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1. Introduction

Ever since beams of charged particles have been technologically realized towards the end

of the 19th century, they have led to many great discoveries in fundamental physics; the

most recent being the discovery of the Higgs Boson at CERN (cf. e.g. [1]). As the studied

phenomena progressed to smaller and smaller scales - from atoms through nuclei to sub-

atomic particles - the energy of the beams used to study them had to grow continuously.

As a consequence, the size and cost of the particle accelerators used to generate these

beams grew accordingly - from the table top device used by Lenard in the 1890s [2] to the

27 km circumference of LEP/LHC [3, 4] (Large Electron Positron collider/Large Hadron

Collider). Even though the beam energies and luminosities required for the study of rare

particles and processes continue to grow [5, 6], it is not clear how long it will be politically

and economically affordable to construct larger and larger accelerators.

In particular, as the beam energy kept increasing, the transition from linear to circular

accelerators was made. This allows to send the particle beam through the same accelerating

structure many times, significantly reducing the number of required components and the

associated costs. However, if charged particles are deflected in a magnetic field, they

loose energy through a process referred to as synchrotron radiation [7]. The amount of

power lost scales with the Lorentz factor of the particles γ and the deflection radius ρ as

Wloss ∝ γ4/ρ2. This means that if one wanted to double the final beam energy of LEP -

the largest lepton collider built to date - one would have to quadruple the circumference

to 108 km to keep the power loss constant. Otherwise, one would have to accept 16 times

higher losses, corresponding to Gigawatts of power lost to highly energetic electromagnetic

radiation. For future high energy lepton collider projects, it is therefore more efficient to

go back to linear accelerators. Depending on the exact layout and the desired final beam

energy, this results in facilities with a length of a few 10s of kilometres [5, 6]. One way

to reduce this length is to increase the acceleration gradient, and, therefore, the energy

gain the particles obtain in a given distance. However, for metallic acceleration structures

(referred to as cavities), said gradient is limited to . 100 MV/m due to discharges and

material breakdown [5, 6].
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One possibility to overcome the limit in acceleration gradient for conventional cavities

is the use of plasma-based acceleration techniques. In 1979, it has been suggested by

Tajima and Dawson [8] to use a plasma - an ionized gas - to transfer the energy of a high-

power laser pulse to accelerate electrons. In the process referred to as Laser WakeField

Acceleration (LWFA), the laser pulse disperses the plasma electrons from its path due to

its ponderomitive force. After the laser pulse has passed, the plasma electrons oscillate

back towards the laser beam axis, creating a locally over-dense region. The resulting

space charge separation follows the laser pulse, the laser is driving a plasma wake. The

longitudinal electric fields resulting from the plasma electron density modulation are used

to accelerate electrons, the so called witness bunch. Without the limitation of material

breakdown, this mechanism allows to increase the acceleration gradient by several orders

of magnitude.

Since the invention of chirped pulse amplification in 1985 [9], the peak power of laser

systems increased continuously, soon reaching the powers necessary to study the proposal

by Tajima and Dawson. The field of laser wakefield acceleration has seen tremendous

progress since. In 2006, electron beams have been accelerated to GeV energies within

a centimetre scale plasma [10], corresponding to an energy gain of ≈ 100 GeV/m. For

comparison, reaching GeV energies using conventional accelerator technology requires tens

of meters of acceleration distance. It is therefore hoped that plasma based acceleration

techniques will allow to significantly reduce the size and cost of future lepton accelerators.

However, current-day laser systems either feature a much too low energy to accelerate

electrons/positrons to the desired TeV energies in a single stage, or their repetition rate is

much too low to produce the data rates required for high energy physics experiments [11].

The required beam energy can be reached via staging of several acceleration modules

operating at higher repetition rates (and a lower energy gain per stage). However, due to

the physics of the laser-plasma interaction, the staging of several (hundred) plasma cells

requires an alignment on the sub-micrometer scale and a temporal synchronization in the

order of femtoseconds - which is technically very challenging. The number of required

stages can be reduced if the energy of the driving pulse - the so called driver - is increased.

One possibility to achieve this increase in driver energy with a reasonable repetition rate

is to use particle beams instead of laser pulses [12, 13]. However, a limitation arises

from the so called transformer ratio [14], which states that the energy gain of the witness

bunch cannot exceed twice the energy of the driving particles, regardless of the ratio of

charge between the two bunches. This means that if one were to efficiently accelerate

electrons/positrons to TeV energies in a single plasma stage, one would require a driver of

about half that energy. As mentioned before, it is not possible to generate electron beams

of this energy in a circular accelerator due to synchrotron radiation losses. In other words,

this option would again require a conventional, linear accelerator of several kilometres

length.

The amount of energy lost to synchrotron radiation in a circular accelerator is, via γ,

inversely proportional to the mass of the particle to the fourth power. For the same final

energy, synchrotron radiation losses can therefore be reduced by 13 orders of magnitude

if protons are accelerated instead of electrons. As they can be accelerated efficiently to
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very high energies, it has been suggested by Caldwell et al. to study protons as potential

drivers for high energy lepton accelerators [15].

In this work, different proposals for plasma-based linear collider found in the literature

are reviewed; and protons, electrons and laser pulses as different driver technologies are

compared. Based on these studies, three different scenarios for a facility capable of pro-

ducing the recently discovered Higgs boson [16, 17] are developed and compared to the

more conventional proposals ILC and CLIC [5, 6] (International Linear Collider, Compact

LInear Collider).

As the technology required for these proposals will still take a few decades to mature [11],

possible earlier applications are also investigated. In particular, LWFA are investigated

as injectors for synchrotron light sources. As the ultra-short pulses customary for LWFA

result in very interesting radiation properties, particular emphasis is put on the evolution

of such a bunch in a storage ring.

In addition, studies carried out for the AWAKE experiment at CERN are described. Start-

ing 2015, AWAKE aims to demonstrate proton-driven electron acceleration in a 10 m long

plasma cell [18, 19].

The structure of this work is the following: After this introduction, the thesis begins

by giving an introduction to the physics of plasma based acceleration and high-power

laser systems in chapter 2. To put the following theoretical studies into perspective, a

brief overview of the current status of plasma-based acceleration research is given in in

chapter 3.

In chapter 4, plasma-based high energy lepton collider are discussed. In section 4.1, the

general power requirements, and the phenomena at the interaction point are described.

Whilst the fundamental mechanisms are independent of the acceleration method, signifi-

cant differences will arise due to the different beam parameters resulting from the acceler-

ation process. In the following sections 4.2 to 4.6, several collider proposals found in the

literature are discussed. Starting from these results, I have investigated three scenarios for

a plasma-based linear collider capable of producing the recently discovered Higgs boson.

They are introduced and discussed in section 4.7.

To allow for an earlier technical application of plasma based acceleration techniques, I

have studied the possibility to use laser wakefield accelerators as injectors for synchrotron

light facilities in chapter 5.

Finally, investigations performed for the proton-driven plasma wakefield experiment AWAKE

at CERN are described in chapter 6. After a short introduction to the experiment is given

in section 6.1, section 6.2 describes my evaluation of the existing beam-plasma simulations

and their consequences for the experiment. Section 6.3 describes my studies for possibly

proton and electron energy spectrometer.
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2. Theory of Plasma Based Accelerators

This chapters aims to give a theoretical foundation for the possible applications of plasma-

based acceleration techniques discussed in chapters 4 to 6. After a brief introduction to

plasma-based acceleration is given in section 2.1, sections 2.2 and 2.3 introduce important

concepts from classical accelerator physics and plasma physics respectively. Following a

short introduction to the physics of the required high-power laser-systems in section 2.4,

laser-driven plasma-based acceleration in the linear regime is introduced in section 2.5.

The differences for electron- and proton-driven acceleration are discussed in sections 2.6

and 2.7 respectively. Whilst not the main focus of this work, acceleration in the nonlinear

regime is introduced in section 2.8 for completeness.

For perspective, the current state of the art is discussed in chapter 3.

A summary of the used acronyms and variables is given in the appendix, sections A and B

respectively.

2.1 Introduction to Plasma Based Acceleration

2.1.1 General Principle

Conventional accelerators are limited to acceleration gradients on the order of 100 MV/m

due to electrical breakdown [6]. This limitation can be overcome with plasma-based ac-

celeration schemes, in which the plasma acts as a transformer, transferring the energy

of a so-called driver to a so-called witness bunch. The general mechanism is the follow-

ing [12, 20]: The driver pushes the electrons of the previously homogeneous plasma out

of its path. (The plasma ions with their much higher inertia can normally be treated as

immobile.) Due to the relativistic velocity of the driver, this displacement is almost solely

transverse. The created displacement results in a space charge separation and therefore

electric fields, acting to restore the equilibrium. Once the driver has passed, the plasma

electrons are accelerated back towards the beam propagation axis, creating a region of

enhanced electron density. They overshoot the equilibrium position, resulting in a har-

monic oscillation of the plasma electrons around the beam propagation axis. This density
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modulation results in longitudinal electric fields between the regions of higher and lower

electron density, which in turn can be used to accelerate the witness bunch. The density

modulation created by a laser driver is illustrated in figure 2.1.

2.1.2 Linear and Non-Linear Regime

For plasma based acceleration, there are two fundamentally different regimes; the (quasi-)

linear and the non-linear regime [20].

In the linear regime, the density modulation is small and quasi sinusoidal, resulting in an

electric field distribution which allows the acceleration and focusing of both electrons and

positrons.

In the non-linear regime, the driver expels all plasma electrons from its path, leaving

behind an electron free bubble (therefore, this regime is also referred to as blowout or

bubble regime). The stronger density modulation results in stronger accelerating fields,

and the pure ion column within the bubble has very attractive focusing properties for

electron witness beams. However, for positrons the whole bubble is defocussing, and they

can only be accelerated in the very narrow end of the bubble. For them, the attractive

features of this regime are lost.

The difference between the two regimes is illustrated in figure 2.1.

2.1.3 Overview of Different Driver Technologies

A plasma can be driven either by a high intensity laser or a beam of charged particles. A

laser driven accelerator is commonly referred to as Laser Wake Field Accelerator (LWFA),

a beam driven accelerator as Plasma Wake Field Accelerator (PWFA). A laser driver

creates the plasma wake due to its ponderomotive force, a particle beam driver creates

the wake due to its Coulomb force. Whilst the general mechanism creating the plasma

electron density modulation is very similar for both driver technologies, there are some

differences worth noting:

i) For the laser systems currently used for LWFA, the energy stored in a laser pulse is

normally in the order of a few Joule (cf. chapter 3.1.2), much lower than the energy that

can be stored in a particle beam. This has direct implications for the maximal possible

energy gain per acceleration stage.

ii) For a laser driver, the phase velocity of the created plasma wake is approximately equal

to the group velocity of the laser pulse, with a relativistic γ normally in the order of 10-

100. For a short beam driver, the phase velocity of the wake is given by the velocity of

the drive beam, and the γ factor can be several orders of magnitude higher [12, 20, 22].

The lower phase velocity of a LWFA can lead to phase slippage between the laser driver

and a witness bunch of high energy, limiting the achievable energy gain per stage. For

acceleration in the bubble regime, the wake phase velocity also has direct implications for

the trapping of plasma electrons. The lower phase velocity for LWFA allows the trapping

of background electrons, thereby creating a witness bunch of appropriate length without

the need for an injector. However, this can also lead to dark currents and an increased

energy spread due to continuous injection of background electrons into the bubble.
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Figure 2.1: Plasma electron density distribution (a), and resulting longitudinal (b) and trans-

verse (c) electric fields for the quasi linear regime (left) and the non-linear bubble

regime (right); as simulated in [21]. The laser driver is propagating to the right,

centred at kp(z − ct) = 0. For both cases, the driver modulates the plasma electron

distribution, resulting in strong space charge fields which can be used to accelerate

and focus a so called witness bunch. In the quasi linear regime, the resulting density

modulation is close to sinusoidal, resulting in close to symmetric patterns for the

electric fields. Regions in which the fields are both accelerating (Ez < 0/Ez > 0)

and focusing (Er pointing away from / towards the propagation axis) are present for

both electrons / positrons. In the bubble regime, the accelerating fields are signifi-

cantly higher (note the different scales for the colour maps), and the whole bubble

is focusing for electrons. However, positrons can only be focused and accelerated at

the density spike at the end of the bubble at kp(z − ct) ≈ −7.5. For them, most

of the attractive features of this regime are lost. Distances are normalized to the

plasma skin depth k−1
p (≈ 15µm for n0 = 1017 cm−3, see chapter 2.3.2); densities are

normalized to the background plasma density n0; electric fields are normalized to the

classical wave breaking field E0 (≈ 30 GV/m for n0 = 1017 cm−3, cf. chapter 2.3.3).

The simulations for the linear regime use a preformed parabolic plasma channel, cf.

chapter 2.5.4. Figure property of C.B. Schroeder, used with permission.
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iii) The interaction cross section for a laser driver is given by its transverse profile. A beam

driver, however, will always interact with plasma electrons up to one skin depth away, due

to its Coulomb interaction (even for an infinitesimally narrow drive beam) [23, 24].

High power laser systems and laser wake field acceleration will be discussed in more detail

in sections 2.4 and 2.5. Electron and proton beam drivers will be discussed in chapters 2.6

and 2.7 respectively.

2.2 Basic Accelerator Physics
Before going into the theory of plasma-based acceleration methods, some concepts of clas-

sical accelerator physics shall be reviewed first.

2.2.1 Emittance

For a bunch with 107 or more particles, it is not practical to solve the equations of motion

for all particles. It is therefore customary to describe the bunch via its 6D phase space

volume. Neglecting coupling in a linear approximation, this volume can be split into three

independent 2D planes. For each spatial direction, the particles occupy an RMS area A

in phase space. The geometric emittance is defined as [25, 26]

εgeo = π ·A. (2.1)

As it is customary to give transverse momenta as the angle with the reference trajectory,

the emittance is given in m·rad. This has the corollary that the geometric emittance

decreases for increased longitudinal momentum. It is therefore useful to define a normalized

emittance to allow easier comparison between bunches of different longitudinal momentum

εN = βγεgeo, (2.2)

with the common definitions [27] β =
√

1− 1
γ2

, γ = Ekin+m0c2

m0c2
and m0 the rest mass of

the particle.

2.2.2 Beta-Function

Commonly, quadrupole magnets are used to focus particle beams. Let k(s) be their po-

sition dependent strength, then the equation of motion for the beam particles is given

by [25]

u′′(s)− k(s)u(s) = 0. (2.3)

The function u(s) describes the transverse position as function of the position along the

beam path With the ansatz

u(s) = A · u(s) cos [ψ(s) + φ] (2.4)

and for constant amplitude A and phase φ, one gets

u′′(s)− 1

u3(s)
− k(s)u(s) = 0. (2.5)
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This allows to define the beta function β as [25]

β(s) := u2(s). (2.6)

Combined with the constant emittance, it yields the RMS beam size via [25]

σ(s) =
√
εgeoβ(s). (2.7)

Without further focusing and noting β∗ as the value of the beta-function at the focus

point, the beta value β(s) after a drift of length s is given by [28]

β(s) = β∗ +
s2

β∗
. (2.8)

It is important to mention that due to the field structure of a quadrupole, it is focusing

in one plane and defocusing in the orthogonal plane. However, since the focusing strength

depends on the transverse position, a net focusing in both planes can be achieved using

two or more quadrupoles, cf. e.g. [29].

Phase Advance

The phase advance from a given point to a position s0 is defined by the integral over the

β function along the reference trajectory [29],

µ(s0) =

∫ s0

0

1

β(s)
ds. (2.9)

2.2.3 Dispersion

For a particle with a deviation from the reference momentum δ = ∆p/p0 � 1, equation 2.3

becomes1 [26]

u′′(s)− k(s) =
1

ρ0
(s)δ, (2.10)

with ρ0 the bending radius in a dipole magnet for a particle with reference momentum.

Solving equation 2.10 allows to define a dispersion function D(s), with δD(s) giving the

offset from the ideal trajectory for a particle with energy deviation δ. For Gaussian beams

and non-zero dispersion, the beam size increases to [26]

σ(s) =
√
β(s)εgeo +D2(s)δ2. (2.11)

2.3 Introduction to Plasma Properties

A plasma is a state of matter similar to a gas, in which a certain amount of the particles is

ionized. The high number of charge carriers make a plasma electrically conductive, and it

responds strongly to electric and magnetic fields. Plasmas are quasi-neutral, meaning that

1 Note that to be consistent with equation 2.3, we follow the sign convention for k used in [25]. This

results in a minus sign on the left hand side of equation 2.10, as opposed to the plus sign given in the

reference.
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on macroscopic scales they are electrically neutral in spatial and temporal average. An

over-density of charge carriers at a certain position immediately results in electric fields

acting to restore the equilibrium.

In general, all the constituents of a plasma have high kinetic energies. Whilst each particle

type can normally be described by a temperature T , the different particle types do not

need to be in thermal equilibrium [27].

2.3.1 Plasma (Langmuir) Frequency

If the plasma electrons are displaced versus the plasma ions, the Coulomb force acts as

restoring force and leads to harmonic oscillations. Assuming cold electrons (i.e. electrons

with negligible thermal velocity) and immobile ions, the electron plasma frequency is given

by [30]

ωpe =

√
n0e2

ε0me
, (2.12)

where n0 is the electron number density, e is the elemental charge, me is the mass of the

electron and ε0 is the permittivity of free space. Substituting the electron mass for the

mass of the corresponding ions mi, one gets the ion plasma frequency

ωpi =

√
n0Z2e2

ε0mi
,

with Z the charge state of the ion. As the ions move out of phase with the electrons the

total oscillation frequency is given by

ω2
p = ω2

pe + ω2
pi.

If not noted otherwise, the approximation ωp w ωpe is made.

In practical units,

ωpe[Hz] ≈ 5.64 · 104
√
n0[cm−3]. (2.13)

2.3.2 Plasma Wavelength, Plasma Skin Depth

For a plasma, the collision-less skin depth results from the dispersion relation c2k2 =

ω2−ω2
p. For ω < ωp, k becomes imaginary, the wave decays exponentially. For ω � ωp [30]:

k−1
p =

c0

ωp
=
λp
2π

=

√
c2

0ε0me

n0e2
, (2.14)

with λp the plasma wavelength. In practical units

λp[mm] =
3.3 · 107√
n0[cm−3]

. (2.15)

The correlation between plasma wavelength and density is illustrated in figure 2.2.
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Figure 2.2: Plasma wavelength λp (red solid line) and plasma angular frequency ωp (blue dashed

line) over the average plasma electron density n0.

2.3.3 Wave Breaking Field

A plasma can sustain fields in excess of the so called cold non-relativistic wave breaking

field [31] (for which the thermal velocities and the relativistic mass increase of the electrons

are neglected in the derivation). In one dimension, wave breaking happens when the

oscillation amplitude of the plasma wave becomes bigger than one plasma wavelength, i.e.

kpz ≈ 1, z ≈ eEz/mωp. From Gauss’s law the critical longitudinal field is [31]

E0 =
mecωp
e

=

√
n0mec2

ε0
. (2.16)

Note that the electric field Ez can exceed E0 for nonlinear plasma wakes. Simulations have

shown that the scaling Ez ∝ E0 is still valid in the nonlinear regime [32].

In practical units

E0[V/m] ≈ 96
√
n0[cm−3]. (2.17)

2.4 Introduction to High Power Lasers
Before laser-driven plasma-based acceleration techniques will be discussed in chapter 2.5,

some important laser parameters shall be introduced.

2.4.1 Optical Intensity

The optical intensity is defined as the optical power per unit area, transmitted through

an imaginary surface perpendicular to the propagation direction. For a monochromatic

propagating wave such as a plane wave or a Gaussian beam, the local intensity I is related

to the electric field amplitude EL via [33]

I =
vpε0εrµr

2
|EL|2 =

cε0n

2
|EL|2, (2.18)
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with vp the phase velocity, c the speed of light in vacuum and n the refractive index. For

a Gaussian beam with optical power P and beam radius rL, the peak intensity on axis

is [33]

IP =
P

πr2
L/2

.

This is two times higher than one would naively assume.

For the high energy lasers considered in the scope of this work the electric fields of the

laser EL are in the order of 1010 to 1011 V/m, higher than the atomic electric field Eat w

5 · 109 V/m derived from the Bohr model. This means that any gas is immediately ionized

at the very front of the laser pulse and the majority of the pulse propagates in plasma [34].

2.4.2 Laser Strength Parameter

For high power lasers, it is convenient and common to use the normalized electrostatic and

vector potentials

φ =
eΦ

mec2
, ~a =

e ~A

mec2
. (2.19)

The strength of a laser system is then given by the laser strength parameter a0, defined

as the peak amplitude of the normalized vector potential of the laser field ~a = a0â.

Physically, ~a is the normalized quiver momentum of the electrons in an electric field [20].

In an electric field ~E = Eêx cos(ωt− kz), a free electron oscillates with a classical velocity

amplitude, the so called quiver velocity [34]

vq =
eE

meω
. (2.20)

If this velocity becomes comparable to c, the relativistic regime is reached. This is deter-

mined by the parameter a0, depending if a0 � 1 or a0 & 1 [34]:

a0 =
vq
c

=
eE

meωc
. (2.21)

For a peak intensity I of a linear polarized Gaussian laser pulse of shape

~a = a0 exp
(
− r2

r2L

)
cos(kz − ωt)êx, with rL the RMS laser spot radius and λ, ω the laser

wave length and frequency respectively [20]:

a0 =

√
2e2λ2I

πm2
ec

5
w 8.6 · 10−10λ[µm]

√
I[Wcm−2]. (2.22)

It relates to the laser power P and the peak transverse electric field amplitude EL via

P [GW] w 21.5
(a0rL

λ

)2
, (2.23)

EL[TV/m] w 3.2
a0

λ[µm]
. (2.24)

2.4.3 Polarization

A plane light wave can be described by is vector potential [35]

~A(r, t) = <
(
~A0e

iψ
)
, (2.25)
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where r and t are the space and time coordinates and ψ = ~k · ~r − ωt is the phase. For

linear polarization (LP), ~A0 = A0êy. For circular polarization (CP), ~A0 = A0(êy ± iêx),

with the sign depending on the rotation direction. With the dispersion relation in vacuum

ω = |~k|c the electric and magnetic fields are then given by

~E = <
(
− iω
c
~A0e

iψ

)
, ~B = <

(
i~k × ~A0e

iψ
)
. (2.26)

With the pointing vector ~S = c
4π
~E × ~B, the intensity of the light is given by

I = |~S| = ωk

8π
A2

0 ·

1 + sin 2ψ for LP,

2 for CP.
(2.27)

For linear polarization, the intensity oscillates with twice the phase, while it is constant

for circular polarization. As a result, the averaged intensity is [35]

Īλ2 = ξ
ωkλ2

8π
A2

0 = ξ
π

2
cA2

0 = ξ
π

2
P0a

2
0, (2.28)

with ξ = 1 for linear polarization, ξ = 2 for circular polarization, and the relativistic power

unit P0 = m2c5/e2 ' 8.7 GW.

For monochromatic light, circularly polarized light can be transformed into linearly polar-

ized light and vice versa using a λ/4 optical wave plate. For non-monochromatic waves,

full conversion is only achieved in a limited wavelength range [33].

2.4.4 Laser Wavelength, Chirped Pulse Amplification

To date, almost all of the highest energy laser systems depend on the method of Chirped

Pulse Amplification (CPA) [9, 33, 36]. This method allows us to overcome previous energy

limitations due to the damage potential of the high intensity laser beam to the gain medium

and the optical components. In CPA, a ultrashort but spectrally broad laser pulse is

positively chirped and temporally stretched by several orders of magnitude, meaning that

the high frequency part of the spectrum lags behind the low frequency part. The low

intensity beam is then introduced into the gain medium, where it is amplified by several

orders of magnitude, before it is recompressed. To recompress the beam to ultra short

durations (and therefore reach highest intensities), all spectral components must experience

the same gain during the amplification progress. This limits the usable gain media to a

few possibilities and the laser (carrier) wavelength to near infrared, λL ≈ 1µm [36].

If higher frequencies are desired, frequency multipliers can be used, several times if neces-

sary [33].

2.4.5 Rayleigh Length

The Rayleigh length of a laser beam is the distance along its propagation direction after

which the cross section of the beam doubles, measured from the beam waist (i.e. the point

where the beam diameter is minimal). For a Gaussian beam in free space propagating in

ẑ direction, the Rayleigh length is given by [33]

zR =
πw2

0

λ
, (2.29)
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where λ is the laser wavelength and w0 is the beam waist. The radius of the beam at a

distance z from the waist is given by [20]:

w(z) = w0

√
1 +

(
z

zR

)2

. (2.30)

The Rayleigh length is therefore comparable to the β∗ value of classical accelerator physics.

For typical laser wavelengths of about 1µm and a laser spot diameter at focus in the

sub-millimetre range, the Rayleigh length is below 1 mm.

2.4.6 Phase and Group Velocity

The phase velocity is the velocity of the wave phase fronts within a given wave. For a laser

pulse, it is the velocity of light in the medium through which it propagates. It is given

by [27, 33]

vp =
ω

|~k|
=
λ

T
. (2.31)

The superposition of two harmonics waves y1/2(x, t) = A cos(ω1/2t−k1/2x) with frequencies

ω1, ω2 and same amplitude A yields a wave, the envelope of which is modulated with

cos(∆ωt − ∆kx), assuming propagation in x̂-direction and ∆ω = (ω1 − ω2)/2, ∆k =

(k1 − k2)/2. The velocity of said modulation is given by vg = ∆ω/∆k [27]. A locally

confined wave packet can be generated by superposition of an infinite number of harmonic

waves with a continuous spectrum. The group velocity is then given by [27, 33]

vg =
∂ω

∂~k
. (2.32)

Group and phase velocity can be different in a dispersive medium in which the phase

velocity depends on the wavelength. The transport of energy through a medium happens

with the group velocity.

2.5 Laser-Driven Acceleration in the Linear Regime

2.5.1 Introduction

In 1979, it has been suggested by Tajima and Dawson to use plasmas as a transformer

to transfer the energy of a high power laser pulse to an accelerated particle beam [8].

This Laser Wakefield Acceleration (LWFA) mechanism allows the circumvention the so

called Lawson-Woodward theorem [37–39], which states that no net energy transfer from

an electromagnetic wave to a particle is possible in free space.

Since high power laser systems became readily available after the invention of chirped pulse

amplification in 1985 [9], the field of LWFA has seen tremendous progress [20]. Acceleration

gradients of over 100 GV/m and electron energies of over 100 MeV have already been

achieved in the mid 1990s [40, 41]. However, these early beams where characterized by an

exponential energy distribution, with most electrons at low energies and only a few high

energy particles in the tail of the distribution. This dramatically changed in 2004, when
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three groups independently achieved the production of high quality electron beams with

charges of around 100 pC at a mean energy of approximately 100 MeV, low divergence and

an energy spread of only a few percent [42–44]. High quality electron bunches of up to

1 GeV have been demonstrated in 2006 using a plasma-channel guided laser pulse [10].

In this chapter, the fundamental mechanisms relevant for LWFA will be reviewed.

2.5.2 Plasma-Based Laser-Driven Accelerator Concepts

While in the following this work will assume LWFA unless otherwise noted, some histori-

cally used laser-driven plasma-based acceleration schemes shall be mentioned as well.

Plasma Beat Wave Accelerator - PBWA

In a simplistic way, plasma electrons can be understood as an ensemble of oscillators,

oscillating at the plasma frequency. To enforce the resonant swinging of these oscillators,

the driver must contain a Fourier component close to the plasma frequency. A short dense

driver has a broad spectrum and thus generates the wake field efficiently [45].

Before 1985, the ultra intense, ultra short laser pulses necessary of LWFA were not avail-

able. The Plasma Beat Wave Accelerator (PBWA) [8, 20, 46] relies on two long laser

pulses with frequencies ω1, ω2 and normalized combined vector potential a = a1 cos(k1z −
ω1t) + a2 cos(k2z − ω2t). When the laser frequencies are adjusted so that the beat term

is approximately the plasma period, ∆ω = ω1 − ω2 ' ωp, a plasma wake can be driven

resonantly. The phase velocity of the plasma wave is given by vp/c ' 1 − ω2
p/(2ω1ω2).

In the limit ω2
pω

2
1 ∼ ω2

pω
2
2 � 1 the phase velocity of the wake is approximately given by

the group velocity of the driving lasers. The beat wave effectively acts as a series of laser

pulses with amplitude a1a2 and pulse duration ∆τ = 2π/∆ω, each generating a wake of

amplitude Emax/E0 = πa1a2/2. The total wake amplitude generated by a beat pulse of

length L = Nλp is Emax/E0 = Nπa1a2/2, with N the number of beat periods within the

pulse.

The results given above are based on linear plasma theory, and several non linear effects

have been neglected. In particular, the plasma wave period increases as the plasma wake

amplitude increases. Since the beat wave period is fixed, this will eventually lead to

dephasing and limit the amplitude of the wake. In [46] the maximal field before saturation

has been derived as

Esat/E0 = (16a1a2/3)1/3,

assuming that the beat frequency is exactly the ambient plasma frequency, i.e. ∆ω = ωp.

A slightly higher field at saturation can be reached if the beat frequency is detuned to

compensate for the lengthening of the plasma wake period [47].

The results above have been derived for weak pump amplitudes a1a2 � 1, but the general

concepts also apply in the highly nonlinear regime, a1a2 & 1 [20].

Resonant Laser Plasma Accelerator - RLPA

In the previous section, it has been pointed out that the PBWA effectively acts as series

of laser pulses, the period of which could be adjusted to compensate for the detuning

due to the increase of the plasma wave length with growing wake field amplitude. The
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Resonant Laser Plasma Accelerator (RLPA) [20, 48, 49] builds on these findings and drives

a plasma wake by a train of short laser pulses, the width and spacing of which is optimized

to generate the highest wake field. This way, the saturation of the plasma wake due to

resonant detuning can be eliminated.

Self-modulated Laser Wakefield Accelerator - SMLWFA

In the previous two sections, it has been sketched that a series of short laser pulses can

drive a large amplitude plasma wake. In the Self-modulated Laser Wakefield Accelerator

(SMLWFA) [20, 50–53] a single, long laser pulse is used instead. Under appropriate con-

ditions, this beam can break up into a series of short pulses, each having a width in the

order of λp. This process is called self modulation and occurs as the plasma wave produces

regions of enhanced focusing and diffraction. To operate a SMLWFA, the laser pulse length

should be longer than the plasma wave length, L > λp and the laser pulse power should

be larger than the critical power for which laser guiding occurs, P > Pcrit(1 −∆n/∆nc).

Here, Pcrit ' 17.4 · ω2

ω2
p

GW is the critical laser power, (which is explained in more detail

in section 2.5.4), ∆n is the depth of a preformed parabolic plasma channel (if present),

∆nc = 1/(πrew
2
0) is the critical channel depth and re is the classical electron radius. Since

λp ∝ n−1/2
0 and Pcrit ∝ n−1

0 , the conditions L > λp and P > Pcrit can normally be reached

by increasing the plasma density (assuming fixed laser parameters).

The SMLWFA concept has two main advantages compared to the standard LWFA: sim-

plicity and increased acceleration. Simplicity in this case means that the laser pulse length

does not have to be matched to the plasma density so that L ' λp, and that no pre-

formed plasma channel is necessary to guide the pulse. The increased acceleration has

four reasons: i) The SMLWFA normally operates at a higher plasma density, which leads

to a higher accelerating field Ez ∝ n
1/2
0 . ii) The condition P > Pcrit means that the laser

pulse will tend to focus to a higher intensity, and therefore increase Ez by increasing a0.

iii) Relativistic guiding will allow the pulse to propagate for several Rayleigh lengths, thus

increasing the acceleration length. iv) As with the PBWA and RLPA the plasma will be

excited resonantly by a series of pulses, as opposed to a single pulse in the LWFA.

The main disadvantages of the SMLWFA are: i) At higher densities the laser pulse group

velocity decreases. As the plasma wake phase velocity is approximately equal to the

laser pulse group velocity, this can lead to dephasing between the plasma wake and the

accelerated electrons and thus limit acceleration distance. ii) The dephasing length is

short compared to the laser propagation distance. This and continuous trapping of plasma

electrons leads to a broad energy spectrum. iii) The modulated pulse structure eventually

diffracts.

Experiments have shown that for SMLWFA laser pulses with fast rise times are benefi-

cial [52, 53]. A faster rise time results in a stronger ponderomotive force and therefore a

stronger initial plasma wake, acting as a seed for the self-modulation instability.

For the proton-driven AWAKE experiment described in chapter 6, a similar self-modulation

of the proton bunch is used to drive the plasma wakefields, cf. section 2.7.2.
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Laser Wakefield Acceleration - LWFA

The Laser Wakefield Accelerator (LWFA) [8, 20] uses a single, short (. 1 ps), high in-

tensity (& 1017 W/cm2) laser pulse to drive a plasma wake. When an intense laser pulse

propagates through an underdense plasma, the plasma electrons are expelled from the

region of the laser pulse. This is due to the ponderomotive force associated with the laser

pulse envelope, Fp ∼ ∇a2. (In the context of LWFA, underdense means that λ/λp � 1,

the laser wavelength λ is much shorter than the plasma wavelength λp.)

Assuming an axially symmetric laser pulse, the plasma wave is driven most effectively if

the laser pulse length L is in the order of the plasma wavelength λp, i.e. LRMS . λp.

The exact pulse length L that maximizes the wake amplitude depends on the shape of

the axial pulse profile. For a Gaussian laser pulse, the wakefield reaches its maximum,

Emax = 0.76a2
0E0, when kpLRMS = 1, assuming a2

0 � 1 [54]. The phase velocity of the

excited wake is approximately the laser pulse group velocity.

As the wake is driven by a single pulse with L ∼ λp, the amplitude of the exited wake is

fairly insensitive to uncertainties in pulse duration and plasma density.

While the PBWA and SMLWFA schemes also produce high gradients and high energy

electrons, the general consensus is that LWFA is most suitable for a real accelerator, as

the SMLWFA relies on an instability, and the PBWA is susceptible to instabilities or

degradation of the phase velocity of the wave, as has been confirmed in simulations [32].

2.5.3 Ponderomotive Force

In an inhomogeneous oscillating electromagnetic field, a charged particle experiences a

nonlinear force, the so called ponderomotive force [55]

~Fp = − e2

4mω
∇ ~E2, (2.33)

with e the electrical charge of the particle, m its mass, ω the angular frequency of oscillation

of the field and ~E the amplitude of the electric field. In addition to the fast oscillations a

particle would experience in a homogeneous field, it also feels a force pushing it towards

the regions of lower intensity. This can be understood by considering the motion of a

single charge in the oscillating electric field. In a homogeneous field, the charge returns

to its original position after one oscillation period. In an inhomogeneous field however,

this is not the case, since the force the particle feels at the turning point in the low field

area is lower than the one it experiences in the high field area. This results in a net

force, the position the charge reaches after one oscillation shifts towards the low field

region. The ponderomotive force can therefore be defined heuristically as the gradient of

the time-averaged oscillation potential.

2.5.4 Diffraction, Optical Guiding

In vacuum, a focused laser pulse will diffract with the characteristic Rayleigh length,

cf. chapter 2.4.5. This diffraction length can be much shorter than the dephasing and

depletion length and therefore become the limiting factor for particle acceleration [20].

However, this diffraction can be mitigated by optical guiding of the laser pulse, due to



18 2. Theory of Plasma Based Accelerators

a lower plasma density on axis than off axis. This in turn can either be achieved by a

preformed plasma channel or a sufficiently strong laser as shall be explained below.

For an electromagnetic wave of low intensity propagating through an unmagnetized plasma,

the dispersion relation is given by [27, 35]

ω2 = ω2
pe + c2k2 (2.34)

where k and ω are the wave number and angular frequency of the wave, c is the vacuum

velocity of light and ωpe is the plasma electron frequency. The refractive index n of the

plasma is therefore given by

n =

√
1−

ω2
pe

ω2
=

√
1− n0

nc
(2.35)

defining the critical density for the electromagnetic wave nc = ε0meω2

e2
. For ω < ωp

(n0 > nc), the refractive index becomes imaginary and the wave will be reflected. The

plasma can be classified as overdense (inhibiting wave propagation) or underdense (allow-

ing wave propagation) with respect to nc.

However, equations 2.34 and 2.35 only hold for low intensity electromagnetic waves with

a � 1. For high intensities (but still a < 1), the plasma electrons will be accelerated to

relativistic energies, and their relativistic mass increase has to be taken into account. The

refractive index is then given by [34]

n =

√
1−

ω2
pe(r)

ω2
, ωpe(r) =

√
n0(r)e2

γ(r)meε0
(2.36)

The relativistic modification is related to the laser strength via γ(r) '
√

1 + a2(r)/2. For

a laser pulse with its peak intensity on axis, the refractive index is maximum on axis and

decreases with ∂n/∂r < 0. This means that the wave propagation will be slower on axis

than off axis. The resulting curvature of the phase front has the effect of a focusing lens,

counteracting the natural diffraction [55, 56].

As explained in chapter 2.4.3, The radiation power of a Gaussian laser beam is given

by [35]

P =
Ipπr

2
L

2
= P0

(
ω2

16c2
a2

0r
2
L

)
· ξ (2.37)

with Ip the peak intensity on axis, P0 = m2c5/e2 ' 8.7 GW the relativistic power unit,

and ξ = 1 for linear and ξ = 2 for circular polarization of the laser beam. Self focusing

occurs if this power exceeds the critical power Pcrit [57],

Pcrit = 2P0
ω2

ω2
p

' 17.4 · ω
2

ω2
p

GW (2.38)

The radial decrease in density ∂n/∂r < 0 can also be achieved via a preformed plasma

channel, which allows to guide laser beams of lower intensities. This method has the

additional advantage that the plasma channel also acts on the head of the beam [20].
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2.5.5 Dephasing

In the linear regime with a0 � 1 and neglecting the evolution of the laser driver during

its propagation, the phase velocity of the plasma wake is equal to the group velocity of

the laser driver [20]. The dispersion relation 2.34 yields vg = c(1− ω2
p/ω

2)1/2 and γg =

(1 − v2
g/c

2)−1/2 = ω/ωp, often resulting in a phase velocity of the wake in the order of

γp ∼ 10− 100 [22].

If a witness electron is accelerated, its velocity will increase and approach the speed of light,

v → c. As the phase velocity of the plasma wake is constant with vg < c, the electrons

can eventually outrun the plasma wake and slip into the decelerating / defocussing region

of the wake. This limits the maximum energy gain of the electron and is referred to as

dephasing. The dephasing length Ld is defined as the length distance an electron can

travel before it slips by half a period of the plasma wake. For a highly relativistic electron

with v ' c, it is given by (1− vp/c)Ld = λp/2.

For a linear polarized square profile laser pulse in the 1D limit (r0 � λ) [20]

Ld '
λ3
p

2λ2
·

1 for a2
0 � 1,

√
2
π

a0
Np

for a2
0 � 1

(2.39)

where Np is the number of plasma periods behind the drive laser pulse, and the phase slip

is λp/4.

2.5.6 Depletion

During the acceleration process, the driving (pumping) laser pulse transfers its energy to

the accelerated witness bunch. For a linear polarized square profile laser pulse in the 1D

limit (rL � λ), where the laser spot radius rL is much larger than the laser wavelength

λ, the so-called pump depletion length Lpd after which the laser has given off its energy is

given by [20, 58]:

Lpd '
λ3
p

λ2
·

2/a2
0 for a2

0 � 1,
√

2
π a0 for a2

0 � 1

with λ, λp the laser and plasma wave lengths respectively. For a Gaussian pulse with a

pulse length close to the resonant value the pump depletion length becomes [58]:

Lpd ' 1.3
λ3
p

λ2
·

2/a2
0 for a2

0 � 1,

1 for a2
0 � 1

(2.40)

For efficient acceleration, one wants the acceleration distance to be equal to the pump

depletion length.

2.6 Electron-Driven Acceleration in the Linear Regime
In a very similar way a laser can generate plasma wakes via its ponderomotive force, a

charged particle beam can be used to generate a wake due to its space charge force [12, 59–61].

This concept is referred to as Plasma Wakefield Acceleration (PWFA).
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2.6.1 Acceleration Gradient

In the liner regime (nb � n0; eE � meωpc), the plasma response to a relativistic bunch

with bi-Gaussian density distribution can be calculated by integrating the Green’s func-

tion for a single electron. For a narrow bunch (kpσr � 1), the maximal field can be

approximated by [62]:

E = 240(MVm−1)

(
N

4 · 1010

)(
0.6 mm

σz

)2

(2.41)

with N number of particles in the driving bunch and σz the rms length.

2.6.2 Transformer Ratio

For particle driven acceleration schemes, a severe limitation comes from the so called

transformer ratio for longitudinally symmetric bunches [14, 15]

R =
Ewitnessmax

Edrivemax

≤ 2− Nwitness

Ndrive
, (2.42)

the ratio between the maximal decelerating electric field in the drive beam Edrivemax and the

maximal accelerating field in the witness beam Ewitnessmax for a given ratio of particles per

bunch Nwitness/Ndrive. The energy gain ∆E of an accelerated bunch is given by

∆E = R · Edrive. (2.43)

The transformer ratio can be improved to R ≤ 2
√
M − Nwitness

Ndrive
by using M drive bunches

with appropriately varied phase to each other [14]. The transformer can also be improved

by using non-symmetric bunches [63]. However, both these methods require manipulation

on a time (length) scale much smaller than the plasma frequency (plasma wavelength).

Therefore, they are technically very challenging.

2.6.3 Dephasing

For a short drive beam, the phase velocity of the plasma wake is equal to the velocity of

the driver, vp = vb [12]. Since the relativistic γ-factor of a particle drive beam is normally

much higher than the γ-factor associated with a laser driver, dephasing is normally not

the limiting factor when using beam drivers [22].

2.6.4 Diffraction, Head Erosion

As a laser pulse is subject to Rayleigh diffraction (chapter 2.4.5), a particle beam diverges

on a scale length of β∗, the β value at focus. Whilst the witness bunch can be focused

by the transverse fields of the wake, part of the drive beam propagates in neutral gas /

homogeneous plasma. Since the plasma wake has not yet been created there, there are no

focusing fields present and the beam head is subject to erosion.
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2.7 Proton-Driven Acceleration
To complement the Large Hadron Collider (LHC), a high energy lepton collider is desirable.

The energy and luminosity requirements for such a collider [64–66] make staging necessary

for both laser and electron/positron driven collider schemes. To circumvent the challenges

associated with this staging, it has been suggested to study protons as possible drivers [15].

Protons can be accelerated to very high energies using synchrotrons, without excessive

losses due to synchrotron radiation emission. The energy stored in a ultra-relativistic

proton beam is sufficient to accelerate electrons/positrons to TeV energies in a single

stage.

2.7.1 Positively Charged Driver

Theory predicts that in the linear regime, the wake excited by a positively charged driver

is the same as for an electron driver, only shifted in phase [15]. Therefore, the points

discussed in section 2.6 also hold for proton driver.

However, for the highly nonlinear regime significant differences arise. The drive beam does

not ’blow out’ the electrons any more, it pulls them towards the beam axis instead. This

lead leads to an increase of the local electron density, resulting in a shorter local plasma

wavelength. This in turn makes the use of an even shorter drive bunch necessary to excite

the wake resonantly [15]. Or, for fixed beam parameters, the necessary plasma density can

be up to an order of magnitude lower than what linear theory would predict [67]. However,

simulations in [15, 67] show that a bubble similar to that formed by a negatively charged

driver is also created by a positively charged driver. The plasma electrons are accelerated

towards the axis, overshoot, and create a bubble.

2.7.2 Self Modulated Driver

For the lepton drivers discussed in chapter 2.6, it was possible to compress the drive beam

to a length comparable to the plasma wavelength. For the proton driven AWAKE experi-

ment described in chapter 6, this would require a compression by 4 orders of magnitude,

translating into GV of RF voltage and kilometres for the bunch compressor chicane [68].

Since this is beyond the scope of a demonstration experiment, it has been decided to use

a long proton bunch as driver. This proton bunch will self modulate, comparable to the

SMLWFA discussed in chapter 2.5.2 [18, 19, 45]. The modulation occurs due to the cou-

pling of the transverse wake field and the beam radius evolution [22, 45, 69]. In other

words, the transverse wake fields will focus and defocus parts of the beam, leading to a

density modulation. In turn, this density modulation drives the wake more efficiently.

Once the instability develops, nothing can keep the most part of the beam from transverse

dispersion [70]. For an illustration of the modulation, cf. figure 6.7, page 6.7.

For the highly relativistic drive beam discussed for our experiment, the longitudinal effect

on the beam is very weak [45].

In principle, the self-modulation instability can grow from noise. However, for a not

perfectly axis-symmetric beam, other instabilities like hosing (cf. section 2.8.2) can grow

on a similar time scale, ruining the beam quality. This can be circumvented by pre-

seeding the self modulation instability. As an added benefit, seeding will increase the
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shot-to-shot reproducibility and the quality of the wakefield [45]. Possibilities to seed

the self-modulation instability include a laser or electron pre-pulse or a sharp step in the

proton bunch density [18, 19].

2.7.3 Dephasing

Short Driver

For a short (σz ' λp) proton driver, the phase velocity of the plasma wake is equal to

the velocity of the drive beam, as for the PWFA case. It is worth noting however, that

due to the higher mass of the proton this makes much higher proton energies necessary to

maintain a driver velocity close to the speed of light. Otherwise, dephasing can become

the limiting factor. In particular, for γe � γp, this imposes the condition for the phase

slippage δ [71]:

δ = kp∆d ≈
1

eEacc/(mecωp)
(γe,fin − γe,in)

1−
γp,fin − γp,in√

γ2
p,fin − 1−

√
γ2
p,in − 1

 < π (2.44)

Here, kp∆d is the difference in travelled distance between the protons and the electrons

normalized to the plasma skin depth, eEacc/(mecωp) is the accelerating field of the plasma

wake normalized to the classical wave breaking field and γe,in, γe,fin, γp,in, γp,fin are the

initial and final relativistic gamma factors of the electrons and protons respectively.

Note, that although the accelerating gradient and therefore the length of the plasma stage

depend on the plasma density, the condition for the phase slippage does not, as the distance

the electron may outrun the proton beam also depends on the plasma wave length and

therefore the plasma density.

Self Modulated Driver

For the self modulated case, the phase velocity of the wake is not determined by the driver

velocity, as one might naively assume. During the development of the instability, it is

considerably reduced due to the spatio-temporal nature of the self focusing instability [22,

69]. Due to the instability dispersion, the phase velocity is given by [69]:

vp = vb

[
1− 1

2

(
ξ

ct

)1/3( nbme

2n0mpγb

)1/3
]

(2.45)

with ξ = vb
c ct−z, τ = z/c and vb, γb and nb the properties of the drive beam. The γ factor

of the wake can be up to an order of magnitude smaller than that of the driver. This

is problematic, since it can lead to dephasing with an relativistic electron witness bunch

before the instability has reached saturation (and the accelerating field therefore is still

low).

Once the instability saturates, the phase velocity of the wake approaches the velocity of

the driver again (for the planned experiment, this happens after about 5 m). This implies

that the electron witness bunch should be injected at a later point along the plasma, either

with a staged approach [22] or via side injection [69, 72].
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2.8 Acceleration in the Nonlinear Regime
To also allow the acceleration of positrons for linear collider application, the main part of

this thesis is based on acceleration in the (quasi) linear regime. Acceleration in the highly

nonlinear regime will therefore only be discussed briefly. For more information, the reader

is referred to e.g. [20, 32, 36, 73–76].

None the less, a set of scaling laws with plasma electron density has been derived during

the course of this thesis. They are discussed in section 2.8.3. The important concepts of

beam matching and hosing will be explained in sections 2.8.1 and 2.8.2 respectively.

Whilst an electron driver will be assumed in the following, the general principles work

analogously for a laser driver.

For high enough driver intensities, all plasma electrons can be expelled from some re-

gion around the driver propagation axis. Due to the creation of this cavity, this regime is

often also referred to as blowout, bubble or cavitation regime.

In addition to the higher accelerating gradient due to the stronger plasma electron density

modulation, the structure of the electric fields within the plasma bubble makes it very

attractive for the acceleration of electrons. In particular, the accelerating field is constant

as a function of radius. Furthermore, the transverse focusing fields increase linearly with

radius. This, in turn, leads to a preservation of the normalized witness beam emittance [20].

However, as the transverse fields are focusing for electrons within the whole bubble, they

are in turn defocussing for positrons. Positrons can only be focused at the density spike

at the very end of the bubble, making their acceleration very difficult [21].

The difference between the linear and the nonlinear regime is illustrated in figure 2.1,

page 7.

2.8.1 Beam Matching, Electron Driver

In an underdense plasma with nb � n0, the drive beam creates an ion column, which

acts as a thick focusing lens for an electron beam. This causes the beam to undergo

betatron oscillations along the length of the plasma [77–79]. There are several advantages

if the beam size can be matched to a constant radius [77]: i) Instabilities such as hosing

(cf. section 2.8.2) are reduced. ii) Synchrotron radiation losses due to oscillations are

minimized. iii) Since the focusing force is constant in both transverse dimensions, an

initially matched beam will propagate with no significant change in beam size in spite of

large energy gain or loss.

The beam transport in an ion column can be modelled by treating the ion column as an

ideal lens with linear focusing force. For an initially round beam the beam transverse size

σr is then obtained by solving equation 2.46 [77, 79–81]:

d2σr(z)

dz2
+ k2σr(z) =

ε2

σ3
r (z)

, k =
ωp
c

1√
2γ
, (2.46)

with ωp the plasma period, ε the beam emittance, γ the relativistic beam factor and (2π/k)

the betatron wavelength. The matching condition dσr/dz = 0 yields σ2
r = ε/k or

σr =

(
2ε0mec

2

e2

γε2

n0

)1/4

. (2.47)
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In [77, 78], it has been shown experimentally that a matched beam can be channelled with

almost constant transverse size over distances much longer than what one would estimate

from its β-value at focus, cf. section 2.2.2.

For most plasma densities of interest, the matched beam size is in the order of a few

µm. The requirements on the focusing can be relaxed by adiabatic matching [77]. For

an adiabatic change in the focusing force k2 ∝ n0 in the boundary of the plasma density

profile, the beam can be matched to the constant density part of the plasma. The required

beam parameters can be found by solving equation 2.46 for the peak plasma density with

the initial conditions σr(zpeak)
2 = ε/k(zpeak), dσr(zpeak)/dz = 0 and then propagating the

beam back to where n0 ≈ 0.

In a PWFA, the drive beam can lose a big fraction of its energy as it propagates through

the plasma. This means that the focusing strength k ∝ 1/γ changes along z. However,

simulations in [77] show that a matched beam remains closely matched even if the beam

loses a big fraction of its energy.

2.8.2 Hosing

When an electron beam propagates through an underdense plasma, it is subject to a

transverse instability called hosing [82–84]. The instability is caused by the coupling

of the beam centroid to the electrons at the edge of the ion channel. It is similar to the

transverse two-stream instability occurring for lower driver densities and the beam breakup

observed in classical linear accelerators. Similarly, it can lead to a degradation of beam

brightness and to total beam disruption. The growth of the instability can limit the useful

acceleration length and make it difficult to aim the beam [85].

A more detailed discussion of hosing can be found in appendix D.

2.8.3 Scaling with Plasma Density

At SLAC, the energy of 42 GeV electrons has been doubled in a plasma cell of 85 cm [13].

However, the plasma densities n0 were larger than 2×1017 cm−3. This means that the size

of the accelerating structures, on the order of the plasma collision-less skin depth c/ωp,

were smaller than ≈ 20µm. Producing high charge, high quality accelerated bunches in

such small scale structures is a challenge, even though no accelerating structure has to be

manufactured. In the scope of this thesis, several scalings with plasma density for a beam-

driven linear collider operating in the blowout regime have been derived (and published

in [86]). They are based on the premise that while very high-gradient acceleration would

lead to a minimization of the length of such a collider, beam quality and power requirements

may favour operating at lower densities and therefore also lower gradients.

The following scalings are expressed with respect to the plasma density ne. Assuming

that the accelerating gradient scales proportionally to the cold plasma wave breaking field

E0 = mecωpe/e ∝ n
1/2
0 , the plasma length Lp to reach a given final energy thus scales

as n
−1/2
0 . Furthermore, we assume that the drive and witness bunch lengths σz are a fixed

fraction of the plasma skin depth c/ωp, and therefore also scale as n
−1/2
0 .

In order to minimize energy loss to synchrotron radiation due to betatron envelope oscil-

lation of the bunches along the plasma, the beam size is assumed matched to the plasma’s
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very strong focusing force, cf. section 2.8.1. In this case, the beam’s transverse size remains

constant along the plasma,

σr =

(
2ε0mec

2

e2

γε2

n0

) 1
4

∝ n−
1
4

0 . (2.48)

We also assume that we set the bunch densities so that the ratio of the two bunches’

density to the plasma density nb/n0 is kept constant. To keep up with the above scalings

the number of particles per bunch scales as Nb ∝ σ2
rσznb = cst., i.e. the number of particles

per bunch is independent from the plasma density. The increase in beam density is negated

by the decrease of the bunches’ dimensions. Note that due to the different dependence of

the bubble size on the plasma density, this is a fundamentally different scaling than the

N ∝ n−1/2
0 dependence found in chapter 4.2.

The matching condition between the plasma focusing force and the beam leads to extremely

small transverse beam dimensions. Focusing the beam to the entrance of each plasma

section is a challenge that can be relaxed by operating at a lower plasma density. With the

normalized emittances typically expected for the ILC (εxN = 10−5, εyN = 3× 10−8 m·rad)

the transverse sizes matched to a plasma with n0 = 1016 cm−3 are σx0
∼= 1µm and σy0

∼=
57 nm. The matched beta function (equal in both planes) is βm, 25GeV

∼= 17 cm at an initial

injection point into the plasma at 25 GeV, and βm, 500GeV
∼= 76 cm at 500 GeV energy.

Beam Scattering

Beam scattering is slightly different in a PWFA than in a neutral medium. Since the bunch

density is chosen to be larger than the plasma density, the witness bunch propagates

in a pure ion column. Therefore, as far as scattering is concerned the bunch electrons

”collide” with all the ions of the ion column, unlike in the case of a neutral medium in

which the collisions are only with single nuclei, or in neutral plasmas where the maximum

impact parameter is the Debye length. Therefore, the emittance growth resulting from

this extended scattering range must be recalculated and can be expressed in terms of the

bunches initial and final relativistic factors γin, γfin. For a bunch radius matched to the

ion column [81]:

∆εN =
√

2reS(
√
γfin −

√
γin), (2.49)

S = Q · ln
(
rb
ra

)
+

1.78Z(Z + 1)

Q
ln

(
287√
Z

)
, (2.50)

with re the classical electron radius, Q · e the ion charge, rb =
√

nb
n0
σr the blowout radius,

ra the atomic radius and Z the atomic number. For Z = 1, the contribution from the

ion column (first term in S) and the neutral vapour (second term in S) are roughly the

same. For higher Z the term from the neutral vapour dominates. Emittance growth due

to multiple Coulomb scattering is negligible for low Z material but becomes important for

higher Z.

Note that an initially matched beam remains matched as long as the emittance growth is

small over one betatron wavelength. The emittance growth then only depends on the type

of plasma ions (S-term) and the initial and final beam energy. It is essentially independent

of the plasma density.
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Ion Motion

For the low emittance beams considered for a future collider, the matched bunch radius

given by equation 2.48 is very small, in the order of a few µm. The very dense bunches

have large space charge fields that can pull the plasma ions toward the beam axis on the

time scale of a plasma period , ω−1
pi ∝ n

− 1
2

i ∝ n
− 1

2
0 . This results in non-linear plasma

focusing forces, leading to beam emittance growth. To lowest order, the plasma ions of

mass Amp and ionization state Z execute a harmonic motion towards the axis and their

phase advance over one plasma period is given by [87]:

∆φ

2π
=

(
2πZraNbσz

AεN

)1/2

(ren0γ)1/4 (2.51)

where re and ra the classical radius of the electron and of the proton, respectively. For ion

motion not to be an issue for emittance preservation, the value of ∆φ
2π must remain � 1

4 .

Under the assumption of constant beam to plasma density ratio, ∆φ
2π is independent of n0.

Ion motion can be mitigated by i) Using lower charge or longer bunches than assumed

here for the scaling. However, this makes it necessary to reduce the plasma density to still

excite plasma wakes efficiently (σz ∝ λp ∝ n
−1/2
0 ) and reduces the acceleration gradient

(Ez ∝ n
1/2
0 ). It might also require operating at a higher repetition rate to fulfil the

luminosity requirements of a linear collider. ii) Using heavier ion plasmas. This however

increases the emittance growth due to scattering, as denoted by equation 2.50. iii) More

sophisticated techniques that require either the transverse density shaping of the beam [88]

or an adiabatic change of the plasma ion species from heavier to lighter ions [89].

Ion motion can be a major problem for the afterburner concepts discussed in chap-

ter 4.3.2 [87–90].

Beam Head Erosion

It was noted in recent experiments that head erosion of the drive bunch may limit the

acceleration length and therefore the energy gain in a single plasma section [13]. This

erosion occurs because the head of the drive bunch propagates either in a neutral vapour

(field-ionized plasma case) and / or in a neutral plasma without focusing forces (pre-

ionized plasma case). Therefore, the point along the bunch where the plasma focusing

force counters the natural beam divergence recesses. This effect is significant only when

the matched beam beta function βm = c
√

2γ
ωpe
∝ n−1/2

0 is shorter than the plasma length Lp.

Note that head erosion appears to be an issue for beams with parameters typical of ILC

beams matched to meter-long plasma sections with densities in the 1016 cm−3 since their

beta function is on the order of 17 cm. However, head erosion is only an issue for the drive

bunch that is discarded at the end of each of plasma section. In a multi-stage acceleration

scenario the drive bunches only have a 25 GeV initial energy decreasing to close to zero.

Therefore, they need not to be matched to the plasma focusing force. Their larger size will

generate extra betatron radiation, but mitigate both the drive bunch head erosion and the

effect of plasma ions motion from the drive bunches. In [91], an expression for the head

erosion rate in a field ionizing plasma was derived that indicates that for head erosion not

to be an issue, the following condition must be satisfied :

1

2466

c

ωpb
(µm)

σr(µm)Ethresh(GV/m)
Nb

2×1010

1

β∗
< 1 (2.52)
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In this equation ωpb is the beam plasma frequency, σr is the matched beam size and

β∗ = γσ2
r/εN is the matched beam beta function, and Ethresh is the electric field threshold

for field ionization of the ambient gas (e.g., Ethresh ∼= 6 GV/m for lithium). This limit

scales as n
−5/4
0 .

2.9 Beam Loading
In a particle accelerator, there are several interactions between a bunched particle beam

and the waveguide structure. The resulting effects are referred to as beam loading. They

can lead to a reduction, redistribution and phase shift of the RF field in the waveg-

uide, excitation of other waveguide modes and various transient phenomena [92]. This

directly influences the number of particles that can be accelerated and the efficiency of

that acceleration as well as the energy distribution of the accelerated particles. In gen-

eral, beam loading leads to a reduction of the maximal energy and an increase of energy

spread [23]. The maximum charge that can be loaded is given approximately by the num-

ber of charged particles required to cancel the wake-field generated by the driver (beam

loading limit) [21, 93].

For the nonlinear regime, it was demonstrated in [94] that an optimization of the loaded

current can lead to a reduction of the energy spread by suppressing the continuous trapping

of background electrons (cf. chapter 2.1.3).

For the linear regime of plasma acceleration, a detailed discussion of beam loading can be

found in [23]. A short summary is given below. In particular, the possibility to minimize

the energy spread generated during the acceleration process via a shaping of the bunch

charge density is discussed. This bunch shaping is assumed for many of the linear collider

proposals discussed in chapter 4.

2.9.1 Beam Loading in the Linear Regime

The wake field produced by an arbitrary beam of relativistic particles of charge density

ρb(r, θ, ξ) is given by

Ez(r, θ, ξ) = (−2k2
p)

∫ ξ

+∞
dξ′
∫ ∞

0
r′dr′

∫ 2π

0
dθ′ρb(r

′, θ′, ξ′) (2.53)

×K0(kp
∣∣~r − ~r′∣∣) cos kp(ξ − ξ′), (2.54)

where K0 is the zeroth-order modified Bessel function and ξ = z − ct. When the particle

beam and the accelerating wave have nearly uniform transverse profiles and are much

larger than c/ωp, the beam-loading problem is approximately one-dimensional. Then, in

one dimension, for an infinitesimally thin sheet of charge per unit area q/A,

Ez = (−4πq/A)θ(t− z/c) cosωp(t− z/c). (2.55)

In a cold plasma, the wake function (2.54) is a simple sinusoid, just as is the accelerating

wave field:

Ewavez = E0 cos(ωpt− kpz + φ) = (−4πen1/kp) cos(ωpt− kpz + φ) (2.56)
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where n1 < n0 is the perturbed plasma density and φ a constant phase factor. Therefore,

one could exactly cancel the accelerating wake field by placing a short (� kp) electron

beam at a minimum of the accelerating field. Comparison of equations 2.55 and 2.56

yields that the total field (Ewave +Ebeam) behind the beam equals zero if q = −N0e, with

the number of electrons N0 given by

N0 =
E0

4πe
·A ∼=

n1

kp
A. (2.57)

Equation (2.57) represents the maximum number of electrons that can be accelerated in an

ultrashort, unshaped bunch. Since all of the wave energy is absorbed, this idealized case

corresponds to 100% beam-loading efficiency. Unfortunately, in this idealized beam-loading

model 100% efficiency is achieved only at the expense of 100% spread in the energy gain

of the beam. This is because an electron at the front of this infinitesimally short beam

feels the full accelerating field Ewave, while the last electron feels the superposed field

Ewave + Ebeam = 0. Since the reduction in the accelerating field for the last particle is

linear in the number N of particles loaded, the fractional energy spread will be

∆γmax −∆γmin
∆γmax

=
Ei − Ef
Ei

=
N

N0
, (2.58)

where Ei,f are the field amplitudes in front of and behind the accelerated bunch, and

γmax,min refer to the maximum and minimum energy gain by a particle in the bunch. On

the other hand, the fraction of wave energy absorbed by the particles is 1−E2
f/E

2
i . Since

Ef = Ei(1−N/N0) the beam-loading efficiency is

ηb =
N

N0

(
2− N

N0

)
. (2.59)

Equations (2.58) and (2.59) illustrate the trade off between energy spread and efficiency

for short, unshaped beams.

Tailoring of Bunch shape

To reduce the energy spread of the beam without lowering the beam loading efficiency, two

methods have been suggested. The first possibility is to divide the number of particles N

one wants to accelerate into m bunches, positioned at different phases of the accelerating

wake. The last bunch is positioned at the phase corresponding to the maximal accelerating

field, and each preceding bunch is advanced in phase by one wavelength plus δφm, so that

it feels the same accelerating field Ez. Since there are only N/m particles in each bunch,

the energy spread is reduced by a factor of m. (This scheme assumes ultra short bunches.)

A more effective way which allows for finite bunch length has been suggested in [95]. In

this scheme, the density of the accelerated bunch is ramped down in a way that keeps the

superposition Ea of the wake field and field of the bunch constant within the bunch. With

this ansatz the optimal bunch shape has been found to be triangular,

ρb(ξ) = −kpE0

4π
[(kp cos kpξ0)ξ + (sin kpξ0 − kpξ0 cos kpξ0)] (2.60)

with the peak density at the head of the bunch and the bunch starting at ξ = ξ0 ahead

of the wave minimum and −kpE0/4πe = n1 the density perturbation associated with the
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wave. The back of the bunch could be truncated at any point to yield an trapezoidal

shape. The corresponding peak bunch density, maximum bunch length, accelerating field

and the number of particles are

ρb(ξ0) = ρmaxb = −en1 sin(kpξ0), (2.61)

lmax = (tan kpξ0)k−1
p , (2.62)

Ea = E0 cos kpξ0, (2.63)

N = N0
sin2 kpξ0

2 cos kpξ0
(2.64)

with N0 = n1A/kp and A as defined in equation 2.57. The beam loading efficiency is then

given by

1− E2
a/(E

wave)2 = 1− cos2 kpξ0, or (2.65)

ηb = sin2 kpξ0. (2.66)

Bunches shaped this way suffer no energy spread, but equations 2.62-2.64 show the trade-

off between accelerating gradient and efficiency, as illustrated in figure 2.3. For example, if

Figure 2.3: Correlation between the maximal number of particles that can be accelerated and

the maximal acceleration gradient for a triangular bunch, as given by equations 2.63

and 2.64.

one places the front of a triangular bunch ahead of the wave-field minimum by an amount

ξ0 = π/3kp with N = 3N0/4 particles over a length
√

3/kp, then the predicted gradient

is 50 % of the peak accelerating wave amplitude and the beam-loading efficiency is 75 %,

without energy spread. Also, see figure 2.4.

In [95], the following scheme for shaping bunches has been suggested: One starts with a

bunch duration of the same order as the fall time needed for the final bunch. A spec-

trometer provides horizontal momentum separation. Then, both ends of the momentum

distribution get cut by collimators. Afterwards, the momentum distribution is transferred

back into a time distribution (This requires a correlated energy spread). As similar scheme

is used for the wire mesh mask setup described in [96].
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Gaussian Bunches

For the bunch shaping described above to work, the bunches have to be shaped and

positioned with a accuracy better than k−1
p . Since this may prove to be difficult, Gaussian

bunches are investigated. We compare them to a triangular bunch truncated at length

l = lmax/2, thus containing three fourths of the number of particles given in equation 2.64.

The Gaussian bunch density is of the form

ρb(ξ) = (−en1 sin kpξ0) exp[−(ξ − ξ0 + l/2)2/2σ2],

where σ = 3l/8
√

2π, so that the total number is that of the half triangle. The resulting

total field is shown in figure 2.4 (for kpξ0 = π/3). For particles within 1σ of the centre, the

accelerating field is approximately one third of the wave amplitude and varies by ∼ ±10 %.

For the same number of particles in an ultrashort bunch (at ξ0 = 0), equation 2.58 predicts

an energy spread of 56 %. Thus, a well-placed Gaussian may suffer less energy spread than

an ultrashort bunch, but more than the ideally shaped bunch.

Transverse Beam Loading Consideration

The beam loading described above is valid when the beams and the accelerating waves

have the same transverse profile and are wide compared to kp. For beams with arbitrary

radius, it can be shown that even if the beam radii differ by orders of magnitude, their

radial wake profiles do not. Physically, this means that even very narrow beams can absorb

plasma wave energy out to a skin depth kp.
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Figure 2.4: Total electric field for various beam shapes: a) triangle (eq. (2.60), N = 3N0/4,

kpξ0 = π/3), b) half Gaussian, same number of particles, c) truncated triangle

(N = 9N0/16), and d) Gaussian of same number as c). Figure property of Thomas

Katsouleas [23], used with permission.
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3. Status of Experimental Studies

This chapter aims to give an overview of the current status of plasma-based acceleration

research and high-power laser systems. This is important to give perspective to the studies

of high energy lepton colliders discussed in chapter 4, and the study of LWFA as injectors

for synchrotron light sources discussed in chapter 5. Particular emphasis is put on the

correlation between bunch length and bunch charge, and on the achieved beam quality -

both questions critical to the successful operation of an accelerator.

My participation to a laser wakefield acceleration experiment at the Rutherforld Appleton

Laboratory, Oxfordshire, UK is described in section 3.2.

3.1 Laser Wakefield Acceleration

3.1.1 Achieved Electron Beam Parameters

Laser-driven plasma-based acceleration has first been demonstrated in 1995 [40, 97]. For

these experiments, the electron energy spectra still showed an exponential characteris-

tic, with the majority of the electrons at the low energy end of the spectrum and a few

electrons reaching a few tens of MeV. This changed dramatically in 2004, when three

groups independently achieved the acceleration of high quality electron beams. For these

experiments, a charge of approximately 100 pC was accelerated to a mean energy of ap-

proximately 100 MeV, with a small energy spread of a few percent and a low divergence

of a few milliradians [42–44]. In 2006, high quality electron bunches of up to 1 GeV mean

energy have been demonstrated experimentally [10]. Following experiments demonstrated

emittances on the 1πmm-mrad level [98, 99], 1 fs pulse duration [100], energy spreads on

the 1 % level [99, 101], and shot to shot stability of the central energy of 3 % [99, 102].

In 2010, 1.45 GeV beam energy has been demonstrated by [103], but with a charge of less

than 4 pC and an efficiency of less than 1 %. In 2011, 1.8 GeV maximal beam energy have

been reported by [104], with the same exponential energy distribution.
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Figure 3.1: Comparison of bunch charge vs. bunch length for conventional and laser-based accel-

erators. The connected blue squares represent design parameters of exemplary run-

ning or near future FEL-facilities [106, 108, 110, 111]. The different bunch lengths for

1 nC are for different beam energies, ranging from 150 MeV for the LCLS injector over

about 1.5 GeV for FERMI to several GeV for LCLS and XFEL. See tables 3.2 and 5.1

for more information and numerical values. The disconnected blue square represents

FACET. Here, a higher charge for a shorter bunch length has been achieved, but

for a much higher beam energy of 23 GeV [109]. The green circles represent param-

eters achieved with LWFA by Lundh et al. [100] and Faure et al. [42]. Note that

these parameters were achieved for a much lower energy on the order of O(100 MeV),

and with a much larger energy spread and much larger fluctuations in mean energy

and charge (From [100]: “we measured: peak energy 84 ± 21 MeV, energy spread

21± 17 MeV (FWHM), peak charge 15± 7 pC”). Finally, the red stars represent pa-

rameters calculated in [11, 21] as parameters for linear colliders operating at plasma

densities of n0 = 1017 cm−3 (lower charge) and n0 = 2 · 1015 cm−3 (higher charge)

respectively. Also published in [112].

External injection has been demonstrated in [105]. However, the electron bunches used

there were a few tens of plasma wavelengths long, resulting in a continuous energy spectrum

up to some maximum energy.

An important question regarding the use of LWFA as injectors is the amount of charge

stored for a given bunch length. An overview over achieved and desired bunch parameters

is given in tables 3.1 and 3.2, and is illustrated in figure 3.1.

Bunch Shaping

As described in detail in chapter 2.9.1, the proper shaping of the longitudinal charge density

along the bunch can be used to reduce the energy spread acquired during the acceleration

process. This theoretically simple method is e.g. employed in several of the linear collider

proposals discussed in chapters 4. However, to the best of the authors knowledge, bunch

shaping has not been demonstrated for bunches of the σz ≈ 1µm length scale customary

for LWFA.
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Year 2004 2006 2008 2010 2011

Facility LOA LBNL MPQ SUPA LOA

Plasma density [1018 cm−3] 6 4.3 7.3 50 10

Electron mean energy [MeV] 170 1000 198 137 84

Mean energy fluctuation [%] 5 7 6 b) 3 21

Energy spread [%] 10 2.5 6.1 <1 c) 11

Bunch charge [pC] 500 30 10 2-10 15

Charge fluctuation [pC] 200 a) 4 b) 7

Bunch length [fs] <21c) 0.8 d) 1.5

Bunch length [µm] < 9 0.25d) 0.5

Laser pulse energy [J] 1.0 1.7 0.85 0.9 1.0

Laser pulse length [fs] 13 16 18 15 13

Laser pulse length [µm] 4 5 5 4 4

Laser peak power [TW] 33 40 20 26 33

Efficiency [%] 10 2 0.2 0.03-0.2 0.1

Table 3.1: Achieved beam parameters for different experiments, achieved at Laboratoire

d’Optique Appliquée (LOA), France [42, 100]; Lawrence Berkeley National Labora-

tory (LBNL), USA [10]; Max-Planck-Institut für Quantenoptic, Germany [102]; Scot-

tish Universities Physics Alliance (SUPA), Scotland [99]. Not all information was

available for all experiments. If possible, missing values have been calculated from

the ones given. If applicable, values are given in RMS. The efficiency is given for the

energy transfer from the laser beam to the quasi monoenergetic electron beam. Much

of the mean energy fluctuations is related to fluctuations in the laser pulse energy.
a)For a lower beam energy of 0.5 GeV, enough statistics was obtained to calculate a

fluctuation of charge of ±34 %. b)For a lower plasma density of n0 ≈ 6.8 · 1018 cm−3,

an unprecedented shot-to-shot stability of 2.5 % fluctuation in mean energy and 16 %

in charge was obtained. This came at the expense of a reduced peak charge of 7±3 pC,

a reduced electron mean energy of 122 ± 3 MeV and a reduction in electron injection

probability from 80 % to 71 %, indicating the laser pulse was just above the injec-

tion threshold. c)Resolution limited. d)Bunch length from simulations, not measured.

An increase in relative energy spread for lower mean energies indicates a fixed abso-

lute energy spread of about 0.6 MeV for the experimental conditions. A normalized

emittance εN ∼ 1πmm ·mrad has bean measured (resolution limited, the inferred

normalized emittance is about half this value).
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Length [µm] Charge [pC] Status Comment

0.4 15 achieved LWFA, Lundh

3 500 achieved LWFA, Faure

20 3500 achieved FACET

22 1000 planned LCLS

830 1000 planned LCLS

0.2 10 planned SwissFEL

2 10 planned SwissFEL

9 200 planned SwissFEL

1 640 scaling ICFA BDN

7 4500 scaling ICFA BDN

Table 3.2: Comparison of bunch parameters achieved, planned and required by the scalings in [11,

21]. The parameters for Laser Wakefield Acceleration (LWFA) are taken from [42, 100].

The parameters for the Linac Coherent Light Source (LCLS) are design goals before

the first linac and after the last bunch compressor respectively [106]. Currently, LCLS

has achieved a bunch charge of ∼250 pC at a final bunch length of 8-10µm [107]. The

parameters for the Swiss Free Electron Laser (SwissFEL) are for the long and short

pulse operation and for the considered upgrade respectively, all at a beam energy of

5.8 GeV [108]. The parameters for FACET, the Facility for Advanced Accelerator

Experimental Tests at SLAC are for an energy of 23 GeV [109]. The parameters

required in [11, 21] are for plasma densities n0 = 1017 cm−3 and n0 = 2 · 1015 cm−3

respectively. See figure 3.1 for a graphical comparison.



3.1. Laser Wakefield Acceleration 37

3.1.2 Status of High Power Laser Systems

Pulse Energy and Repetition Rate

An overview over the current status of existing and planned high power laser systems

is given. Table 3.3 lists the key top level parameters of some exemplary laser systems.

Currently, BELLA is the strongest laser facility dedicated to LWFA research, and other

planned and existing facilities working on LWFA operate with similar parameter sets as

e.g. SCAPA and LOA.

Significantly higher pulse energies have been achieved in facilities conducting research for

laser-driven fusion. To date, the highest laser pulse energy was reached at the National

Ignition Facility (NIF) [113] with 2.03 MJ in the ultra violet (UV) by frequency tripling a

3.6 MJ infrared laser (1050 nm). With a pulse duration of 23 ns, this corresponds to a peak

power of 411 TW in the UV [114]. Allowing sufficient cool down time for the components

to avoid damage results in a repetition rate of about 1 shot per day [115].

Future large scale facilities aim at even higher peak powers using shorter laser pulses

with lower stored energy and higher repetition rate. Example parameters for the funded

Extreme Light Infrastructure (ELI) are given in table 3.4 [116, 117].

Experiment PHELIX Mercury BELLA SCAPA LOA LOA

Pulse energy UL [J] 1e3 61* 40 5-7 2.5 9e-3

Pulse length τL [fs] 20e6 15e6* 30-200 25-30 35 38

Peak power Ppeak [TW] * 110 - 630 250 100

Repetition rate f [Hz] 185e-6 10 1 5 10 1e3

Average power Pavg [W] 0.2 600 40 25-35 25 9

Wavelength λ [nm] 1054 1047 800 810 810

Table 3.3: Overview over the laser parameters of some exemplary experimental facilities. All the

facilities mentioned above are currently operational or in commissioning. PHELIX -

Petawatt High Energy Laser for Heavy Ion Experiments, Germany, in operation [118,

119]; Mercury, USA, in operation [120]; BELLA - BErkeley Lab Laser Accelerator,

USA, in operation [121]; SCAPA - Scottish Centre for the Application of Plasma-based

Accelerators, Scotland, in commission [122]; LOA - Laboratoire d’Optique Appliquée,

two of the available experimental stations, France, in operation [123]. If possible,

values not found in the references have been calculated using the equations given in

chapter 2.4.

*Frequency doubling and compression to 15 fs pulse length are a future plan, resulting

in 1.4 PW pulse power at 524 nm. The design goal of Mercury is to demonstrate 100 J

at 10 Hz.

High-repetition ultrahigh-energy diode-pumped solid-state lasers and other techniques as

commercial drivers for fusion are actively developed, currently reaching about 100 J at

10 Hz [124]. A conceptual design of a 100 kJ, 100 Hz facility named GENBU (Generation

of ENergetic Beam Ultimate) has been developed [124, 125]. The proposed High Power

laser Energy Research facility (HiPER) aims at 200 kJ, 5 ns, 150 PW pulses at a repetition

rate of up to 1 Hz [126, 127].

Diode-pumped optical fibres are actively researched as gain medium within ICAN, the

International Coherent Amplification Network [128]. They hold the promise of very high
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Pulse energy UL [J] 9200 290 9 0.9

Pulse length τL [fs] 368 116 37 11.6

Peak power Ppeak [TW] 10000 1000 100 10

Repetition rate f [Hz] 0.01 10 1000 1000

Average power Pavg [W] 92 2900 9000 900

Spot radius at focus rL[µm] 110 35 11 3.5

Table 3.4: Example laser parameters suggested for the planned ELI facility, extracted from ta-

ble 6.8 in [117]. Note that these parameters are challenging long term goals and will

not be available from the start (Cf. table 6.3, same reference).

efficiency of up to 50 % wall-plug to optical and of very high repetition rates in the order

of 10 kHz [128, 129]. They have the additional benefit of being actively developed for the

telecommunication industry, which makes them easy to mass produce at low cost. Example

parameters for a possible 10 J demonstration module are given in table 3.5. Higher output

energies could be reached by using more fibres, which makes this technique much easier to

scale as current day bulk lasers, which require larger custom-build crystals.

The correlation between achieved laser pulse energies and repetition rate is illustrated in

figure 3.2.

Pulse Energy Repetition Rate Average Power Efficiency

> 10 J > 1 kHz > 10 kW > 20 %

Table 3.5: Top level parameters for the proposed 10 J demonstration stage for a fibre based high

power laser [129]. It is foreseeable to realize such a demonstrator by the end of the

decade [130]. For a later stage, repetition rates in the order of 10 kHz are foreseeable,

as well as a significant increase in beam energy by using more fibres.

Wall-plug Efficiency

The wall-plug efficiency of a laser system is its total electrical to optical efficiency. In

principle, it should include the power losses on the power supplies and the power required

for cooling, which can be significant for high power systems. However, it is common

to calculate the wall-plug efficiency based on the power delivered to the laser diodes,

neglecting the before mentioned losses [33].

Using this common definition, many diode-pumped laser systems today reach efficiencies in

the order of 25 %, and it is to be expected that their efficiency will further increase within

the next years [33]. As already mentioned in the previous section, diode-pumped optical

fibres are actively researched as gain medium within ICAN, the International Coherent

Amplification Network [128]. It is foreseeable that High-Gain fibre amplifiers will make

about 50 % total plug-to-optical output efficiency reachable [129]. Furthermore, optical

fibres have a very good surface to volume ratio, allowing for efficient cooling.

Currently, many LWFA experiments still rely on argon-ion laser systems, which have an

efficiency of about 1 %. When pumped by argon-ion lasers, titanium-sapphire laser feature

an even lower efficiency.
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Figure 3.2: Laser pulse energy versus repetition rate for exemplary high power laser facilities [117–

120, 123], cf. tables 3.3 and 3.4. For each operational facility, there is a marker which

denotes the needed repetition rate for a linear collider operating at the corresponding

pulse energy (connected black squares). Values were derived based on the scalings

and example parameters in [21]. (Cf. tables 4.1 and 4.2 in chapter 4.2, page 52.

In particular: ECM = 1 TeV, L = 2 · 1034 cm−2s−1, σ∗
x = σ∗

y = 10 nm.) Also, cf.

figure 5.1, page 78. Also published in [112].
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3.1.3 Conversion Efficiencies

One assumes an efficiency from laser to electron beam of about 20 % [11, 23, 128], resulting

from an efficiency of about 50 % from laser to plasma-wake and 40 % for plasma-wake to

beam (cf. chapter 2.1.2.3 in [11]).

In [10], approximately 30 pC of charge have been accelerated to 1 GeV using a 40 TW, 40 fs

laser pulse to drive a plasma wake in the bubble regime. This results in a laser to e-beam

transfer efficiency of about 2 %. Similar efficiencies can be calculated for the parameters

given in [98]. Note however, that the interest here was to demonstrate maximum acceler-

ation, not the highest possible beam loading efficiency. Depending on the applied energy

cut, a similar efficiency has been reached in simulations by Oliver Jansen, cf. chapter 5.2.

In [75], based on analytic estimates backed by simulations, the conversion efficiency from

laser energy to quasi mono-energetic electrons has been found to be about 20 % in the

bubble regime.

The total efficiency of wall-plug to e-beam is given by the product of the laser to e-beam

efficiency discussed here and the wall-plug to laser efficiency discussed in chapter 3.1.2. If

a 50 % wall plug to optical conversion efficiency can be achieved, this would result in a

wall plug to beam efficiency of about 10 %, comparable to the efficiency of the CLIC / ILC

main linacs [11, 93, 128]. As mentioned in the previous section, the wall plug to optical

conversion efficiency of the titanium-sapphire laser systems currently used is in the sub

percent range.
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3.2 Participation to LWFA Experiment

To get some hands-on experience regarding laser wakefield acceleration, I participated in

a LWFA experiment at the Astra Gemini laser at the Central Laser Facility at Rutherford

Appleton Laboratory (RAL), Oxfordshire, UK. Gemini is capable of delivering 15 J, 30 fs

pulses at a rate of 1/20 Hz [131]. Fig. 3.3 gives an impression about the size of the laser

system and the experiment.

To give a feeling about the produced beams, figures 3.4 and 3.5 show measurement results

obtained with the electron energy spectrometer and the beam profile monitor. It is im-

portant to point out that these measurements were taken during parameter scans, it was

not their aim to demonstrate reproducibility. Due to the positioning of the screens, they

could not be taken simultaneously.

Figure 3.3: Astra laser at the Central Laser Facility at Rutherford Appleton Laboratory, Oxford-

shire, UK.

Left: Laser area. The amplifiers are housed in the white boxes at the sides of the

room, the pulse compressor is situated in the metal tank in the centre of the room.

Right: Target area. The laser pulses come in from the compressor chamber in the

room above through the black metal pipes. The focussing mirror for the drive pulse

is situated at the end of the large pipe to the right, approximately 3 m from its focal

point.

3.2.1 Beam Position Monitor Measurements

During the last years, LWFA have seen tremendous progress in terms of beam quality

and reproducibility. To develop them further towards practical applications, non-invasive

diagnostics become a necessity. An obvious candidate are so called Beam Position Monitors

(BPMs), which have been routinely used in conventional accelerators for decades. The

usability of cavity-based BPMs has already been demonstrated in [134]. In the experiment

at the Astra Gemini Laser, it was my aim to demonstrated the possibility of using a

conventional pickup BPM.

Experimental Setup

Due to the size of the BPM used (∼ 250×320×320 mm, 60 mm inner beam pipe diameter),

it was positioned behind the main chamber depicted in figure 3.3, centred around the laser

propagation axis. The setup is illustrated in figure 3.6.
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Figure 3.4: 24 consecutive measurements with the electron spectrometer, displayed in 2 rows.

The horizontal axis gives information about the transverse properties of the beam,

the vertical axis corresponds to the energy from about 0 to 800 MeV, with higher

energies towards the top of the page. The colour code gives the intensity, with

brighter colour corresponding to higher intensity. Data property of Jason Cole et

al. [132].

Figure 3.5: 60 consecutive measurements with the beam profile monitor, displayed in 4 rows.

The screen is 3 inch in diameter, displaying both position and size of the electron

beam. The color code gives the intensity, with brighter colour corresponding to higher

intensity. Data property of Jonathan Wood et al. [133].
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Figure 3.6: Photo of the in-air BPM setup, downstream of the main chamber. Arrows highlight

the 4 pickup buttons, located around the central beam pipe.

The working principle of a BPM requires the electron bunch to pass trough it. For our given

spacial constraints, this made its use mutually exclusive with two of the main diagnostics:

The electron energy spectrometer, which measures the energy depended deflection of the

witness beam in a magnetic field; and the X-ray camera, which could have been damaged

by the impacting electrons1. For a future experiment, the installation of a smaller BPM

inside the target chamber seems feasible, allowing operation in parallel with the other

diagnostics. A detailed description of the BPM used can be found in [137].

Operation both in air and in vacuum has been tested. Both gas jets and gas cells have

been used as target to generate the plasma and in turn to produce the electron beam

(For a detailed description of the trapping of plasma electrons in the blowout regime, cf.

e.g. [20]). The distance from the target to the sensors (centre of BPM) was approximately

3 m, depending on the target and setup used.

The 4 pickup sensors (referred to as buttons) of the BPM were read out via a 2.5 GHz

oscilloscope, triggered by its own signal. The difference in induced voltage between the

two opposing buttons gives information about the position of the bunch relative to the

centre of the BPM. I compared the BPM measurements results to measurements using a

beam profile monitor (Lanex screen) inside the target chamber.

1 As illustrated in figure 2.1, page 7, the plasma electron density modulation due to the laser pulse

does not only result in the strong longitudinal field used to accelerate the witness bunch. It also results in

strong transverse field, focussing the beam. In turn, the beam undergoes so-called betatron oscillations,

comparable to the focusing with quadrupole magnets described in chapter 2.2.2, page 8. This transverse

acceleration of the witness bunch electrons leads to the emission of synchrotron radiation, as described in

more detail e.g. in [135, 136]. This radiation, with typical photon energies in the keV range, is emitted

in parallel with the propagation direction of the driving laser pulse and can be used to diagnose the

acceleration process. However, the camera used to detect the radiation could be damaged by impacting

electrons. Therefore, the witness bunch has to be deflected off the laser propagation axis with a dipole

magnet.
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Results

Figure 3.7 shows example measurements. The BPM signal can be clearly distinguished

from the background noise. The position measurements are in good qualitative agree-

ment with the beam profile monitor measurements. They also show the expected signal

dependence on the bunch charge.

Figure 3.7: a) Signal of the 4 BPM channels with 2.5 ns/div horizontal and 1 V/div vertical res-

olution (2.5 GHz sampling, 50 Ω termination).

b) Difference in signal for the horizontal (odd) and vertical (even) channels, showing

that the centroid of the electron bunch passed the BPM in the upper right quadrant.

c) Corresponding beam profile monitor measurement. Brighter colour corresponds to

higher beam intensity.

d) Beam profile measurement for a different shot, same monitor settings as in c).

e) BPM signal corresponding to d), with 10 ns/div horizontal and 200 mV/div ver-

tical resolution. Channels are the same as in a). The initial signal can be clearly

distinguished from the following noise. Also, note the lower voltage due to the lower

bunch charge visible in d).

Discussion

A good qualitative agreement with the beam profile measurements has been observed.

However, due to low statistics, the determination of the achievable resolution is left to a

future experiment.

If calibrated, the sum signal of the 4 BPM buttons can give the charges of the bunch

passing through. In our case, the electron bunch repeatedly scraped the mounting of the

Lanex screen and possibly the vacuum window of the chamber. We have therefore not

performed this calibration. It is worth pointing out that in contrast to a beam profile

screen, a BPM only gives information of the centroid position of the electron bunch, it

does not provide information about the spacial distribution.
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Conceptually, BPMs can also be used to measure long (nanosecond) bunch lengths. Due

to the cutoff frequencies of the BPM and the resolution of the oscilloscope, this is currently

not possibly for the femtosecond bunch lengths customary for LWFA bunches.

For a LWFA providing beams for applications, beam transport in vacuum will be essen-

tial to avoid deterioration of beam quality due to scattering. For our proof of principle

experiment, operation in air proved useful, as it allowed us to exchange the BPM and

the different X-ray cameras without the need to vent and re-evacuate the target cham-

ber, a process taking over an hour. The BPM was also operated in an in-vacuum setup

by connecting it to the target chamber via a beam pipe. A significant change in signal

characteristic compared to the in-air setup was not noticeable.

The observed signal of a prominent peak with subsequent ringing fits very well with the

expectations. Since a different type of BPM was used, the signal characteristic is different

from the one reported in [134] (cf. Figure 3 therein).

3.3 Plasma Wakefield Acceleration

So far, beam-driven acceleration has only been studied in experiments at SLAC, which cul-

minated in the energy doubling of a small fraction of the initial 42 GeV electron beam [13].

For the coming years, PWFA experiments are planed at several facilities, cf. e.g. [109, 138,

139].

For the PWFA case with shaped bunches, an energy conversion efficiency of 51 % from

drive to witness beam has been achieved in simulations [140]. For acceleration in the linear

regime, the beam loading efficiency has been studied theoretically in [23], cf. chapter 2.9.1.

Here, a beam loading efficiency of about 20 % is estimated. This is much higher than what

has been achieved in the experiments at SLAC. As for the laser driven case, the interest

there was to demonstrate maximum acceleration, not the highest possible beam loading

efficiency possible.
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4. Study of High Energy Lepton Colliders

A high luminosity lepton collider is highly supported by the physics community to comple-

ment the Large Hadron Collider (LHC). This means accelerating electrons and positrons

to TeV energies. Since the energy lost to the emission of synchrotron radiation during one

turn in a storage ring is proportional to γ4/ρ [141], going to a higher Lorentz factor γ

means either increasing the radius ρ or losing more and more energy to synchrotron ra-

diation. Therefore, for the high energies envisaged, it is more efficient to build a linear

collider (LC).

In the following chapter, some key requirements and LC schemes shall be discussed. Sec-

tion 4.1 gives an overview over the technology independent constraints for a linear collider.

Different collider proposals found in the literature are discussed in sections 4.2 to 4.6. Based

on these findings, I have developed several scenarios for a collider capable of producing the

recently discovered Higgs boson with a mass of approximately 125 GeV/c2 [16, 17]. They

are introduced and discussed in section 4.7.
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4.1 Constraints

Before going into the different possible linear collider schemes, some constraints shall be

introduced first. Whilst the underlying physics leading to said constraints is independent

of the acceleration method used, the results depend strongly on the chosen parameters;

as will be illustrated in detail in chapters 4.7.3 and 4.7.4, pages 62 and 65 respectively.

In particular, for a bunch length determined by the acceleration process, the luminosity

requirements discussed in section 4.1.1 will result in certain conditions for the bunch charge

density. As will be explained in section 4.1.2, this can result in a drastically different

behaviour at the interaction point. The generation of so called Beamstrahlung can lead to

severe background signal in the detector system and therefore limit the parameter range

acceptable for the acceleration process.

4.1.1 Energy and Luminosity

All currently discussed collider schemes estimate the centre of mass energy to be interesting

from a particle physics point of view to be between 0.5 and 3 TeV, with the exact energy to

be defined depending on the findings of the LHC [5, 6, 11, 15, 21, 64, 65, 71, 93, 142–156].

The second key figure which is independent of the acceleration scheme is the luminosity,

which gives a measure of the possible interactions per time interval. Assuming the same

RMS beam size σ∗x/y at the interaction point (IP) and same particle number N for both

beams, the luminosity L is given by [64]

L =
fN2

4πσ∗xσ
∗
y

, (4.1)

with f the collision frequency. For a fixed particle energy Eb, this can be rewritten in

terms of power per beam Pb = NEbf as

L =
Pb

4πEb

N

σ∗xσ
∗
y

, (4.2)

illustrating that the luminosity is determined by the product of the beam power and the

transverse beam density. As most cross sections for electron-positron collisions fall as

1/E2, the luminosity has to fulfill the following scaling to provide sufficient data rates for

the expected physics processes [64]:

L[1034 cm−2s−1] ≈ (E[TeV])2. (4.3)

As illustrated by equation (4.2), with no change in transverse density, increasing the lumi-

nosity by a factor of 10 means increasing the beam power by the same amount. Current

day collider designs have AC wall plug powers in the few hundred MW [5, 6, 21, 64, 65]

with already relatively efficient energy conversion from wall plug to beam power. As wall

plug power requirements in the GW range make the machine prohibitively expensive to

operate, the only practical way to increase luminosity is to increase the beam density at the

IP. However, limitations arise from [64]: i)the performance of the injectors, determining

the initial emittance of the beams; ii) emittance growth in the main linacs; iii) the final

focus optics; and iv) beam-beam interactions at the IP.
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4.1.2 Beam-Beam Interaction

Beam disruption

At the interaction point (IP), the bunches feel an additional focusing force due to the

interaction with the other beam. This leads to increase of the beam density and is generally

a beneficial effect. However, it can lead to instabilities and make the luminosity very

sensitive to offsets between the colliding bunches [64].

Beamstrahlung

Beam-beam collisions lead to the emission of radiation, the so called beamstrahlung. It

has several deleterious effects [64, 157]:

• The emitted photons can enter the detector, increasing the background which can

interfere with the detection of physics processes.

• The energy loss of the electrons / positrons during the radiation process increases the

energy spread. For physics processes where a precise knowledge of the initial state

is required, this can be a serious issue. Also, for processes at the maximal energy

reach of the collider, a significant energy loss due to beamstrahlung can reduce the

effective luminosity.

• For very large beamstrahlung parameters, it can lead to depolarization of the collid-

ing beams in the order of a few percent.

As the amount of beamstrahlung increases with increased beam density, this can limit

the maximum beam density. The features of beamstrahlung radiation can be expressed in

terms of the (average) beamstrahlung parameter [64, 157, 158]

Υ =
2~ωc
3Eb

∼=
5

6

r2
e

α

γ

σz

N

σ∗x + σ∗y
, (4.4)

with ~ωc the critical energy of the beamstrahlung photon spectrum, α = e2

4πε0 ~c the

fine-structure constant and re = 1
4πε0

e2

mec2
the classical electron radius. For collisions of

Gaussian beams, the average number of beamstrahlung Photons emitted per initial particle

is

nγ ∼=
12α2σz

5reγ

Υ√
1 + Υ2/3

, (4.5)

and the average energy loss is

δB ≡ 〈
−∆E

E
〉 ∼=

5

4

α2σz
reγ

Υ2

[1 + (1.5 ·Υ)2/3]2
. (4.6)

The average Photon energy is given by [157]

〈ω〉
E
≈ 4
√

3

15
Υ

√
1 + Υ2/3[

1 + (1.5 ·Υ)2/3
]2 =

0.46Υ (Υ→ 0),

0.25 (Υ→∞)
(4.7)

and remains finite at about a quarter of the energy of the initial particle in the limit

Υ → ∞. In practice, background becomes excessive if nγ > 1 and a final state energy

spread of more than a few tens of percent is unacceptable for many physics processes [64].
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For a fixed Υ, one could maximize luminosity by making both σx and σy as small as

possible. For particle sources based on damping rings, it is normally not possible to

reduce both dimensions simultaneously. The highest luminosity is then achieved with so

called flat beams with σ∗y � σ∗x, which will be assumed for the remainder of this discussion.

One can distinguish two regimes, the classical low beamstrahlung regime with Υ � 1

and the quantum beamstrahlung regime with Υ � 1. For collider designs operating in

the classical regime, one can rewrite nγ and δB as [64]

nγ ∼=
12α2σz

5reγ
Υ ∼= 2αre

N

σ∗x
,

δB ∼=
5

4

α2σzΥ
2

reγ
∼=

125r3
e

144

γN2

σz(σ∗x)2

This allows us to write the luminosity in terms of nγ and δB by substituting N :

L
Pb
∼=

1

8πreα

nγ
Ebσ∗y

∼=
3

5
√

5πr
3/2
e

√
δBσz

Ebσ∗y
√
γ

(4.8)

The luminosity per unit beam power is proportional to the number of beamstrahlung

photons nγ . For nγ and Eb fixed, it can only be increased by decreasing the vertical beam

size at the IP. It is also proportional to the root of the beamstrahlung energy spread δB,

and for δB and Eb fixed, can be increased by decreasing the vertical beam size at the

IP and / or by increasing the bunch length σz. In the low beamstrahlung regime, it is

therefore favourable to operate with longer bunches.

For Υ� 1 , one can rewrite nγ and δB as [64]:

nγ ∼=
12α2σz

5reγ
Υ2/3 ∼= 2α

(
6αre

5

)1/3 1

γ1/3

(
N
√
σz

σ∗x

)2/3

,

δB ∼=
5

34/3 · 22/3

α2σzΥ
2/3

reγ
=

α

18

(
55αre

2

)1/3
1

γ1/3

(
N
√
σz

σ∗x

)2/3
∼=
nγ
3.3

.

This then gives the luminosity per unit beam power as

L
Pb
∼=

√
5

16α2
√

3reπ

√
γn3

γ

Ebσ∗y
√
σz
∼=

27

25
√

5πα2√re

√
γδ3

B

Ebσ∗y
√
σz
. (4.9)

For δB, nγ and Eb fixed, it can be increased by reducing either the vertical beam size at the

IP or the bunch length, as opposed to the classical beamstrahlung regime. Since Υ ∝ γ,

for a collider with a centre of mass energy of 10 TeV or more, it will be almost impossible

to avoid entering the quantum beamstrahlung regime.

Coherent Beamstrahlung Pair Production

Beamstrahlung can lead to the coherent production of electron-positron pairs, constituting

a detrimental background in detectors. The total number of created pairs per primary

particle is given by [157, 159]

nb =

[
ασz
γλe

Υ

]2

Ξ(Υ), (4.10)
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with λe ≈ 2.4 · 10−12 m the Compton wavelength of the electron and

Ξ(Υ) ≈

(7/128) exp(−16/3Υ) (Υ . 1),

0.295Υ−2/3(ln Υ− 2.488) (Υ� 1).
(4.11)

Note that the term in square brackets only depends on the beam density, cf. eq. (4.4).

The values of the function Ξ are in the order 10−2 . Ξ < 10−1 for 2 . Υ . 2000. For

Υ . 1, Ξ(Υ) decreases exponentially, with Ξ(Υ ≈ 0.3) ≈ 10−9 - giving a much stronger

suppression e.g. for longer bunches common for conventional accelerators.

Trident Cascade

In an electromagnetic field, electron-positron pairs can also be created through virtual

photons carried by the primary particles. This process is sometimes called the trident

cascade. The total number of created pairs per primary particle is given by [159]

nν =

[
ασz
γλe

Υ

]
Ω(Υ), (4.12)

with Ω(Υ) ≈ 0.23α ln(Υ) for Υ� 1. For Υ . 103, Ω(Υ) < Ξ(Υ) [157].
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4.2 Laser-Driven Linear Collider

For the quasi linear regime, a self consistent linear collider proposal supported by particle

in cell simulations has been developed in [11, 21], and will be discussed below. Comparable

numerical values have been found in [156].

The quasi linear regime allows for the acceleration of both electrons and positrons and

allows some control over the transverse focusing forces, as the transverse force F⊥ ∝ ∇⊥a2.

Operating in the quasi linear regime implies k2
pr

2
L/2 > a2

0/γ⊥ and a2
0 ∼ 1, with rL the

transverse RMS laser spot radius and γ⊥ =
√

1 + a2
0/2. The accelerating field is then

given by Ez ≈ 0.76(a2
0/2γ⊥)E0, with E0 the classical wave breaking field (see chapter

2.3.3). Efficient excitation of plasma wakes in the linear regime requires the RMS laser

pulse duration τL to be in the order of the plasma period, τLωp ∼ 1 and hence τL ∝
n
−1/2
0 . To avoid strong self-focusing of the laser (see chapter 2.5.4), one requires P/Pc =

(k2
pr

2
La0)2/32 . 1 (for a linear polarized laser). Together with the condition that k2

pr
2
L/2 >

a2
0/γ⊥, this implies a laser spot size of 3 . kprL . 6. With PL ∝

(
a0rL
λ

)2
(see chapter 2.4.2),

for fixed a0 and kprL the required peak power per LWFA stage therefore scales as PL ∝
n−1

0 λ−2 and the laser energy per stage scales as UL ∼ PLτL ∝ n
−3/2
0 λ−2. Assuming

appropriately shaped bunches (as discussed in chapter 2.9.1), the number of particles that

can be loaded into a short and narrow (� λp) segment without significant energy spread

scales as N ∼ πn0k
−3
p (Ez/E0) ∝ n

−1/2
0 , assuming fixed Ez/E0 (i.e. ωpτL and a0 fixed).

This means that a lower plasma density allows more charge to be loaded in a plasma wave

bucket. Assuming laser dephasing and diffraction mitigated by appropriate plasma density

tailoring (see chapters 2.5.4 and 2.5.5), the single stage energy gain is ultimately limited

by the depletion of the laser. The energy depletion length is given by Ld ∼ λ3
p/λ

2 ∝
n
−3/2
0 λ−2, giving a single stage energy gain of Wstage ∝ E0Ld ∝ n−1

0 λ−2. The number of

stages required to reach a given energy is then given by Nstages ∝ 1/Wstage ∝ n0λ
2. The

total length of the accelerator (determining the average acceleration gradient) is given by

(Lstage + Lc)Eb/Wstage, with Lstage ≈ Ld the single stage plasma length, Lc the coupling

distance for a new drive beam and Eb the final beam energy. Reducing the total linac length

requires Lc ∼ Lstage ≈ Ld. The total linac length then scales as Ltotal ∝ LdNstages ∝ n−1/2
0 .

This means that although operating at a lower plasma density increases the single stage

energy gain, it also reduces the accelerating gradient and increases the depletion length,

resulting in an increase of the total linac length. For a fixed luminosity (see equation 4.1),

with EB and the focusing at the interaction point fixed as well, the collision frequency has

to scale as f ∝ N−2 ∝ n0. This means that the beam power scales as Pb = fNEb ∝ n
1/2
0 ,

the average laser power scales as Pavg = fUL ∝ n
−1/2
0 λ−2 and the total wall plug power

scales as Pwall ∝ NstagesPavg ∝ n
1/2
0 , as illustrated in figure 4.1. A lower plasma density

reduces the total power requirements, but increases the laser energy per stage and the total

linac length. The scalings derived above are summarized in table 4.1. Based on particle in

cell simulations, a set of consistent parameters of a linear collider has been found in [21],

cf. table 4.2. A very similar set of parameters has been found by the ICFA-ICUIL joined

task force [11, 93] (ICFA - International Committee for Future Accelerators, ICUIL -

International Committee for Ultra-High Intensity Lasers). Except for the repetition rate,

the required laser parameters for a single stage are very similar to those of the BELLA



4.2. Laser-Driven Linear Collider 53

Ez ∝ n1/2
0 Ppeak ∝ n−1

0 λ−2

Lstage ∝ n−3/2
0 λ−2 UL ∝ n−3/2

0 λ−2

Wstage ∝ n−1
0 λ−2 f ∝ n0

Nstage ∝ n0λ
2 Pb ∝ n

1/2
0

Ltotal ∝ n
−1/2
0 Υ ∝ n−1/2

0

N ∝ n−1/2
0 Pavg ∝ n−1/2

0 λ−2

τL ∝ n−1/2
0 Pwall ∝ n

1/2
0

Table 4.1: Scaling laws for LWFA linear collider as derived in [21] for a linear polarized laser

pulse. Identical density scalings have been found in [156].

Figure 4.1: Total laser wall plug power PL, wall (red solid line) and average laser power per

stage PL, avg (blue dashed line) over the average plasma electron number density n0.

Increasing the plasma density reduces the necessary laser power for each individual

stage, but at the same time increases the total required wall plug power. Values

derived using the scalings and example parameters determined in [21]. The total

power consumption is for a linear collider with a centre of mass energy ECM =

1 TeV and a luminosity of L = 2 · 1034 cm−2s−1 with a beam size at the interaction

point of σ∗
x = σ∗

y = 10 nm. A wall-plug to beam efficiency of 6 % is used in the

example parameters. The dotted horizontal line marks the probable site power limit

of 200 MW. Note that most current day laser systems have an average laser power

of a few tens of Watts. The development of high intensity high average power lasers

is actively pursued within ICAN, and tens of kW average laser power might become

available within the next decades (see chapter 3.1.2, in particular tables 3.3 and 3.5).
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facility, the BE rkeley Lab Laser Accelerator [121, 160]. BELLA is operating at 1 Hz and

aims at the development of 10 GeV LWFA modules operating in the quasi-linear regime.

In [156], it has been suggested to work at significantly lower plasma densities to reduce

the total power consumption. However, this results in a much higher number of parti-

cles per bunch, causing severe beamstrahlung effects. To limit the amount of generated

beamstrahlung, one could accelerate less particles than possible for a given plasma density

(increasing the repetition rate to keep up the luminosity), or distribute the N particles

over m successive oscillations of the plasma wake. However, as shown in [155], this results

in a higher power consumption, negating the advantages of operating at a lower plasma

density.

Evaluation

Based on the scalings introduced above, the optimum plasma density for a given laser pulse

energy has been calculated for a set of example laser facilities (which have been introduced

in chapter 3.1.2, see tables 3.3 and 3.4). Based on the resulting number of particles in the

accelerated witness bunch, the achievable luminosity for the corresponding repetition rate

has been calculated via L = (fN2)/(4πσ∗xσ
∗
y), see chapter 4.1. The result is illustrated in

figure 4.2. Based on the scalings, a parameter scan has been performed. The results are

given in tables 4.2 and 4.3 for centre of mass energies of 1 TeV and 3 TeV respectively. A

facility capable of producing an expected Higgs boson with a mass of about 125 GeV/c2

is discussed in chapter 4.7.4, page 65.

A question of interest that has not been discussed here is the availability of injectors to

provide shaped, high charge bunches at a bunch length σz ≈ 1µm. While the required

charge and bunch length have both been reached individually, the bunches so far were of

lower charge or longer than required. Also, to the best of the authors knowledge, bunch

shaping has not been demonstrated for bunches of this length scale. An overview over

beam parameters achieved so far is given in chapter 3.1.1.
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Figure 4.2: Achievable luminosity L versus plasma electron density n0 based on laser pulse energy

and repetition rate of exemplary high power laser facilities [117–120, 123]. Plasma

density and number of particles per bunch were calculated from the pulse energy

via the scalings in [21] (here, it has been assumed the pulse length can be adjusted

accordingly and that enough modules are staged to reach the desired final energy).

A spot size at the collision point of σ∗
x = σ∗

y = 10 nm has been assumed.

The broken horizontal lines denote the minimal useful luminosity for a Higgs / Z-

boson facility, as given by the scaling L[1034 cm−2s−1] ≈ (E[TeV])2 [64]. For a

dedicated H / Z factory, a luminosity increase by two orders of magnitude would

be desirable. A full scale TeV linear collider would require a luminosity in excess of

1034 s−1cm−2 to generate sufficient event rates. Also see figure 3.2, which illustrates

the correlation of laser pulse energy and repetition rate and tables 3.3 and 3.4 for

parameters of existing laser facilities / ELI.
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4.3 Electron-Driven Linear Collider
Several proposals on linear colliders based on PWFA can be found in the literature [140,

145–151, 161] They fall in two main categories; the staged approach and the afterburner

concept, which will both be discussed below. All the before mentioned collider proposals

aim at operation in the bubble regime. This makes the acceleration of positrons very

difficult, as they can only be accelerated at the density spike at the end of the bubble.

Simulations in [162] show that positrons can be accelerated in an electron beam driven

bubble, if the energy content of the wake is not too high. However, this requires precise

positioning and sophisticated bunch shaping on a scale given by the plasma wave length.

Even then, an energy spread of several percent can not be avoided, due to the structure of

the accelerating field which varies across the beam. Simulations in [163] also indicate the

formation of a beam halo and an increase of the positron beam emittance. If positrons

are used to drive the wake, the resulting accelerating field is lower than for the electron

driver, and their effect of “sucking in” instead of blowing out plasma electrons leads to

considerably different transverse fields [62]. A plasma in the shape of a hollow cylinder

can be used to mitigate these problems. Another option would be to use electrons to drive

a linear wake to accelerate positrons [164]. Alternatively, the collider could be constructed

as photon-colliders, as discussed in section 4.5.

In the scope of this thesis, several scalings with plasma density for a beam-driven linear

collider operating in the blowout regime have been derived. They have been discussed in

chapter 2.8.3.

4.3.1 Staged Approach

The staged approach for PWFA [140, 145–147, 161] is conceptionally similar to the ap-

proach with LWFA (chapter 4.2), but due to the higher energy stored in each drive beam

the number of necessary stages is significantly reduced. For example, the straw man design

in [147] uses 10 stages, each adding 25 GeV to the witness bunch. While the length of the

individual plasma cells would be in the order of 1 m, the overall length of the accelerator

would probably be a few kilometres [145], to allow the coupling of the drive bunches and

the transport of the witness bunch from stage to stage. In particular, to allow the use

of one single, heavily beam-loaded drive linac, the distance between plasma cells is given

by the rise time of the kicker magnet that distributes the beam to the different stages,

resulting in a coupling distance of about 90 m [161].

A γγ-collider based on 25 GeV stages is discussed in chapter 4.7.5.

4.3.2 Afterburner

The afterburner concept [148–151] was originally suggested in [148] to double the energy

of the Stanford Linear Accelerator, to enable it to find a low mass Higgs boson. It has

been suggested in [149] as a possibility to increase the energy or reduce the cost of the

ILC.

The main idea is that electrons (positrons) will be accelerated to half the final energy in a

RF linac like ILC, before they enter a plasma cell. In the plasma cell some of the electrons

will drive a plasma wake, transferring their energy to the trailing bunch. The creation of
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drive and witness bunch (with different particle number and bunch length) can be either

achieved from the injector or by over compressing a long bunch in a magnetic chicane.

The principle of the afterburner concept has been demonstrated at SLAC [13] and will be

further investigated at FACET [109].

4.4 Proton-Driven Linear Collider
Three collider proposals utilizing the proton driven plasma wake field acceleration concept

described in chapter 2.7 have been developed in [152, 153, 165].

The AWAKE experiment at CERN is working towards the first experimental demonstra-

tion of proton-driven electron acceleration. My contribution to the AWAKE project is

described in chapter 6.

Proton Based ILC Upgrade

In [152], an upgrade of the ILC using proton driven plasma wake field acceleration has

been suggested. The key idea is to accelerate protons in the same superconducting linacs

used to accelerate the electrons and positrons. This would allow the doubling of the final

energy with only a slight increase in accelerator length. Several dual path chicanes along

the linacs would be used to compensate the phase slippage between the electrons and the

protons of lower relativistic γ. A final dual path chicane would be used both to allow the

protons to overtake the electrons (They would travel behind the electrons in the linacs to

not spoil the electron bunches with their wake fields) and to compress their bunch length

before entering into a long plasma cell in which the protons would transfer part of their

energy to the electrons, accelerating them from 250 GeV to 500 GeV. For the positron

arm, a similar setup would be used, but with the proton beam injected later into the linac.

The lower energy proton bunch of higher intensity would be used to create wake fields of

comparable strength as for the electron arm while still being separable from the positrons

due to their lower momentum. This concept is very similar to the afterburner concept

discussed in section 4.3.2. The difference is that here protons are used to drive the plasma

wake, not some of the bunches within a train.

Electron-Proton Collider

An electron-proton (e−-p) collider similar to the linac-ring option of the proposed LHC

upgrade LHeC [166] (Large Hadron electron Collider) has been developed in [165], em-

ploying existing CERN accelerators. The idea is to use self modulated proton bunches

from the SPS to accelerate electrons to 100 GeV in a single 170 m plasma cell. These elec-

tron bunches will be collided with proton bunches within the LHC. The SPS accelerates

288 bunches with a cycling time of about 20 s, resulting in a possible collision frequency of

about 15 Hz. Assuming an electron bunch with 1.15 ·1010 particles (10 % of the drive beam

charge) and transversely matched beams with a β∗p values for the proton bunch of 0.1 m,

an e−-p luminosity of 1 · 1030 cm−2s−1 is predicted. This is roughly 3 orders of magnitude

lower than what is targeted for LHeC, but with twice the electron energy and without the

need to build a new accelerator.
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Dedicated Proton Driver

The probably most promising possibility to reach the beam quality and luminosity desired

for a future lepton collider is the construction of a dedicated facility. The ramp time of

existing, circular colliders is typically in the order of 30 minutes, due to the characteristics

of the super conducting magnets. If protons were to be extracted from such accelerators to

accelerate electrons in a single, long plasma cell, the average extracted beam power would

be in the order of a few kW, much lower than the estimated beam power of 50 MW for

ILC. Assuming a 10 % efficiency for the coupling from the protons to the plasma wake and

50 % efficiency from the plasma wake to the witness bunch, 1 GW of proton beam power

would be needed for a luminosity comparable to the one planned for ILC. In [153], it has

been suggested to improve the proton accelerator cycling times by using a combination of

a rapid cycling pre-accelerators, a 500 GeV to 1 TeV fixed field alternative gradient lattice

and possibly a superconducting final synchrotron for the acceleration of protons to 2 TeV.

4.5 Photon-Photon Collider

Considering a photon (γγ) Collider is appealing due to several reasons [21, 167]: i) The

detrimental effects associated with beam-beam interaction discussed in section 4.1.2 are

absent. ii) They eliminate the need for positrons, potentially even for damping rings.

iii) γγ collisions can access many of the interactions available in e+e− colliders, and the

different production channels would provide valuable additional information. iv) If a high

energy e+e−-collider where to be build, a second interaction region for γγ or γe collisions

would be a comparably cheap addition. Moreover, in a γγ collider the cross section for

several physics processes of interest is significantly larger than in an e−e+ collider of the

same energy [93, 167, 168].

The required photon beams can be generated with sufficiently high rates via Compton

scattering on an electron beam. The laser requirements are very similar to those needed

for LWFA [21, 93]. The energy of the created photons is given by ~ω = Ebx/(1 + x+ a2
L),

with Eb the energy of the electron beam on which the laser beam is backscattered and

a2
L the normalized laser intensity. x = (4Eb~ωL/(m2

ec
4)) cos2(θ/2), with ωL the angular

frequency of the scattering laser and θ � 1 the collision angle. To maximize the energy of

the scattered photons while avoiding e+e− pair production in the same laser beam imposes

the condition x ≤ 2(1 + a2
L)(1 +

√
2) or λL [µm] ≈ 4Eb [TeV] on the scattering laser (for

aL � 1). By correlating the laser and electron beam pulse length to the Rayleigh length

of the laser one can estimate the laser energy necessary for efficient energy conversion to

UL [J] ≈ (2/a2
L)Eb [TeV]. The pulses must be sufficiently long so that a2

L < 1 to avoid

nonlinear scattering. Furthermore, minimizing bremsstrahlung puts a restraint on the

peak electric field of the laser in the rest frame of the electron beam: aL < 2/x.

The electron beam could be provided by any of the accelerator concepts mentioned above.

The cross sections for charged particle production are somewhat higher in γγ collisions

than they are for e+e−. This allows the reduction of the required luminosity in the high

energy peak of the photon spectrum by about a factor of 5 as compared to the required
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e+e−-luminosity of a collider of similar energy [169]. However, due to the characteristics

of the photon generation via Compton scattering, only about 10 % of the photons are in

the high energetic peak of the photon spectrum. Therefore, the geometric luminosity, the

luminosity the electrons would generate if not used to scatter photons, should be similar

to that of an e+e−-collider [168], roughly following the scaling given by equation 4.3 [169].

It is important to point out that a γγ-collider is a relatively cheap upgrade of an existing

e+e−-collider, delivering interesting and complimentary physics. It is however unlikely

that the high energy physics community will want a sole γγ-collider without the option of

e+e− collisions [168].

A design for a 130 GeV Higgs factory photon-photon collider has been developed in the

course of this work and is discussed in chapter 4.7.5.

4.6 Muon Collider

Beamstrahlung is is a mixture of synchrotron radiation and Bremsstrahlung, with the

ratio between the two depending on the beam parameters [170]. Either way, the amount

of radiated power is proportional to γ4, and can therefore be reduced significantly by using

heavier particles. If one were to use muons instead of electrons, the amount of emitted

radiation would be reduced by over 9 orders of magnitude (mµ ≈ 207me). Muons are

unstable and decay as dN/dt = −N/γτ0. However, this becomes largely irrelevant for

high accelerating gradients, as the fraction of surviving particles at the final energy E

N

N0
≈
(
mµc

2

E

)κ
(4.13)

is very close to 1 if κ = (mµc/τ0G)� 1/ ln(E/mµc
2) [154]. This condition is well fulfilled

if the acceleration gradient G� 3 MeV/m. However, due to their production mechanism

via scattering of a particle beam on a target, muon beams are created with a very large

emittance. For a TeV scale collider, a reduction of the 6-dimensional phase space by a

factor O(106) will probably be necessary. A convincing demonstration of the necessary

muon cooling is envisaged on the timescale of 2020 [154]. While this approach allows to

operate with much lower plasma densities without running into problems with excessive

beamstrahlung, the usefulness of this approach has to be evaluated depending on the

achievable efficiency in the generation of the Muons.

Another problem has not been discussed in the proposal mentioned above; due to the

large emittance with which the muons are created, it is not at all clear if they can easily

be focused into the small accelerating volume of the plasma wave. If not, it would make

the use of conventional acceleration techniques necessary. The idea has therefore not been

investigated further in this thesis.
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4.7 A 130 GeV Higgs Factory

4.7.1 Motivation

Recently, the long sought Higgs boson has been discovered at the LHC [16, 17]. Its

relatively low rest mass of approximately 125 GeV/c2 makes it interesting to consider a

smaller scale linear collider based on plasma technology - both to study the new boson in

more detail in electron-positron collisions and to develop the technologies necessary for a

full scale collider.

To that end, I have investigated protons, electrons and laser pulses as potential drivers for

such a facility, as will be discussed in sections 4.7.2 to 4.7.5.

For electron-positron collisions, the maximal cross section of 200 fb for e+e− → ZH, is at

a centre of mass energy of about 250 GeV [66], resulting in a required energy per beam of

approximately 125 Gev/c2. For γγ collisions, a single Higgs can be produced [171, 172].

The required energy per driving electron beam is therefore 1
2(125/0.8) ≈ 80 GeV, cf. sec-

tion 4.5, page 60.

4.7.2 Protons as Drive Beam

I have investigated protons a potential drivers. The energy stored in a 125 GeV Proton

beam would be sufficient to accelerate electrons to the same energy in a single stage,

avoiding the challenges associated with staging. However, as explained in chapter 2.7.3,

dephasing can be a serious problem for protons drivers of moderate γ. Using equation 2.44,

page 22

δ ≈ 1

eEacc/(mecωp)
(γe,fin − γe,in)

1−
γp,fin − γp,in√

γ2
p,fin − 1−

√
γ2
p,in − 1

 (4.14)

the phase slippage in a single acceleration stage depending on the initial and final γp

has been studied. An accelerating field in the order of the cold wave breaking field

(eEacc/(mecωp) ≈ 1) and an initial electron beam of low energy (γe,fin − γe,in ≈ γe,fin)

have been assumed. The condition on the phase slippage has been tightened to δ < π/2 to

not only stay in the accelerating but also in the focusing phase of the wake (for operation

in the linear regime, allowing to accelerate positrons as well). As illustrated in figure 4.3,

a proton driver with an energy significantly higher than 125 GeV would be needed to ac-

celerate electrons to this energy without suffering from dephasing. This makes protons

unattractive as potential drivers.

4.7.3 LWFA Electron-Positron Collider,

Classical Beamstrahlung Regime

For the collision of charged particles, the amount of generated beamstrahlung Υ ∝ γ scales

with the beam energy, cf section 4.1.2. For e+e− collisions, producing the Higgs particle at

its maximal cross section requires a centre of mass energy of approximately 250 GeV [66].

It is important to point out that for these energies, it is still possible to operate in the

favourable classical beamstrahlung regime Υ� 1.
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Figure 4.3: Phase slippage δ of an accelerated electron beam with respect to the driving proton

beam, as calculated via equation 4.14. The x-axis is the initial relativistic γ-factor

of the proton driver. The broken coloured lines denote different final energies of the

driver, i.e. the transfer efficiency from the driver to the witness bunch. (Different final

energies for the proton bunch can be achieved with different numbers of particles in

the drive and witness bunch, cf. chapter 2.6.2.) The final energy of the electron beam

used for the calculation is 125 GeV in all cases. (Although in practice, the electrons

would not reach this energy if the phase slippage is too high.) The horizontal solid

line denotes the maximal tolerable phase slippage δ = π/2. As one can see, a proton

driver with an initial energy much larger than 125 GeV would be needed to avoid

detrimental phase slippage of δ & π/2.
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As acceleration of positrons in the bubble regime is difficult, I have investigated a LWFA-

collider operating in the linear regime, based on the example parameters and scalings

given in [21] (cf. chapter 4.2, page 52). The beam parameters given there result in

a beamstrahlung parameter Υ = 180 for a centre of mass energy ECM = 1 TeV. As

Υ ∝ γ, this leads to Υ ≈ 45 for ECM = 0.25 TeV. This makes it worth while trying to

reach the classical beamstrahlung regime, in which the competing conventional collider

proposals ILC and CLIC operate (ILC has Υ� 1 for ECM = 1 TeV, CLIC has Υ ≈ 5 for

ECM = 3 TeV [64]. ). This is especially important as both nγ and δB increase for lower

beam energy, as stated by equations 4.5 and 4.6 on page 49.

As the final spot size at IP is independent of the plasma density, the amount of generated

beamstrahlung scales with the number of particles per bunch N and therefore the plasma

electron density n0 as Υ ∝ N ∝ n
−1/2
0 . This hints at using higher plasma densities,

resulting in less particles per bunch. However, this in turn results in a higher required

collision frequency f ∝ n0 to keep up the luminosity and a higher required wall plug power

Pwall ∝ n
1/2
0 . Scaling the parameters given in [21] to ECM = 0.25 TeV and n0 = 1019 cm−3

results in Υ ≈ 4.5, still much higher than what is achievable with conventional accelerators

like ILC.

I have performed a parameter scan, which shows that for n0 = 1019 cm−3, one already

requires 1250 stages per arm and a wall plug power of 400 MW for a luminosity L =

2 · 1034 cm−2s−1, cf. table 4.6, page 68. As Pavg ∝ ECM , this is more than with ILC /

CLIC technology. For comparison, the basic ILC design parameters are given in table 4.4.

Peak Luminosity L [cm−2s−1] 2 · 1034

Pulse rate [Hz] 5.0

Bunches per pulse 1000 -5400

Charge per bunch [nC] 1.6-3.2

Normalized horizontal emittance at IP [mm·mrad] 10 - 12

Normalized vertical emittance at IP [mm·mrad] 0.02 - 0.08

Typical beam size at IP (hor. × vert.) [nm] 474 - 640 × 3.5 - 9.9

Beam Power per beam [Mw] 11

Total AC Power consumption [MW] 230

RMS bunch length [µm] 200 - 500

Fractional beamstrahlung energy loss δE 0.017 - 0.055

Linac length (1 arm) [km] 8

Table 4.4: Basic design parameters for the International Linear Collider (ILC) at a centre of mass

energy of 500 GeV, taken from tables 1.1-1 and 1.3-1 in [5]. The given values do not

represent consistent parameter sets, but only indicate the span of the design range for

each parameter. Also note that damping rings are necessary to reach the beam sizes

at the interaction point (IP) and in turn the given luminosity.
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Interim Conclusion

Due to the very short bunch lengths inherent to LWFA, they suffer from high emission rates

for beamstrahlung photons and a large beamstrahlung induced energy spread. Therefore,

even if there is no induced energy spread due to the acceleration process, the maximal

achievable beam quality is noticeably better for conventional accelerators. However, as

their much longer main linac length and the need for damping rings may make them

prohibitory expensive it is worth studying plasma based accelerators operating in the

quantum beamstrahlung regime. This in turn may make the development of new detectors

necessary.

4.7.4 LWFA Electron-Positron Collider,

Quantum Beamstrahlung Regime

As shown in the previous section, if one wants to achieve the highest possible beam quality,

the use of conventional accelerator is beneficial for this energy range. In this chapter, we

will assume that beamstrahlung does not pose a hard limit, either due the development of

detectors that can cope with much higher beamstrahlung or due to the compensation of

beamstrahlung by some other mechanism.

Several methods to reduce beamstrahlung have been suggested in the literature. In [173], it

has been suggested to have a plasma at the IP, the return currents of which would mitigate

the strong fields of the colliding bunches. However, for the plasma densities required, it

is estimated that this would lead to other types of detrimental background due to the

interaction of the beams with the plasma ions. In [174, 175], it has been suggested to

consider the overlapping of identical beams of opposite charge. Colliding these e+e− pairs

would provide full neutralization of beam charges and current. However, the requirements

for alignment, synchronization and charge compensation are very stringent, given by the

dimensions of the colliding bunches. If not met exactly, the mismatch will again result in

dipole fields and therefore in the creation of beamstrahlung.

Based on the parameters and scalings in [21], I have performed parameter scans for beam

energies sufficient to produce Z and H bosons. The results are given in tables 4.5 and 4.6.

The beamstrahlung properties have been calculated using equations 4.4 to 4.6, page 49.

Note that for Υ� 1, the number of generated beamstrahlung photons nγ and the beam-

strahlung induced energy spread δE scale as nγ ∝ δE ∝ γ−1/3. Since N ∝ n
−1/2
0 , this

means that nγ ∝ δE ∝ N2/3 ∝ n−1/3
0 .

Discussion

Assuming that

i) beamstrahlung does not pose a limit;

ii) laser systems providing the desired pulse energy and repetition rate and

iii) plasma cells of the required length were available for all parameter sets;

the scalings would dictate that for a Z / H facility, one would like to operate at plasma

densities of n0 = 2.2 ·1016 cm−3 and n0 = 7.6 ·1015 cm−3 respectively. This would minimize

the facility footprint and power consumption and remove the need for staging.
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As reaching these three assumptions, if ever possible, will require serious research and

development efforts I have considered how one could arrive at an operational facility at

an earlier point in time. Ideally, one would like to start with a Z facility with the option

to upgrade to a higher energy H facility later. Setting a maximal tolerable amount of

beamstrahlung for the Z facility, this sets a lower limit to the plasma density, as

nγ ∝ δE ∝ γ−1/3n
−1/3
0 .

If one now assumes that the fibre-based laser systems researched within ICAN will be the

first technology to reach high average powers with decent wall-plug to optical efficiency,

this puts a mid-term limit on the repetition frequency. Luminosity considerations for the

H facility then limit the usable plasma density to n0 . 1 · 1018 cm−3. For my preliminary

study, a plasma density of n0 ≈ 5 · 1017 cm−3 limits the beamstrahlung induced energy

spread to 40 % for the Z facility, reducing the challenge of detector development. Operation

at 10 kHz could then deliver a luminosity of L ≈ 3 · 1033 cm−2s−1. For the H-facility,

this results in a total wall plug power consumption for both linac arms of about 12 MW

(assuming a wall-plug to beam efficiency of 6 %) and a footprint of about 700 m (assuming

a coupling distance between plasma stages of 5 m).

For this parameter set, I have compared the results concerning beam-beam interaction

at the IP obtained by theoretical estimates (cf. table 4.6 for n0 ≈ 5 · 1017 cm−3) to

simulations [176] (comparison also published in [112]). They are in good agreement for

the beamstrahlung induced energy spread δE and the number of emitted beamstrahlung

photons nγ . However, the simulations predict the number of generated coherent pairs

nb ≈ 0.1 to be two orders of magnitude higher than the (already very high) theoretical

estimate. It is also worth pointing out that, according to the simulations, the number of

particles that keeps an energy higher than 99 % of the design energy is reduced by a factor

of 3 due to beamstrahlung. This means a reduction of the effective luminosity.

4.7.5 Photon-Photon Collider,

PWFA in the Bubble Regime

During the course of this thesis, I have investigated the possibility to build a Higgs facility

based on the photon-photon (γγ)-collider concept introduced in section 4.5. This has

the advantage that, unlike e+e−-colliders, γγ-colliders can produce a single Higgs [172],

reducing the required centre of mass energy by a factor of two and the required electron

beam energy by about 35 %.

As positrons are not required for a γγ- or γe−-collider, this allows operation in the blowout

regime, making use of its higher accelerating gradient and its beneficial focusing properties

discussed in chapters 2.1.2 and 2.8.

For a laser driver, the phase velocity of the plasma wake is approximately the group velocity

of the driving laser pulse, normally with an associated γ-factor between 10 and 100. This

rather low phase velocity allows for the trapping of background electrons, reducing the

acceleration gradient and increasing the energy spread of the witness beam [21]. For my

straw-man design, I have therefore chosen to employ a beam driver, for which the phase

velocity of the wake is approximately given by the velocity of the beam [12]. The much

higher associated γ-factor effectively prevents trapping of background plasma electrons.
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As the production rates for W-bosons pairs are about 10-20 times higher than in compara-

ble e+e−-colliders [169], a centre of mass energy slightly above 160 GeV has been chosen.

As the energy spectrum of the created photons peaks at about 80 % of the driving elec-

tron beam energy [168, 171, 172], this requires an electron beam energy of Eb ≈ 100 GeV

per beam. This could be achieved with four 25 GeV stages as described in [109, 140],

for which high beam quality has been shown in simulations. There, a plasma electron

density n0 = 5.66 · 1016 cm−3 has been chosen, based on the capabilities of current day

state of the art injectors and the condition that the separation between drive and witness

bunch should be less then one plasma wave length in order to have both bunches at the

appropriate phase of the wake.

Let us consider a witness bunch population of N = 1.73 · 1010 electrons as used in the

simulations in [140], a geometric luminosity L = 1 · 1034 cm−2s−1 and a spot size at the

IP comparable to those considered for ILC [5] (the generated photons are scattered in

the direction of electron propagation, therefore focusing the photons means focusing the

electron beams). This leads to a required collision frequency f ≈ 7 kHz and a power

per beam Pb = EbNf ≈ 2.3 MW, corresponding to a stored energy per bunch of Wb =

EbN ≈ 330 J. Assuming a energy transfer efficiency from the wall plug to the drive beam

of 45 % [147] using a heavily loaded linac and a transfer efficiency of 51 % from the drive

to the witness bunch [140], this leads to a total power consumption per main linac of

approximately 12 MW. (Note that the simulations in [140] assume a wedge shaped density

profile for both drive and witness bunch. For Gaussian beams, a lower transfer efficiency

of about 35 % has been estimated in [147], resulting in a total power consumption of about

15 MW.)

As discussed in chapter 4.5 (page 60), the required wavelength of the scattering laser would

be λL [µm] ≈ 4Eb [TeV] ≈ 4∗0.1 ≈ 0.4µm. This can for example be achieved by frequency

doubling a 800 nm infrared laser. Assuming a scattering angle θ � 1 (cos2 θ ' 1) and

Eb = 100 GeV, one gets x ≈ (4Eb~ωL/(m2
ec

4)) cos2(θ/2) ≈ 4.8, resulting in a0 < 2/x ≈ 0.4

and a required laser power at λL = 400 nm of UL, blue ≈ (2/a2
L)Eb [TeV] ≈ 1.1 J. Given

a conversion efficiency for the frequency doubler of about 50 % [33, 177], this results in

a IR laser power of UL, IR ≈ 2.2 J. This would result in a maximal photon energy of

~ω = Ebx/(1 + x+ a2
L) ≈ 80 GeV, enough to create a possible Higgs boson with a mass of

about 125 GeV/c2, as well as W boson pairs.

For comparison, the status of current-day high-power laser systems is given in chapter 3.1.2.

The top level parameters of the collider proposal developed above are summarized in

table 4.7.

Discussion

I have derived the straw-man collider above to make best use of the intriguing properties of

acceleration in the bubble regime. A challenge that is not discussed is the longitudinal po-

larization of the electron beam, which is practically mandatory for a useful photon collider,

as the γγ luminosity would decrease by a factor of four for unpolarized beams [168, 171].

Whilst simulations predict fairly low depolarization rates for acceleration in the bubble

regime [178], the generation of said beams would require the use of a conventional electron

gun and the use of damping rings, which would in turn increase the size, cost and power
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Geometrical e−e− luminosity L in cm−2s−1 1 · 1034

Hor. e−-beam size at IP σ∗x in nm 474

Vert. e−-beam size at IP σ∗y in nm 3.5

Highest photon energy in GeV 80

Final electron beam energy Eb in GeV 100

Number of acceleration stages per beam 4

Energy gain per stage in GeV 25

Plasma length per stage in m 0.6

Plasma electron density n0 in 1016 cm−3 5.6

Number electrons drive beam in 1010 4.4

Bunch length drive beam in µm 58

Bunch length witness beam in µm 22

Number electrons witness beam in 1010 1.7

Collision frequency f in kHz 7

Beam power witness beam in MW 2.8

Energy scattering laser per shot in J 2.2

Energy transfer efficiency wall plug to e−-beam in % 23

Total wall-plug power both linacs in MW 24.4

Table 4.7: Example parameters for a 160 GeV centre of mass γγ-collider based on PWFA in

the blowout regime. Parameters of the acceleration stages are based on simulation

results in [140]. The geometrical luminosity and the beam size at the interaction point

(IP) give the values that would be reached if no laser pulse would be scattered at the

electron beams. The generated photons are scattered in the propagation direction of

the electron beam, therefore focusing the photons means focusing the electrons, as

discussed in chapter 4.5, page 60. The total footprint of the facility depends on the

distance needed between the stages for coupling in the witness bunch and the new

drive beam. It can be estimated to be a few 100 m. Compare to tables 4.4 and 4.6 for

collider estimated based on ILC / LWFA technology.
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consumption of the facility significantly. In addition, note that the e−-beam sizes at the

IP are sizes envisaged for the ILC and very challenging. Not reaching these parameters

would result in a reduction in luminosity (or an increase in beam power to keep up the

luminosity). Also, the simulations in [140] assume a triangular charge density modulation

of both the drive and witness bunch to reduce the beam loading induced energy spread,

which might be challenging to achieve for the bunch lengths discussed.

The most important drawback of this design however, is that it would delay the start of a

e+e− collider by several years. Since such a 250 GeV collider would have a stronger physics

case at an increased cost of about 30 %, support from the High Energy Physics community

is doubtable (The idea of a Higgs factory γγ collider based on ILC technology has been

discarded for the afore mentioned reasons [168]). If the collider were to operate in the

linear regime to accelerate positrons, the achievable bunch lengths of drive and witness

bunch would make it necessary to operate at a comparably low plasma density. This in

turn would result in an even higher charge per bunch than for the laser-based collider

discussed in the previous section and even higher beamstrahlung losses.

4.7.6 Evaluation

In the previous sections, I have developed and studied several ideas for building a Higgs

facility based on novel acceleration methods. One question common to all these propos-

als, which has been excluded in the scope of this work, is the availability of a suitable

injector. Among others, questions to be addressed here are i) Polarization of beams ii)

Beam emittance (to allow to focus to the required spot sizes at the IP) iii) Bunch shaping

and iV) Charge and bunch length requirements. The last of these questions is addressed

in chapter 3.1.1. For conventional accelerators, meeting the before mentioned challenges

requires large damping rings to decrease the beam emittance and large beam energies to

allow for the compression to small bunch lengths (See, e.g. [5, 6, 168]).

Normalizing to the same luminosity and beam energy, very comparable total power con-

sumptions are calculated for both the beam and the laser driven technology. Assuming

that the total power consumption scales linearly with beam energy and luminosity (which

is not exactly true if damping rings are required), it is also very similar to the power

consumption estimated for ILC technology.

Obviously, the discussed proposals are just rough estimates and far from a finished design.

But they do illustrate how novel acceleration methods could be used to reduce the footprint

of a Higgs facility to a few kilometres (including the final focus system and still to be

developed injectors). Many of the key issues for the development of a working linear

collider are actively researched and will be investigated in the coming years at facilities

like BELLA and FACET [109, 160].
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5. Possible Mid-Term Applications

The technology necessary for the Linerar Collider proposals discussed in chapter 4 will

still take decades to mature. Therefore, this chapter investigates possibilities for an earlier

technical application of plasma-based acceleration methods, in particular the application

to synchrotron light sources.

In chapter 5.1, the achieved LWFA beam parameters described in more detail in chap-

ter 3.1.1 are compared to the requirements of so-called Free Electron Lasers (FEL) -

synchrotron radiation sources based on linear accelerators.

As the repetition rates of current-day high-power laser systems are still too low to drive

an FEL with high average photon flux, chapter 5.2, investigates LWFA as injectors for

light sources based on storage rings. This would allow to combine the interesting radia-

tion properties resulting from the short bunch length customary to LWFA with the high

repetition rate of electron bunches stored in a ring.

5.1 Free Electron Laser

Many practical application from material and environmental science to biology and medical

treatments utilize Synchrotron radiation. Free Electron Laser (FEL) complement storage

ring based light sources by offering highest peak powers and shortest pulse durations.

The emitted radiation normally has a very narrow bandwidth and is tunable over a wide

parameter range. (E.g. FERMI@Elettra can produce radiation with a wavelength between

10 nm and 100 nm [179]). The beam energy and source size of the generated radiation

depend strongly on the electron beam energy and emittance. An additional figure of merit

for a FEL is a high peak current at the undulator, determining the amount of radiation

generated. Top level parameters of exemplary FEL are given in table 5.1.

Plasma based acceleration techniques, with their intrinsically short bunch lengths, achieve

peak currents very comparable to those of the conventional accelerators listed in table 5.1,

cf. chapter 3.1.1. It is hoped that they will allow the construction of much smaller and

cheaper facilities, as compared to the kilometre scales of current day FEL.
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Facility FERMI SwissFEL XFEL LCLS

Beam Energy [GeV] 1.2-1.7 2.1-5.8 17.5-20.0 14.4

Energy Spread [keV] 100 - 250 250-350 1000 2900

Charge per Pulse [nC] 0.8-1.0 0.2 1.0 1.0

Bunch length [fs] 400 6-30 70 70

Repetition Rate [Hz] 10-50 200 10 120

Normalized beam emittance [µm · rad] 0.8-2 0.18-0.43 1.4 1.2

Table 5.1: Design parameters of exemplary linac based Free Electron Lasers (FEL): Free Electron

Laser for Multidisciplinary Investigations (FERMI@Elettra) at Elettra, Italy [111,

179]; SwissFEL at PSI, Switzerland [108, 180, 181]; Linac Coherent Light Source

(LCLS) at SLAC, USA [106]; and the European X-Ray Free Electron Laser (XFEL)

at DESY, Germany [110, 182]. The power consumption of the facilities mentioned

above is in the order of a few MW. For SwissFEL, a shortening of the bunch length to

0.6 fs is foreseen in the upgrade plans.

5.1.1 Choice of Driver Technology

For FEL applications, electron beam energies in the GeV range are required. This makes

protons inappropriate as drivers, as for these energies their relativistic gamma factor is in

the order of O(1). This leads to significant dephasing with the ultra relativistic electrons,

as explained in more detail in chapter 4.7.2.

For electrons, dephasing would not be a problem, due to the much higher γ-factor of the

driver. However, due to the transformer ratio described in chapter 2.6.2, an electron driver

would need to have about half the desired final energy and a bunch charge similar to the

witness bunch to avoid the necessity for staging.

Laser driven acceleration methods are therefore regarded as most beneficial for this ap-

plication, as fs drive laser pulses allow for ultra short electron pulses with very high peak

currents, which is desirable for the radiation characteristics of the bunch (cf. e.g. [7]). They

have the added benefit that parts of the laser could be uncoupled to use in pump-probe

experiments, with comparably easy synchronization.

Within the coming decades, lasers capable of accelerating sufficient numbers of electrons to

the interesting energy scale with high enough repetition rates should become available [11,

117, 120, 128, 129]. Given the energy envisaged, this points towards a single acceleration

stage with high charge per bunch. As neither staging nor positrons are required, this

points to acceleration in the blowout regime.

5.1.2 Possible LWFA Parameters

An introduction to achieved LWFA beam parameters can be found in chapter 3.1.1. In

particular, cf. table 3.1 and figure 3.1, pages 35 and 34 respectively. Three of the parameter

sets closest to the requirements for FEL application are repeated in table 5.2.

It is important to point out that these parameters often refer to the quasi mono ener-

getic peak of the particle distribution. Complete energy distributions are illustrated in

figures 3.4 and 5.2, pages 42 and 79 respectively. This means that a large number of
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Electron Mean Energy [MeV] 170 1000 198

Bunch Charge [pC] 500 30 10

Laser Pulse Energy [J] 1.0 1.7 0.85

Laser Pulse Length [fs] 13 16 18

Table 5.2: Achieved LWFA beam parameters [10, 42, 100], subset of table 3.1, page 35. The pulse

length was not measured for all experiments, but can be expected to be comparable

to the laser pulse length.

particles with the wrong energy would have to be energy collimated, which could lead to

radiation protection issues. However, it is also important to point out that huge efforts are

undertaken to reduce the energy spread of LWFA generated beams. In particular, several

injection control methods are investigated, which could stop the continuous injection of

background electrons into the bubble (thereby removing the unwanted low energetic part

of the energy spectrum), cf. e.g. [94, 183–187]

As the bunch charges and bunch energies required for FEL application have not yet been

achieved experimentally, table 5.3 list possible beam parameters observed in simulations

for acceleration in the bubble regime [32].

Beam energy γmec
2 [GeV] 0.99 1.06 9.9 10.2

Plasma density n0 [1017 cm−3] 10 20 1 3

Charge per bunch [nC] 0.18 0.40 0.57 1.8

Laser energy UL [J] 0.6 3.2 21 212

Laser pulse duration τL [fs] 30 30 100 100

Stage length [m] 0.016 0.009 0.52 0.18

Table 5.3: Example parameters for ∼1 GeV / ∼10 GeV energy LWFA operating in the blowout

regime, as simulated in [32] (cf. table 5.2 therein). The first parameter set for a given

beam energy assume external injection and external guiding, matching the laser power

and the plasma density to that PL/Pc = 1, cf. chapter 2.5.4. The second parameter

set assumes self injection and self guiding, resulting in a significantly higher required

laser energy.

For comparison, acceleration in the linear regime has also been studied by scaling the

example parameters in [21]. The main accelerator parameters are given in table 5.4.

Note that the used scalings and parameters assume a transverse and longitudinal plasma

density shaping to minimize the evolution of the laser pulse as well as a triangular charge

density distribution of the electron bunch to minimize its energy spread due to beam

loading (cf. chapter 2.9.1)! This beam and plasma shaping could be circumvented by

accelerating a higher than necessary charge and then energy collimating the beam. Also,

undulators capable of handling the larger energy spread typical for LWFA are actively

being researched [188, 189].
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Beam energy γmec
2 [GeV] 1.7 5 20

Plasma density n0 [1017 cm−3] 6 2 0.5

Charge per bunch [nC] 0.3 0.5 0.9

Repetition rate f [Hz] 50 200 10

Laser energy UL [J] 2 11 91

Laser pulse duration τL [fs] 23 40 79

Average laser power Pavg [W] 100 220 910

Stage length [m] 0.1 0.4 2.8

Table 5.4: Example parameters for LWFA FEL linacs operating in the linear regime. Parameters

are based on the example parameters and scalings in [21] (Cf. tables 4.1 and 4.2,

page 53). The bunch length σz = 1µm is independent of the plasma density for

this density range. For the calculation of the required average laser power Pavg, the

repetition rates have been chosen to match those of the corresponding facility of the

same beam energy (cf. table 5.1). The necessary laser parameters are not far beyond

the current state of the art, and could become available within the next decade (cf.

chapter 3.1.2). However, the necessary stability has still to be demonstrated. Note

that the used scalings and parameters assume a transverse and longitudinal plasma

density shaping to minimize the evolution of the laser pulse as well as a triangular

charge density distribution of the electron bunch to minimize its energy spread due to

beam loading (cf. chapter 2.9.1)! Also, note that with operation in the linear regime,

one still needs a conventional or laser based electron injector, capable of supplying

electron bunches with sufficiently high charge and sufficiently low emittance. Demon-

stration of a 10 GeV stage operating in the linear regime is a stated goal of the recently

commissioned BELLA facility [121, 160].
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5.1.3 Discussion

Up until now, LWFA have not yet reached the beam energy and bunch charge requirements

of current day FEL. However, with more powerful laser systems like the recently completed

BELLA facility [121, 160] and the funded ELI project [117, 190], this is likely to change in

the near future. On the other hand, reaching the required beam quality and reproducibility

still requires serious research and development [11]. To allow for an earlier application,

a lower energy LWFA as injector for a storage ring based Synchrotron light source is

discussed in chapter 5.2.
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5.2 LWFA as Injector for ANKA

As discussed in section 5.1, LWFA are not yet ready to drive Free Electron Laser. To allow

for an earlier technical application, I have studied to possibility to use LWFA as injectors

for rings-based light sources. As illustrated in figure 5.1, this would allow to drastically

increase the frequency of radiation production - from the repetition frequency of the laser

system to the revolution frequency of the ring.

Figure 5.1: Laser pulse energy over repetition rate for several of the laser systems introduces in

chapter 3.1.2. Storing the LWFA-generated electron bunches in a ring would allow

to produce radiation with the revolution frequency of the ring, 2.3 MHz for ANKA.

For the following study, a laser comparable to the 2.5 J, 10 Hz LOA laser is assumed.

For this case, storing the electron beam in a ring would increase the frequency of

radiation production by 6 orders of magnitude.

In addition to their high beam energies and small facility footprint, Laser Wakefield Ac-

celerators (LWFA) have two more properties that would make them very interesting as

injectors for synchrotron light sources:

• The length of the generated synchrotron radiation pulse is directly proportional

to the length of the emitting electron bunch. LWFA beams would therefore allow

the reduction of the length of the radiation pulses by several orders of magnitude,

allowing studies of processes on a much faster time scale.

• Many important questions from solid state physics to biological applications de-

mand an analysis within a wide spectral range from THz to infrared. Despite the

importance of this spectral range, there is a lack of sources that can cover it with

high intensity. A conceptually simple idea is to compress the length of an electron

bunch to below the wavelength of the desired radiation. For these wavelengths,

this results in coherent amplification of the emitted synchrotron radiation in a mag-

netic field [191]. Unfortunately, pushing the radiation spectrum of this Coherent

Synchrotron Radiation (CSR) far into the THz region requires bunch lengths in the

order of a few fs, much shorter than what is achievable with current day Synchrotrons

and conventional injectors.
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Furthermore, electron storage rings have the added benefit that due to radiative damping,

the bunches converge towards the equilibrium energy spread. For the ANKA Synchrotron

light source [191], the typical time scale for this process is a few tens of ms, depending on

the beam energy and the optics used. As the initial energy spread becomes irrelevant for

the stored electrons, this could serve as a first technical application of LWFA.

Using ANKA as an example, I have studied the possibility of injecting and storing LWFA

generated bunches in an electron storage ring. The work is based on 3D particle in cell

simulations by Oliver Jansen, using VLPL [192]. The input parameters are given in Ta-

ble 5.5. They are comparable to the parameters of current day laser systems discussed in

chapter 3.1.2. The resulting longitudinal electron energy distribution is shown in Fig. 5.2.

Plasma density n0 in cm−3 9× 1018

Laser wavelength λL in nm 800

RMS Laser pulse duration τL in fs 13

RMS Laser radius at focus rL in nm 720

Laser pulse energy EL in J 4.6

Table 5.5: VLPL [192] input parameters

The ANKA lattice used for this study has an energy acceptance ∆E/E0 ≈ ±1 %, indicated

by the solid area. Discarding all particles outside this energy window, the resulting beam

parameters are given in Table 5.6, calculated via equations 7.2 to 7.8 (see appendix C.1).

The resulting bunch charge for different energy windows is given in Table 5.7. Note that

despite the small emittance, the very small beam size leads to very large divergence angles.

To ensure that these large angles are not due to some conversion error, they have also been

confirmed using hdfview [193] - a program dedicated to the treatment of hdf files.

Figure 5.2: Longitudinal energy distribution of LWFA generated electrons. The energy accep-

tance of the ANKA lattice used is indicated by the solid area. Also published

in [194, 195].
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Central energy p0 in MeV 662

Applied energy cut in MeV 655 - 669

RMS energy spread δ in % 0.5

Bunch charge q in pC 160

Number of particles N 1.0× 109

Geometric emittance εgeo in m× rad 1.8 · 10−8

Normalized emittance εnorm in m× rad 2.3 · 10−5

RMS Bunch length σz in µm 1.1

RMS Bunch length σz in fs 3.7

RMS Bunch radius σr in µm 1.6

RMS Divergence in rad 0.01

Twiss αx = αy 0.0

Twiss βx = βy in m 1.4× 10−4

Table 5.6: LWFA e−-beam parameters after discarding all particles with longitudinal momentum

outside the range 662 MeV ± 1 %. For up to a few percent, a larger allowed deviation

in energy leads to a larger bunch charge, whilst the influence on the other beam pa-

rameters is negligible. However, particles outside the energy acceptance of the ANKA

storage ring will get lost within only a few turns. The resulting bunch charge for

different energy windows is given in Table 5.7.

Max. energy deviation 100 % 10 % 5 % 3 % 0.25 %

Bunch charge q in pC 24000 370 270 240 61

Number of particles N 1.5 · 1011 2.3 · 109 1.7 · 109 1.5 · 109 3.8 · 108

Table 5.7: The resulting bunch charge for different energy windows, cf. fig. 5.2. Note that for an

allowed energy deviation of over 1 %, most particles get lost within only a few turns,

cf. fig. 5.4.



5.2. LWFA as Injector for ANKA 81

5.2.1 Transfer Line to ANKA

The initially round beam beam described in Table 5.6 has to be matched to the flat beam

parameters accepted by the ANKA storage ring, listed in Table 5.8. Using MAD-X [196],

a solution has been found using pulsed quadrupoles [197]. These quadrupoles offer a field

strength of about 1400 T/m, significantly higher than conventional quadrupoles. However,

due to their pulsed nature, the injection would be limited to 1 pulse every few seconds.

The exemplary transfer line is shown in Fig. 5.3. It has not been studied in detail yet, as

the main focus of this work is the behaviour of these short bunches in a storage ring. The

challenges associated with the coupling of LWFA beams with conventional accelerators

have been studied in more detail e.g. by [189, 198]. For now we will assume that a

suitable transfer solution can be found. Note that in our exemplary transfer line, the

chromaticity has not been corrected. This means that particles with different energies get

focused differently and therefore travel on different trajectories This leads to a significant

lengthening of the initially ultra short bunch, observable in the first plot in figures 5.4

and 5.5. For ∆pmax/p0 = 0.01, the bunch length increases to σz ≈ 4.7 mm during the

passage through the transfer line, i.e. by 3 orders of magnitude! The effect is even stronger

for a higher initial energy spread.

Horizontal beta βx in m 16.6

Vertical beta βy in m 6.5

Horizontal alpha αx -0.03

Vertical alpha αy -0.07

Table 5.8: ANKA Twiss Parameters at injection point

5.2.2 Behaviour in Synchrotron - Longitudinal

Naively, one might assume that the lengthening of the initially short LWFA bunch happens

on a time scale given by the radiative damping time. For the ANKA lattice at 662 MeV

studied here, this would correspond to approximately 80 ms (approximately 200 000 turns).

If a LWFA would be used as a full energy injector (for this energy), this could have been

sufficient for dedicated user operation. Unfortunately, simulations using the Accelerator

Toolbox for Matlab [200] show that the initially short bunch lengthens much faster, to a

bunch length of a few cm within only a few turns. This can be understood by looking at

the momentum compaction factor

αc =
1

L
×
∮
D(s)

ρ(s)
ds, (5.1)

the integral over the dispersion D along the ring. Via the relation

αc
∆p

p0
=

∆L

L
(5.2)

it gives the path length difference ∆L per revolution for a particle of energy deviation

∆p [191]. ANKA has a circumference L = 110.4 m. Depending on the optic used, the

momentum compaction factor is in the order of 10−4 < αc < 10−2. Due to its larger
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Figure 5.3: Exemplary transfer line, matching the LWFA generated bunches to the ANKA storage

ring [199]. Note that the chromaticity has not been corrected, leading to a significant

lengthening of the ultra-short bunches. Also published in [194, 195].

momentum acceptance, I used the ANKA injection optics for my studies, resulting in a

larger αc. For the particles with the maximal investigated energy deviation ∆p/p0 = 0.01,

this results in a path length difference of 1 cm . ∆L . 100µm or 30 ps . ∆L/c0 . 300 fs

respectively - much more than the initial 1.1µm! The bunch quickly expands to the

maximal acceptance of the RF system, reaching it after about 25 turns. Then, it starts

to converge back towards the equilibrium bunch length of the lattice. The process is

illustrated in Fig. 5.4 and Fig. 5.5. The parameters of the ANKA lattice used are given

in Table 5.9. It is important to point out that for the short bunches studied here, this

lengthening is basically independent of the initial bunch length. This is due to the fact

that the energy dependent path length difference (about 1 cm per revolution) calculated

via equation 5.2 exceeds the initial bunch length of 1.1µm from the LWFA by three orders

of magnitude.

AT does not take the effects of space charge and radiative interaction within the beam

into account. Both of them should result in an even faster lengthening of the bunch.

For a non-Gaussian charge density distribution along the bunch, sharp features can also

lead to coherent emission of radiation. Figure 5.6 illustrated the evolution of the longitudi-

nal charge density corresponding to the phase space evolution displayed in fig. 5.4. Sharp

features are apparent. However, to be useful for practical application, the evolution of the

longitudinal charge density has to be reproducible. This would have to be investigated

further, including CSR effects.
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Figure 5.4: Top left to bottom right: Evolution of longitudinal phase space (normalized devia-

tion from reference energy over position along bunch) for a maximal initial energy

deviation ∆pmax/p0 = 0.01 and 104 simulated particles. The change in longitudinal

position is consistent with Synchrotron oscillations. Transverse losses to the beam

pipe have been neglected for this study. Also published in [194, 195].
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Figure 5.5: Top left to bottom right: Evolution of longitudinal phase space for a maximal initial

energy deviation ∆pmax/p0 = 0.03, exceeding the energy acceptance of the ANKA

lattice used. Note how the face space evolves much faster compared to Fig. 5.4. Also,

note that significant fraction of the initial 104 simulated particles gets lost by moving

out of the acceptance of the RF system. Transverse losses to the beam pipe have

been neglected for this study. Also partially published in [194, 195].
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Central energy p0 in MeV 662

Cavity voltage in kV 200

Cavity frequency in MHz 499

Circumference in m 110.4

Revolution time in ns 368

Momentum compaction factor 0.008

Natural RMS energy spread 2.4× 10−4

Natural geometric emittance in m×rad 6.8 · 10−9

Radiation energy damping time in ms 79

Linear energy acceptance in % 1.1

Synchrotron tune in kHz 22.7

Synchrotron tune in turns 119.5

Bunch length in mm 4.0

Bunch length in ps 13.4

Table 5.9: ANKA Lattice Parameters at 662 MeV

Figure 5.6: Left to right: Evolution of longitudinal charge density, for a maximal initial energy

deviation ∆pmax/p0 = 0.01, cf. fig. 5.4. The narrow features could lead to increased

CSR production. 104 particles were used for the simulation.

5.2.3 Behaviour in Synchrotron - Transversal

In the previous section, the focus was on the lengthening of LWFA bunches in a syn-

chrotron. The transverse behaviour of the bunches has therefore been ignored. In practice,

the transverse expansion of the beam would result in significant losses to the beam pipe,

as illustrated in figures 5.7 and 5.8. In particular for the vertical plane, the bunch reaches

the dimensions of the beam pipe after only a few turns (cf. second plot in fig. 5.8). It is

also worth pointing out the before mentioned phase space plots always give the beam size

at the injection point - the beam size can be much larger at other position along the ring.
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Figure 5.7: Top left to bottom right: Evolution of horizontal phase space for a maximal initial en-

ergy deviation ∆pmax/p0 = 0.01. Losses to the beam pipe have not been considered.

The ANKA beam pipe is 73 mm wide.

Figure 5.8: Top left to bottom right: Evolution of vertical phase space for a maximal initial energy

deviation ∆pmax/p0 = 0.01. Losses to the beam pipe have not been considered. The

ANKA beam pipe is 32 mm high.
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5.2.4 Discussion

The work presented here investigated fundamental principles, it has not been optimized

to the fullest extend possible. In particular:

i) LWFA simulations have been performed to the point of depletion of the driving laser

pulse. Effects at the plasma exit have not been considered. The decrease of plasma

density at the boundary should result in an increase of beam size and a decrease in beam

divergence. This would mitigate the constraints on the transfer line.

ii) For our exemplary study, ANKA has not been optimized for maximal energy acceptance.

It seems reasonable to increase the maximal energy acceptance to a few percent. In our

case, this would allow to store about 50 % more charge from the initial LWFA bunch.

In contrast, preserving the ultra-short bunch length seems challenging. With a dedicated

low-αc optic, the momentum compaction factor αc can be reduced by two orders of mag-

nitude compared to the one of the lattice used in our studies. Applying a stricter energy

cut of e.g. ∆pmax/p0 = 10−3 could reduce the path length difference per revolution by

another order of magnitude (at the cost of a factor of ∼5 in charge). Neglecting all effects

in the transfer line, a back of the envelope calculation using Eq. 5.2 yields that the bunch

should lengthen to the ps bunch length, customary for state of the art light sources with

dedicated low-α optic, within a few 100 turns.

For an operational facility, the transfer line would have to be studied in more detail,

in particular the tolerance for fluctuations of energy and pointing. If ultra-short bunches

were to be injected into the ANKA Synchrotron, the chromaticity of the transfer line would

have to be corrected. Depending on the desired repetition rate, radiation protection might

become a serious issue.

The evolution of the transverse phase space was not the main focus of this work, and

losses to the beam pipe have therefore not yet been considered. In this regard, it is worth

pointing out that:

a) This work is based upon LWFA simulations for the simplest possible setup: a laser

pulse generating a plasma bubble in a uniform plasma, accelerating self injected electrons.

Methods to control the injection process and to reduce the beam emittance are of great

interest, and are very actively researched by many groups, cf. e.g. [94, 183–187].

b) If a synchrotron with the aim of producing CSR from ultra short LWFA bunches were

to be build, the wavelength of the generated radiation might make the use of larger beam

pipes necessary to avoid cut-offs. This in turn would again help to avoid transverse losses.
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6. Studies for the AWAKE Experiment at

CERN

This chapter describes my work performed for the AWAKE experiment at CERN, aiming

to demonstrate proton-driven electron acceleration starting in 2015. As an early member

of the collaboration, I have been involved in the experimental planing leading to the

submission of the Letter of Intent (LoI) [18], in particular in the coordination between the

different CERN groups and the choice of the experimental area.

Section 6.1 gives a short introduction to the CERN accelerator complex and the planning

of the experiment in the initial stages until the submission of the LoI. In section 6.2, I

evaluate the results of existing beam-plasma simulations with respect to accelerator physics

requirements. My studies for a possible proton/electron energy spectrometer are described

in section 6.3.

For the AWAKE Design Report [19], several aspects have changed in comparison to the

initial planning. A short summary of these changes is given in section 6.5.

An introduction to the physics of plasma based acceleration is given in chapter 2. The

peculiarities of long proton drive bunches are discussed in section 2.7.

Several collider proposals based on proton-driven acceleration found in the literature are

discussed in chapter 4.4. My studies of a Higgs-facility based on proton-driven acceleration

are described in chapter 4.7.2, page 62.

6.1 Experiment Description

6.1.1 CERN Accelerators, Choice of Experimental Area

Several proton accelerators are present at CERN. The accelerator chain is shown in fig-

ure 6.1. The acceleration starts at the LINear ACelerator LINAC2, increasing the beam en-

ergy through the PS-Booster (up to 1.4 GeV), the PS (Proton Synchrotron, up to 25 GeV)

and the SPS (Super Proton Synchrotron, up to 450 GeV) before injecting into the LHC

(Large Hadron Collider, up to 14 TeV nominal). At the start of the planning of the ex-
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Figure 6.1: The CERN accelerator chain [201]. The AWAKE experiment will be situated either

near the TT60 tunnel area south west of the SPS; or in the area currently used for

CNGS (CERN Neutrinos to Gran Sasso). It will receive protons from the SPS.

periment, free experimental areas where available at both the PS and the SPS. The SPS

beam was chosen for two reasons:

1. Due to the lower geometric emittance of the SPS beam, the transverse electric fields

within the plasma are strong enough to focus the beam. This is not the case for the

PS beam [70].

2. The larger experimental areas at the SPS are better suited to host all the equipment

needed for the experiment.

Initially, it was planned to have the experiment in the TT61 tunnel (close to TT60, cf.

figure 6.1). But due to the strong slope of about 7 % and the small width of only 4 m it

was decided that the experiment had to move to one of the surface areas, which would

also make access much easier. The schematic layout of the experimental planning at the

time of the LoI is illustrated in figure 6.2. Due to radiation protection considerations and

a possibly earlier availability, the CNGS area became the preferred option for the ADR.

The integration of the technical components into the CNGS target area is illustrated

in figure 6.3. The general layout and the following discussion are independent of the

experimental area chosen.
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Figure 6.2: Schematic layout of the experimental areas, as conceived for the Letter of Intent [18].

6.1.2 Proton Beam Parameters

For the driving proton bunch, two parameter sets were used, cf. table 6.1. The parameter

set labelled SPS-LHC describes the parameters of the SPS beam, as it was used for LHC

injection at the time of the LoI. If not mentioned otherwise, this parameter set was used.

The parameter set labelled SPS-Opt, short for SPS-Optimized, is a parameter set which

would be beneficial for our experiment. At the time of the LoI, it was only used in single

bunch operation for machine studies in the SPS. Due to improvements on the injector

chain, it is now routinely used for LHC operation and will be standard by the starting

time of the AWAKE experiment. The two parameter sets only differ in the bunch charge

and the bunch length. (The longer bunch length in the SPS-Opt case is only due to a

safety margin, as the required new SPS optics were not thoroughly tested at the time of

the simulations.)

For our experiment, a small beam size at the plasma entrance (small β∗) is beneficial,

since the strength of the generated wakefield depends linearly on the drive beam density,

which increases quadratically when reducing the beam radius (cf. eq. 2.41, page 20). We

have therefore assumed a round beam size at focus of σx = σy = 200µm, as achieved at

HiRadMat, the High Radiation on Materials test facility recently completed [202].

As explained in chapter 2.7.2, a long, self-modulated proton bunch will be used to drive

the wake fields for our experiment. For this self modulation to occur in a stable and

reproducible manner, it is necessary to seed the self-modulation instability. For the beam-

plasma simulations, this is achieved by using a so-called hard cut beam. This means that

the first half of the beam is supposed to be cut off, resulting in a steep increase in charge

density, cf. figure 6.5, page 96. In the experiment, this could be realized e.g. via an

alkali metal vapour cell and a co-propagating laser. The laser pulse would ionize the metal

vapour of the plasma cell in the middle of the proton bunch. Thus, the plasma would see
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Figure 6.3: Integration of the AWAKE experiment into the CNGS tunnel [19].

the only the second half of the bunch, starting with maximum charge density. The space

charge force of the proton beam is not high enough to field ionize the metal vapour itself.

Proton Beam Delivery

For the beam delivery system a final focus similar to the one used at the HiRadMat facility

is planned. Figure 6.4 shows the beamline design used there.

6.1.3 Electron Beam Parameters

For the witness electron bunch, a short and a long test case have been defined, cf. table 6.2.

The parameters of the short bunch are parameters for the former LEP electron gun. It

has been argued that with a very diluted bunch, a much smaller beam size should be

reachable. Therefore, the long bunch case has been defined.

6.1.4 The Plasma Cell

Many current day LWFA experiments use gas jets as plasma source, the gas being ionized

by the driving laser. For the PWFA experiments carried out at SLAC, a metal vapour

source was used. For these experiments, the electron bunch served both to ionize the

vapour via its Coulomb field and to drive the plasma wake. Neither is possible for the

AWAKE experiment, as the Coulomb field of the SPS proton bunch is not strong enough

for ionization.

For our experiment, three conceptually different cell types are being investigated in parallel

by different groups. The baseline cell is a laser-ionized Rubidium heat-pipe oven, as seeding
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Parameter SPS-LHC SPS-Opt

Reference energy EP in GeV 450 450

Number of protons NP (1010) 11.5 30.0

RMS energy spread σP in MeV 135 135

RMS bunch length σz in cm 12.0 12.4

RMS beam radius σr in µm 200 200

Corresponding β∗ in m 5 5

RMS divergence θ in mrad 0.04 0.04

Geometric emittance in nm · rad 7.3 7.3

Normalized emittance in µm · rad 3.5 3.5

Table 6.1: Proton beam parameter sets used for simulations. The beam energy used for the

experiment will be 400 GeV. This will allow to re-use the existing CNGS beamlines [19].

Parameter short long

Reference Energy EP in MeV 10 10

Number of Electrons Ne/106 1000 1

RMS bunch length σz in mm 5 100

RMS beam radius σr in mm 2 0.2

RMS divergence θ in mrad 1.7 0.1

Normalized emittance in µm · rad 70 not defined

Geometric emittance in µm · rad 3.4 not defined

Table 6.2: Electron beam parameters used for plasma wakefield simulations. For the ADR [19],

they have changed slightly.

is easiest with this option. However, as it requires an ionizing laser, its maximal length

is limited. In contrast, seeding is more difficult for the other cell types studied, but they

allow for easier scaling to arbitrary lengths. The different plasma cell technologies are

discussed in more detail in [18, 19].

Plasma Parameters

For the baseline plan of the experiment, the plasma cell properties given in table 6.3 have

been assumed. For the plasma density, one would like to maximize kpσz, so that the

plasma wave length is much shorter than the bunch length. That way, the modulation

would develop close to the centre of the bunch, where most of the protons reside. However,

we need the plasma skin depth to be at minimum the transverse size of the bunch for the

modulation to be effectively produced, i.e. kpσr ≤ 1 [203]. This limits the maximum

plasma density n0, as kp =
ωp
c = 1

c

√
n0e2

ε0me
. Furthermore, we want the proton beam to be

about 100 plasma wavelengths long, λp/σz ≈ 100. The inverse of this number gives an

estimate of the acceptable level of plasma density fluctuations, about 1 % [70].
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Figure 6.4: Beamline optics of the HiRadMat test facility with β functions calculated for a spot

size at the focus of 0.1 mm×0.1 mm, reproduced from [202]. On the x-axis is the

distance along the line in m, on the y-axis the horizontal and vertical β functions.

Above is a schematic view of the beam line, including the β-matching section. The

rectangles above (below) the solid line represent horizontally (vertically) focusing

quadrupoles, the rectangles centered around the solid line represent dipole magnets.

6.2 Interface from Plasma to Beam Simulations

Several beam-plasma simulations have been carried out for the AWAKE experiment, and

are still going on [18, 19]. Within this section, I have evaluated these existing simula-

tions with respect to accelerator physics requirements and measurable signals. Particular

emphasis is put on the consequences for the initially planed proton energy spectrometer

which will be discussed in section 6.3.

6.2.1 Proton Bunch Simulations, 10 m Plasma Cell

Default Bunch Charge - SPS-LHC Parameter Set

This section presents the results of beam-plasma simulations by K. Lotov, for the SPS-

LHC parameter set (cf. table 6.1) and the consequences thereof. LCODE was used for

these simulations, see [204, 205] and appendix C.1 for more information.

For the beam-plasma simulations a so called hard cut beam is used. This means that

the first half of the beam is supposed to be cut off, resulting in a steep increase in charge

density. (For more information, see chapters 2.7.2 and 6.1.2.) Figure 6.5 shows the current

distribution along the bunch, as well as the resulting energy modulation after a 10 m plasma

cell. Several results can be drawn from this figure:
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1. The longitudinal charge distribution does not change noticeably due to the interac-

tion with the plasma.

2. The energy modulation is strongest at the tail of the bunch, where the current is

relatively low.

3. The period of the energy modulation is given by the plasma wavelength.

4. The energy modulation is very small compared to the initial energy of approximately

450 GeV.

Figure 6.6 shows a histogram of the longitudinal momentum before and after the 10 m

plasma cell. The RMS energy spread increases from 135 MeV to 149 MeV, at an average

energy of 450 GeV. To have a good signal to noise ratio, one would like the number of

particles above/below a certain cut-off energy to triple. If one looks at the particles gaining

energy, this results in a cut-off energy of 450.15 GeV and the number of particles above

this energy changing from 2.9·107 to 8.8·107 protons, once the plasma is turned on. For

the particles loosing energy the cutoff energy is 449.35 GeV, and the number of particles

below this energy changes from 8.6·108 to 27.3·108 protons, once the plasma is turned on.

The total number of protons is 1.15 · 1011/2 protons in the hard cut beam. This means

that: i) it is easier to measure the energy loss, rather than the energy gain, ii) one has to

measure a relatively low percentage of particles.

In addition to the longitudinal momentum, the plasma also influences the transverse prop-

erties of the beam. Figure 6.7 shows the change of the transverse beam size and the

transverse momentum distribution before and after a 10 m plasma cell. They are also

modulated with the plasma wave length and increase dramatically. This can not be sup-

pressed, since it is exactly this modulation of the transverse charge density that creates

the electric fields which cause the longitudinal energy modulation. Figure 6.8 shows his-

tograms of the transverse beam size and the transverse momentum distribution before and

after a 10 m plasma cell. As a result of the transverse modulation, the geometric (nor-

malized) transverse emittance increases from εx = 8.0 nm (εN,x = 3.8µm) to εx = 41.0 nm

(εN,x = 19.7µm). This is problematic, as the emittance is a conserved quantity in accel-

erator physics (assuming there are only conservative forces acting on the beam).

Type of cell Heat-pipe oven,

laser-ionized

Type of plasma Lithium vapour

Plasma Electron density ne 7 · 1014 cm−3

Plasma density fluctuations ≤ 1 %

laser beam power 2.2 · 1010 Wcm−2s−1

laser beam energy 3.4 J in 5 ns

Plasma length 5-10 m

Table 6.3: Plasma cell parameters assumed for the simulations this work is based upon. For the

ADR, values have changed slightly. In particular, Rubidium has been chosen over

Lithium [19].
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Figure 6.5: Current and energy distribution along a proton bunch after 10 m of propagation in a

plasma cell. The x-axis gives the position along the bunch, with propagation direction

towards higher s values. The red curve shows the average energy per bin in GeV,

the green curve the hard cut current distribution along the bunch. The longitudinal

current distribution does not change due to the interaction with the plasma. The

energy modulation is strongest at the very tail of the bunch. Published in [206].

Figure 6.6: Histogram of the longitudinal momentum before and after a 10 m plasma cell. The

blue solid line shows the initial energy distribution, the green dots show the energy

distribution after the plasma. One macro particle corresponds to roughly 105 protons,

therefore there are no entries below that value. The dashed red lines indicate the cut-

off energy below/over which the number of particles triples once the plasma is turned

on. The total number of protons is 1.15 · 1011/2 protons in the hard cut beam (SPS-

LHC parameter set, see table 6.1).
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Figure 6.7: RMS beam size (top) and RMS transverse momentum (bottom) along the beam. For

both beam radius and momentum, the modulation length is given by the plasma

wavelength. The 10 m drift case is generated by propagating the initial particle

distribution ballistically. The momentum distribution remains constant in a drift

and is therefore only compared to the initial case. Partly published in [206].
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Figure 6.8: Transverse particle density distribution and the transverse momentum distribution

before and after the plasma cell. They both increase significantly due to the plasma.

The momentum distribution remains constant in a drift and is therefore only com-

pared to the initial case. The change in shape of the histogram can be understood,

as half of the beam gets focused by plasma wakefield whereas the other half sits in

the defocusing phase. One simulation particle corresponds to roughly 105 protons,

therefore there are no entries below that value.
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As a consequence, the beam has to be focussed stronger to keep the initial beam size, or

the aperture after the plasma cell has to be increased to transport the blown up beam.

With respect to the planed experiment this is even more problematic, as the effect of the

increased emittance has to be distinguished from the energy dependent dispersive effect

one would like to see in a spectrometer.

From this result, one can already see the necessity of a focusing system, if a proton energy

spectrometer were to be build. For a proton with a relativistic factor γ0, the radius of

curvature in a magnetic field B is ρ =
γ0mpβc
Bq . Along a dipole magnet of length l with a

uniform magnetic field, the deflection angle is θ ' sin(θ) = l
ρ = lBq

γ0mpβc
. For a bunch with

a spread in energy, there is a difference in deflection angle between protons with energies

γ0 and γ0 + δγ of δθ ∼= θ δγγ0 . For protons with an energy of 450 GeV (γ0 ≈ 480, β ∼= 1),

a magnet of length l = 10 m and uniform field of 1.5 T, this results in ρ ≈ 1002 m and

θ ≈ 0.010 rad. Assuming an energy change of 1 GeV (≈ ±0.22 %), the opening angle of

the beam exiting the magnet is δθ ∼= ±2.2 × 10−5 rad. We assume that the beam exiting

the plasma has the same transverse size as at the plasma entrance, i.e. σr = 200µm.

Then the beam has to have a divergence angle much smaller than the one given by the

magnet energy dependent bending, i.e. have a geometric emittance smaller than ε =

σrδθ ∼= 4.4 × 10−9m× rad. The corresponding condition for the normalized emittance is

εN = γε � 2.1 × 10−6m× rad [207]. This is after the plasma has focused and defocused

the protons. This means that even for an assumed energy gain much higher than the

one observed for 10 m of plasma, one would need an emittance much lower than the one

observed.

Alternatively, one can also get this result via the transverse momentum. For 10 m of

plasma, the maximum transverse momentum observed in the simulations is approximately

230 MeV, corresponding to an angle x′ = px/pz of about 500µrad. The highest energy

gain in the simulations was about 160 MeV, corresponding to a change in γ of about

0.17. If one requires that the angle between particles with average and particles with

maximal momentum is greater than the maximal angle due to transverse momentum (i.e.

δθ � x′), this leads to Bl � x′mpc
(1/γmax−1/γavg)·q ≈ 2100 Tm. Given a maximal field strength

of normal conducting magnets B . 2 T, this is completely unrealistic for a demonstration

experiment.

It is nonetheless worth noting that the particles that gain most energy are in the centre

of the bunch, while the defocused particles at high radii do not gain/loose much energy.

This can be seen from figure 6.9, which shows the longitudinal energy plotted over the

longitudinal and transverse position.

High Bunch Charge - SPS-Opt Parameter Set

For the SPS-Opt parameter set (cf. table 6.1), beam-plasma simulations have been per-

formed by Alexander Pukhov using VLPL, cf. [192] and appendix C.2 for more information.

The longitudinal energy modulation is larger than for the SPS-LHC parameter set, as il-

lustrated in figure 6.10. However, it was decided that the energy modulation is still not

strong enough to make for a convincing experiment by itself. It has therefore been decided

to aim for electron acceleration already in the early phases of the experiment. Simulation

results regarding electrons will be discussed in section 6.2.3.
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Figure 6.9: Longitudinal momentum in GeV over radius and position along bunch. Zoom on the

tail of bunch after about 9.7 m of propagation in plasma. One can clearly see the

longitudinal modulation along z with the plasma period. One can also see that the

particles with the highest energy are in the centre of the bunch (r ' 0).

Figure 6.10: Histogram of the longitudinal momentum after a 10 m plasma cell for the SPS-

Opt parameter set, cf. table 6.1. The energy modulation is stronger than for the

SPS-LHC case, cf. figure 6.6.
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6.2.2 Proton Bunch Simulations, Different Cell Lengths

Several lengths for the plasma cell have been studied. Figure 6.11 compares the longi-

tudinal momentum distribution after 10 m and 30 m of plasma. Whilst an increase in

maximum energy is apparent, the emittance increases as well, which in the end does not

make it easier to observe an energy gain. Also, with today’s technology, it is not clear

how to generate a 30 m long cell with the required plasma homogeneity. Therefore, it has

been agreed to not consider plasmas of more then 10 m length for the first phases of the

experiment [19].

On the other hand, as explained in chapter 2.7.3, the self-modulation instability needs

about 5 m to develop (for the parameters chosen for the experiment). Due to the reduced

phase velocity of the wake during the self-modulation process, injecting electrons from

the beginning would result in rapid dephasing and a loss of said electrons. In the current

planning of the experiment, it is foreseen to inject electrons after the proton beam has

already travelled approximately 5 m in plasma [19]. Plasma cells significantly shorter than

10 m have therefore not been considered.

Figure 6.11: Shown are the simulated longitudinal momentum distributions before the plasma

cell as well as after 10 m and 30 m of plasma. The x-axis gives the momentum

pz in GeV, the y-axis the number of particles per energy bin. The energy spread

increased from 135 MeV at the plasma entrance to 149 MeV after 10 m and 175 MeV

after 30 m of plasma.

6.2.3 Electron Bunch Simulations

Beam-plasma simulations including injected electrons have been performed by Alexander

Pukhov using VLPL (cf. [192] and appendix C.2 for more information).

Figure 6.12 shows the resulting energy distribution of an 10 MeV electron beam which has

been injected along with the driving proton bunch into a 7 m plasma cell. Electron energies

of over 100 MeV are reached, but the energy spectrum is very broad. This is due to the

fact that for this simulation, the injected electron bunch was much longer than one plasma

wavelength. As a result, the bunch sampled all phases of the field distribution generated
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by the proton bunch. Furthermore, for a low energy electron bunch the changes in energy

are strong enough to lead to velocity differences and therefore a phase slippage along the

propagation distance. As for the protons, the transverse momentum and size increase

as well (the electrons do not only sample the accelerating and decelerating longitudinal

fields but also the focusing ans defocusing transverse fields). For the later phases of the

project, a laser-plasma based electron source could provide ultra-short pulses, leading to

quasi mono-energetic bunches.

As explained in chapter 2.7.3 (page 22), the self-modulation of the proton bunch takes a few

meters to develop. During this modulation process, the phase velocity of the plasma wake

is significantly reduced. For a highly relativistic electron witness bunch, this can lead to

rapid dephasing. Therefore, injecting the electron bunch in parallel with the proton bunch

is not optimal. This problem can be solved by injecting electrons under a small angle, a

few meters upstream of the beginning of the plasma cell.

The exact angle and position for the injection are still subject to optimization [19, 72].

The expected electron spectra are therefore still bound to change, depending on the final

findings. Depending on the proton bunch density and the acceleration length, an energy

gain between a few hundred MeV and a few GeV is expected for the experiment [19].

Detection of high energy electrons will be a clear experimental signal.

Figure 6.12: Energy spectrum of an electron bunch (particles per energy interval over particle

energy) which copropagated with the driving proton bunch for 7 m, NP = 1.15 ·
1011, n0 = 1 ·1014 cm−3. The initial electron energy was 10 MeV. (5.6 ·106 particles

were used in the simulation, corresponding to 2.5 · 105 electrons. The non-integer

numerical weights result in bins with only a fraction of a particle.) Published in [206].
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6.3 Detection of Energy Gain

This section deals with the general workings of an energy spectrometer, its implementation

in the code and the results thereof.

6.3.1 General Principle

Charged particles are bend in a magnetic or electric field due to the Lorentz force FL [27],

~FL = q[ ~E + (~v × ~B)] = q[ ~E + (~βc0 × ~B)], (6.1)

where ~E and ~B are the electric and magnetic fields, q is the charge of the particle and

~v = ~βc0 it’s velocity. The general idea of an energy spectrometer is to use the energy

(velocity) dependence of this force in a magnetic field to sort particles by their energy.

Combining with the centripetal force Fc [27]

Fc =
mv2

ρ
, (6.2)

one gets an energy dependent bending radius ρ:

ρ =
γm0βc

Bq
. (6.3)

For a dipole magnet of length l this gives an bending angle of

sin(θ) =
l

ρ
. (6.4)

Due to this energy dependent deflection angle particles with different energies end up at

different positions on a screen downstream of the bending magnet. The working principle

is illustrated in figure 6.13.

Figure 6.13: General principle of an energy spectrometer. Particles with lower energies get de-

flected stronger in the dipole magnet. This way, their position on a screen gives

information about their energy.

6.3.2 Implementation

To simulate possible spectrometer images, the dipole magnet was treated as a so-called

point-kick. This means letting its length go to zero while keeping the product B ·l constant.

For each particle the position xfin on a spectrometer screen is then given by

xfin,i =

(
px,i
pz,i

+ θi

)
· s+ xin,i, θi ≈

lBe

γimc
. (6.5)
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Here, px/pz is the angle the particles have with the initial reference trajectory due to

their transverse momentum, θ is the energy dependent kick of the magnet, s is the length

of the drift space between the magnet and the spectrometer screen and xin is the initial

transverse position. The approximation β = 1 is made in the calculation of the angle.

(Note that for B = 0, equation 6.5 simplifies to the formula for ballistic propagation.)

In this treatment, x = 0 is the initial reference trajectory. The spectrometer screen is

assumed to be orthogonal to the initial beam trajectory. The spectrometer images created

this way were compared to the ideal case were xi = 0 and px = 0, i.e.

xfin = θ · s. (6.6)

They were also compared to the case achievable with a focusing system, which eliminates

the dependence on the transverse momentum px, i.e.

xfin = θ · s+ xin. (6.7)

The angle θ is again calculated as in equation 6.5.

In principle, a telescopic system could be used to reduce the dependence on the initial

beam size by a demagnification factor m to xfin = θ · s + xin/m [29]. However, as the

initial beam size is already very small and the SPS proton beam has a very high energy,

this option was discarded.

6.3.3 Proton Spectrometer without Focussing

The spectrometer images calculated in this section are based on beam-plasma simulations

by Konstantin Lotov, cf. section 6.2.1.

For the simulations shown an integrated field strength
∫
Bdl = 22.5 Tm has been assumed,

as well as a drift between the dipole and the screen of 100 m. (To achieve an integrated field

of 22.5 Tm one would need two dipoles of 7.5 m length and 1.5 T field strength, or three of

the 6.6 m dipoles currently used in the SPS. Going to a higher integrated field strength did

not seam reasonable.) Figure 6.14 shows the comparison of an ideal spectrometer image as

calculated via equation 6.6 and a more realistic image as calculated via equation 6.5. Both

times the particle distribution after 10 m of plasma is compared to a particle distribution

which has been obtained from the initial beam data (at the entrance of the plasma) by

propagating the particles ballistically for the length off the plasma cell.

Note that for the ideal case the centre of the distribution shifts to the right, i.e. towards

lower energies. This is due to the fact that the average energy of the proton beam decreases

by approximately 27 MeV during the interaction with the 10 m of plasma.

6.3.4 Proton Spectrometer with Focusing

As shown in sections 6.2.1 and 6.3.3, the energy modulation of the proton beam can not be

measured without a focusing system. Figure 6.15 shows how a spectrometer image could

look like if focusing was used.

To image the change in the particle distribution to the screen, the beam transport system

has to fulfil certain requirements:
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Figure 6.14: Both: The x-axis is the position on a screen in the beam path, x=0 is the initial

beam trajectory before the spectrometer dipole. The y-axis gives the number of

particles at this position. The number of bins is identical in both plots, which re-

sults in different bin widths.

Left: Ideal case, for which the position on the screen depends only on the longitu-

dinal momentum.

Right: Spectrometer image as it would result from a spectrometer without focusing,

as calculated via equation 6.5.

The effect of the longitudinal momentum modulation is completely overshadowed

by the increase of transverse momentum and position.

1. The phase advance µ between the entrance of the plasma cell and the screen must

be an integer multiple of π in both planes. Otherwise the focusing system changes

the properties of the beam with respect to the initial distribution. As a result,

the β-functions at the plasma entrance and at the spectrometer screen have to be

identical [29].

2. The dispersion D in the spectrometer plane should be as big as possible to see a

strong effect of the energy dependence.

3. The dispersion in the other plane should be as small as possible, preferably zero.

Figure 6.15: A spectrometer image as it could be obtained with focusing. It is still difficult to

distinguish the effect of the energy modulation from the influence of the transverse

particle position, cf. figure 6.14.
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Furthermore,

4. the distance from the first image point to the beginning of the first quadrupole must

be at least 15 m to offer enough space for the plasma cell, vacuum equipment and

diagnostics.

5. the system should be short and simple to save costs.

To fulfil these requirements, a focusing system of two quadrupole triplets with dipoles in

between has been chosen. This layout is symmetric around it’s centre and reaches the

same minimum β values in x and y, given symmetric input values. Among the simple

schemes it is the one that achieves the smallest maximal beam size [29, 208, 209]. For the

design of the conceptual layout the program MAD-X [196] has been used. The result is

shown in figure 6.16. The focusing system has a length of 100 m, with quadrupole lengths

of 4.1 m/7.5 m for the inner/outer quadrupoles of the triplets respectively. This length can

hardly be reduced, since it is mainly given by the focusing strength of the quadrupoles.

For the estimation of the magnet strength, a beam pipe diameter of 100 mm has been

assumed. This corresponds to 3σ of the beam radius after the plasma.

Figure 6.16: The conceptual design of the proton energy spectrometer.

On the x-axis is the distance from the beginning of the β-matching section

in m, on the y-axis the horizontal and vertical β functions.

Above is a schematic view of the beam line. The rectangles above (below) the solid

line represent horizontally (vertically) focusing quadrupoles, the rectangles centred

around the solid line represent dipole magnets. The two dotted lines indicate the

position of the two image points. The quadrupoles upstream of the first image point

form the final focus system, illustrated in full in figure 6.4.
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For this pipe diameter a magnet strength of 30 T/m, corresponding to a peak field of 1.5 T,

can be achieved. This still leaves a good margin with respect to iron saturation, so a priori

there is no issue for non-superconducting quadrupoles. (Iron quadrupoles can reach up to

2 T field at the pole face [210].) Ideally, one would like to operate with a larger beam pipe

diameter, corresponding to several σ. However, as the availability of significantly stronger

magnets seemed questionable, this diameter has been chosen as a starting point.

The effect of the so-called β-beating has been studied to ensure that the condition

Dxσδ
√
εβ
√

1 + ∆β(δ)
β

� 1 (6.8)

is fulfilled, meaning that change in beam size due to dispersion Dx and energy spread σδ

is much bigger than the change in beam size due to a β-mismatch resulting from an

momentum deviating from the reference energy. For that, the quadrupole strength kin of

the spectrometer magnets obtained by previous matching has been substituted for knew =
kin

1+δaux
and the energy parameter δaux has been varied. Studies showed that for the energy

deviations expected from results of the plasma simulations, the changes in β are only a few

percent. In initial discussions, this effect was not considered to be severe [210]. However,

based on the findings described in this chapter, the proton spectrometer was cancelled

from the experiment planning for the submission of the LoI. The effect has therefore not

been studied in depth.

6.3.5 Proton Spectrometer - Further Comments

1. In general, the resolution of an energy spectrometer can be improved by increasing

the length of the drift space s, cf. eq. 6.5. However, this requires that the en-

ergy dependent change in trajectory is large in comparison to the beam divergence.

As discussed in chapter 6.2.1, this condition is difficult to fulfil for the parameters

estimated for the AWAKE experiment.

2. In all the spectrometer images above, only the second half of the proton beam has

been used, as explained in section 6.1.2. For a real spectrometer, the first half of

the beam would also contribute to the final image. Whilst the emittance of the part

of the beam propagating through neutral gas should not deteriorate as badly as the

emittance of the beam propagating through plasma, it still produces a background

signal.

6.3.6 Electron Spectrometer

Initial studies for an electron energy spectrometer have been performed. Figure 6.17 shows

an estimated spectrometer image corresponding to the data described in section 6.2.3. As

for the proton bunch, the plasma also modulates the transverse phase space of the electron

bunch. However, since the relative energy gain is much stronger, a clear experimental signal

is expected.

To also allow low energy electrons to pass the spectrometer dipole, a weak magnetic field

has been assumed for the initial studies performed during the course of this work. For the



108 6. Studies for the AWAKE Experiment at CERN

AWAKE design report, it has been decided to use a much stronger spectrometer dipole

magnet. This means that low energy electrons will be lost to the magnet walls due to the

strong deflection, but will allow for a much better energy resolution for the high energy

particles.

Figure 6.17: A possible electron spectrometer image as generated via equation 6.5 (page 103), for

electrons that co-propagated with the driving proton bunch for 7 m, NP = 1.15·1011,

and n0 = 1·1014 cmfl3. An integrated field strength of 0.04 Tm is assumed. The peak

at ≈ 37◦ corresponds to the initial electron energy of 10 MeV. Published in [206].

(5.6 · 106 particles were used in the simulation, corresponding to 2.5 · 105 electrons.

The non-integer numerical weights result in bins with only a fraction of a particle.)

6.4 Summary

For the planned AWAKE experiment, I have evaluated existing beam-plasma simulations

with respect to accelerator physics requirements. In particular, I have studied the possibil-

ity to diagnose the self-modulation of the proton bunch via a magnetic energy spectrometer.

These studies showed that for the given constraints on magnet strength, the effect of the

energy modulation is completely overshadowed by the emittance increase of the proton

bunch. As a result of my studies, the proton spectrometer has been cancelled from the

experiment planning.

Now, it is planned to inject and accelerate electrons already in the early phases of the

experiment. My initial studies show that an electron energy spectrometer should give a

clear signal of the electron energy gain.
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6.5 Status of Experiment Planing

Several aspects of the experimental planning have changed noticeably during the course

of this work.

Most obviously, as discussed in more detail in chapter 6.3 (and in particular sections 6.3.3

and 6.3.4), the proton energy spectrometer disappeared from the experimental planning.

Initially, it was planned to diagnose the proton beam via a spectrometer as the first phase

of the experiment. However, the massive space requirement of at least 100 m; and the very

faint signal of the energy modulation lead to the conclusion that a proton spectrometer as

main diagnostics would not make for a convincing experiment.

The current experimental planning foresees to inject and accelerate electrons already in

the first phase of the experiment. The initial studies carried out in section 6.3.6 indicate

that a clear signal should be observable. For the work presented in this thesis, the idea

was to use a comparably weak magnet, both to save costs and to allow the detection of

all electron energies. This was changed for the AWAKE Design Report (ADR) [19]. The

new plan is to use a much stronger, existing magnet. This allows for a much better energy

resolution for high electron energies. On the downside, it will not be possible to observe

low energy gains and energy loss of electrons, as they will be lost to the magnet walls.

In addition, the upgrade work on the LHC injector chain lead to a noticeable increase in

bunch current. The parameters which have been described as optimal within this work

and the LoI [18] have become the standard case for the ADR. The observations in this

work still serve to illustrate the dependence of the energy gain on the charge of the driving

bunch.

Furthermore, the location of the envisaged experimental area has changed to the former

CNGS area (CERN Neutrinos to Gran Sasso) due to radiation protection considerations.

This choice has no influence on the physics described in this chapter.
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7. Summary

The highest energy particle accelerator built to date is the LHC, the Large Hadron Collider.

To study its findings with higher precision, a high energy lepton collider is desired. How-

ever, for the required beam energies, the construction of electron/positron storage rings is

impractical, as the amount of energy lost to synchrotron radiation becomes excessive for

all practical bending radii. The next generation of lepton colliders will, therefore, consist

of linear accelerators. Given the currently achievable acceleration gradients, this will re-

sult in facilities with a length of a few tens of kilometres. The hope is that plasma-based

acceleration techniques with their significantly higher acceleration gradients will allow to

considerably reduce the size and cost of these colliders.

Within this thesis, systematic studies regarding the applicability of plasma based acceler-

ation techniques for technical applications have been performed. These studies included

both theoretical investigations and the participation to and planing of experiments.

In particular, possible scenarios for a high energy lepton collider based on plasma wakefield

acceleration have been studied. As the technology necessary for the construction of a high

energy collider will still take decades to mature, possible earlier applications have been in-

vestigated. Specifically, laser-driven plasma wakefield accelerators have been investigated

as injectors. Finally, studies for AWAKE, the experiment on proton-driven plasma wake-

field acceleration planned at CERN, have been performed. The results regarding these

three topics will be summarized separately.

High-Energy Lepton Collider

Recently, the long sought Higgs boson has been discovered at the LHC. To study this

discovery with higher precision, a lepton collider is desirable. In this work, three proposals

for lepton colliders of the required energy have been developed. In particular, laser pulses,

electron bunches and proton bunches have been compared as different driver technologies.

For both the electron-driven and the laser-driven scenario, the total wall plug power con-

sumption has been estimated for the parameter range considered most suitable. It has

been found to be in the order of a few tens of Megawatts. This is very similar to the

power consumption of a facility based on the technology foreseen for ILC or CLIC, the
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two most advanced proposals based on conventional accelerator technology (International

Linear Collider, Compact LInear Collider).

For the proton driven case, it was shown that for this energy, efficient acceleration in a

single stage is not possible. This is due to the fact that to reach a high wall plug efficiency,

the drive beam energy should be comparable to the desired energy of the witness bunch.

For this energy region, there is still a significant velocity difference between the driving

proton bunch and the witness bunch. As a result, rapid phase slippage with the electron

witness bunch occurs, stopping the acceleration process.

It is important to point out that, resulting from the short bunch lengths inherent to plasma-

based acceleration, the bunch density has to be much higher compared to ILC /CLIC type

colliders to achieve the required luminosity. This leads to much stronger detrimental beam-

beam interaction at the collision point, resulting in a much higher background signal in

the detector and a much higher uncertainty in the initial beam energy. This is even true

if no energy spread is acquired during the acceleration process.

Laser Wakefield Accelerator as Injectors for Synchrotron Light Sources

Whilst synchrotron radiation is a detrimental effect in circular high energy colliders, said

radiation is used for a multitude of experiments at so-called synchrotron light sources. The

short bunch lengths and high bunch charge of laser wakefield accelerators (LWFA) make

them very interesting as injectors for said facilities for two reasons: i) The duration of the

emitted radiation pulse is proportional to the electron bunch length. The short LWFA

bunches would, therefore, allow for a better time resolution. ii) For wavelengths larger

than the length of the emitting bunch, coherent amplification occurs. LWFA bunches

would, therefore, allow to extend the radiation spectrum far into the THz, a spectral

range currently difficult to access with high intensity.

During the course of this work, the injection of LWFA bunches into an electron storage ring

has been studied in simulations, using the ANKA synchrotron at KIT as an example. It was

shown that the bunch length increases much faster than one would naively assume based

on the typical time constants of equilibrium processes. It was shown that this behaviour

is caused by the still relatively high energy spread of the LWFA bunches, which leads to

differences in revolution time for particles of different energy and in turn a lengthening of

the bunch.

It is important to point out that during the lengthening of the bunch, interesting sub-

structures in the longitudinal bunch density have been observed. These sub-structures

could still lead to very interesting radiation properties. However, the question of repro-

ducibility has to be investigated further.

Energy Spectrometer Studies for the AWAKE Experiment

For AWAKE, the planned proton-driven plasma wakefield experiment at CERN, existing

simulations have been investigated with respect to accelerator physics requirements during

the course of this thesis. Initially, it was planned to only diagnose the proton beam after

the plasma cell, without accelerating any electrons. However, evaluation of the simulation

data revealed that the expected energy modulation of the proton beam due to the passage

through the plasma is very small compared to the average beam energy. This means that
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one would have to diagnose an effect in the tails of the energy distribution, with a low

number of particles.

Furthermore, the passage through the plasma cell also influences the transverse properties

of the proton beam. This leads to an increase of the beam emittance, its transverse phase

space volume. For the initially planed proton energy spectrometer, this emittance increase

completely overshadows the effect of the energy modulation. as confirmed by simulations.

My results lead to a change of the experiment planing. The proton spectrometer has been

cancelled, and it is now planed to already inject and accelerate electrons in the early phase

of the experiment. The corresponding simulations have again been evaluated, and here a

clear spectrometer signal is expected.
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A List of Acronyms

A list of used acronyms is given in table 7.1.

Acronym Meaning Cf. Page

CPA Chirped Pulse Amplification 13

IP Interaction Point 9, 49

LWFA Laser WakeField Accelerator 6, 14

PBWA Plasma Beat Wave Accelerator 15

PWFA Plasma Wakefield Accelerator 6, 19

RLPA Resonant Laser Plasma Accelerator 15

SMLWFA Self-modulated LWFA 16

Table 7.1: List of Acronyms

B List of Variables

The variables used in this thesis are summarized. Table 7.2 gives an overview of the

variables using Latin characters, Table 7.3 gives an overview of the variables using Greek

characters. If not mentioned otherwise, SI units are used.

C Plasma Simulation Codes

This chapter gives an overview of the different input data files produced by the beam

plasma simulations.

Description of Input Beam

For all beam-plasma simulations, the bunches were initialized with the density distribution

nb =
Np

2σ2
rσz(2π)3/2

e
− r2

2σ2r ·
[
1 + cos

(√
π

2

z

σz

)]
, |z| < σz

√
2π, (7.1)

with the number of particles Np and the RMS beam radius σr and RMS bunch length σz.

This is very close to a Gaussian distribution but vanishes at the boundaries of the interval,

which is beneficial for simulations.
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Symbol Meaning Cf. Page

a0 Laser strength parameter 12

B Magnetic flux density

c Speed of light

D(s) Dispersion at point s 9

E0 Cold non-relativistic wave breaking field 11

Eb Particle beam energy

Er Electric field strength in radial direction

Ez Electric field strength in longitudinal direction

f Repetition / collision frequency

Fp Ponderomotive force 17

k Normalized quadrupole magnet strength or photon wave number 8, 14

kp Plasma collision-less skin depth 10

L Luminosity 48

Ld Laser dephasing length 19

Lp Length of plasma

Lpd Laser pump depletion length 19

Lstage Length of a plasma stage in a multi-stage linear collider 53

Lstage Total length of a linear collider 53

me/p Electron /proton mass

n0 Average plasma electron density

nγ Number of generated beamstrahlung photons per incident particle 49

nb Number of generated beamstrahlung coherent pairs per incident particle 50

nν Number of generated beamstrahlung trident pairs per incident particle 51

N , Nb Number of particles in bunch

Nstage Number of stages in a multi-stage linear collider 53

P0 Relativistic power unit, P0 = m2c5/e2 ' 8.7 GW

Pavg Average laser power

Pb Particle beam power Pb = Eb ∗Nb ∗ f
Pcrit Critical laser power, over which self focusing occurs 18

Ppeak Laser peak power

Pwall Wall-plug power consumption

rL RMS laser radius

s Distance along beam trajectory

UL Laser pulse energy

vp/g Phase /group velocity 14

Wstage Energy gain per stage in a multi-stage linear collider 53

zR Laser Rayleigh length 13

Table 7.2: List of variables using Latin characters.
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Symbol Meaning Cf. Page

αc Momentum compaction factor 81

β Beta-function or β = v/c 8

γ Photon or Lorentz factor

δ Relative energy deviation or phase slippage 9, 22

δB Beamstrahlung generated energy spread 49

ε0, εr Permittivity

εgeo/N Geometric / Normalized emittance 8

η Conversion efficiency

λ / λL Photon / Laser wavelength

λp Plasma wavelength 10

ξ ξ = 1 for linear polarization, ξ = 2 for circular polarization 12

ρ Bending radius in a dipole magnet 103

σr/z RMS bunch radius /length

τL RMS laser pulse length

Υ Average beamstrahlung parameter 49

ω Photon angular frequency

ωp Plasma angular frequency, ωp =
√
ω2
pe + ω2

pi w ωpe 10

ωpe, ωpi Plasma electron / ion angular frequency 10

Table 7.3: List of variables using Greek characters.
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Calculation of Beam Parameters

The parameters of the initial and final beams were calculated from the particle distributions

used in the simulations following the method described in [211]:

ε =
[
σxxσx′x′ − σ2

xx′
] 1
2 (7.2)

σxx =
1

Q

N∑
i=1

qi
[
(xi − x̄)2

]
(7.3)

σxx′ =
1

Q

N∑
i=1

qi
[
(xi − x̄)(x′i − x̄′)

]
(7.4)

σx′x′ =
1

Q

N∑
i=1

qi
[
(x′i − x̄′)2

]
(7.5)

x̄ =
1

Q

N∑
i=1

qixi (7.6)

x̄′ =
1

Q

N∑
i=1

qix
′
i (7.7)

Q =
N∑
i=1

qi (7.8)

With xi, x
′
i the transverse position and angle of (macro) particle i and qi its numerical

weight, if applicable.

Note that σxx, σxx′ , and σx′x′ are not standard deviations but covariances. For a Gaussian

beam, the density distribution can be expressed with the Twiss parameters α, β as

ρ(x, x′) =
β

2πσ2
x

exp

{
−x

2 + (αx+ βx′)2

2σ2
x

}
,

∫ ∫
ρ(x, x′)dxdx′ = 1. (7.9)

Here, σx =
√
βε is the RMS beam size. If one calculates the covariances

σxx =

∫ ∫
x2ρ(x, x′)dxdx′ (7.10)

σxx′ =

∫ ∫
xx′ρ(x, x′)dxdx′ (7.11)

and compares the coefficients, one gets the Twiss parameters

αx = −σxx
′

εx
, (7.12)

βx =
σxx
εx

, (7.13)

γx =
1 + α2

x

βx
. (7.14)

C.1 LCODE

This Section describes the data files created by LCODE [204, 205], which is a radial

symmetric hybrid code. This means that the particles are not represented by their 6D

phase space coordinates x, px, y, py, z, δ, as is common in accelerator physics, but by the

coordinates z, r, pz, pr,M . Here z and pz are the longitudinal position and momentum, r
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and pr are the radial position and momentum and M = r · pφ is the angular momentum,

with pφ the momentum in φ direction in cylindrical coordinates. A typical distribution of

r and pr is shown in figure C.1. Note that the initial radial distributions does not have

the shape of a half Gaussian, as one could naively expect. Instead, it peaks at a value

r > 0. This is due to the fact that for a transversely Gaussian distribution, the number of

particles n(r) at a certain radius is given by

Figure C.1: Left: Shown is the radial particle density. The x-axis gives the distance from the

beam centre, the y-axis the number of particles at this radius.

Right: Shown is the distribution of the transverse momentum. The x-axis now gives

the transverse momentum instead of the radius.

n(r) = 2πrρ, ρ ∝ e−
r2

2σ2r (7.15)

where ρ is the Gaussian density distribution and σr is the transverse RMS beam size.

From this radial symmetric data, 6D coordinates can be generated via

x = r · cos(φ), y = r · sin(φ), (7.16)

px = pr · cos(φ)−M/r · sin(φ), py = pr · sin(φ) +M/r · cos(φ) (7.17)

with φ a random angle in the interval [0, 2π). The particle distribution generated this way

is Gaussian in the x− and px−plane, cf. e.g. figure 6.7, page 97. By construction, the

same is true in the y− and py−plane respectively.

C.2 VLPL

In VLPL (Virtual Laser Plasma Lab [192]), particles are represented by 8 parameters,

x, y, z, βx, βy, pz, E, w, where x, y, z are their position, βx, βy are the relativistic β = v/c0,

pz is the longitudinal momentum, E = M0c
2
0(γ−1) is the total kinetic energy and w is the

numerical weight of the particle. VLPL only tracks particles in a simulation window of

approximately 2× 2 mm2 transverse size. Particles that leave this window are propagated

balistically.
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D Hosing

When an electron beam propagates through an underdense plasma, it is subject to a

transverse instability called hosing [82–84]. The instability is caused by the coupling

of the beam centroid to the electrons at the edge of the ion channel. It is similar to the

transverse two-stream instability occurring for lower driver densities and the beam breakup

observed in classical linear accelerators. Similarly, it can lead to a degradation of beam

brightness and to total beam disruption. The growth of the instability can limit the useful

acceleration length and make it difficult to aim the beam [85].

When the beam head propagates through an underdense plasma (nb � n0), it expels all

the plasma electrons from the beam volume on the time scale of the plasma frequency,

ωp � τr, where τr is the current rise time. The plasma electrons are expelled up to

the charge neutralisation radius rn = (nb/n0)1/2rb > rb, where rb is the RMS beam

radius [82, 84]. Within this plasma channel, the beam will be strongly focused and undergo

betatron oscillations at a well defined frequency. If now a slice of the beam is displaced

transversely with respect to the beam head, it will induce a displacement of the electrons in

the plasma channel wall at r = rn, which then respond as a simple harmonic oscillator and

deflect following portions of the beam. The oscillation frequency along the length of bunch

is given by ω0 = ωp/(
√

2c) and the beam tail oscillates transversely with kβ = ωp/(
√

2γbc),

where γb is the relativistic factor of the beam electrons [83]. Under certain conditions, this

oscillation can grow exponentially. Assuming γb � 1 and linear focusing forces within the

plasma channel, the number of e-foldings Ne at a position ξ = ct− z within a beam at a

time τ = t is given by [84, 212]

Ne = π(3/2)3/2(1/γb)
1/6[(cτ − ξ)/λp]1/3(ξ/λp)

2/3. (7.18)

Each e-fold Ne corresponds to a growth of the instability by a factor e ≈ 2.718. Note that

this growth rate is independent of beam density and fluctuations thereof.

It is important to point out that both experiments performed at SLAC [13, 213, 214] and

simulations performed in [83] show little or no growth. In [83], this is explained by the fact

that at the front of the beam nb < n0. This results in incomplete blowout and therefore in

non-uniform focusing forces, which in turn result in phase mixing at the front of the pulse

and reduce the growth rate of the hosing instability.

In the work described above, the positive feedback that causes the instability is between

the oscillations of the beam centroid and the plasma electrons that are kept out by its

space charge. In [215], hosing has been studied for the case of an electron beam creating

the plasma through field ionization. Here, the positive feedback is between the oscillations

of the beam centroid and the displaced ion column it creates through ionization. The

initially tilted beam creates an ion column which is not symmetric about the beam, there

is an offset between the central axis of the beam and the axis of the ion column. Therefore,

the ion column creates a deflecting force on the later parts of the beam. The behaviour

of the beam has been studied through 3D particle in cell simulations for four different

regimes: i) For the preformed plasma, the results from [82] have been reproduced. ii) For

the case of a gas with a high ionization potential, i.e. the beam field being near to the

ionization threshold. Here, the ionization width is less than the blowout radius and hosing
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is strongly suppressed. This is because in this case there are not enough ions created to

prevent the created electrons from escaping transversely. They are blown out by the beam

field into the neutral gas and do not return, a surrounding electron channel does not form.

iii) For the case of a gas with a low ionization potential, where the ionization region is a

little wider than the blowout radius. Here some electrons return, leading to to traditional

hosing, while the ones that are blown out to the point where they do not return lead to

the ionization hosing described above. The result is even worse than for the preformed

plasma in case i). iv) The beam field is far above the ionization potential. In this case,

the response is similar to case i).
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D. Habs, F. Krausz, S. M. Hooker, and S. Karsch. Generation of stable, low-

divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas

cell. Phys. Rev. Lett., 101:085002, Aug 2008. doi: 10.1103/PhysRevLett.101.085002.

URL http://link.aps.org/doi/10.1103/PhysRevLett.101.085002.

[103] C. E. Clayton, J. E. Ralph, F. Albert, R. A. Fonseca, S. H. Glenzer, C. Joshi,

W. Lu, K. A. Marsh, S. F. Martins, W. B. Mori, A. Pak, F. S. Tsung, B. B. Pollock,

J. S. Ross, L. O. Silva, and D. H. Froula. Self-guided laser wakefield acceleration

http://stacks.iop.org/1367-2630/9/i=11/a=415
http://iopscience.iop.org/0741-3335/52/12/124032
http://iopscience.iop.org/0741-3335/52/12/124032
http://www.nature.com/doifinder/10.1038/nphys1872
http://apex.jsap.jp/link?APEX/1/066001/
http://link.aps.org/doi/10.1103/PhysRevLett.101.085002


132 Bibliography

beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett., 105:105003, Sep

2010. doi: 10.1103/PhysRevLett.105.105003. URL http://link.aps.org/doi/10.1103/

PhysRevLett.105.105003.

[104] Haiyang Lu, Mingwei Liu, Wentao Wang, Cheng Wang, Jiansheng Liu, Aihua Deng,

Jiancai Xu, Changquan Xia, Wentao Li, Hui Zhang, Xiaoming Lu, Cheng Wang,

Jianzhou Wang, Xiaoyan Liang, Yuxin Leng, Baifei Shen, Kazuhisa Nakajima, Ruxin

Li, and Zhizhan Xu. Laser wakefield acceleration of electron beams beyond 1 GeV

from an ablative capillary discharge waveguide. Applied Physics Letters, 99(9):

091502, 2011. doi: 10.1063/1.3626042. URL http://link.aip.org/link/?APL/99/

091502/1.

[105] C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans,

R. Williams, and C. Joshi. Ultrahigh-gradient acceleration of injected electrons

by laser-excited relativistic electron plasma waves. Phys. Rev. Lett., 70:37–40,

Jan 1993. doi: 10.1103/PhysRevLett.70.37. URL http://link.aps.org/doi/10.1103/

PhysRevLett.70.37.

[106] J. Arther et al. Linac Coherent Light Source (LCLS) Conceptual Design Report.

SLAC, 2002.

[107] R. Akre et al. Commissioning of the LCLS linac and bunch compressors. Proceedings

of FEL09, 2008.

[108] Romain Ganter, editor. SwissFEL Conceptual Design Report. Paul Scherer Institut,

Jul 2010.

[109] M. J. Hogan, T. O. Raubenheimer, A. Seryi, P. Muggli, T. Katsouleas, C. Huang,

W. Lu, W. An, K. A. Marsh, W. B. Mori, C. E. Clayton, and C. Joshi. Plasma

wakefield acceleration experiments at FACET. New Journal of Physics, 12(5):055030,

2010. URL http://stacks.iop.org/1367-2630/12/i=5/a=055030.

[110] Massimo Altarelli et al., editor. The European X-Ray Free-Electron Laser Technical

Design Report. DESY XFEL Project Group, Jul 2007. ISBN 978-3-935702-17-1.

[111] FERMI@Elettra Design Team. FERMI@Elettra Conceptual Design Report. Sin-

crotrone Trieste, Jan 2007.

[112] S. Hillenbrand, R. Assmann, A.-S Müller, and D. Schulte. Considerations for a higgs

facility based on laser wakefield acceleration. Proceedings of IPAC13, 2013.

[113] The national ignition facility: An overview. Energy and Technology Review, Dec.

1994.

[114] Breanna Bishop. Lawrence livermore’s national ignition facil-

ity achieves record laser energy in pursuit of fusion ignition.

https://www.llnl.gov/news/newsreleases/2012/Mar/NR-12-03-02.html, Mar.

2012.

http://link.aps.org/doi/10.1103/PhysRevLett.105.105003
http://link.aps.org/doi/10.1103/PhysRevLett.105.105003
http://link.aip.org/link/?APL/99/091502/1
http://link.aip.org/link/?APL/99/091502/1
http://link.aps.org/doi/10.1103/PhysRevLett.70.37
http://link.aps.org/doi/10.1103/PhysRevLett.70.37
http://stacks.iop.org/1367-2630/12/i=5/a=055030


Bibliography 133

[115] Bob Yirka. Nif facility fires record laser shot into target chamber.

http://phys.org/news/2012-03-nif-facility-laser-shot-chamber.html, Mar. 2012.

[116] F. Amiranoff et al. Proposal for a european extreme light infrastructure (ELI), Jun

2007. ELI Scientific Case.

[117] ELI - extreme light infrastructure whitebook, 2011.

[118] Laserlab Europe. Access facilities GSI - PHELIX. http://www.laserlab-

europe.net/transnational-access/access-facilities/access-facilities-gsi, Apr. 2011.

[119] GSI. PHELIX laser facility. https://www.gsi.de/en/start/research/forschungsgebiete

und experimente/appa pni gesundheit/plasma physicsphelix/phelix.htm, FEB.

2013.

[120] A. Bayramian et al. High-average-power femto-petawatt laser pumped by the mer-

cury laser facility. J. Opt. Soc. Am. B, 25(7):B57–B61, Jul 2008. doi: 10.1364/

JOSAB.25.000B57. URL http://josab.osa.org/abstract.cfm?URI=josab-25-7-B57.

[121] W. P. Leemans et al. The berkeley lab laser accelerator (bella): A 10 GeV laser

plasma accelerator. Proceedings of PAC11, 2011.

[122] Scottish Centre for the Application of Plasma-based Accelerators. Facilities.

http://www.scapa.ac.uk/?page id=103, Apr. 2011.

[123] Laboratoire d’optique appliquée. Experimental facilities. http://loa.ensta-

paristech.fr/installations lang EN menu 2, FEB. 2013.

[124] H. J. Kong et al. Current trends in laser fusion driver and beam combination laser

systems using stimulated brillouin scattering phase conjugate mirrors for a fusion

driver. Journal of the Korean Physical Society, 56(1):177–183, Jan. 2010.

[125] Osaka University Institute of Laser Engineering. Annual progress report 2007, 2008.

[126] M. Dunne. A high-power laser fusion facility for europe. nature physics, 2:2, Jan.

2006. doi: doi:10.1038/nphys208.

[127] M. Dunne et al. HiPER Technical Background and Conceptual Design Report, chap-

ter 9 - Baseline Facility Design. 2007.

[128] G. A. Mourou, D. Hulin, and A. Galvanauskas. The Road to High Peak Power and

High Average Power Lasers: Coherent-Amplification-Network (CAN). In M. Lontano

and D. Batani, editors, Superstrong Fields in Plasmas, volume 827 of American

Institute of Physics Conference Series, pages 152–163, April 2006. doi: 10.1063/1.

2195207.

[129] Toshiki Tadjima Gerard Mourou. ICAN and 100GeV’s ascent.

http://indico.cern.ch/conferenceDisplay.py?confId=187383, May 2012. Presented

at EuroNNAc 2012 meeting.

[130] Gerard Mourou. Private Communication.

http://josab.osa.org/abstract.cfm?URI=josab-25-7-B57


134 Bibliography

[131] STFC Central Laser Facility. Overview of astra gemini.

http://www.clf.stfc.ac.uk/Facilities/Astra/Astra+Gemini/12258.aspx, FEB. 2013.

[132] Jason Cole et al., 2013. Private Communication.

[133] Jonathan Wood et al., 2013. Private Communication.

[134] J. Osterhoff et al. Transport and non-invasive position detection of electron beams

from laser-plasma accelerators. Proceedings of AAC2010, 2010.

[135] R. Fedele, G. Miano, and V. G. Vaccaro. The plasma undulator. Physica Scripta,

1990(T30):192, 1990. URL http://stacks.iop.org/1402-4896/1990/i=T30/a=026.

[136] S. Corde and K. Ta Phuoc. Plasma wave undulator for laser-accelerated elec-

trons. Physics of Plasmas (1994-present), 18(3):033111, 2011. doi: http://dx.doi.

org/10.1063/1.3569827. URL http://scitation.aip.org/content/aip/journal/pop/18/

3/10.1063/1.3569827.

[137] J. Borer. Instrumentation and diagnostics used in LEP commissioning, with accent

on the LEP beam orbit measurement system. Technical Report CERN/SL/90-107,

CERN, Geneva, 1990.

[138] LAOLA - LAboratory fOr Laser- and beam-driven plasma Acceleration.

http://laola.desy.de/, 2012.

[139] SPARC - Sorgente Pulsata Auto-amplificata di Radiazione Coerente.

http://www.lnf.infn.it/acceleratori/sparc/, 2012.

[140] C. Huang, W. An, C. Clayton, C. Joshi, W. Lu, K. Marsh, W. Mori, M. Tzoufras,

T. Katsouleas, I. Blumenfeld, M.J. Hogan, N. Kirby, T. Raubenheimer, A. Seryi, and

P. Muggli. Simulations of 25 GeV PWFA sections: Path towards a PWFA linear

collider. Proceedings of PAC09, 2009.

[141] Helmut Wiedemann. Particle Accelerator Physics, volume 2: Nonlinear and Higher-

Order Beam Dynamics. Springer-Verlag, 1995. ISBN 0387575642.

[142] ILC Collaboration. ILC home page. http://linearcollider.org/, 2011.

[143] CLIC Collaboration. CLIC home page. http://clic-study.org/, 2011.

[144] W. Leemans and E. Esarey. Laser-driven plasma-wave electron accelerators. Physics

Today, 62(3):44–49, 2009. ISSN 00319228. doi: DOI:10.1063/1.3099645. URL http:

//dx.doi.org/10.1063/1.3099645.

[145] J. Rosenzweig, N. Barov, E. Colby, and P. Colestock. A linear collider based on

nonlinear plasma wake-field acceleration. Proceedings of Snowmass ’96, pages 394–

398, 1996.

[146] J. Rosenzweig, N. Barov, A. Murokh, E. Colby, and P. Colestock. Towards a

plasma wake-field acceleration-based linear collider. Nuclear Instruments and Meth-

ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

http://stacks.iop.org/1402-4896/1990/i=T30/a=026
http://scitation.aip.org/content/aip/journal/pop/18/3/10.1063/1.3569827
http://scitation.aip.org/content/aip/journal/pop/18/3/10.1063/1.3569827
http://dx.doi.org/10.1063/1.3099645
http://dx.doi.org/10.1063/1.3099645


Bibliography 135

Associated Equipment, 410(3):532 – 543, 1998. ISSN 0168-9002. doi: DOI:10.

1016/S0168-9002(98)00186-7. URL http://www.sciencedirect.com/science/article/

pii/S0168900298001867.

[147] A. Seryi et al. A concept of plasma wake field acceleration linear collider (PWFA-

LC). Proceedings of PAC09, 2009.

[148] S. Lee, T. Katsouleas, P. Muggli, W. B. Mori, C. Joshi, R. Hemker, E. S. Dodd,

C. E. Clayton, K. A. Marsh, B. Blue, S. Wang, R. Assmann, F. J. Decker, M. Hogan,

R. Iverson, and D. Walz. Energy doubler for a linear collider. Phys. Rev. ST Accel.

Beams, 5(1):011001, Jan 2002. doi: 10.1103/PhysRevSTAB.5.011001.

[149] Tor O. Raubenheimer. An afterburner at the ILC: The collider viewpoint. AIP

Conference Proceedings, 737(1):86–94, 2004. doi: 10.1063/1.1842536. URL http:

//link.aip.org/link/?APC/737/86/1.

[150] Chandrashekhar Joshi and Thomas Katsouleas. Plasma accelerators at the energy

frontier and on tabletops. Physics Today, 56(6), Jun 2003.

[151] Chandrashekhar Joshi. Plasma accelerators. Scientific American, page 40, Feb 2006.

[152] Andrei Seryi. Multi-TeV upgrade concept for international linear collider based on

proton driven plasma acceleration. ILC-Note-2010-052, May 2010.

[153] Vitaly Yakimenko and Tom Katsouleas. Proton-based driver for the plasma wakefield

accelerator with TeV reach. Plasma Physics and Controlled Fusion, 53(8):085010,

2011. URL http://stacks.iop.org/0741-3335/53/i=8/a=085010.

[154] Vladimir D. Shiltsev. High energy particle colliders: past 20 years, next 20 years

and beyond. Usp.Fiz.Nauk, 2012.

[155] C. B. Schroeder, E. Esarey, and W. P. Leemans. Beamstrahlung considerations

in laser-plasma-accelerator-based linear colliders. Phys. Rev. ST Accel. Beams, 15:

051301, May 2012. doi: 10.1103/PhysRevSTAB.15.051301. URL http://link.aps.

org/doi/10.1103/PhysRevSTAB.15.051301.

[156] Kazuhisa Nakajima et al. Operating plasma density issues on large-scale laser-plasma

accelerators toward high-energy frontier. Phys. Rev. ST Accel. Beams, 14:091301,

Sep 2011. doi: 10.1103/PhysRevSTAB.14.091301. URL http://link.aps.org/doi/10.

1103/PhysRevSTAB.14.091301.

[157] Kaoru Yokoya and Pisin Chen. Beam-beam phenomena in linear colliders. KEK

Preprint, 91-2, 1990.

[158] Pisin Chen. Disruption effects from the collision of quasi-flat beams. In Particle

Accelerator Conference, 1993., Proceedings of the 1993, pages 617 –619 vol.1, May

1993. doi: 10.1109/PAC.1993.308793.

[159] Chao. Handbook of Accelerator Physics and Engineering, chapter 2.6.2. World Sci-

entific Publishing Company, 1999. ISBN 9810235003.

http://www.sciencedirect.com/science/article/pii/S0168900298001867
http://www.sciencedirect.com/science/article/pii/S0168900298001867
http://link.aip.org/link/?APC/737/86/1
http://link.aip.org/link/?APC/737/86/1
http://stacks.iop.org/0741-3335/53/i=8/a=085010
http://link.aps.org/doi/10.1103/PhysRevSTAB.15.051301
http://link.aps.org/doi/10.1103/PhysRevSTAB.15.051301
http://link.aps.org/doi/10.1103/PhysRevSTAB.14.091301
http://link.aps.org/doi/10.1103/PhysRevSTAB.14.091301


136 Bibliography

[160] W. P. Leemans, R. Duarte, E. Esarey, S. Fournier, C. G. R. Geddes, D. Lock-

hart, C. B. Schroeder, C. Toth, J.-L. Vay, and S. Zimmermann. The BErke-

ley Lab Laser Accelerator (BELLA): A 10 GeV laser plasma accelerator. AIP

Conference Proceedings, 1299(1):3–11, 2010. doi: 10.1063/1.3520352. URL http:

//link.aip.org/link/?APC/1299/3/1.

[161] Andrei Seryi. Future prospects of accelerator science for particle physics. Nucl.

Instr. Meth. A, 623(1):23 – 28, 2010. ISSN 0168-9002. doi: 10.1016/j.nima.2010.

02.145. URL http://www.sciencedirect.com/science/article/pii/S0168900210004122.

1st International Conference on Technology and Instrumentation in Particle Physics.

[162] K. V. Lotov. Acceleration of positrons by electron beam-driven wakefields in a

plasma. Physics of Plasmas, 14(2):023101, 2007. doi: 10.1063/1.2434793. URL

http://link.aip.org/link/?PHP/14/023101/1.

[163] P. Muggli. Positron beams propagation in plasma wakefield accelerators. Proceedings

of LINAC08, 2008.

[164] W. An et al. Positron acceleration by using a particle beam-driven wake field in

plasma. Proceedings of PAC99, 1999.

[165] G. Xia, A. Caldwell, and P. Muggli. Future colliders based on a modulated proton

bunch driven plasma wakefield acceleration. Proceedings of IPAC12, 2012.

[166] J. L. Abelleira Fernandez et al. A large hadron electron collider at cern: Report on

the physics and design concepts for machine and detector. arXiv:1206.2913v2, Sep.

2012. URL http://arxiv.org/abs/1206.2913.

[167] Valery Telnov. Principles of photon colliders. Nuclear Instruments and Meth-

ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, 355(1):3 – 18, 1995. ISSN 0168-9002. doi: 10.

1016/0168-9002(94)01173-7. URL http://www.sciencedirect.com/science/article/

pii/0168900294011737.

[168] V. Telnov. Photon collider technology overview. Proceedings of Photon09, 2009.

[169] Valery Telnov. Ultimate luminosities and energies of photon colliders. AIP Con-

ference Proceedings, 397(1):259–273, 1997. doi: 10.1063/1.52997. URL http:

//link.aip.org/link/?APC/397/259/1.

[170] P. Chen. An introduction to beamstrahlung and disruption. In M. Month and

S. Turner, editors, Frontiers of Particle Beams, volume 296 of Lecture Notes in

Physics, pages 495–532. Springer Verlag, 1988. doi: 10.1007/BFb0031506.

[171] Kwang-Je Kim and Andrew Sessler. Gamma-gamma colliders. Beam Line, 26(1):

16–22, 1996.

[172] D. Asner et al. Higgs physics with a γγ collider based on CLIC 1. The European

Physical Journal C - Particles and Fields, 28:27–44, Mar. 2003. ISSN 1434-6044.

URL http://dx.doi.org/10.1140/epjc/s2002-01113-3. 10.1140/epjc/s2002-01113-3.

http://link.aip.org/link/?APC/1299/3/1
http://link.aip.org/link/?APC/1299/3/1
http://www.sciencedirect.com/science/article/pii/S0168900210004122
http://link.aip.org/link/?PHP/14/023101/1
http://arxiv.org/abs/1206.2913
http://www.sciencedirect.com/science/article/pii/0168900294011737
http://www.sciencedirect.com/science/article/pii/0168900294011737
http://link.aip.org/link/?APC/397/259/1
http://link.aip.org/link/?APC/397/259/1
http://dx.doi.org/10.1140/epjc/s2002-01113-3


Bibliography 137

[173] David H. Whittum, Andrew M. Sessler, John J. Stewart, and Simon S. Yu. Plasma

Suppression of Beamstrahlung. Part.Accel., 34:89–104, 1990.

[174] N.A. Solyak. COLLISION EFFECTS IN COMPENSATED BUNCHES OF LIN-

EAR COLLIDERS. Novosibirsk Preprint, 88-44, 1988.

[175] J. B. Rosenzweig, B. Autin, and Pisin Chen. Instability of compensated beam-beam

collisions. AIP Conference Proceedings, 193(1):324–339, 1989. doi: 10.1063/1.38740.

URL http://link.aip.org/link/?APC/193/324/1.

[176] Daniel Schulte. Private Communication.

[177] Camille Bibeau, Paul J. Wegner, and Ruth Hawley-Fedder. UV sources: World’s

largest laser to generate powerful ultraviolet beams. Laser Focus World, Jun. 2006.

URL http://www.laserfocusworld.com/articles/print/volume-42/issue-6/features/

uv-sources-worldrsquos-largest-laser-to-generate-powerful-ultraviolet-beams.html.

[178] J. Vieira, C.-K. Huang, W. B. Mori, and L. O. Silva. Polarized beam condition-

ing in plasma based acceleration. Phys. Rev. ST Accel. Beams, 14:071303, Jul

2011. doi: 10.1103/PhysRevSTAB.14.071303. URL http://link.aps.org/doi/10.

1103/PhysRevSTAB.14.071303.

[179] Mauro Trovo. Fermi / machine. http://www.elettra.trieste.it/FERMI/index.php?n=

Main.Machine, Jan 2012.

[180] Paul Scherer Institut. SwissFEL accelerator. http://www.psi.ch/swissfel/swissfel-

accelerator, 2012.

[181] Bolko Beutner. Emittance measurement procedures for the SwissFEL 250 MeV

injector. Proceedings of FEL2009, 2009.

[182] DESY’s XFEL Project Group. List of beam parameters for the XFEL linac.

http://xfel.desy.de/technical information/electron beam parameter/, 2012.

[183] M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori, T. Katsouleas, J. Vieira,

R. A. Fonseca, and L. O. Silva. Beam loading in the nonlinear regime of plasma-based

acceleration. Phys. Rev. Lett., 101(14):145002, Sep 2008. doi: 10.1103/PhysRevLett.

101.145002.

[184] B. B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip,

S. H. Glenzer, K. Herpoldt, W. Lu, K. A. Marsh, J. Meinecke, W. B. Mori, A. Pak,

T. C. Rensink, J. S. Ross, J. Shaw, G. R. Tynan, C. Joshi, and D. H. Froula.

Demonstration of a narrow energy spread, ∼ 0.5 GeV electron beam from a two-

stage laser wakefield accelerator. Phys. Rev. Lett., 107:045001, Jul 2011. doi: 10.

1103/PhysRevLett.107.045001. URL http://link.aps.org/doi/10.1103/PhysRevLett.

107.045001.

[185] C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J.

Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Yu.

http://link.aip.org/link/?APC/193/324/1
http://www.laserfocusworld.com/articles/print/volume-42/issue-6/features/uv-sources-worldrsquos-largest-laser-to-generate-powerful-ultraviolet-beams.html
http://www.laserfocusworld.com/articles/print/volume-42/issue-6/features/uv-sources-worldrsquos-largest-laser-to-generate-powerful-ultraviolet-beams.html
http://link.aps.org/doi/10.1103/PhysRevSTAB.14.071303
http://link.aps.org/doi/10.1103/PhysRevSTAB.14.071303
http://link.aps.org/doi/10.1103/PhysRevLett.107.045001
http://link.aps.org/doi/10.1103/PhysRevLett.107.045001


138 Bibliography

Bychenkov, I. V. Glazyrin, and A. V. Karpeev. Ionization induced trapping in a

laser wakefield accelerator. Phys. Rev. Lett., 104:025004, Jan 2010. doi: 10.1103/

PhysRevLett.104.025004. URL http://link.aps.org/doi/10.1103/PhysRevLett.104.

025004.

[186] A.J. Gonsalves et al. Tunable laser plasma accelerator based on longitudinal density

tailoring. Nat Phys, 7:862–866, November 2011. doi: 10.1038/nphys2071.

[187] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka. Con-

trolled injection and acceleration of electrons in plasma wakefields by colliding

laser pulses. Nature, 444(7120):737–739, December 2006. ISSN 0028-0836. doi:

10.1038/nature05393. URL http://dx.doi.org/10.1038/nature05393.

[188] G. Fuchert, A. Bernhard, S. Ehlers, P. Peiffer, R. Rossmanith, and T. Baumbach.

A novel undulator concept for electron beams with a large energy spread. Nu-

clear Instruments and Methods in Physics Research Section A: Accelerators, Spec-

trometers, Detectors and Associated Equipment, 672(0):33 – 37, 2012. ISSN 0168-

9002. doi: 10.1016/j.nima.2011.12.097. URL http://www.sciencedirect.com/science/

article/pii/S0168900211023436.

[189] C. Widmann et al. Design of a dispersive beam transport line for the JETI laser

wakefield accelerator. Proceedings of IPAC11, 2011.

[190] ELI - Extreme Light Infrastructure. http://www.eli-beams.eu/about/, 2013.

[191] A.-S. Müller et al. Far infrared coherent synchrotron edge radiation at ANKA.

Proceedings of PAC05, 2005.

[192] Alexander Pukhov. Three-dimensional electromagnetic relativistic particle-in-cell

code VLPL (virtual laser plasma lab). Journal of Plasma Physics, 61(3):425, 1999.

doi: 10.1017/s0022377899007515.

[193] HDF Group. http://www.hdfgroup.org/hdf-java-html/hdfview/, 2013.

[194] S. Hillenbrand, R. Assmann, A.-S Müller, V. Judin, O. Jansen, and A. Pukhov. Study

of laser wakefield accelerators as injectors for synchrotron light sources. Proceedings

of IPAC13, 2013.

[195] S. Hillenbrand, R. Assmann, A.-S Müller, V. Judin, O. Jansen, and A. Pukhov. Study

of laser wakefield accelerators as injectors for synchrotron light sources. Nuclear In-

struments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, 740(0):153 – 157, 2014. Proceedings of the first

European Advanced Accelerator Concepts Workshop 2013.

[196] W. Herr and F. Schmidt. A MAD-X primer. CERN-AB-2004-027-ABP, Jun 2004.

[197] M. Winkler et al. Development and test of iron-free quadrupole lenses with high

magnetic flux densities. Nuclear Instruments and Methods in Physics Research Sec-

tion B: Beam Interactions with Materials and Atoms, 204(0):454 – 459, 2003. ISSN

http://link.aps.org/doi/10.1103/PhysRevLett.104.025004
http://link.aps.org/doi/10.1103/PhysRevLett.104.025004
http://dx.doi.org/10.1038/nature05393
http://www.sciencedirect.com/science/article/pii/S0168900211023436
http://www.sciencedirect.com/science/article/pii/S0168900211023436


Bibliography 139

0168-583X. doi: 10.1016/S0168-583X(02)02120-1. URL http://www.sciencedirect.

com/science/article/pii/S0168583X02021201.

[198] P. Antici, A. Bacci, C. Benedetti, E. Chiadroni, M. Ferrario, A. R. Rossi, L. Lan-

cia, M. Migliorati, A. Mostacci, L. Palumbo, and L. Serafini. Laser-driven electron

beamlines generated by coupling laser-plasma sources with conventional transport

systems. Journal of Applied Physics, 112(4):044902, 2012. doi: http://dx.doi.org/

10.1063/1.4740456. URL http://scitation.aip.org/content/aip/journal/jap/112/4/

10.1063/1.4740456.

[199] Vitali Judin. Private Communication.

[200] A. Terebilo. Accelerator toolbox for matlab. SLAC-PUB-9732, 2001.

[201] CERN Document Server. Cern-di-0812015. http://cds.cern.ch/record/1260465, Jan.

2012.

[202] C. Hessler, R. Assman, B. Goddard, M. Meddahi, and W. Weterings. Beam line

design for the CERN HiRadMat test facility. Proceedings of PAC09, 2009.

[203] Allen Caldwell. Private Communication.

[204] K.V. Lotov. Simulation of ultrarelativistic Beam Dynamics in Plasma Wake-Field

Accelerator. Physics f Plasmas, 5:785–791, 1998. doi: 10.1063/1.872765.

[205] K. V. Lotov. Fine wakefield structure in the blowout regime of plasma wakefield

accelerators. Phys. Rev. ST Accel. Beams, 6(6):061301, Jun 2003. doi: 10.1103/

PhysRevSTAB.6.061301.

[206] S. Hillenbrand, R. Assmann, A.-S. Müller, and T. Tückmantel. Energy spectrometer

studies for proton-driven plasma acceleration. Proceedings of IPAC11, 2011.

[207] Patric Muggli. Private Communication.

[208] David C. Cary. The Optics of Charged Particle Beams. Accel. Storage Rings. Hard-

wood Academic Publishers, Chur, 1 edition, 1987.

[209] Klaus G Steffen. High energy beam optics. Internat. Sci. Mono. Texts Phys. Astron.

Interscience, New York, NY, 1965.

[210] Stephane Fartoukh. Private Communication.

[211] R. Assmann, C. Adolphsen, K. Bane, P. Emma, T. Raubenheimer, R. Siemann,

K. Thompson, and F. Zimmermann. LIAR - a computer program for the modeling

and simulation of high performance linacs. SLAC/AP,Äı̀103, 1997.
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