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Abstract

The Depleted P-channel Field-Effect Transistor detector is a pixel detector type currently
under development. In high energy physics, pixel detectors measure space points along the
trajectory of charged particles. They determine the spatial position by measuring the charges
created as a result of interactions with the passing particle. Thus the detector’s signals can
be used to determine the energy deposited by the particle in single pixels of a pixel matrix.

The development of a new detector raises the question whether our simulation models can
accurately describe the physical processes – like ionisation and scattering – taking place during
operation. The thesis aims to validate one of the current Monte-Carlo simulations (based
on the Geant4 simulation package) of high energy straggling processes using experimental
data of a test beam run of DEPFET modules. This is done by calculating the spatial
distribution of the electron/hole pairs created in extreme cases of ionisation and using this
distribution for comparison and analysis of the data samples.

Keywords: DEPFET, Belle II, Ionisation, Delta Electrons, Geant4, Straggling, Scattering

Zusammenfassung

Der Depleted P-channel Field-Effect Transistor Detektor ist ein Pixel Detektor, welcher
momentan für eine professionelle Anwendung entwickelt wird. Im Kontext der Hochenergie-
physik messen Pixel Detektoren Spurpunkte entlang der Trajektorie von geladenen Teilchen.
Dies geschieht durch Messung der Signalladungen, welche vom zu messenden Teilchen durch
Interaktion erzeugt werden. Das Detektorsignal erlaubt somit die Bestimmung der deponier-
ten Energie mittels einer Pixelmatrix, d. h. es handelt sich um eine ortsaufgelöste Messung.

Bei der Detektorentwicklung stellt sich die Frage, ob die verwendeten Simulationsmodelle
die physikalischen Prozesse welche auftreten – wie z. B. Ionisation und Streuung – korrekt
beschreiben. Im Rahmen dieser Arbeit soll eine gängige Monte-Carlo Simulation (basie-
rend auf Geant4) ob ihrer Übereinstimmung mit experimentellen Daten überprüft werden.
Dabei werden experimentelle Daten, welche in einer Testumgebung mit Hilfe des DEPFET
Detektors gewonnen worden sind, verwendet. Im Speziellen soll dabei die räumliche Vertei-
lung von Signalladungen in extremen Fällen von Ionisation rekonstruiert werden und die
resultierenden Verteilungen von Experiment und Simulation sollen verglichen werden.

Stichwörter: DEPFET, Belle II, Ionisation, Delta Elektronen, Geant4, Streuung
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1. Introduction

In this thesis we will analyse the behaviour of ionisation products in cases of extreme energy
deposition. This is done by analysing data taken from test runs of a new detector type;
the reconstruction of highly energetic ionisation products poses the main goal of the thesis.
Furthermore the analysis is performed on a sample of simulated data to evaluate the perfor-
mance of the simulation when compared to experimental data.

Chapter 2 provides the required theoretical background of interaction processes for the rele-
vant energy scale with special emphasis on the ionisation products. The process of multiple
scattering, which is of utmost importance for low energy particles traversing an absorber, is
presented. Furthermore a method for analysing the asymmetric probability density functions
of the energy loss distributions is discussed.
The DEPFET detector, which was used to measure the ionisation processes, is presented in
chapter 3. This detector, which is currently under development for large scale application in
the upcoming Belle II upgrade, has a very high spatial and energy resolution. It is due to
the exquisite attributes of the DEPFET detector that the analysis performed in the thesis is
possible.
In chapter 4 the experiment, in which the analysed data was measured, is presented. The
different detector modules and their properties are presented among the experiment’s setup.
Furthermore the reconstruction chain which was applied to the data is described. Under-
standing the reconstruction process is crucial because this allows to understand the problems
highly energetic ionisation products pose in a live research environment.
The elementary physics model used by the simulation engine has already been presented in
chapter 2, however, a full simulation must further include a detector simulation stage which
is explained in detail in chapter 5. Furthermore we present the simulation characteristics,
calibrate the simulated data to the experimental data and perform a simple cross check of
the compliance of the experimental and simulated data.
Chapter 6 summarises the reconstruction methods and gives detailed explanation about the
problems of a reconstruction and possible solutions. Furthermore typical behaviour of highly
energetic ionisation products, as found while working on this thesis, is presented.
The analysis criteria and methods are presented in chapter 7. Furthermore the results of

1



1. Introduction

these analysis criteria is presented and the compliance of experimental and simulated data
in regard to highly energetic ionisation products is evaluated.
Finally in chapter 8 a conclusion is drawn. We present the results achieved in this thesis
and the flaws remaining in the analysis. Furthermore an outlook is given and possible future
developments and analysis enhancements are presented.
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2. Interactions of Charged Particles
with Matter

The detection of particles is done by measuring the occurrence and intensity of the inter-
actions between particles and the detector matter [1–6]. Most detection techniques use the
electromagnetic interaction between charged particles and matter, which is suitable due to
its large cross section.

2.1. Straggling of Heavy Charged Particles

A particle which traverses matter continuously loses energy in numerous individual Coulomb

interactions (or scattering processes) with the matter. One can calculate the differential single
collision cross section σ (βγ,E) which is a measure for the probability that a particle with
kinetic variables1 βγ interacts with an atom and transfers the energy E. Furthermore one
can relate the total cross section σt to the total macroscopic cross section Σt via∫ Emax

Emin

Σ (βγ,E) dE︸ ︷︷ ︸
=Σt(βγ)

= n ·
∫ Emax

Emin

σ (βγ,E) dE︸ ︷︷ ︸
=σt(βγ)

,

where n is the atomic density,2 Emin is a lower cutoff value which is ∼ 10 eV and Emax is
the maximum energy transfer. The macroscopic cross section is a measure for the number of
interactions per unit length; one can calculate the number of collisions Nc per track segment
of length x using the relation

Nc = x · Σt (βγ) .

The number of collisions per track segment of length x is poisson distributed with mean
x ·Nc. One can calculate the distribution function of the energy loss of a single collision using

1 β := v
c is the particle’s velocity in units of the speed of light, γ := 1√

1−β2
is the Lorentz-factor.

2 Which is defined as n := Navρ
A where Nav is Avogadro’s constant, ρ is the matter’s density and A its

atomic number.

3



2. Interactions of Charged Particles with Matter

the relation

Φ (βγ,E) =

∫ E
Emin

dσ(βγ,E′)
dE′ dE ′∫ Emax

Emin

dσ(βγ,E′)
dE′ dE ′

,

where the denominator is a normalisation coefficient.

2.1.1. The Straggling Function

The probability density function (PDF) f (∆, x) – called straggling function – of the energy
loss ∆ per track segment of length x is given as sum over the single energy losses, i. e.

f (∆, x) =
N∑
i=1

Ei ,

where N is sampled from the Poisson distribution with mean Nc and Ei is sampled from
Φ. Signals measured by a pixel detector are comprised of numerous signal charges deposited
in a certain volume. The measured signal is closely related to the straggling function of the
process. The variation of the measured signal for particles of equal properties and energy is
a result of the width of the distribution defined by the straggling function.

2.1.2. Approximated Straggling Functions

The straggling function can be approximated using different model descriptions, we will
introduce two approximations which are used to explain several important concepts and def-
initions.

The Landau Distribution: For fast3 charged particles with mass m > me traversing thin
layers of matter the straggling function is a Landau distribution fL (∆, x) which is given by

fL (∆, x) =
1

ξ
ϕ (λ) , (1)

3 I. e.βγ >> 1.

4



2.1. Straggling of Heavy Charged Particles

where ξ is a proportionality factor given by references [7, 8] and ϕ (λ) is a universal function
of a single non-dimensional variable λ which is given by

ϕ (λ) =
1

2πi

∫ ζ+i∞

ζ−i∞
exp (u lnu+ λu) du , (2)

where ζ is any positive real number.4 This universal function is a positive probability density
function which has been normalised to an area equal to unity. The relation given by equa-
tion (1) scales and shifts the base distribution of equation (2). An example of a resulting
Landau distribution is shown in figure 1. The Landau distribution exhibits an asymmetric

-4 -2 0 2 4 6 8 10
0
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0.12

0.14

0.16

0.18

Figure 1.: Landau distribution with MPV at ∆p ≈ −0.222 and width (FWHM) w = 4; calculated
using the ROOT toolkit [9].

shape with a distinct peak and a very long tail. Due to the highly asymmetric shape and the
long tail of the distribution it is not possible to define a mean or a variance, the statistical
properties are given by the Most Probable Value (MPV) – which roughly coincides with the
distribution’s maximum – and the width w (this is the Full Width At Half Maximum or
FWHM) [4]. Values larger than the maximum are favoured over values smaller than the
MPV.
Landau derived his formula by using the Rutherford cross section i. e. he assumes that
the impinging particle is scattered on virtually free shell electrons.
The calculations which lead to the Landau distribution do not include factors related to
the atomic structure [4]; Landau’s approximation is merely an approximation of the actual
straggling function. A more accurate calculation has been done by Bichsel and is explained
in [4].

4 One can find that λ ∝ ∆
ξ and ξ ∝ x; see [7, 8] for full discussion and formulae.

5



2. Interactions of Charged Particles with Matter

The Bethe-Bloch Equation: Bethe [10] has calculated an approximation formula for
the mean energy loss per unit length using the relativistic Rutherford cross section and
Born’s approximation. Bethe’s calculation has been improved several times, the relation
as is canon today [5] exhibits the proportionality

−
〈
dE
dx

〉
∝ z2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ (βγ)

2

]
, (3)

where me is the electron mass, Z and A are atomic number and mass of the matter’s atoms,
z equals the projectile’s charge, Tmax is the maximum kinetic energy transferred to a free
electron in a single interaction, I is the mean excitation potential of the material and δ (βγ)

is a correction factor for the density effect (see [5]).
The Bethe-Bloch equation is an approximation of the straggling function for thick seg-
ments of matter (i. e. a large number of individual scattering processes). When calculating the
Landau theory for thick absorbers its shape becomes a gaussian distribution and matches
the shape of the distribution defined by the Bethe-Bloch formula. Like the Landau theory
Bethe’s formula can only be used to describe the behaviour of heavy particles (m > me).
Bethe’s relation holds only for 0.1 . βγ . 1000 and an incident particle whose mass is
larger than the electron mass me. The detector used in this analysis is 450 µm thick and
thus the second criterion of the Bethe-Bloch equation is violated.
It is to note that although the Bethe-Bloch equation yields a quantity which is easy to
interpret and calculate, the quantities that are more appropriate in a detector physics exper-
iment are the MPV and width of the elementary straggling function.
Figure 2 shows the mean energy loss of a muon in copper, the validity region of the Bethe-

Bloch relation is shown in the central region. One can identify two different segments of the
function in the Bethe-Bloch approximation: For values lower than the minimum ionisation
the mean energy loss is proportional to 1

β2 , after the minimum it rises with proportionality
to ln (βγ).

Minimum Ionising Particle: The point of minimum ionisation in the range of the Bethe-

Bloch (at βγ ≈ 3) is used to define the concept of minimum ionising particle (MIP) i. e.
a particle which exhibits the minimal possible mean ionisation energy

〈dE
dx

〉
(cf. figure 2).

Due to the fact that (on average) no particle deposits less energy than the MIP it is used to
define a lower limit on detector requirements as any detector that can detect a MIP can (in
principle) detect all particles of different energy as well.

The Bragg Peak: For a particle with βγ < 3 the mean energy loss
〈dE

dx

〉
quickly raises with

decreasing βγ i. e. speed or momentum (cf. figure 2). With each segment of the trajectory

6



2.1. Straggling of Heavy Charged Particles
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Figure 2.: Mean energy loss of a muon in copper as function of βγ, vertical lines indicate boundaries
between different approximations. Region of validity of Bethe-Bloch is marked with red text. Further
explanation can be found in the origin of the diagram, see [5].

this effect increases as the particle has lost energy and thus the mean energy loss increases.
As a result the particle is quickly stopped with a large energy deposition in the vicinity of
the point of eventual rest. Bethe’s formula – with some extensions – is able to describe this
behaviour.

2.1.3. Urban Model for Ionisation And Excitation

The physical process of excitation is an electromagnetic interaction between a charged par-
ticle and an atom. In the event of a collision a certain amount of energy and momentum is
transferred from the particle to a shell electron. In terms of elementary physical interactions
the two interaction partners exchange a photon carrying the transferred momentum and en-
ergy. Having an energy above the ground state the electron changes into an excited state.
If the energy transferred exceeds the threshold of ionisation the shell electron is ejected from
its atom and traverses the matter with kinetic energy E = Eγ −W , where Eγ is the energy
transferred and W is the amount of energy necessary for ionisation. This ejected electron is
called delta electron, its properties will be discussed further in section 2.4.

A very simple yet surprisingly accurate model for calculation of the energy deposition of a
particle traversing matter is the Urban model [11, 12]. The Urban model assumes that the
matter’s atoms have only two energy levels with binding energies E1 and E2. This simplifies
the particle’s energy loss by excitation to a loss of either E1 or E2. Furthermore it is assumed
that the energy loss due to the physical process of ionisation is distributed according to a
function g (E) with g (E) ∝ 1

E2 .

7



2. Interactions of Charged Particles with Matter

These simplifications allow a straightforward calculation of possible energy losses, however,
it is necessary to calculate the macroscopic cross sections Σi for for the different interactions
first; Σ1 and Σ2 are the cross sections for an excitation to the energy levels E1 and E2 respec-
tively, Σ3 is the cross section for the process of ionisation. The macroscopic cross sections
derived in the Urban model are listed in [12].
The number of excitation and ionisation processes occurring is sampled from a Poisson dis-
tribution, these numbers are then used to sample the corresponding energy loss contributions.
For practical reasons the simple method explained above is extended by several special case
conditions, some of which are explained in [11, 12].
The mean energy loss in a step can be calculated by summation of the contributing compo-
nents and integration of the energy loss function g(E) of the ionisation term (cf. ref. [12]).
Prior to simulation using the Urban model its parameters have to be determined. This can
be achieved by fitting experimental data and Urban model with undetermined parameters.
The fine tuning of the model parameters – as is the case for all simulation models – poses
a task of great importance for any analysis performed with the data. As the Urban model
is the approximation of choice for electromagnetic interactions in simulations of high energy
physics experiments we have chosen to use it for the calculation of the simulated data.

2.1.4. Ionisation Yield

The ionisation yield (i. e. number of secondary particles) of a particle passing the detector
(i. e. primary particle) can be estimated in a simple model by assuming that an energy
deposition of ∆E in matter creates

n =
∆E

W
(4)

charge pairs,5 where W is a proportionality factor. It has been shown that the actual propor-
tionality factor W is larger than the band gap energy EGap due to several individual factors
such as energy dissipation in the form of phonons [6, 13].
The proportionality factorW = 3.6 eV for silicon is approximately twice the band gap energy
of 1.12 eV [13]. It is to note that the model of the ionisation yield is independent of the model
used to describe and calculate the ionisation processes.

5 In silicon a charge pair is a pair of one electron and one hole.

8



2.2. Nuclear Event

2.2. Nuclear Event

A very rare process occurring in detector physics is the so called nuclear event [14, 15].
This is a hadronic process which results in the production of numerous secondary particles
and the deposition of a very large amount of energy. Due to the fact that the resulting
cluster exhibits similar properties as the cluster resulting from a delta electron event one
must identify and exclude nuclear events from the data sample (they pose background for
the analysis). Fortunately nuclear events are very rare and can be rejected easily by applying
a cut which rejects clusters with a very large total signal. We have deployed an additional
criterion for nuclear event rejection which is explained in section 6.2.

2.3. Multiple Scattering

A charged particle traversing matter is deflected by many subsequent scattering processes,
which are Coulomb interactions between the particle’s electrical field and the Coulomb

potential of nuclei. The net result of these interactions is calledmultiple scattering (MSC).
Figure 3 shows the different quantities that can be used to describe the process of multiple
scattering, obviously MSC results in an angular deflection and a spatial reposition after pas-
sage of the absorber.

x

splane
yplane

Ψplane

θplane

x/2

Figure 3.: Description of different quantities that describe the net effect of multiple scattering in a layer
of matter; taken from [5].

For a thin detector one can usually neglect the lateral shift yplane whereas the angular deflec-
tion θplane contributes even for very thin absorbers.
One can calculate the standard deviation of the planar scattering angle distribution of a
particle passing through a block of matter with thickness x

X0
(i. e. in units of the radiation

length) to be

σθ =
〈√

θ2
〉

=
13.6 MeV

pcβ
z

√
x

X0

·
[
1 + 0.038 ln

(
x

X0

)]
, (5)
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2. Interactions of Charged Particles with Matter

where p is the particle’s momentum (in MeV/c), z its electric charge and β = v
c
its velocity

in units of the speed of light [6].

2.4. Theory of Delta Electrons

A shell electron that is ejected from its atom due to ionisation by a particle is called delta
electron or knock-on electron. Usually one denotes delta electrons which have sufficient
energy to travel a measurable distance by the prefix "energetic" but this thesis discusses only
energetic delta electrons, therefore we will abandon the prefix.
The path or trajectory a delta electron travels after creation is called delta track or delta
ray. Obviously the distance a delta electron is capable of travelling is related to its momen-
tum and therefore the momentum transferred from the original particle. While traversing
matter the delta electron gradually deposits its energy, the amount over short distances x (in
the order of the pitch of a pixel of the detector used in this thesis) is approximately given by a
Landau distribution. When coming to rest the delta electron swiftly deposits an increasing
amount of energy; the signal distribution along the delta track shows a Bragg peak.
The relatively low energy of the delta electron results in severe angular deflection due to mul-
tiple scattering.6 This influence of MSC makes the delta electron’s trajectory very irregular
(i. e. it’s not similar to a straight line).
A pion of 120 GeV energy passing a silicon bulk of thickness 450µm yields a deflection angle
of σφ,π = 6.26µrad; a delta electron with kinetic energy Tδ = 1 MeV which passes through
1.5 mm of silicon yields σφ,δ = 1.1 rad; the values used in these calculations are taken from the
actual experimental data and a highly energetic delta electron event. The angular deflection
of the delta electron is several orders of magnitude larger than that of the pion; although we
can neglect MSC for high energy beam particles we cannot in case of delta electrons.
Figure 4 shows a schematic drawing of an event with a delta electron. The incident pion
ionised the silicon bulk, in a small cylindrical area centred on its trajectory, when passing it.
Among the low energy electron/hole pairs (which can be used to detect the pion) a single
energetic delta electron was produced which travels along the trajectory t under the initial
angle ϑ. Along this path electron/hole pairs are created which can be detected and used to
reconstruct the delta electron’s trajectory.
Under the assumption that the shell electron was resting previously to being ejected as a delta
electron, the initial kinetic energy of the delta electron equals the transferred energy Eloss of
the single ionisation process. As we have seen in section 2.1.3 this energy is selected randomly
from the straggling function. The energy transfer Eloss yields a corresponding momentum
transfer ploss which ipso facto determines the ejection angle θ of the delta electron. As the
two, Eloss and θ, are directly related we can assume that the ejection angle is stochastically

6 Cf. equation (5): σφ ∝ 1
βp .
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2.4. Theory of Delta Electrons

Figure 4.: Schematic drawing of delta electron created by a pion (blue trajectory) in a layer of silicon.
Black e−, h denote electron/hole pairs created by the pion, green ones are created by the delta electron
whose trajectory is marked in red.

distributed by a distribution of similar shape as the straggling function.
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Figure 5.: Plot of the ejection angle θ versus the
transferred energy Q for the relevant energy scale
in this thesis.

We define the ejection angle θ to be the angle
between the initial delta electron momentum
and the incident particle’s momentum prior
to ejection of the delta electron. The angular
distribution of delta electrons is given by [16]

θ = arctan

(
1

γ

√
Tmax

T
− 1

)
, (6)

where γ is the delta electron’s Lorentz-
factor, T its kinetic energy and Tmax the max-
imum energy transfer (see ref. [5]). This dis-
tribution yields angles very close to 90◦ for
the relevant range of delta electron energies
(cf. figure 5). The upper limit has been estimated by comparing the length of the longest
delta electron trajectory7 found in the analysis with the values in table 1.
The majority of delta electrons have a kinetic energy T < 0.5 MeV8 and thus are ejected
under an angle larger than 89.5◦. This behaviour of the angular distribution is very fortu-
nate for the analysis of delta trajectories in the detector plane: under the assumption that
the pion beam hits the detector plane virtually perpendicular almost all delta electrons are
ejected parallel to the detector plane and can thus be measured until their point of rest.

7 Which was found to be 2.89 mm, unfortunately the values in table 1 end for R = 1 mm, thus we estimated
the upper limit to be less than five times the value for R = 1 mm.

8 Estimate from the trajectory length distribution found in the analysis.
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2. Interactions of Charged Particles with Matter

One can approximate the number of delta electrons with energy ≥ Eδ created per centimetre
of the original particle’s track by

Σδ (Eδ) ≈ 153
ρZ

A︸ ︷︷ ︸
:=y

· 1

β2 · Eδ (keV)

[
cm−1

]
, (7)

where ρ is the material’s density (in g · cm−3), Z and A are its atomic number and mass and
β = v

c
is the particle’s speed in units of the velocity of light;9 this approximation holds within

a 10 % error [4]. While a particle traverses matter numerous delta electrons are created but
only very few have enough energy to travel a measurable distance. This delta production
fraction for different energies is one of the possible variables which shall be compared between
the measured data and the Monte-Carlo simulation.
The probability that a delta electron is created with enough energy to travel at least a
distance of 50 µm is approximately10 8 % [13].

T [keV] R [µm] T [keV] R [µm] T [keV] R [µm] T [keV] R [µm]

0.1 0.004 2 0.10 20 3.0 200 160
0.2 0.008 4 0.24 40 10 400 450
0.4 0.015 7 0.55 70 27 700 960
0.7 0.030 10 0.96 100 50 1000 1520
1 0.04

Table 1.: Typical ranges R of electrons with kinetic energy T in silicon. For T > 50 keV ranges were
calculated using the algorithm given in [17]; for 10 keV < T < 50 keV ranges were calculated as in [17]
and afterwards reduced smoothly to the experimental value at 10 keV. Overall the uncertainty in R is
estimated with 20 %. Taken from [4].

Due to the fact that delta electrons usually have low momentum the momentum reduction by
large angle scattering has to be taken into consideration when estimating the effective range
a delta electron may travel through matter. Table 1 shows estimated values of low energy
electrons traversing silicon as calculated in [4].

9 Eδ must be entered in keV; equation yields count per centimetre.
10 Assuming an energy Eδ > 100 keV and a distance x > 50 µm in a block of silicon of thickness d = 450µm.
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2.5. The Truncated Mean Descriptor

2.5. The Truncated Mean Descriptor

Bichsel proposes a method of calculating the most probable value of the straggling function
of a process by calculating the truncated mean; he defines the resulting variable C as the
truncated mean descriptor [4]. The truncated mean is a measure of central tendency; it is
calculated by discarding parts of a data set based on their deviation from the centre of the
set.
Bichsel defines the descriptor Cj of the trajectory j for the cut percentage p (i. e. the
percentage of entries that will be eliminated from the data set) by the relation

C
(p)
j :=

1

nt

nt∑
1

∆Ei
xi

,

where nt is the size of the truncated subset and ∆Ei
xi

is the signal deposited in the segment
i weighted by the length of this segment. For practical purposes it is useful to require –
independent of the percentage – at least a certain amount of entries to be removed from the
set prior to calculating C (this is essential for small sets where p · norig < 1). Usually it is
assumed that the influence of xi is either negligible or averaged [4] but can compensate large
signals due to unusually long track segments. It is advised to use equidistant track segments.
To calculate the MPV of a straggling function it is practical to use the one-sided truncated
mean i. e. the subset is defined by removing the largest n values.11 This ensures that the rare
low energy regime of the Landau distribution is sampled correctly and compensates for the
long tail (cf. section 2.1 and fig. 1).
Which value to choose for p highly depends on the structure of the trajectories which shall
be sampled; Bichsel recommends that the truncation fraction12 fr := 1−p may be between
0.5 and 0.7 [4].
The C(p)

j form a distribution whose maximal value defines the most probable value for the
MPV of the straggling function. The moments Mi of the distribution of C(p)

j for j ∈ J are
defined as

M1 :=
〈
C(p)

〉
=

J∑
j=1

C
(p)
j

J
(8)

M2 −M1 :=σ2 =
J∑
j=1

C
(p)
j

2

J
−
〈
C(p)

〉2
. (9)

11 Where n is defined as n := dp · norige.
12 Defined for one-sided truncated mean.
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2. Interactions of Charged Particles with Matter

2.5.1. Demonstration of Principle
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Figure 6.: Landau distribution with 25000 ran-
domly selected entries. Distribution’s MPV is at 3.0.

Figure 7 shows an example of an analysis us-
ing the truncated mean descriptor. For sim-
plicity we choose a random number of en-
tries per track (in the range [3 : 30]) and
select a random value from the Landau dis-
tribution shown in figure 6 for each track seg-
ment. Surely this approach is over-simplified
as not all track lengths are of equal proba-
bility (especially since tracks with more than
ten steps are very rare). Afterwards each set
of track values was analysed using different
values for p, the results are shown in the ex-
ample figure.
It is evident that the accuracy of the calcu-
lated MPV value depends on the value of p,

due to the fact that higher values for p cut more entries of the low energy tail the resulting
distribution has a maximum which is closer to the actual MPV.
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Figure 7.: Example analysis using the truncated mean method described in section 2.5 using values
selected randomly from the Landau distribution shown in fig. 6 (has MPV at ≈ 3.0). Different plots
show distributions of C(p)

j for changing values of p. Each individual track contained a random number
(between 3 and 30) of entries of the Landau distribution; 100000 tracks have been randomly created
and evaluated.
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3. The DEPFET Detector

The Deleted P-channel Field Effect Transistor detector [18–20] is an active pixel detector. It
has been successfully tested in several test applications [20–23] and its large scale application
in the upcoming upgrade of the Belle II detector [19] is in preparation.

3.1. Operation Principle

The DEPFET pixel structure is obtained by combining a p-type MOS transistor with a fully
depleted silicon bulk. The structure of one such DEPFET pixel unit is depicted in figure 8.

p-MOSFET: The p-channel Metal Oxide Semiconductor Field-Effect Transistor is a very
common voltage-controlled transistor type. It consists of three contacts (source, gate and
drain) which are created on an n-type substrate. The three contacts are placed next to each
other with the gate contact in the middle. The source and drain contacts are p+ doped and
insulated from the gate contact by a thin oxide layer.
By applying a sufficient negative voltage to the gate contact (w. r. t. the source contact)
an inversion layer is formed below the gate (in the substrate) and a channel is established
between source and drain whose conductivity is controlled by the voltage applied to the gate
contact.

Depleted Bulk: The unit’s bulk is depleted using the technique of sideward deple-
tion [22], that is to say the bulk is depleted by placing p+ contacts on top and bottom,
a shifted n+ contact on the offside of an n-type wafer and applying appropriate voltages [18].
A potential minimum (for majority carriers i. e. for electrons in n-type Si) is formed where
the two depletion zones (from top and bottom p+ contacts) meet whose depth in the bulk can
be controlled by the p+ contact voltages. The potential is focused in a spatially restricted
region by a deep n− doping; this electrophile potential trap is called internal gate. For
optimal operation it is necessary to place the internal gate in very close proximity to the
MOSFET gate contact; in current applications it is approximately one micron below the
surface [20].
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3. The DEPFET Detector

Figure 8.: Schematic drawing of a DEPFET pixel unit.

The Pixel Matrix Concept: For practical applications several hundreds of pixel units are
combined in a matrix to a single detector module similar to the sensor of a digital camera.
Within a detector module all units share the same source electrode which is kept at the same
potential throughout all modes of operation.13 Likewise the clear gate contacts of all units
are connected and kept at a small negative voltage (∼ 2 V). The drain contacts of the units
are connected column-wise and to a single Analogue-Digital Converter (ADC) per column. A
very high negative voltage (∼ −180 V) is applied to the bulk contacts of all units and will be
kept at that voltage during all modes of operation. The clear and the FET’s gate contact are
connected row-wise and the clear and gate contacts of each row are connected to a switcher
contact which is shared per row.

Signal Collection: In the signal collection mode the FET gate contact is at a small positive
voltage; the MOSFET is switched off. The clear voltage is placed at a voltage of approxi-
mately zero. A particle impinging on the Si bulk creates electron/hole pairs due to ionisation
which are separated by the external field (resulting from the large bulk voltage); the holes
flow to the backside contact and the electrons move towards the potential minimum where
they will be collected in the internal gate. The clear gate potential serves as a potential
barrier between internal gate and clear contact thus the electrons can be safely collected.

13 Usually the source contact is used as voltage reference and thus it is defined that Vsource = 0 V.
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3.1. Operation Principle

Readout Mode: During readout a small negative voltage (∼ −5 V) is applied to the FET’s
gate contact which switches the FET into its "on" state. In this state a conducting connection
is created between the source and drain contacts and due to the fact that both electrodes are
kept at constant potentials a current flows through the FET. This current can be measured
by the ADC connected to the drain contact.
The signal charges collected in the internal gate modulate the source drain current; the
modulation is given by the equation

dID = gQdQ , (10)

where dID is the current resulting from a collected charge dQ for a pixel unit with amplifi-
cation gQ [18]. During readout the signal charges remain in the internal gate therefore the
measurement is non-destructive i. e. it can be performed several times on the same signal
charges.
A more detailed explanation of the readout system used by the DEPFET detector can be
found in [24].

Clear Mode: The signal charges are stored in the internal gate until a large positive volt-
age is applied to the clear contact which creates a highly electrophile potential and allows
the signal charges to punch through the potential barrier of the internal gate towards the
electrophile zone at the clear contact. A deep p-well has been implanted below the clear
contact to rise a potential barrier between internal barrier and clear region which prevents
charge loss during the collection mode.
After the internal gate has been cleared a second readout process can be used to measure
the pedestal value. The pedestal value is the ADC value that is measured when there are no
charges in the internal gate, it depends on differences between units due to fabrication and
external conditions like temperature [13]. Due to the fact that it changes over time it must
be measured or calculated regularly.
Even if a pixel has not been hit the clear process is necessary as it keeps the internal gate from
saturating because the internal gate otherwise slowly fills with thermally generated electrons
and other noise artefacts which shield the internal gate potential (resulting in an insensitive
detector) [22, 25].

Gated Readout and Clearing: As stated before the pixels of a DEPFET module are ar-
ranged as a matrix and share several contacts row- and column-wise. Instead of using a
dedicated readout and clear activation for each unit a switcher system is used to activate
single rows for readout or clearing. The principle of this system is shown in figure 9.
The readout switcher activates all FET’s of a single row, the currents flowing can then be
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3. The DEPFET Detector

sampled by a single ADC per column. Afterwards the clear switcher pulses the clear contacts
of all units in the very same row to clear the signal. Then the switchers move on to the next
row and repeat the procedure.

Figure 9.: Schematic drawing of the gated readout
and signal purging method applied in the DEPFET
detector. The clear and read switchers activate
signal purging and readout row-wise (current row
highlighted by coloured writing) while every readout
channel (i. e. its ADC) reads the drain currents of
the pixel in the same column. Figure taken from
ref. [13].

This decreases the amount of ADC struc-
tures needed (and therefore reduces the ma-
terial budget) while maintaining an accept-
able readout speed. Additionally the gated
readout system guarantees that there is no
current flow in the non-activated DEPFET
rows which ensures low power consumption
of the DEPFET matrix [26].
The readout of the DEPFET is operated
in the so called rolling shutter mode, that
is to say that during charge collection
phase the switcher continuously "scrolls" the
DEPFET’s rows and enables and disables
the units of the current row. Once a trigger
signal arrives the ADCs start taking data,
i. e. data taking starts at a random row
which is determined by the current "posi-

tion" of the switcher chip. Unfortunately the data collected for the start row usually suffers
from bad quality, a phenomenon called start gate artifacts (cf. [13]).

3.2. Specific Properties

Due to its intrinsic amplification stage and large depletion zone the DEPFET detector offers
a very good Signal-To-Noise ratio (SNR) of 120 to 200 for pions of 120 GeV [21]. Its high
SNR in combination with the DEPFET’s small pixel pitch of 20 to 32µm yields a very
good intrinsic spatial resolution which is between 1 and 2 µm [21]. The large depletion zone
and the intrinsic amplification stage allows to thin down the detector which in turn lowers
the material budget, thus decreasing the effects of multiple scattering, which is one very
important criterion for the DEPFET’s use as vertex detector.
By using sidewards depletion the bias voltage necessary for full depletion can be up to four
times lower in comparison with a p+n diode [18].
Using modern semiconductor production technology it is possible to create the necessary
structures for a DEPFET detector on an area as small as 20µm, therefore yielding a very
high pixel resolution.
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3.3. DEPFET and Delta Electrons

By using the gated readout and clearing method the necessity for control structures can be
reduced which decreases the financial cost and the material bill (→ less multiple scattering).

3.3. DEPFET and Delta Electrons

A quantity used for comparing the noise characteristics of semiconductor detectors is the
Equivalent Noise Charge (ENC). The ENC is defined to be the amount of charges in the input
node of a system (i. e. the number of signal charges in the internal gate of the DEPFET)
in electrons that is equivalent to the total noise of the readout chain at the output node
(usually given in ADC counts) [16]. A method for measuring the noise value is to place the
detector in a pure environment (i. e. no particles are passing the detector) and calculate the
fluctuation of the measured signal which should be distributed as a gaussian. The standard
deviation of the gaussian can be used to estimate the noise value. Furthermore the ENC
can be calculated from calibration constants like gQ.
For the experimental setup used for collecting the data used in this thesis the ENC value was
ENC ≈ 280 e−. Due to the low noise profile of the actual detector stage the ENC is mainly
influenced by the ADC and readout system and thus is highly dependent on the used setup.
Generally the ENC of a readout system rises with increasing readout time.
The large depletion zone and the relatively thick modules used in the analysis (d = 450µm)
provide a large sensitive volume. This is of great advantage for a delta electron analysis as
the large depletion zone ensures highly accurate signals and due to the thick silicon bulk the
probability of the creation of a delta electron is increased.
The good signal yield allows to resolve the small energies deposited by a delta electron (which
are in the magnitude of few times of the noise value) and in combination with the very small
pixel pitch, which is as low as 20µm, even the trajectories of delta electrons can be resolved.
The analyses that are undertaken in this thesis are only possible because of the very specific
attributes of the DEPFET detector.
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4. Test Beam

4.1. Experiment

The experimental data that was used in this thesis was taken during run 2169 of the test
beam in 2009 at beam line H6 of the CERN Super Proton Synchrotron (SPS).

Particle Beam: The particle beam used is created by colliding protons extracted from the
SPS with a wolfram target. The secondary particles created in this collision – which are
mostly pions – are processed (i. e. focused and channelled) for test beam usage.
The beam content used in the 2009 test beam session consisted of either electrons or pions
at energies between 40 and 120 GeV. In run 2169 the beam consisted of pions at 120 GeV.
The data sample of run 2169 is approximately 80 thousand events large.

Detector Setup: The setup consisted of six DEPFET detectors which were placed as close
as possible to one another along the beam line to minimise the effects of multiple scattering
(see fig. 10b for dimensions and arrangement). A particle hit was triggered using two scintil-
lators in front and behind the six modules.

(a) Global (b) Telescope Setup

(c) Local

Figure 10.: Telescope arrangement properties. Fig. 10a: Global (telescope) coordinates. Fig. 10b:
Detector arrangement in the telescope along the beam line as used in the 2009 test beam, SC marks
trigger scintillators, position along beam line is given in global coordinates; taken from [21]. Fig. 10c:
Local (per detector) coordinates.

The telescope was comprised of five detector modules, which were of the same type; their
parameters have been kept constant throughout the different runs and they were used as

21



4. Test Beam

reference modules. The sixth position (located at mounting point two downstream from the
first scintillator, counting starts at zero) was inhabited by three different modules on which
the different tests were performed, the currently active was called Device Under Test (DUT).
The telescope setup allows to reconstruct the event data using five reference modules which
have been well-studied in previous experiments. Later this reconstructed data can be com-
pared to the data gathered from the DUT and its performance can be analysed.

Coordinate Systems: The global coordinate system depicted in figures 10a and 10b corre-
sponds to the lab coordinate system, it is a Cartesian coordinate system where z equals the
beam axis. The local coordinate system is a per detector coordinate system whose origin is
placed in the centre of the detector. It is a Cartesian coordinate system where w equals the
normal vector of the detector module and u and v are in the detector plane. A rotation of the
detector module is parametrised by the three Euler angles α, β and γ. One can transform
a global coordinate #»r = (x, y, z) into a local coordinate #»q = (u, v, w) using the relation

#»q = Ri

(
#»r − #»r

(i)
0

)
,

where Ri = Ri (αi, βi, γi) is the rotation matrix of module i and #»r
(i)
0 its shift from the global

coordinate origin.
Any event reconstruction needs full telescope data and therefore it is essential to perform
an alignment of the telescope modules, i. e. to calculate the shift (coordinates u, v, w) and
rotation (coordinates α, β, γ) of every telescope module.

Detector Modules: The detector thickness for all modules was 450 µm for pixel matrices
of size 64× 256 pixels.
For the delta electron analysis all telescope modules are treated equally because this analysis
does not evaluate the performance of the single DUT but the performance of the Monte-

Carlo simulation in comparison with similar physical detectors. Table 2 lists the properties
of the DUT modules used during the test beam; the DUT used during run 2169 was the
STD module.
Using equation (5) one can calculate the expected angular opening due to MSC of a parallel
120 GeV pion beam interacting with a detector module of above dimensions to be approxi-
mately 6.26µrad,14 the resulting spatial reposition after passage of the whole test beam setup
equals 1.7 µm which is in the order of the spatial resolution of a single module. However,
due to the fact that the total reposition is comparably small we will neglect the effects of
multiple scattering on the pions in the course of the analysis. The telescope modules have

14 Using the silicon radiation length of X0 = 9.36 cm [5].
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4.2. The Test Beam Reconstruction Chain

DUT S/N gQ
[

nA
e−

]
∆A [mm2] dir. P [µm] ∆d [µm]

STD 128.4± 2.8 379± 15 1.536× 6.144
x 24 1.19± 0.16
y 24 1.39± 0.06

C3G 148.4± 5.2 516± 21 2.048× 6.144
x 32 1.55± 0.13
y 24 1.51± 0.06

HiG 213.3± 7.7 688± 27 1.280× 5.120
x 20 1.03± 0.19
y 20 1.34± 0.07

Table 2.: Properties of the DUT modules used in the 2009 test beam: S/N: Signal-to-noise ratio;
in-pixel gain gQ; active area size ∆A; pixel pitch P and spatial resolution ∆d per direction. Taken
from [13].

similar properties as the STD module except for their pixel pitch which is 32× 24µm.15

Further information about the test beam at CERN SPS and its results can be found in the
paper of the associated analysis [21].

4.2. The Test Beam Reconstruction Chain

Figure 11.: Diagram of
analysis flow, grey box de-
picts delta ray analysis.

Prior to any analysis it is necessary to reconstruct the actual par-
ticle hits and their corresponding particle tracks from the raw de-
tector data. In order to do this several processors for the ILCSoft
analysis framework [27] have been – specifically for the DEPFET
analysis chain – developed.
In this section these processors shall be presented and their pur-
pose will be explained in detail. The flow of the reconstruction
chain and the successive delta ray reconstruction and analysis is
depicted in figure 11. The parameters used by the reconstruction
programs are listed in appendix A.

4.2.1. Pedestal and Common Mode Correction

The raw signal of pixel i, j measured by the test beam setup is
composed of four different contributions [13]: the pedestal value,
the common mode noise, the gaussian readout noise and the
charge signal:

Sraw
ij = Sped

ij + Scm
ij + Snoise

ij + Ssig
ij .

15 Naturally this changes the active area, which is defined for direction i by ∆Ai := Pi ·Ni where Pi is the
pixel pitch and Ni is the number of pixels in the matrix in direction i.
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4. Test Beam

Two contributions, the pedestal value and the common mode noise can be entangled in the
preprocessing. The pedestal value – sometimes called dark pixel value – is the base pixel value
that is measured when no charges are collected. It can either be measured (cf. section 3.1)
or calculated from the raw data using frames without hits.
The common mode arises from the fact that the gated readout technique on the double pixel
(i. e. two pixel share a source contact) of a DEPFET module induces a noise component.
This noise is row-wise correlated [13] and in the order of ≈ 20 adu. It can be calculated from
the raw data measured during the test beam.
The corrections for pedestal and common mode have been done previously by Geisler [13]
and are explained there in great detail.

4.2.2. Zero Suppression

The DEPFET Detector yields full-frame data in a matrix format, that is to say the data file
includes the pixel information of all pixels for each event. Fortunately, however, the majority
of the detector will only contain noise as a particle hit is usually limited to very few pixel
and the number of hits in a test beam setup is very low.
The zero suppression processor takes the raw data collection, the detector’s status map and
the corresponding noise map and returns a collection which contains only pixel with good
status and whose signal value exceeds the noise value by a certain factor.

4.2.3. Clustering

In order to identify particle hits and perform an analysis on the signal distributions on the
detector it is crucial to have an efficient and effective clustering algorithm. This clustering
algorithm joins adjacent firing pixels to a new object called cluster which – in theory – should
eventually contain all signal generated by one hit.
Using the zero suppressed data the processor searches possible cluster candidates by combin-
ing pixel which are nearest neighbours. The criterion of the nearest neighbour can be applied
with different levels of strictness, the most strict allowing only merging of pixels with common
edge and the most lenient allowing merging for pixel which are separated by a one-pixel gap.
After all pixels have been merged to cluster candidates it is checked whether the clusters
comply with different signal criteria.

24



4.2. The Test Beam Reconstruction Chain

4.2.4. Hit Reconstruction

The next step is to identify particle hits from the cluster data which was yielded by the
previous processor.
A sophisticated approach for track reconstruction is to apply a centre of gravity (COG)
algorithm, which weights the pixel signal’s and their position; the hit position r is then given
by

r =
1∑
Sij

∑
rijSij

with Sij being the signal at the pixel centre rij (in local coordinates). Figure 12 shows
a schematic drawing of a hit cluster and the reconstructed hit position. In general this
algorithm performs well and is very robust therefore it is used in the reconstruction chain for
this thesis.

Figure 12.: Schematic representation of centre of
gravity position finding algorithm, depicted are nine
pixels with measured signal (light→ low signal, dark
→ high signal) and the resulting reconstructed hit
(marked by star) [13].

Figure 13.: Effect of signal deposited by delta
electron on the hit enlargement; values are esti-
mated from actual analysis results of the test beam
data i. e. for a pion of 120 GeV impinging of 450
µm silicon. The typical delta event is taken as most
probable delta event found in the analysis (cf. sec-
tion 7.2).

The hits calculated here will only be used for the reconstruction chain because neither of
the hit making algorithms implemented in the processors of the reconstruction chain can
cope with the peculiar geometry of delta clusters. Figure 13 shows the enlargement of the
cluster of a hit with a delta electron. Obviously a pure COG hit reconstruction algorithm
will place the hit falsely for the example depicted, it suffers from a systematic uncertainty.
This can be solved by removing the delta trajectory segment from the cluster prior to the
hit reconstruction. The results of this thesis may be of help when developing a routine that
is capable of doing this.

25



4. Test Beam

4.2.5. Prealignment

The correlator processor performs a prealignment of the different telescope detector modules
in the x− y-plane, the plane perpendicular to the particle beam.
This is done under the assumption that the particle beam is along the z-axis and has a
very low spread (→ small opening angle). This allows only one free parameter for any full-
telescope particle track: the hit position on a reference plane. Using the hit on the reference
plane hits on the other planes are matched and the deviation of these hits from the straight
line fit is then used as alignment correction. The actual alignment correction is determined
by selecting the most-probable value from the histogram of all alignment corrections in the
analysis data sample.
This method is insensitive to misalignment in z-direction and its performance is affected by
a) a beam that is not parallel to the z-axis b) rotated detector modules; or c) a beam with
wide spread. After the prealignment a set of starting values of the three spatial coordinates
and three rotation angles of every modules is known. The position of the modules along
the beam line (i. e. z-axis) is taken from the measurements of the telescope, the x and y

components is calculated by the prealignment and the three rotation angles are estimated to
be zero (i. e. no rotation).

4.2.6. Alignment

The main alignment of the telescope modules is done using two different processors.
At first a set of telescope tracks is gathered which comply with a number of very strict
criteria. This is done by matching all possible hit patterns using a Combinatorial Kalman

Filter (CKF) to gather track properties and finally selecting the optimal set of tracks from
these properties. The selection is based on the track χ2 (which is to be minimised); the
optimal selection guarantees that no hit is assigned to two tracks. As the tracks will be
used for alignment purposes only we demand that each of the reconstructed tracks hits all
telescope modules.
The second step is to use these alignment tracks with a Kalman filter for alignment [28–
30], this is done by calculating the evolution over the course of the run for each alignment
parameter from the alignment tracks. Eventually this data set allows the alignment of the
telescope modules in both tilt and shift with a very high precision of < 0.1µm for shifts and
< 10−5 rad for tilts.

4.2.7. Track Reconstruction

The track reconstruction uses the same data processor that has already been used for the
main alignment and has already been described in subsection 4.2.6. However, as this step
should reconstruct tracks for analysis we use a changed set of thresholds for the steering
variables.
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5. Monte-Carlo

The Monte-Carlo simulated data that was used in this thesis was calculated using the
Mokka toolkit [31] with Geant4 [11, 12, 32] in version 4.9.3.p01 as physics simulation and a
DEPFET digitiser simulation [33].

5.1. Simulation Characteristics

The simulation of a particle passing through a detector plane is split in two steps [13]: first
the physics processor Geant4 simulates the interaction of the incident particle with the sensor
bulk. This process is controlled and executed by the Mokka package; within this wrapper the
individual beam particles are tracked through all layers of the telescope.16 The trajectory and
passage simulation is split in G4-steps, that is to say track segments for which the physical
quantities (e. g. energy loss, angular deviation etc.) are calculated and stored explicitly.
Afterwards the digitiser stage uses the combined set of all G4-steps to simulate the charge
collection (i. e. the actual detector) [13, 33]. This is done in three separate steps: 1st: The
energy loss between two segments is converted into the number of created signal electrons.
These signal charges are grouped in clusters called ionisation-points and placed along the
track between the two segments. 2nd: Now the electron drift and diffusion in the detector
bulk is simulated. The digitiser stage uses simplified model assumptions of the DEPFET’s
electric field distribution. A gaussian noise is added which reflects both amplification and
sampling noise. Afterwards the zero suppression is applied and the data of the remaining
firing pixels is stored.
Figure 14 shows a schematic representation of the digitiser simulation. The performance of
the digitiser stage is discussed in reference [13] extensively.
The physics list used in the simulation by Geant4 was the QGSP_BERT17 list. This physics list
is the one currently most recommended for high energy physics experiments by the Geant4

developers [32]; possible models mostly differ in the simulation of the hadronic interactions
which are of little interest throughout this thesis. The more relevant electromagnetic inter-

16 Those layers are silicon (sensors), air and other materials (e. g. support structure).
17 QGSP is an abbreviation for Quark-Gluon String Precompound, BERT for Bertini Cascade

Model.
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5. Monte-Carlo

Figure 14.: Scheme of operation of digitiser stage simulation. A pion’s trajectory through the silicon
bulk is sampled in G4-steps (steps between white filled circles), delta electrons created are sampled
similarly (grey filled circles). The total energy loss per G4-step is distributed in ionisation-points along the
segments. The ionisation-points may be smeared due to diffusion while drifting towards the sensor surface
(lateral diffusion is dependent on diffusion length). The surface charge distribution is composed of the
contributions of the individual ionisation-points’ charge distribution; the decomposed surface distribution
is integrated and a gaussian noise component is added. Modified version image taken from [13].

actions are usually simulated by the Standard EM Model which uses the Urban model
– which has been explained in section 2.1.3 – for simulation.
Geant4 allows the generation of a delta electron only if the transferred energy exceeds a
threshold energy Tc, whose value is defined by atomic parameters and a material specific
cut value Tcut [11]. Below the threshold specified by Tcut the soft secondary particles are
simulated as continuous energy loss of the original particle, above the ejected delta electron
is simulated explicitly.
The value used for Tcut is actually given as threshold range r which is then converted – by
Geant4 – to a corresponding range. We used a range cut of r = 1 µm in silicon.
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5.2. Detector Calibration

5.2. Detector Calibration

Due to the fact that the test beam (TB) data is gathered in a real life setup, including a
full readout chain, the signal values stored in the data files are given in ADC counts (ADC
units, ADU). The Monte-Carlo (MC) simulation on the other hand is performed without
a readout chain and thus without an ADC; the signal values are given as the actual number
of electrons Ne created by ionisation and collected in the internal gate.
In principle one can convert the number of electrons to the resulting drain current using
equation (10), afterwards the actual ADC value is given by the ADC’s range and conversion
factor; the two steps can be executed in one by combining the conversion factor and gQ.
Unfortunately the conversion factor is not known a priori and must be extracted from the
test beam data. For simplicity we assume that all charges created by ionisation are collected
in the internal gate by diffusion or drift i. e. we assume no charge losses. Due to the fact
that each DEPFET module has its own ADC the conversion factors differ slightly between
modules. As a rule of thumb: 15 ADU approximate to 280 e−.
The actual conversion factor k, defined via the relation

1 ADU ≡ k ·Ne

can be calculated for a defined pair of Monte-Carlo and test beam data by fitting the
cluster charge distributions of MC and TB on a per detector basis using one parameter which
is multiplied to one of the data sets (the basic principle is similar to the method described
by Bichsel in [4]). In this analysis we chose to measure all charges in ADU therefore we
matched the cluster charge distribution of each TB module to k times the charge distribution
of the MC module with the same plane number.

Plane No. 0 1 2 3 4 5
Conversion factor k [adu] 0.0535 0.053 0.0477 0.0505 0.05 0.051

Table 3.: Conversion factors from Ne to ADU for used Monte-Carlo data in reference to test beam
data.

This yields the conversion factors listed in table 3, the (logarithmic) plots of the charge
distributions of the different modules for the test beam data and the MC data have been
included in figure 16. They show very good agreement of the peak and the upper flanks for
all modules except module 0. After realising that full matching of the distributions is not
possible for module 0 we chose to match the peak position as well as possible, however, this
impairs the matching of both flanks.
The TB data shows a very distinct low signal tail which can be explained by the start
gate artifacts explained in section 3.1; these artifacts can be removed from the data sample,
however, we refrained from doing so as we assume that this is not of importance for the delta
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ray analysis. The large fluctuations of the distributions for large signals can be explained
due to bad choice of binning. The binning depicted was chosen because it allows to match
the peak and the upper halves of the flanks with high precision, unfortunately this degrades
the quality of the plot in the region of high signals.

5.3. Data Cross-Check

Prior to analysing the properties of delta electrons in the different data samples we performed
a cross-check of the data sample. Under the assumption that the MC sample yields physically
correct events the distributions of quantities like the cluster size should be very similar when
comparing the two data sets.

Thus we performed an analysis of the cluster size distributions on a per module basis regard-
less of the individual event’s delta classification (i. e. the whole data sample was used).
We find the distributions for the different modules of the two data samples to be in very
good agreement, figure 15 shows these distributions for two exemplary modules. Module 2
is the only used module with pixel pitch 24 × 32 µm which generally yields larger clusters
(maximum of distribution in fig. 15a is shifted rightwards is comparison to fig. 15b). This is
a direct result of a smaller pixel pitch as the physical charges are measured by more physical
pixel units (the process of reading a common charge source with different pixel units is called
charge sharing) which in turn yields more firing pixels per cluster i. e. a larger cluster size.
The effect is most prominent in the distribution of the cluster size projected to the column
direction as this is the direction in which the pixel pitches differ.
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(b) DUT 3, P = 32× 32 µm
Figure 15.: Cluster size distributions for experimental and Monte-Carlo data sample for modules 2
and 3. Distributions have been normalised to an area equal to unity.

In conclusion we find very good agreement of the different distributions for the two data sam-
ples. This allows us to continue analysis and perform the actual delta electron reconstruction
and analysis.
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Figure 16.: Charge calibration plots, conversion factor k already applied to MC data sample.
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6. The Delta Ray Analysis Program

6.1. Analysis Concept

The goal of the delta ray analysis program is to select a set of delta clusters from the initial
data sample and transform the abstract pixel matrix given by the previous reconstruction
programs (cf. section 4.2) into an object which describes the characteristics of the individual
delta events. Prior to explaining how to parametrise a delta cluster it is useful to discuss
some of its characteristics.
It is to note that from here on the term "track" is to be understood as delta trajectory, the
pion track through the whole telescope will be named telescope track.

6.1.1. Delta Cluster Characteristics
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Figure 17.: Example of delta cluster with telescope
track cluster and Bragg cluster. Telescope track hit
in upper left corner, Bragg cluster in lower right
corner.

The physical depiction of a delta electron has
been shown in figure 4; the measured signal
can be seen as a pixel matrix of values, an
example is shown in figure 17. Shown is a
segment of the pixel matrix of the detector
i. e. the pixel coordinates (in pixel ID) are
shown on the two axes. The colouring of the
individual pixel entries corresponds to their
signal. Entries which are white depict blank
pixels i. e. pixels without a signal.
A typical delta cluster is comprised of at
least two different characteristic segments:
Where the telescope track hit the active
plane one can find an (more or less) ellip-
soid cluster segment which is the result of
the initial telescope track hit. It is usually contained in a rather small area, typically inside a
3× 3 pixel area. The properties of this segment should in theory be very similar to ordinary
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6. The Delta Ray Analysis Program

(non delta) clusters and can therefore be used to calibrate the signal. In figure 17 one can
identify the telescope track hit cluster segment in the upper left corner.
Another segment every delta cluster is comprised of is the delta trajectory segment which
is usually a rather thin segment that can stretch for several tens of pixels. This segment
is the most important part of the cluster for a delta electron analysis as the whole energy
deposited within this segment was carried by the delta electron and the scattering processes
experienced by the delta electron define the curvature of the segment. The above example
shows a rather thin delta trajectory cluster segment which expires in an optional cluster
component: the Bragg cluster segment.
In most cases when a delta electron comes to rest and deposits its remaining energy in a
Bragg peak (cf. section 2.1) the delta trajectory exhibits an (more of less) ellipsoid cluster
segment at the end of the trajectory. This is a result of the fact that the large number of
charges created by the halting delta electron in the detector’s silicon bulk can diffuse and
thus spread further while maintaining a significant (i. e. measurable) signal. Referring to
the above example one has to note that the Bragg cluster segment depicted is rather large,
usually it can be contained in a 3× 3 pixel area.
In case that the delta cluster is rather small (i. e. the delta trajectory is fairly short) the
different segments blend into each other and cannot be separated easily.

Device Under Analysis (DUA): The DUA is the telescope module which is analysed in
the current analysis step.
The special properties of a delta cluster cause great problems for the track finding algorithm
due to bad hit matching (cf. section 4.2.4). It is, however, possible to manually fit the
telescope track to a selected delta event by disallowing the track finding algorithm to match
its tracks to the DUA and then – in the actual delta track processor – calculating the point
of impact of the telescope track on the delta cluster. Therefore we deemed it necessary to
split analysis starting from the track finding algorithm into a per-detector analysis. That is
to say the delta ray reconstruction and analysis is performed on a per-module basis with the
DUA being the module whose delta events are currently analysed.
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6.1. Analysis Concept

6.1.2. The Delta Trajectory
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Figure 18.: Delta trajectory calculated from the
cluster already given in fig. 17. The black arrows
represent the delta trajectory i. e. the delta electron
was created in the upper left corner and came to rest
in the lower right corner.

For this analysis it is necessary to identify
the trajectory of the delta electron, i. e. to
transform the pixel matrix representation
shown in figure 17 into the track represen-
tation shown in figure 18 (the black arrows
depict the track steps).
This poses several problems: There may be
multiple delta electrons created in one event
and thus there may be multiple tracks ori-
ginating from the telescope track hit or the
delta tracks may branch.
Furthermore there may be gaps in the delta
track as the charge deposited may be lower
than the zero suppression threshold (due to
the fluctuations in the charge deposition de-
scribed in section 2.1). A still rather small in-track gap is depicted in figure 19a. The delta
electron can change direction rapidly and severely, resulting in a heavily curled trajectory as
shown in figure 19b. These two classes of problematic situations are especially tricky because
to resolve these an algorithm must check a wider range of possible next track steps which
may yield false results for delta clusters which are composed of extensive areas of firing pixels
(a problematic situation as well).
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Figure 19.: Examples of problematic situations for a delta trajectory determination algorithm; white
numbers show pixel signal value in adu.

To be able to use the full data sample and perform an analysis as unbiased as possible, it
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6. The Delta Ray Analysis Program

is necessary to cope with these situations. Naturally no one algorithm can identify all delta
events correctly and determine the exact delta trajectory in all cases, thus it is necessary
to implement quality checks which reject single events based on the compatibility of the
calculated delta characteristics with the pixel matrix.
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Figure 20.: Signal distribution along path for tra-
jectory depicted in fig. 18.

Eventually the algorithm has calculated a
delta trajectory which allows (among other
things) to calculate the distribution of the
deposited charge along the delta trajectory;
this is shown in figure 20 for the trajectory
depicted in figure 18.
Parameters like the total charge along the
path, the physical path length and others
can be used to calculate the distributions of
these values for all delta events found. These
distributions can then be used to compare
the behaviour of delta electrons in different
data samples. Due to the statistical nature
of the elementary physical processes it is not
meaningful to compare single events from

different samples directly but distributions of certain variables (like the aforementioned)
allow comparison. Usually these variables are based on a certain feature of the physical
appearance and are thus called shape variables.

Escaping Delta Electrons: Due to the fact that the DEPFET sensor area is finite one
has to keep in mind that a delta trajectory may escape the active area. Although this is
unfortunate – as it results in loss of information – we assume that the influence of such events
is rather low and can be compensated by using a sufficiently large data sample. However,
when calculating e. g. the total charge deposited by a delta electron the rare very long delta
tracks are of crucial relevance as they define the high energy tail of such a distribution.
Unfortunately they are also the ones most probable to escape the active sensor area.

6.1.3. Physical Interpretation

The properties of the delta electron trajectory calculated can be used to determine the phys-
ical quantities describing the event. We reason that for every delta electron that comes to
rest within the detector it should be possible to find a Bragg-peak (cf. section 2.1) therefore
a check for existence of a Bragg-peak could be used to determine whether a delta electron
is fully contained in the active sensor area.
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6.2. Delta Selection

By determining the total signal value that has been matched to the delta electron one can
estimate the transferred energy Eloss of the ionisation process that created the delta electron
and thus the ejection angle θ. Using only delta electrons escaping the detector plane (i. e.
delta electrons without a Bragg peak at the end of their trajectory) one can use the com-
bination of θ and L (i. e. the length of the delta trajectory) to calculate the creation depth
z within the detector plane. These three quantities fully describe the ejection of the delta
electron.

6.2. Delta Selection

The full set of events reconstructed using the program chain explained in section 4.2 is
examined with regard to certain criteria to select delta events. Appendix A contains of list
of the program options and thresholds used in the delta ray reconstruction and analysis.

Size Criterion: Due to the fact that a delta cluster is comprised of a normal telescope hit
cluster with an additional delta track cluster segment (section 6.1.1) the most straightforward
criterion for delta event selection is the cluster size i. e. the number of firing pixels in a cluster.
Therefore the initial selection of delta event candidates is done by selecting all clusters whose
size exceeds a certain threshold.

Telescope Track Hit Criterion: To reject false clusters (e. g. noise clusters) it is checked
whether there is a telescope track existent for all delta cluster candidates. Therefore it is
indispensable to match the telescope tracks existing for the current detector event to the
active plane i. e. to calculate the telescope track hit on the DUA. The criterion requires that
one of the telescope tracks must exhibit a fitted hit on the delta candidate’s cluster area; the
fitted hit point defines the starting point of all delta trajectories of the cluster. To ensure
that the results of this check criterion are of high quality it is required that the χ2 value of
the track suffices a quality threshold.
It is reasonable to assume that the initial particle continues travelling through the telescope
after setting the delta electron(s) free. Therefore the telescope track should continue after
the plane the delta electron was created on. We use this fact to reject nuclear events because
in case of a nuclear event the initial particle should be deflected by a large angle (thus the
telescope track "ends" on the delta plane because the track finding algorithm cannot cope
with this).
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Cluster Merging: Finally it is checked whether any of the clusters found on the DUA
for the current event ID can be merged i. e. whether two clusters are closer than a certain
threshold. This copes with delta trajectories which exhibit a gap that is wider than two
pixels in either direction because those type of clusters will be reconstructed as two separate
clusters by the clustering processor (cf. section 4.2.3).

6.3. Track Reconstruction

The Delta Track algorithm is a signal based algorithm developed for calculating the track of
a delta electron from the cluster charge distribution of the event. It is capable of determining
multiple delta tracks – corresponding to multiple delta electrons – if there are any in a delta
cluster. It performs very well (cf. section 6.3.2).

6.3.1. Operating Principle

The algorithm tries to find a possible trajectory (consisting of successive pixel coordinates)
of the delta electron starting at the telescope track hit location. This is done iteratively
such that in each iteration a new step is added to the trajectory and a single pixel (the end
position of the previous iteration) is removed from the cluster data collection. Therefore for
each iteration there is an origin pixel which corresponds with the pixel that was added to
the trajectory in the previous step.
The most basic principle deployed by this algorithm is to check all existing nearest neighbour
pixels of the current origin for their charge signal; a nearest neighbour pixel is one which
shares either a side or an edge with the current origin. Then the algorithm selects the pixel
with the largest signal to be the next step in the trajectory.
Nevertheless the actual algorithm cannot be described this simple: numerous subroutines
and checks have been implemented to cope with different problematic situations (such as
those explained in section 6.1.2) but they will not be explained in detail in this document.
It is noteworthy that the algorithm is restricted to steps in a forward cone with an angular
width between 90 and 180◦ (direction is defined by the previous track step’s direction).
Furthermore to cope with gap situations the algorithm allows steps which do not connect
nearest neighbours but this is only possible when a gap situation is found.
The distance between two steps which have not been reconstructed by the gap resolution
routine is always either P or

√
2P where P is the pixel pitch18 i. e. exactly one pixel width

in either direction or both directions. This allows to use the reconstructed delta trajectory

18 Assuming square pixels, otherwise one can find the distances Px, Py,
√
P 2
x + P 2

y .
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6.3. Track Reconstruction

to calculate the charge path distribution i. e. the distribution of deposited charge along
the path or Q (xi, xi+1), where Q is the deposited charge between the track segments xi and
xi+1.
Although one cannot compare the resulting distributions between modules or data samples
due to the stochastic nature of this distribution, it is possible to define shape variables based
on the distribution’s shape.

6.3.2. Algorithm Efficiency

DUA_0 DUA_1 DUA_2 DUA_3 DUA_4 Comb.

E
ffi

ci
en

cy
 [%

]

90

91

92

93

94

95

96

97

98

99

100

TB MC 

Figure 21.: Efficiency of the delta track algorithm.

For testing purposes we have calculated the
efficiency of the delta track algorithm. The
efficiency ε is defined by the relation

ε :=
Nfin

Nδ

,

where Nδ is the number of selected delta
events (i. e. the number of events which
passed all selection criteria) and Nfin is the
number of events for which one or more delta
trajectories have been found and which have
not been rejected by a veto criterion. It is
important to note that one must ensure that
events with multiple delta trajectories count only as one entry towards Nfin. The resulting
efficiency diagram is shown in figure 21 on a per module basis and for the combined data set.
Obviously the algorithm performs with a very good efficiency which fluctuates by approxi-
mately 1 % around a value of 95 %. We cannot identify any modules which perform badly
and are very satisfied with the overall result.
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7.1. Delta Fraction

7.1.1. Definition

Possibly the most obvious criterion for the comparison of different sets of data is the Delta
Fraction fδ that is the percentage of delta hits among all valid hits. We have deemed a hit
to be valid if a telescope track has been found for the corresponding plane hit. Therefore fδ

is defined by

fδ :=
Nδ

Nhit

.

To analyse the performance of the delta event selection process we have defined another
quantity, called Delta Size Fraction fs, which is defined by

fs :=
Ns

Nhit

.

where Ns is the number of hits which sufficed the cluster size criterion of the delta selection
process. This criterion can be used to check whether there are many large clusters in the
data sample which are eventually refuted as delta electron event.
Furthermore the delta fractions are a measure of the delta production rate and thus allow to
evaluate the simulation of the production cross section.

7.1.2. Results

The resulting values for the two delta fractions are shown in the graph in figure 22. The dis-
crepancies between TB and MC found for fδ are in the order of one percent, which concurs
with the discrepancy between modules in the experimental sample. Thus we conclude that
the delta fraction fδ is simulated accurately.
The size delta fraction fs differs by approximately two percent between experiment and MC

41



7. Delta Electron Analysis

whereas the deviations between modules are in the order of one percent. The discrepancy
is not very large, it is roughly twice the in-sample fluctuation, however, we are not certain
how this discrepancy arises. Possible candidates are a wrong interaction cross section for the
elementary physical process, faults in the delta electron creation (i. e. wrong/bad cut values)
or "real life" effects (i. e. anything that has not been simulated but occurred in the actual
data taking).
Despite the slight deviation in fs we are satisfied with the generation rate of the MC as the
more significant fraction fδ (which is of particular importance as the events comprising fδ

are the ones that were analysed further) is in very good agreement when comparing the two
samples.
The errors shown are calculated using the assumption that the two components of the frac-
tions are poisson distributed and thus have a standard deviation which is equal to

√
N where

N is the value used for calculation. The error of the fraction entries has been calculated by
propagating the individual errors i. e. the errors are estimated by

σfδ =

√(√
Nδ

Nhit

)2

+

(√
Nhit ·Nδ

N2
hit

)2

and σfs =

√(√
Ns

Nhit

)2

+

(√
Nhit ·Ns

N2
hit

)2

.
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Figure 22.: Plot of delta fractions f per DUA and combined.
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7.2. Delta Track Length

7.2. Delta Track Length

The distribution of the track length

X :=
∑
i

xi

for the combined data of all DUAs is given in figure 23 for the two data sources. The
distributions show good agreement between TB and MC data. Taking a closer look we find
that the number of short delta tracks is slightly larger for the TB data set, consequently we
find slightly more long delta tracks in the MC sample.
The logarithmic plot in figure 23b shows a slight deviation between the data samples for very
long delta trajectories, however, due to limited statistics, this might be a result of the small
number of entries for large distances.
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Figure 23.: Distribution of the delta track length using the combined data of DUAs 0 to 4. Distributions
have been normalised to an area equal to unity.

The errors of the distribution entries as shown are statistical errors which have been calculated
by the ROOT framework [9].

7.3. Line Likeness

7.3.1. Definition

The Line Likeness L is a criterion which represents the deviation of the calculated delta
trajectory from a straight line between start and endpoint. It can be used to compare the
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experimental and Monte-Carlo data. It is defined by the relation

L :=
X∑n
i=1 xi

,

where xi are the distances of the n track segments which constitute the delta trajectory and
X is the distance between the first and last point of the delta trajectory. Due to the fact that
the delta trajectory trajectory is always longer or of equal length when compared with the
straight line between start and endpoint, L is in the range ]0 : 1]. The inverse line likeness,
which is defined as L−1 := 1

L
, is always larger or equal to one.

This variable represents the result of the scattering processes a delta electron undergoes
because each scattering process results in a small deflection which in turn increases the
trajectory’s length and thus decreases L.
Figure 24 shows an example of an event with a considerably small line likeness. Obviously
the delta trajectory is curled and the delta electron has been deflected several times by a
large angle, the resulting value for L is thus a lot smaller than unity.
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Figure 24.: Example application of the line likeness shape variable, event taken from the test beam
data. Line likeness has been calculated to be L ≈ 0.48. Delta trajectory shown as black arrows, straight
line for line likeness calculation shown as dashed, yellow line.

The principle of relating true path length and geometrical path length is very similar to the
concept deployed by Geant4 for the calculation of the effects of MSC [11].

7.3.2. Results

Figure 25 shows the distributions of the line likeness for the two data samples using the data
from all modules. The distributions for the individual modules show similar shape, however,
we note that no significant difference is visible between the distributions for module 2 and
the others, thus we assume that the line likeness is independent of the pixel pitch for the
modules used in the analysis.
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Figure 25.: Plot of the distributions of the line likeness using combined data from all modules for the
two data samples. Area has been normalised to unity.

We find that the distributions are in very good agreement for a line likeness larger than 0.6,
for smaller values slight deviations between the distributions are visible. These deviations
may stem from the small number of data points available for very low line likenesses. This
in turn is a result of the definition of the line likeness because for a small line likeness the
difference between straight line and delta trajectory must be very large, which is only possible
(or plausible) for very long delta trajectories, which are rare.
The maximum value of the distribution is different from unity, therefore we find that a slight
deviation from a straight line is more probable than the straight connection.
The errors of the distribution entries as shown are statistical errors which have been calculated
by the ROOT framework [9].

7.4. Truncated Mean Analysis

The truncated mean descriptor (cf. [4]) has been explained and demonstrated in detail in
section 2.5, we have applied the method to the data samples using different values for the
cut percentage p. The distributions for different values of p show a similar behaviour when
compared to the results of the example analysis shown in section 7.4 i. e. the maximum
remains approximately at the same location whereas the width of the distribution decreases
with rising p. For the sake of a larger statistic we compare only the distributions of the
combined data from all modules. Figure 26 shows the distributions of the truncated mean
descriptor for p = 10 and 15 %.
The distribution shows the calculated most probable energy loss of a delta electron in the
detector plane. As expected we see a sharp cut on the left side, smeared by the experimental
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Figure 26.: Distributions of the truncated mean descriptor C(p) for p = 10, 15 %, combined data from
all modules was used and the distribution’s area was normalised to unity. The errors of the distributions
are statistical errors calculated by the ROOT framework [9].

uncertainties. This cut corresponds with the minimal energy that can be deposited by a
travelling delta electron and still measured.

Minimal Charge: Under the assumption that the deviation from the maximum of the
distribution towards lower charge values is based purely on experimental smearing we can
estimate the minimal deposited charge by the signal value of the peak.
This minimal signal value can be transformed into a electron charge value using the charge
calibration factors from 5.2, afterwards we can estimate the corresponding Eloss value using
the ionisation yield relation given by equation 4. Naturally this must be done using the per
module distributions as the calibration factors differ between modules.
With the knowledge of the distance over which this energy has been deposited we can calculate
the corresponding dE

dx . This has been done and the resulting dE
dx values are between 1.44 and

1.62 MeVcm2g−1; different values stem from different modules and cut percentages p. Due
to the large error of the minimal charge selection (which is in the order of a bin width i. e.
≈ 25 adu and transforms to a value of σdE

dx
= 0.32 MeVcm2g−1 assuming this error energy

was deposited over a distance of one pixel pitch P = 24µm) the two values spanning the
above range are consistent with each other.
When comparing the averaged value19 dE

dx Avg
= 1.53 ± 0.45 to the function of the Bethe-

Bloch formula shown in figure 2 one can identify the minimal deposited charge per unit
length to be equal to the dE

dx value deposited by the MIP i. e. a βγ value of the delta electron
of ≈ 3.
It is important to note that this calculation is a) heavily approximated and b) wrong, due

19 Error has been propagated.
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7.4. Truncated Mean Analysis

to the fact that the Bethe-Bloch formula cannot be used to describe the energy loss of
electrons. Nevertheless we have performed the analysis to grasp an estimate of the actual
value; the result calculated above must be used with caution.

Single Landau Analysis: The above analysis is performed by calculating the truncated
mean absolute value per event and comparing the per-module distribution between different
data samples. A more obvious approach is to calculate the actual straggling function f (∆, x)

(i. e. the pdf of the deposited energy) for a single event, do a Landau fit and analyse the
result. This approach can only work for events with a large number of entries i. e. a very long
delta trajectory. We have performed a cut, selecting the ten events with the longest delta
track per module. For each entry of this subset we calculated the truncated set (i. e. we have
removed three values at start and end of the trajectory to overcome the influence of telescope
track and Bragg peak and afterwards removed elements as described in section 2.5) and
performed a Landau fit.
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Figure 27.: Plots of selected single Landau distributions for cut percentage p = 10 %. A Landau fit
(binned fit) was performed using the ROOT framework [9], the fit parameters are listed in the figure: N is
a normalisation coefficient, ∆p is the MPV and w is the distribution’s width. The p value was calculated
from the χ2 and ndf value using the ROOT framework. The errors in x-direction are estimated by the
noise value of 15 adu the errors in y direction are statistical errors calculated by the ROOT framework.

Figure 27 shows two selected single Landau plots, one for each data sample. Of all events
on which this method was executed the above two are of the best quality. One can find a
very good agreement between the data points and the fit function, these plots can be used
to identify the quantities ∆p and w which are the statistical parameters of the underlying
straggling function.
Using a larger data sample it might be possible to perform this analysis on a far greater
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number of events and thus calculate the per-run distributions of ∆p and w. However, it is
to note that of the 100 events selected for the single Landau method approximately 30 %

yielded good results. This leads us to the conclusion that one must use a data sample many
times larger than the one used in this analysis to be able to evaluate the single Landau

method statistically.
The single Landau plots allow to assess the Signal-To-Noise ratio of the MPV i. e. the S/N
of the typical energy deposition of a delta electron per unit path length. For figure 27a we
find that the S/N is ≈ 4. This allows conclusion that the measurement and analysis of the
delta electron trajectories has been enabled by the very good noise profile of the DEPFET.

7.5. Bragg Peak Analysis

7.5.1. Procedure

In the course of the thesis we have experimented with different criteria to determine whether
a delta track exhibits a Bragg peak and how to determine the resulting Bragg charge i. e.
the (total) signal deposited in the Bragg peak. Eventually two methods have been selected
and are presented below.

Cut Based Approach: The most straightforward approach is a cut based approach: We
define a 3× 3 area20 centred to the final step of the calculated delta trajectory. In case that
the total signal in this area exceeds a threshold SBragg we designate the track to have a
Bragg peak whose charge equals the total signal in the 3× 3 area.
To ensure that this is not corrupted by the telescope track main cluster we require that the
centre of the 3 × 3 area is more than six pixel distant from the telescope track hit in either
direction.

Track Based Approach: Another method is to use the calculated delta track data to search
for and identify a possible Bragg peak. The first step for this procedure is to identify all
peaks (i. e. local maxima) in the track charge distribution.
Afterwards the collection of peaks is traversed backwards (i. e. starting at the last step of
the trajectory) in search for a semi-global maximum. This semi-global maximum is defined
to have a certain minimal vertical extent ∆S, furthermore both its flanks must descend to
a value below a certain threshold. This ensures that the semi-global maximum is a peak of

20 Of course other area sizes may be chose e. g. size 5 × 5 showed promising results, however, when
manually checking the event displays of delta trajectories we decided to use the smaller field because –
when checked manually – this area contained the whole Bragg charge in most cases.
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sufficient height and extends above a lower non-Bragg ionisation level.
It is permitted that the resulting Bragg peak is comprised of smaller peaks as long as
the above criteria are fulfilled for the combined set of values; this compensates for small
fluctuations in the deposited energy. To compensate for the large peak at the start of the
trajectory (resulting from the large signal deposited in the telescope track hit cluster) it
is required that the calculated Bragg peak extends no closer than two pixels to the first
minimum of the charge distribution (we assume that the first minimum corresponds with the
low end of the flank of the peak from the telescope track hit cluster).

7.5.2. Results

Cut Based Approach: The cut based analysis has been deployed using the thresholds
SBragg = {500, 700, 900} adu; the resulting distributions of the percentages can be found in
figure 28.

The total discrepancies between the sets of data are in the order of ≈ 8 % for SBragg =

500 and 700 adu; the flucations for different modules in the same sample are in the order of
≈ 4 − 6 % for these thresholds. That is to say we find discrepancies between TB and MC

samples although we cannot tell for sure whether those discrepancies are consistent with the
ordinary fluctuations. Nevertheless we find the tendency that the MC sample includes more
delta tracks with a Bragg peak, as all but one data set (for SBragg = 500 adu, DUA 2)
exhibits this behaviour.
For SBragg = 900 adu we find similar discrepancies but more importantly we find that the
test beam data set for DUA 2 contains by far less events with a Bragg peak than the MC

sample. Due to the fact that the percentage of Bragg peak events for the TB sample of
DUA 2 for SBragg = 500 and 700 adu is once larger and once very close to the value of of
the corresponding MC sample entry we can assume that the TB sample for DUA 2 contains
an unusual high number of events whose Bragg charge is in the proximity of 500 adu but
fewer clusters with a larger Bragg charge.
The fact that we find this behaviour in the experimental data leads us to the conclusion that
the discrepancies in the number of Bragg events are purely based on fluctuations and not
based on faulty simulation.
The errors shown are calculated in the same way (and under the same assumption i. e. that
the components of the quantity depicted are poisson distributed) as the errors of the delta
fractions, cf. section 7.1.2 for further explanation.

Track Based Approach: Figure 29a shows the Bragg charge distribution for DUA 4 as
calculated using the track based approach to the Bragg peak determination. Clearly the
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(b) SBragg = 700 adu
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(c) SBragg = 900 adu

Figure 28.: Percentage of delta events which have been found to have a Bragg peak using different
signal thresholds SBragg; percentage is given in relation to total number of delta events.

two distributions are of similar shape, however, the distribution for the TB sample exhibits a
larger peak and is narrower (has a lower tail). This behaviour can be found similarly in the
distributions of the other modules. The discrepancies between experimental data and MC

data are for some bins in the order of the smaller value of the two distributions for that bin,
thus we are uncertain whether the distributions match well.
The percentages of events identified to have a Bragg peak – shown in figure 29b – yield
a similarly inconclusive result. The discrepancies between modules within a sample is ap-
proximately 3 % for the MC and 12 % for the TB sample; the deviations between the two
samples are in the order of the discrepancies between modules in the TB sample. Therefore
this analysis criterion does not allow to evaluate the performance of the MC as the in-sample
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Figure 29.: Fig. 29a: Distribution of Bragg charge for DUA 4, area of distributions has been normalised
to unity; fig. 29b: percentage of events with Bragg peak on per module basis and for the combined
data sample.

fluctuations are of the same order as the fluctuations between different samples.
With 12 % those fluctuations are very high which leads us to the conclusion that the perfor-
mance of the track based analysis must be further improved prior to using this criterion for
the quality assessment of the MC simulation.
The errors shown in figure 29a are calculated as statistic errors by the ROOT framework [9],
the errors in figure 29b have been calculated using the same method as the errors of the delta
fraction (cf. section 7.1.2).

In conclusion we find that the Bragg peak analysis has come to inconclusive results and
must be further improved to be able to make a clear statement. However, we would like to
point out that the criteria used for analysis probably can yield more conclusive results when
the analysis is fine-tuned.
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8. Conclusion and Outlook

The development of a strict set of criteria for the selection of a pure sample of delta electron
events and an algorithm for the reconstruction of the trajectory of a delta electron has been
a great success. Our selection method ensures that the sample is very pure and removes the
problem of false hit reconstruction of the telescope track hit. The algorithm developed for
delta track reconstruction has a very good efficiency (cf. figure 21) and is able to cope with
numerous different problematic situations such as in-track gaps, harsh turns, heavily curled
tracks and many more. Furthermore we have been able to develop several shape variables of
high quality which have been used to compare the data samples.

Due to the high quality delta track reconstruction we are able to resolve any observable (i. e.
shape variable) as function of the track length l or position x along the track. This allows
detailed analysis of the delta electron’s behaviour as a process which is evolving along a path.
We found that the delta electron production rate found for the experimental sample is com-
pliant with the simulated sample (see figure 22). Furthermore the distribution of delta track
lengths is in very good agreement between the two data samples (cf. figure 23). Therefore
we can conclude that the single collision cross section used by the simulation model is in very
good agreement with reality.

The analysis of the delta electron straggling (discussed in section 7.4) has shown that the
delta electron behaves like a Bethe-Bloch MIP. We found that the actual straggling func-
tion calculated for single events (titled "single Landau method") can be approximated with
a Landau function with very good agreement; this supports the argument presented in sec-
tion 2.1.

Lacking a criterion for validating the effects of multiple scattering we have developed the
line likeness shape variable which shows good agreement of the two data samples. It relates
true and geometric path lengths which depend on the deflection due to multiple scattering,
however, the actual deflection process cannot be validated with the line likeness alone. The
Bragg peak analysis allows a preliminary validation of the simulation, however, it must be
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enhanced and developed further for a more thorough result.

It is important to note that the Landau and Bethe-Bloch theory is actually not valid
for electrons, thus the analysis performed cannot be used to calculate the actual kinematic
variables of the delta electron (as was done in section 7.4). The above theories can be used for
heavy particles but not electrons. Electron behaviour is described by the Berger-Seltzer

formula and the production of delta electrons is usually calculated as Möller scattering [11].
Although it is excluded in the energy range of the delta electrons analysed it is important to
note that the process of bremsstrahlung must be carefully distinguished from delta electron
production. The qualitative analysis done in this thesis is exact, however, the quantitative
calculation of kinetic variables such as done in 7.4 cannot yield correct results.

We have found that a good detector simulation (not only of the physical processes but of the
digitiser stage too) is of great importance. The digitiser yields data which are equivalent to
the experimental sample and can be processed by the very same reconstruction chain (when
using the calibration factors described in section 5.2).

Using the analysis and reconstruction methods developed in this thesis we can calculate the
practical ranges of delta electrons with much higher precision than the listing by Bichsel in
table 1. By calculating the total signal deposited in a delta track this calculation is possible
without the use of the more complex Berger-Seltzer and Möller theory described above.
In this thesis we have not assessed the shape of the delta clusters, however, the data sample
extracted by this analysis can be analysed for this criterion with ease once a valid shape
variable has been developed.
The analysis of the Bragg peak might be used to determine which delta electrons remain
in the sensitive area (i. e. are fully measured) and thus allow to reject any escaping delta
electron. Furthermore it is possible to calculate the delta electron’s kinematic variables using
the Bragg peak charge only as this is a measure of the delta electron’s momentum.
The line likeness allows a preliminary check of the agreement of experiment and simulation
with regard to the effects of multiple scattering. However, a subsequent analysis should
implement a criterion based on the curvature of the delta trajectory. One possible approach
is the usage of splines for the interpolation of the delta trajectory; the splines can afterwards
be used to calculate a variety of shape variables.
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In this appendix the relevant steering parameters of the reconstruction chain and subsequent
analysis are listed along with their values.

• Pedestal and Noise Calculation:
– Assumed noise fluctuation value: 15 adu (TB) or 280 e− (MC)
– Assumed pedestal value: 0 adu (TB) or 0 e− (MC)

• Zero Suppression:
– Minimum signal value not assumed to be zero, in units of S/N (signal-to-noise

ratio): 3
• Clustering:

– Allowed that nearest neighbours may be separated by a one pixel gap (cf. sec-
tion 4.2.3).

– Minimum signal for a cluster not to be rejected; in units of S/N: 7
– Minimum signal for the seed pixel (i. e. pixel with largest signal) of a cluster; in

units of S/N: 5
• Hit Reconstruction:

– Allows "bad" clusters i. e. clusters which are close to the detector’s border.
• Alignment:

– Alignment tracks must have residual less than 500 µm.
– χ2 for alignments tracks must be less than 1000.
– Tracks may not skip any modules i. e. there must be six hits per track.

• Track Reconstruction:
– Alignment tracks must have residual less than 300 µm.
– χ2 for alignments tracks must be less than 1000.
– There must hit at least four modules and a skip may not be larger than one

module.
• Delta Ray Reconstruction:

– A delta trajectory may exhibit a gap which is not larger than five pixels (i. e. three
missing pixel in either direction).

– The total cluster charge for a delta event may not exceed 20000 adu (value in units
e− can be calculated on per module basis using the values listed in table 3).
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– A maximum number of seven pixels may remain in a cluster after all delta track
entries have been removed from the cluster data.

– The maximum distance between two separate clusters which will be merged to a
common delta cluster may not exceed five pixels (i. e. five missing pixels).

– The minimum cluster size for a delta cluster candidate must be equal to or more
than 12 pixels.

– A possible delta cluster fragment for merging must at least be four pixels large.
– The telescope track corresponding to a delta hit must have a hit on the plane after

the DUA.
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