EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-EP/88-106 August 26th, 1988 # OBSERVATION OF THE CHARMED STRANGE BARYON DECAY $\Xi_{-}^{+} \to \Xi_{-}^{-} \pi^{+} \pi^{+}$ (ACCMOR Collaboration) Amsterdam¹⁾-Bristol²⁾-CERN³⁾-Cracow⁴⁾-Munich⁵⁾-Rutherford⁶⁾-Valencia⁷⁾ Collaboration S. Barlag⁵, H. Becker^{5a}, T. Böhringer^{3b}, M. Bosman⁵, V. Castillo³, V. Chabaud³, C. Damerell⁶, C. Daum¹, H. Dietl⁵, A. Gillman⁶, R. Gilmore², T. Gooch², L. Görlich⁴, P. Gras⁷, Z. Hajduk⁴, E. Higon⁷, D.P. Kelsey^{3c}, R. Klanner^{5d}, S. Kwan³, B. Lücking⁵, G. Lütjens⁵, V. Lüth^{3e}, G. Lutz⁵, J. Malos², W. Männer⁵, E. Neugebauer^{5f}, H. Palka⁴, M. Pepé⁶, J. Richardson^{6g}, K. Rybicki⁴, H.J. Seebrunner³, U. Stierlin⁵, H.G. Tiecke¹, G. Waltermann⁵, S. Watts⁸, P. Weilhammer³, F. Wickens⁶, L.W. Wiggers¹, M. Witek⁴ and T. Zeludziewicz⁴ #### **ABSTRACT** We have observed 2 charmed strange baryon decays $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$, $\Xi^- \to \Lambda^0 \pi^-$, $\Lambda^0 \to p\pi^-$ (and charge conjugate) in the data collected in 1985 and 1986 by the NA32 experiment using charge-coupled devices for vertex reconstruction and a trigger on a pair of opposite charge kaons and/or (anti)protons. The still preliminary analysis gives for the Ξ_c^+ mass a value around 2465 MeV. Contribution to the XXIV International Conference on High Energy Physics Munich, August 4-10, 1988 - 1) NIKHEF-H, Amsterdam, NL - 2) Univ. of Bristol, Bristol, UK - 3) CERN, Geneva, CH - 4) Inst. of Nucl. Physics, Cracow, Poland - 5) Max-Planck-Inst. f. Physik, Munich, FRG - 6) Rutherford Appleton Lab., Chilton, Didcot, UK - 7) IFIC, CSIC & Univ. of Valencia, Valencia, Spain - 8) Brunel Univ., Uxbridge, Mddx, UK - Now at Gesamthochschule, Saarbrücken, FRG - b) Now at University of Lausanne, Lausanne, CH - c) Now at Rutherford Appleton Lab., Chilton, Didcot, UK - d) Now at DESY, Hamburg, FRG - e) Visitor from SLAC, Stanford, CA, USA - f) Now at Universität-GH Siegen, Siegen, FRG - g) Now at Univ. of Geneva, Geneva, CH #### 1. INTRODUCTION We studied inclusive Ξ/Ω hyperon production by 230 GeV/c π^- s incident on a copper target in the data collected in 1985 and 1986 with the ACCMOR spectrometer. This spectrometer is described in Ref.[1] and [2]. As a by-product of this study we found 2 events that we interpret as production of the charmed strange baryon Ξ_c^+ (csu) and its decay into $\Xi^-\pi^+\pi^+$, $\Xi^-\to \Lambda^0\pi^-$, $\Lambda^0\to p\pi^-$ (and charge conjugate). #### 2. SEARCH FOR E HYPERONS The search for the cascade $\Xi^- \to \Lambda^0 \pi^-$, $\Lambda^0 \to p \pi^-$ proceeds as follows. Events are selected containing at least one track seen only in the vertex detector ("\(\mathbb{Z}'' \) tracks). The search for Ξ decay is made by iterating along the " Ξ " tracks between the last plane of the vertex detector and the onset of the magnetic field in the first magnet M1 (Fig. 1). That corresponds to a decay range of 52 cm. For each iterative point on a "E" track a good match is looked for with a track in the drift chambers and a search is made for a V⁰ in the drift chambers, compatible with being produced from that point. All 3 tracks, i.e. π^- from Ξ decay, p and π^- from Λ^0 decay, should not be seen in the vertex detector. Since the proton from a Λ^0 decay takes most of its momentum, the V^0 is required to contain at least one forward-going track seen in the drift chambers in front of and behind the second magnet M2. No particle identification is used in the search and the invariant mass of the V^0 has to be within 20 MeV of the Λ^0 mass. In addition, the sum of the momentum vectors of the π^- from Ξ decay and of the Λ^0 should have an angle of less than about 2 mr with the "E" track. Finally, the E decay point is taken to be the point on the Ξ track which corresponds to the minimum of the sum of the χ^2 for the pion track from Ξ decay to originate from that point and of the χ^2 for the Λ^0 to originate from the same point. Figure 2 shows the invariant mass of the $\Lambda^0\pi^-$ system obtained from approximately 16.106 events (about 95% of the total data sample). ## 3. SEARCH FOR Ξ_c BARYONS The decay mode $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ can be recognized as a secondary vertex in the vertex detector, a few millimeters downstream of the primary vertex (Fig. 3). We looked for good vertices, having a probability of better than 99%, between the track of a reconstructed Ξ and 2 other tracks in the vertex detector after requiring that all 3 tracks are seen in at least one charge-coupled device (CCD) and that they are incompatible with originating from the primary vertex, with a probability less than 1%. Restricting ourselves to secondary vertices outside the target, a dozen events are found. Most of them correspond to secondary interactions in the vertex detector or to a confusion in the primary vertex reconstruction. If we further require that the total momentum sum of the secondary vertex points to the primary vertex with a probability better than 99%, two interesting events are found. Figure 3 gives a sketch of the first one. It contains a $\Xi^-\pi^+\pi^+$ vertex 13 mm behind the target centre. All three tracks are seen in CCD2 and their impact parameters with respect to the primary vertex are 216 μ m, 278 μ m and 191 μ m respectively (precision on the impact parameter of a track is ~ 7 μ m). The Cerenkov hodoscopes identify the two π +s as unambiguous pions and the proton from Λ^0 decay as being incompatible with a pion interpretation. We measure: $$Mp\pi^- = 1109 MeV$$ $$M_{\Lambda} 0_{\pi^{-}} = 1320 \text{ MeV}$$ $$M_{\Xi\pi\pi} = 2469 \pm 6 \text{ MeV}$$ We have not yet calibrated the absolute mass scale of the spectrometer, but we estimate from our Λ_c and charmed meson results a systematic mass uncertainty not exceeding 2 MeV. The flight path of the Ξ_c corresponds to a proper lifetime of $13 \cdot 10^{-13}$ s. The second event contains a $\Xi^+\pi^-\pi^-$ vertex 2.1 mm behind the target centre (distance from the target edge = 850 μ m, precision on this distance ~130 μ m). The impact parameters of the three tracks are 47 μ m, 91 μ m and 58 μ m respectively. The Cerenkov hodoscopes identify one π^- as an unambiguous pion and the antiproton from Λ^0 decay as being incompatible with a pion interpretation. We measure : $$M_{\bar{p}\pi^+} = 1132 \text{ MeV}$$ $$M_A 0_{\pi^+} = 1304 \text{ MeV}$$ $$M_{\Xi\pi\pi}=2461\pm12~MeV$$ The flight path of the Ξ_c corresponds to a proper lifetime of 3.7•10⁻¹³s. The invariant mass measured for the $\Lambda^0\pi^+$ system is rather low and lies in the left tail of the distribution in Fig. 2. We are still investigating for possible sources leading to mass broadening in the V^0 reconstruction program. The charmed strange baryon Ξ_c^+ has been seen in two experiments [3,4,5] in the final states $\Lambda^0 K^- \pi^+ \pi^+$ and $\Sigma^0 K^- \pi^+ \pi^+$. We observe two events from a new decay mode. They have a mass in very good agreement with the previous determinations, which are: $$2460 \pm 15 \text{ MeV}$$ and $$2459 \pm 5 \pm 30 \text{ MeV}$$. # **REFERENCES** - [1] H. Becker et al., Phys. Lett. <u>184B</u> (1987) 277. - [2] S. Barlag et al., Phys. Lett. <u>184B</u> (1987) 283. - [3] S.F. Biagi et al., Phys. Lett. <u>122B</u> (1983) 455. - [4] S.F. Biagi et al., Z. Phys. <u>C28</u> (1985) 175. - [5] P. Coteus et al., Phys. Rev. Lett. <u>59</u> (1987) 1530. ### Figure Captions - Fig.1 Top view of the ACCMOR spectrometer (details of the vertex detector in the inset). B1-B7: silicon microstrip detectors for beam track reconstruction; T: 2.5 mm Cu target; CCDs: charge-coupled devices; V1-V8: silicon microstrip detectors used together with CCDs for reconstruction of tracks and vertices; M1,M2: spectrometer magnets for momentum determination of charged particles; DC1,2,3,4: drift chambers for reconstruction of charged particle tracks; C1,C2,C3: Cerenkov hodoscopes for identification of charged particles. - Fig. 2 Invariant mass distribution of the $\Lambda^0\pi^-$ system from $16 \cdot 10^6$ events. - Fig. 3 Sketch of the first Ξ_c event. Fig. 2 Fig. 3