainties.

data points were used in the first fit to extract the parameters K and F and systematic

errors were then added in a second fit to determine the uncertainty of the line parameters.

The fact that all points lie almost exactly on the line supports the quality of the data. Only

systematic influences that scale as the mass factor M can influence the King-plot without

producing deviations from the straight line. The resulting values are

K0 =1.99(185)× 103GHzu

F =−6.2(18)GHz/fm2 (4.10)

and the corresponding function is shown in Fig. 4.10. The field shift factor agrees very

well with the value of F = −6.1(7)× 103GHz/fm2 obtained in [Bau85] using semi-empirical

approaches based on the Landé-Goudsmith-Fermi-Segré formula [Kop56] and the 5s hyperfine

splitting. Subtracting the normal mass factor of

KNMS = νme = 0.76× 103GHzu (4.11)
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4.3. Radii

fromK results in a specific mass shift ofKSMS = 1.23(185)× 103GHzu. This is in accordance

with the expectation that for an S → P transition the specific mass shift is not much larger

– rather less – than the normal mass shift.

Unfortunately, due to the fact that the data points are clustered in a single quadrant

away from the origin of the plot, the two variables exhibit a strong correlation. This makes

accurate calculations of the confidence band and thereby the error in the derived δ⟨r2⟩ quite
complicated, as this correlation has to be taken into account. Neglecting this and taking

simply the linear relation 4.8 using the parameters in 4.10 and gaussian error propagation

would result in the 1σ confidence band plotted in 4.10 in blue, which is obviously much too

large. This can easily be resolved by fitting a slightly modified line of the form

y = Kα + F · (x− α) , (4.12)

which is equivalent to transforming the coordinate system into one centered at x = α. If

the parameter α is chosen to be well within the cluster of the modified charge radii, the two

degrees of freedom are almost completely decoupled. In this case, α = 1050 fm2u worked

best, reducing the correlation parameter from 0.99 to 0.01. The resulting parameters are

K1050 =−4.52(11)× 103GHzu

F =−6.2(18)GHz/fm2 . (4.13)

Note that Kα has no physical meaning for α ̸= 0. As one would expect, the transformation

has no influence on the electronic field shift factor, and in general no influence on the line

itself, as K1050 results simply in K1050 = K0 + F · 1050. But the relative uncertainty of K

becomes smaller, and the Gaussian error propagation of the uncertainties in K and F to an

error in the modified δ⟨r2⟩ leads to the confidence band plotted in Fig. 4.10 in green, which

describes the data much better.

The new King-plot equation leads to

δ⟨r2⟩A,A′
=

(
δνA,A′

IS −KαM
)
/F + αM . (4.14)

The δ⟨r2⟩ extracted from the isotope shifts are listed in Tab.4.3 and shown in Fig.4.11.

The radii of 117−120,122Cd are taken from [Fr3] due to inappropriate conditions during the

experiment as explained in Sec. A.3.The statistical error is ∆stat(δ⟨r2⟩) = (1/F ) ·∆(δν). The

systematic error of δ⟨r2⟩ includes the systematic error of δν , the isotope mass uncertainty
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Figure 4.11.: Differences in mean square charge radii of cadmium for the ground state (red)
and the isomeric state (blue) as obtained from this run and the atomic one[Fr3].
Statistic errors are smaller than the symbols and therefore not plotted. The
red confidence band shows the systematic error. The black line is a fit of the
parametrization of Zamick and Thalmi to the data. Details are discussed in the
text.

and the error from the King-plot parameters according to gaussian error propagation from

4.14:

∆syst(δ⟨r2⟩) =

{(
1

F
∆syst(δν)

)2

+

(
M

F
∆K

)2

+

(
(δν −KM)

1

F 2
∆F

)2

+

((
K

F
+ α

)
1

m2
114

∆mA

)}1/2

. (4.15)

The reason for the larger systematic errors on the neutron-rich side can easily be understood

by the modified isotope shift of the different nuclei, as visualized in Fig. 4.12. The blue points

denote the reference isotopes with known ms charge radii used for the King-plot, which is

consequently the region in the King-plot, where the confidence band is smallest. While the

neutron-deficient isotopes stay close to this range, the neutron-rich isotopes systematically
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Figure 4.12.: Modified isotope shift of the different isotopes measured in this work. The iso-
topes with charge radii used as reference in the King-plot procedure are marked
blue. As one can see, the modified isotope shifts of neutron deficient isotopes are
close to the reference values, while the neutron rich ones evolve further away.
This causes the difference in the uncertainties of charge radii between those
nuclei.

develop to higher modified isotope shifts and therefore into an area of the King-plot with

larger uncertainties.

The radii of the ground state expose a linear growth with an additional parabolic shape

with positive curvature spanning from one shell closure to the other. On top of this, a regular

odd-even staggering is superimposed i.e. isotopes with an odd number of neutrons have radii

smaller than the average of the neighbouring even N isotopes. This behaviour fits well to the

differences in charge radii of the surrounding elements and can be described and interpreted

in the framework of Zamick and Thalmi [Zam71; Tal84]. There, the curve is parameterized

as

δ⟨r2⟩ = a(N − 50) + b(N − 50)(82−N) +
c

2

[
1− (−1)N

]
+ d (4.16)

and fitted to the data points. The parameters seperate the change in radius due to the

volume effect a, a deformation due to core-polarization peaking in mid-shell b, the odd-even

staggering c and an offset due to the choice of reference d.

The fit results in a size of the volume effect of a = 0.072 fm2, which is in very good

agreement with the value of the droplet model [MS83][BT85] of a = 0.074 fm2. The obtained

value of b = 0.0017 fm2 leads to a maximum δ⟨r2⟩def = b(162) = 0.445 fm2 due to deformation
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Z +N I δν114,AIS δ⟨r2⟩114,A
√

⟨r2⟩Lit δ⟨r2⟩114,ALit

100 0 6371.6(31)[114] -1.4218(5)[0436]
101 5/2 5859.9(22)[105] -1.3075(4)[0402]
102 0 5037.2(22)[096] -1.1438(3)[0253]
103 5/2 4621.6(24)[087] -1.0462(4)[0245]
104 0 3922.7(24)[079] -0.9036(4)[0161]
105 5/2 3608.7(22)[070] -0.8235(4)[0167] 4.53631(31)[133] -0.6893(29)[172]
106 0 2991.1(22)[062] -0.6952(4)[0121]
107 5/2 2730.9(23)[054] -0.6248(4)[0121] 4.55577(23)[133] -0.5124(23)[172]
108 0 2194.0(22)[046] -0.5105(4)[0089]
109 5/2 1958.3(22)[038] -0.4451(4)[0096] 4.57539(16)[133] -0.3333(16)[173]
110 0 1432.2(23)[030] -0.3335(4)[0059] 4.58025(16)[125] -0.2888(16)[168]
111 1/2 1314.3(22)[023] -0.2881(4)[0118] 4.59437(08)[133] -0.1592(10)[173]
112 0 674.6(22)[015] -0.1592(4)[0033] 4.59907(16)[117] -0.1160(16)[163]
113 1/2 555.2(23)[008] -0.1145(4)[0094] 4.61167(08)[133] 0.0000(00)[000]
114 0 0.0(0)[000] 0.0000(0)[0000]
115 1/2 -110.4(29)[007] 0.0424(5)[0109] 4.62627(08)[133] 0.1349(10)[174]
116 0 -526.5(22)[015] 0.1336(3)[0078]
117 1/2 0.1698(5)[0195]
118 0 0.2434(5)[0206]
119 1/2 0.2802(16)[0314]
120 0 0.3415(12)[0351]
121 3/2 -1309.3(40)[050] 0.3746(6)[0463]
122 0 0.4297(3)[0511]
123 3/2 -1551.5(37)[065] 0.4570(6)[0633]
124 0 -1748.2(22)[072] 0.5098(4)[0680]
125 3/2 -1757.3(35)[079] 0.5321(6)[0810]
126 0 -1957.6(22)[086] 0.5849(3)[0852]
127 3/2 -1912.3(30)[094] 0.5978(5)[1002]
128 0 -2171.6(23)[100] 0.6594(4)[1013]
129 3/2 -1911.1(55)[108] 0.6370(9)[1256]
130 0 -2208.1(33)[115] 0.7041(5)[1246]

111 11/2 1148.8(22)[023] -0.2615(4)[0055]
113 11/2 489.0(22)[008] -0.1038(4)[0065]
115 11/2 -100.6(29)[007] 0.0408(5)[0113]
117 11/2 0.1660(1)[0206]
119 11/2 0.2755(15)[0327]
121 11/2 -1277.3(31)[050] 0.3695(5)[0478]
123 11/2 -1532.7(28)[063] 0.4540(5)[0641]
125 11/2 -1772.6(26)[077] 0.5346(4)[0803]
127 11/2 -2029.1(24)[092] 0.6166(4)[0949]
129 11/2 -2145.5(31)[105] 0.6748(5)[1150]

Table 4.3.: Isotope shifts δν114,AIS and extracted mean square charge radii from this work and
literature values from [FH04]. Results for 117−120,122Cd are taken from [Fr3] due
to inappropriate conditions during the experiment as explained in Sec. A.3.
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Figure 4.13.: Differences of mean square charge radii of cadmium (this work), indium [FH04]
and tin [FH04][Le 05]. The latter two are shifted for better visibility. The dip
around N = 78 in tin isotopes is caused by the stitching of the two datasets.

in midshell, according to a deformation of ⟨β2⟩ = 0.054 following Eq. 2.40. The remaining

parameters are c = −0.025 fm2 and d = −0.453 fm2.

The 11/2− state follows roughly the same behaviour. In Fig. 4.11 the points practically

with those of the ground state. Only at the edges of the isomer existence the points deviate

slightly from the ground state. A closer look at the difference reveals a very interesting

behaviour: As can be seen in Fig. 4.14, the difference in charge radius forms a parabola over

the entire 11/2 shell centered around 120Cd. While the isomer is larger at the shell borders,

it becomes smaller than the ground state in midshell, where additionally the ground state

changes its spin from 1/2 to 3/2. It is not clear whether this trend continues beyond 111Cd,

where the 7/2 state becomes lower in energy than the 11/2 state and the latter one therefore is

short-lived. This interesting behaviour currently is under further investigation. One approach

is to interpret the difference in charge radius as difference in deformation, which leads to a

variation in δ⟨β2⟩A,Am between 0.004 and -0.0006.

In Fig. 4.15 the radii obtained in this work are compared to first results of theoretical

calculations of the even isotopes [Rod13] triggered by this work. The Gogny-force [Bt84] in a

standard parametrization (D1S) and one improved for masses (D1M) are used in a mean-field

(MF) and a beyond-mean-field (BMF) [Rod08] approach. These calculations predict a larger

variation of charge radii than is experimentally observed, but expose a similar curvature.
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Figure 4.14.: Difference in mean square charge radius between ground and 11/2 isomeric state.
The large error of 119Cd is caused by an unfortunate overlap of hyperfine lines
of ground and isomeric state in the atomic system.
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Figure 4.15.: Comparison of differences in ms charge radius to theoretical calculations of the
even Cd isotopes. Two parametrizations of the Gogny-force (D1S and D1M)
are used in combination with mean-field (MF) and beyond-mean-field (BMF)
calculations.
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The difference is significant in respect to the difference between methods as well as the ex-

perimental systematic error. Similar calculations for the odd isotopes as well as calculations

using a Skyrme force [Rei11] are in progress. This demonstrates the value of experimentally

observed nuclear ground state properties as measure for theoretical calculations to improve

the understanding of nuclear structure.
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Detection efficiency is a crucial topic in order to expand laser spectroscopy towards more and

more exotic species. In this thesis a boost in efficiency for the spectroscopy of Cd isotopes

has been reached by building a continuous-wave laser system at 214.6 nm and by using the

radiofrequency cooler and buncher ISCOOL. This allowed to extend the previously performed

collinear laser spectroscopy on neutral 106−126Cd to cover the 100 ≤ A ≤ 130 chain, getting

close to N = 50 on the neutron-deficient side and ultimately reaching the N = 82 shell

closure. The resulting spectra were analyzed and magnetic dipole and electric quadrupole

moments as well as differences in mean square nuclear charge radii have been extracted.

Those experimental observables give valuable insight into the nuclear structure of systems in

the vicinity of closed shells around the doubly magic nuclei 100Sn and 132Sn.

The change in mean-square nuclear charge radii along the isotopic chain is smooth and

the general trend can be well described within the droplet model. Also the Zamik-Thalmi

model can be fitted very well to the data reproducing the regular odd-even staggering and the

curvature. An interesting behaviour is revealed by the measured differences in mean square

charge radii between ground and isomeric state, where a parabolic behaviour can be observed.

Among the most striking observations is the linear dependence of the quadrupole moment

on the neutron number in the 11/2− shell, which is valid over a sequence of 20 neutrons and

therefore longer than the estimated capacity of the shell. For a complete interpretation of

the observed effects, more input, especially from theoretical calculations, is necessary. These

observations have triggered self-consistent mean-field calculations with Gogny and Skyrme

forces for the Cd isotopes but only with limited success so far. Similar trends for quadrupole

moments have also been observed.

Currently a prosposal [Yor13b] has been submitted to extend the measurements to 99Cd

and 131Cd. This would provide nuclear ground state properties of two more neutron single-

particle states and, by crossing the N = 82 shell closure, will bring clarity to the matter of the

visibility of shell effects in charge radii in this mass region. Additionally, the measurement of

Sn104−136 and its isomers is proposed, eventually on the 215 nm line due to its high sensitivity,

using the laser system described in this work. By measuring the nuclei of tin with the same

neutron states as in Cd but with a closed proton shell, it will be possible to evaluate the

influence of the missing proton pair on the nuclear properties. Further extensions of those
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measurements to even heavier nuclei like Te with one proton pair beyond the shell closure

should improve the knowledge about the Z-dependence of the observed phenomena.
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A.1. Masses

The masses of the isotopes used for the evaluation in this work are listed in Tab. A.1. To

extract the mass of the ion, one electron mass has to be subtracted from the listed one. The

values are taken from AME [WA12] and newer penning trap mass measurements [Kan12]

where available. The latter are marked by an asterisk in the table. For 127Cd and 129Cd,

where neither the isomeric mass nor the spin is known, the mass of the ground state was used

and the uncertainty was estimated as the largest excitation energy of the known isomers in

the vicinity, namely 300 keV.

A.2. Comparison of Nuclear Moments

In Fig. A.1, A.2, A.3 and A.4 the differences between moments obtained in this work, the

atomic run and literature are plotted. The overall agreement is good. The systematic devia-

tion from literature quadrupole moments can be attributed to a different Vzz.

A.3. Comparison of Radii

The differences in the mean square charge radii measured in the ionic transition are compared

to the literature values (as used for the King plot) and the radii from the atomic transition

in Fig. A.5. Only statistical errors are shown. One can see that the literature values agree

very well, as expected. While most of the atomic radii are within the statistical limits as well,

the neutron rich isotopes starting from 123Cd start to deviate systematically. This observed

behaviour is caused by small differences in the mass and field shift factors between the two

runs and is a residual effect which is well within the systematic error bars, which are not shown

as they are one to two orders of magnitude larger than the statistical ones. Furthermore the

isotopes 117−120Cd and 122Cd obviously deviate more than expected and the behaviour can be

hardly explained by the King-plot procedure. This is discussed in the following paragraphs.

One should note that those isotope shifts are not included in our results in Tab 4.3.
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Z +N I m / u

100 0 99.9203488(2)
101 5/2 100.9185865(2)
102 0 101.9144818(2)
103 5/2 102.9134163(2)
104 0 103.9098562(2)
105 5/2 104.9094638(1)
106 0 105.9064617(2)
107 5/2 106.9066123(2)
108 0 107.9041835(2)
109 5/2 108.9049867(2)
110 0 109.9030049(2)
111 1/2 110.9041811(2)
112 0 111.9027608(2)
113 1/2 112.9044047(2)
114 0 113.9033616(2)
115 1/2 114.9054340(2)
116 0 115.9047589(2)
117 1/2 116.9072217(2)
118 0 117.9069177(22)
119 1/2 118.9098469(40)
120 0 119.9098681(4)

*121 3/2 120.9129809(91)
122 0 121.9134546(5)

*123 3/2 122.9169949(40)
124 0 123.9176619(10)

*125 3/2 124.9212578(65)
126 0 125.9224295(5)
127 3/2 126.9265316(329)
128 0 127.9278038(18)
129 3/2 128.9320300(384)
130 0 129.9339360(177)

111 11/2 110.9046065(2)
113 11/2 112.9046877(2)
115 11/2 114.9056284(2)
117 11/2 116.9073682(2)
119 11/2 118.9100043(40)

*121 11/2 120.9132116(91)
*123 11/2 122.9171495(40)
*125 11/2 124.9214575(66)
127 11/2 126.9265316(329)
129 11/2 128.9320300(384)

Table A.1.: Masses used in the analysis of this work. Values originate from the atomic mass
evaluation [WA12] and, where available, newer penning trap mass measurements
[Kan12], which are marked by an asterisk.
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Figure A.1.: Comparison of magnetic moments of the low spin state of this work (black), the
previous spectroscopy on neutral cadmium (blue) and known literature values
[Sto05], as listed in Tab. 4.1.
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Figure A.2.: Comparison of magnetic moments of the 11/2 spin state of this work (black), the
previous spectroscopy on neutral cadmium (blue) and known literature values
[Sto05], as listed in Tab. 4.1.
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Figure A.3.: Comparison of quadrupole moments of the low spin state of this work (black), the
previous spectroscopy on neutral cadmium (blue) and known literature values
[Sto05], as listed in Tab. 4.2. The deviation from literature values is caused by
a different Vzz.
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Figure A.4.: Comparison of quadrupole moments of the 11/2 spin state of this work (black),
the previous spectroscopy on neutral cadmium (blue) and known literature values
[Sto05], as listed in Tab. 4.2. The deviation from literature values is caused by
a different Vzz.
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Figure A.5.: Comparison of differences in mean square charge radius from this work, literature
values and the atomic run on Cd. The shown error bars are statistical errors
only. The overall agreement is very good. The deviation between ion and atom
data on the neutron deficient side can be explained by systematics from the King
plot, while for the isotopes 117−120Cd and 122Cd systematic deviations must have
happened during the experiment. An explanation for these effects is given in
Fig. A.6.

Only one single spectrum of each of the isotopes 117−120Cd and 122Cd has been taken

at the very end of the experiment, as they have been measured during the atomic run and

general agreement between the sets has already been ascertained with 123Cd, 124Cd and 126Cd.

Therefore it was not the primary goal of the run and only some spare time after successfully

measuring all necessary isotopes was used. The deviation of 117Cd corresponds to about

90MHz in isotope shift. Additionally, the measurement of 112Cd done at the very end is

about 15MHz off to the earlier ones. Obviously during that time something influenced the

isotope shifts in a systematic way much more than would normally be expected. A comparison

of the measured source voltage and the line center of the reference isotope 114Cd, as shown in

Fig. A.6, reveals some interesting behaviour. During most of the run the transition frequency

follows the measured source voltage quite well, indicating that indeed it is the power supply

that is drifting a bit during this time (left). This effect is smaller than the accuracy of our

voltage measurement and the assumed error. Yet in the end, where the other isotopes have

been measured, the transition frequency changes without an according change of the source

voltage by about 25MHz. As the laser system was perfectly stable, this has to be related to
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Figure A.6.: RFQ voltage and reference line center during the whole run on neutron deficient
Cd (left) and in detail only the end of the run (right). Most of the time the
line center of the reference follows the voltage quite well, indicating that the
high voltage power supply is drifting. Yet, in the end both clearly deviate,
exactly where the measured isotope shifts disagree with the result of the atomic
beamtime. The measurement times for the different exotic isotopes that were
measured at the end of the run are indicated by red lines.

a change in ion velocity. Normally, one would expect this shift to cancel out to a large degree

in the difference between two isotopes, but this does not seem to happen.

As the beam energy is purely determined by potential of the radiofrequency quadrupole

cooler and buncher, it is the most obvious candidate for a malfunction. After the according

run, the gas bottle supplying the buffer gas was almost empty. Unfortunately, the pressure

cannot be monitored while high voltage to the platform is applied. Taking all the facts into

account, the most probable explanation for the observed behaviour is a change in buffer

gas pressure inside the radiofrequency cooler and buncher. Outside its working parameters,

cooling is insufficient and the capacity of the rfq is suspected to drop. Overloading might

occur much earlier and the ion velocity can depend on the number of ions inside the bunch.

Unfortunately, it is not possible to verify this assumption. These observations show how crit-

ical systematic investigations and proper control of working parameters of the radiofrequency

cooler and buncher are for collinear laser spectroscopy.
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[BF13] J. Bieroń and S. Fritzsche, private communication, 2013.

[Bla13] K. Blaum et al., Precision atomic physics techniques for nuclear physics with ra-

dioactive beams, Physica Scripta 152 (2013), 32.

[Bt84] J. F. Berger et al., Microscopic analysis of collective dynamics in low energy fission,

Nuclear Physics A 428 (1984), 23c.

[BT85] D. Berdichevsky and F. Tondeur, Nuclear Core Densities, Isotope Shifts, and the

Parametrization of the Droplet Model, Zeitschrift für Physik A 332 (1985), 141–147.

[BWW01] K. Bethge, G. Walter, and B. Wiedemann, Kernphysik, Springer, 2001.

[Cat03] R. Catherall et al., Radioactive ion beams produced by neutron-induced fission at

ISOLDE, Nuclear Instruments and Methods B 204 (2003), 235–239.
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