ATL-DAQ-PROC-2014-027

25 September 2014

©)

The Error Reporting in the ATLAS TDAQ System

Serguei Kolos
University of California Irvine, USA

E-mail: serguei.kolos@cern.ch

Andrei Kazarov

CERN, Switzerland, on leave from Petersburg Nuclear Physics Institute, Kurchatov NPI,
Gatchina, Russian Federation

Lykourgos Papaevgeniou
CERN, Switzerland

Abstract. The ATLAS Error Reporting provides a service that allows experts and shift crew
to track and address errors relating to the data taking components and applications. This
service, called the Error Reporting Service (ERS), gives to software applications the opportunity
to collect and send comprehensive data about run-time errors, to a place where it can be
intercepted in real-time by any other system component. Other ATLAS online control and
monitoring tools use the ERS as one of their main inputs to address system problems in a
timely manner and to improve the quality of acquired data.

The actual destination of the error messages depends solely on the run-time environment,
in which the online applications are operating. When an application sends information to ERS,
depending on the configuration, it may end up in a local file, a database, distributed middle-
ware which can transport it to an expert system or display it to users. Thanks to the open
framework design of ERS, new information destinations can be added at any moment without
touching the reporting and receiving applications.

The ERS Application Program Interface (API) is provided in three programming languages
used in the ATLAS online environment: C++, Java and Python. All APIs use exceptions for
error reporting but each of them exploits advanced features of a given language to simplify
the end-user program writing. For example, as C++ lacks language support for exceptions,
a number of macros have been designed to generate hierarchies of C++ exception classes at
compile time. Using this approach a software developer can write a single line of code to generate
a boilerplate code for a fully qualified C++ exception class declaration with arbitrary number of
parameters and multiple constructors, which encapsulates all relevant static information about
the given type of issues. When a corresponding error occurs at run time, the program just
need to create an instance of that class passing relevant values to one of the available class
constructors and send this instance to ERS.

This paper presents the original design solutions exploited for the ERS implementation and
describes how it was used during the first ATLAS run period. The cross-system error reporting
standardization introduced by ERS was one of the key points for the successful implementation
of automated mechanisms for online error recovery.

1. Introduction

ATLAS [1] is one of the four major experiments at the Large Hadron Collider accelerator at
CERN. The ATLAS Trigger and Data Acquisition (TDAQ) [2] system selects and transports
physics data from the 1600 detector read-out links to the mass storage. The system is composed
of about 20K applications distributed over 3K computers. Controlling and monitoring such
system requires flexible and reliable services for error reporting and handling both inside
individual applications and between applications. The Error Reporting Service (ERS) gives
software applications the opportunity of collecting and reporting comprehensive data about
run-time issues as well as subscribing to the messages produced by the other applications. The
ATLAS online control and monitoring tools use ERS as one of their inputs for getting information
about the TDAQ system problems and reacting to them in a timely manner for improving the
quality of acquired data. Figure 1 shows the main flow of the ERS messages in the TDAQ
system.

M1l

Trigger and DAQ system

messages messages

Messages
Archive
Figure 1. The flow of the ERS
messages in the TDAQ system.

ERS is available in all programming languages used by the ATLAS software: C++, Java and
Python. While the system design is the same for all of them, the implementations have their
peculiarities which are defined by the specific features of the given programming language as
discussed in the following sections.

2. The Error Reporting Interface

ERS interface is build around three main concepts: the Output Stream, the Issue and the Input
Stream. An Issue contains description of a specific problem which can be reported to the Output
Stream and can be retrieved, in the context of another application, via the Input Stream.

2.1. The Output Streams

The Output Stream is a simple interface with a single function for sending arbitrary messages
to that stream. There are six types of streams corresponding to different levels of severity of
the reported issues: DEBUG, LOG, INFO, WARNING, ERROR and FATAL. The severity of any issue is
established by the type of stream to which it has been sent. While ERS provides several default
stream implementations, which can be used out of the box, it is an open framework which
allows plugging in new implementations at any moment. Thus, new message destinations can
be added without touching the frameworks code. Each Output Stream interface implementation
is responsible for:

e taking an action which is specific to that stream. This can be sending the given issue to an
appropriate output device, e.g. standard output, database or a mobile phone,

e deciding whether the given issue has to be propagated further through the chain of stream
implementations or immediately suppressed. This feature allows implementing the issue
filtering.

2.2. The Output Streams Configuration

The destination of the ERS messages depends solely on the run-time environment, in which the
online applications are operating. Depending on the actual configuration, the messages which
applications send to ERS may end up in a local file, a database, a message passing middle-ware,
or in any other output which is supported by ERS. New output devices can be added to ERS
as plugins without touching the ERS code. Stream configuration is very flexible and can be
defined for each particular stream type at the level of an individual software process by setting
the appropriate environment variables. A value of such variable is a comma-separated list of
tokens where each token is a well defined ID of a stream implementation class optionally followed
by the list of initialization parameters for that implementation. For example the Error stream
can be configured via application environment in the following way:

TDAQ_ERS_ERROR="stderr, filter(Tile), abort"

In this case all errors will be sent to the standard error stream and any issue originated from
the Tile Calorimeter subsystem will immediately abort the running application.

2.8. The Issue Class

The main class for reporting problems is called Issue. This class inherits from the std::exception
in order to provide compatibility with the standard C++ library. Any custom ERS exception
can be caught as std::exception.

std::exception ers::Context
const char * what() const const char * cwd() const
const char * file_name() const

f E const char * function_name() const

const char * host_name() const
int line_number() const

*
context const char * package_name() const

ers::lssue 4‘ pid_t process_id() const
pid_t thread_id() const
void *const* stack() const

const char * what() const
void raise() const

const char * get_class_name() const int stack_size() const
ers::Issue * clone() const int user_id() const

const char * user_name() const
const char * application_name() const

cause

Figure 2. The main ERS public API classes.

The Issue class is abstract. Any software package which has to report an error must declare
a specific issue class by inheriting it from the abstract ers::Issue or alternatively reuse an

existing issue class from another package. In this case each kind of problem is described by
the corresponding C++ class, which facilitates the application of the expert system techniques
for errors analysis and decisions taking procedures. As shown in Figure 2, each issue has the
Context attribute which describes the place in the code where the issue has occurred. In C++
this information is provided by the special macro ERS_HERE, which must be the first argument to
each Issue constructor. In Java and Python such information is extracted in the Issue constructor
itself, so no additional arguments is used. An issue may contain a pointer to another issue which
provides more detailed information on the cause of the problem. Such chain of issues may have
arbitrary depth thus giving any required level of details for the problem description.

2.4. The Input Stream

Within the same process ERS issues are passed using the programming language exception
mechanism, e.g. try...catch in C++ and Java and try...except in Python. For the inter-
process issue handling ERS defines the asynchronous Input stream interface for receiving ERS
Issues reported by other applications. The idea is that for each Output stream implementation
one can implement a corresponding Input stream so that it will be capable of receiving the
issues reported to its Output counterpart. For a pair of such streams a user can simply register
a callback function with the Input stream implementation to get all issues reported by all
processes to the corresponding Output stream.

3. C++ ERS API

Having well defined and strictly typed errors is highly desirable for simplifying the system
maintainability and absolutely indispensable for replacing human operator with expert system.
On the other hand writing issues classes declarations would have been tedious and error prone.
To overcome this problem ERS uses the mind breaking BOOST Preprocessor [3] package.
Despite conventional opinion the usage of macro constructs in C+4 may be extremely useful
and convenient, drastically reducing the amount of code which has to be written and improving
the code quality and maintainability. The following two macros have been designed for the C++
ERS API and can be used for declaring component specific exception classes.

ERS_DECLARE_ISSUE(namespace, class_name, message, class_attributes)

ERS_DECLARE_ISSUE_BASE(namespace, class_name, base_class_name,
message, class_attributes, base_class_attributes)

The first macro can be used for declaring classes inheriting the ers::Issue class, while the
other one can declare classes derived from the other macro-defined ERS exceptions. The most
interesting part in these macros is the ability of passing arbitrary number of the class attributes
via the class_attributes and base_class_attributes parameters. This is where the BOOST
Preprocessor package, which implements advanced parsing and looping functions for standard
C macro, has been exploited. A class attributes is the sequence of the type and name macro
tuples which looks like:

((attributel-type) attributel-name)
((attribute2-type) attribute2-name)

((attributeN-type) attributeN-name)

The macro generate C++ classes with the constructors containing a given number of parameters.
A C++ developer will need to provide appropriate values for all the attributes when constructing
the corresponding exception. Those values will be stored in the exception and inserted into the

main message of the issue, which is declared only once at the issue definition time. This C++
class also provides accessor functions, like get_attributeX-name () for all declared attributes.
For example placing the following declaration into a C++ file:

ERS_DECLARE_ISSUE(
io,
Filelssue,
"Basic issue with ’" << file_name << "’ file",
((const char *)file_name))

will produce the C++ code like:

namespace io {
class FileIssue {
FileIssue(const ers::Context & context , const char * file_name);
FileIssue(const ers::Context & context , const char * file_name,
const std::exception & cause);

const char * get_file_name() const;
};
}

The ERS_DECLARE_ISSUE_BASE macro is similar to the ERS_DECLARE_ISSUE one but
allows declaring hierarchies of exceptions classes. For example one can declare the

io::PermissionDenied and io: :CantOpenFile exceptions which inherit the io: :FileIssuein
the following way:

ERS_DECLARE_ISSUE_BASE(

io,

PermissionDenied,

Filelssue,

"Insufficient privileges for ’" << operation << " ’" << file_name
<< " file which has ’" << permissions << "’ permissions",

((const char *)file_name),

((int)permissions) ((const char*)operation))

ERS_DECLARE_ISSUE_BASE(
io,
CantOpenFile,
Filelssue,
"Cant open file " ’" << file_name << "’ file",
((const char *)file_name),
ERS_EMPTY)

3.1. Catching and Reporting Issues

There are six functions for reporting issues to different ERS streams, e.g. ers::debug(), ers::log(),
ers::iinfo(), ers::warning(), ers::error() and ers::fatal(). The last three of them accept only strictly
typed messages, i.e. objects of a type inherited from the ers::Issue. In this way the important
messages are imposed to be strictly typed, allowing the TDAQ controlling and monitoring
systems to rely on their content and meaning. An example of the usage of the three functions
for reporting issues which accept only strictly typed messages is shown below.

try {
open_file(file_name);
}
catch (io::PermissionDenied & ex) {
ers::warning(io::CantOpenFile(ERS_HERE, file_name, ex));
}
catch (io::FileIssue & ex) {
ers::error(ex);
}
catch (std::exception & ex) {
ers::fatal(io::FileIssue(ERS_HERE, file_name, ex));
}

The other three streams accept both the ers::Issue instances and arbitrary dynamically
constructed information. For the latter ERS provides three macros: ERS_DEBUG, ERS_LOG,
ERS_INFO, which can be used to pass arbitrary information to ERS without defining a new
issue type. For example:

ERS_DEBUG(1, "test debug macro " << 12345);
ERS_LOG("So far " << event_number << " events have been collected");

ERS_INFO("The run " << run_number << " has been started");

4. Java ERS API

Java ERS API supports exceptions which are derived from the ers.Issue as well as the
standard Java exceptions, which can be reported by third party libraries, e.g. derived from the
java.lang.Exception.Contrary to C++ Java does not have macro preprocessor so exception
classes have to be declared manually, e.g.:

public class ConnectionIssue extends ers.Issue {
public String reason ;
public int port_number ;

ConnectionIssue (String reason, int port_number) {
super ("Connection to %p port failed because of ’s", port_number, reason);

}

ConnectionIssue (String reason, int port_number, ers.Issue cause) {
super ("Connection to %p port failed because of %s", port_number, reason, cause);

}
};

Note that one has to declare two constructors: one takes another exception as its last
argument to allow chains of the issues and the other one has only the actual issue specific
parameters to be used for creating the first level exception.

4.1. Reporting Issues

Reporting of ERS Issues in Java is done using static functions declared in the ers.Logger class.
The Debug, Info and Log functions support plain strings as their arguments, other methods only
accept ers.Issue or java.lang.Exception objects. For example:

catch { java.net.SocketException ex } {
ers.Logger.error(new ConnectionIssue("Socket is not available", port, ex)));
}
catch { java.lang.StackOverflowError ex } {
ers.Logger.fatal(ex) ;
}

ers.Logger.debug(2, "Verbose debug message");
ers.Logger.log("A message to be logged in log file");

4.2. Log4J Mapping to ERS

Most of third-party java libraries widely used in TDAQ software use de-facto standard Java
logging framework log4j(http://logging.apache.org/logdj/2.x/) for reporting messages. To
allow log4j messages to be routed over ERS, Java ERS library includes an implementation of log4j
appender, which converts logdj messages to ERS issues and redirects them to the appropriate
ERS streams. For example the following log4j configurations routes all DEBUG messages to ERS
stream.

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/logdj/">
<appender name="ERS" class="ers.log4]j.ERSAppender">
<layout class="org.apache.log4j.SimpleLayout"/>
</appender>

<root>

<level value="DEBUG" />

<appender-ref ref="ERS"/>

</root>
</logdj:configuration>

5. Handling Issues in the Distributed Environment

In order to report and receive ERS issues in the distributed TDAQ system, two special Input
and Output streams have been implemented. They are based on the Message Transfer System
(MTS) [4], which is the CORBA [5] based distributed message passing middle-ware developed
in the ATLAS TDAQ project.

6. Conclusion

During the Run 1 ERS has proved to be extremely useful for both error detection and problems
analysis. In total about 30M ERS messages have been produced by the TDAQ system processes
and reported via ERS. All those messages have been archived to the Oracle [6] database. A
dedicated application called Log Browser has been provided for browsing the content of that
database. At run time about 10 different types of ERS issues have been used by the ATLAS
online expert system for error detection and handling during data taking.

For the upcoming data taking period many more ERS messages are going to be used by the
online expert system to improve the automation of the data taking. In addition to that the
archived system back-end will be changed to Splunk [7], which is an easy-to-use web interface
and powerful enterprise platform for analyzing machine generated data, like log files, message
archives, etc. This allows having access to the archived messages from all over the world without
the need of installing any ATLAS specific software.

References
[1] ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider, Journal of

Instrumentation, vol. 3, no. 08, p. S08003, Aug. 2008. Available: http://iopscience.iop.org/1748-
0221/3/08/S08003

[2] ATLAS Collaboration, ATLAS high-level trigger, data-acquisition and controls, CERN, Technical Design
Report ATLAS-TDR-016 CERN-LHCC-2003-022, 2003. Available: http://cdsweb.cern.ch/record/616089/

[3] Boost Preprocessor library home page http://www.boost.org/doc/libs/release/libs/preprocessor/

[4] A. Kazarov et al., A Scalable and Reliable Message Transport Service for the ATLAS Trigger and Data
Acquisition System, Proc. of the 19th Real-Time IEEE Conf., Nara, Japan, May 2014. Available:
http://cds.cern.ch/record /1703434

[5] CORBA home page http://www.corba.org

[6] Oracle home page http://www.oracle.com

[7] Splunk home page http://www.splunk.com

