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Abstract. New acceleration technology is mandatory for the future elucidation of

fundamental particles and their interactions. A promising approach is to exploit the

properties of plasmas. Past research has focused on creating large-amplitude plasma

waves by injecting an intense laser pulse or an electron bunch into the plasma. However,

the maximum energy gain of electrons accelerated in a single plasma stage is limited by

the energy of the driver. Proton bunches are the most promising drivers of wakefields

to accelerate electrons to the TeV energy scale in a single stage. An experimental

program at CERN – the AWAKE experiment – has been launched to study in detail

the important physical processes and to demonstrate the power of proton-driven plasma

wakefield acceleration. Here we review the physical principles and some experimental

considerations for a future proton-driven plasma wakefield accelerator.
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1. Introduction

Over the last fifty years, accelerators of ever increasing energy have been used to

probe the fundamental structure of the physical world. This has culminated so far

in the Large Hadron Collider (LHC) at CERN, Geneva, an accelerator of 27 km in

circumference. With this accelerator, the Higgs Boson, the particle of the Standard

Model that attributes to particles their mass, was recently discovered [1, 2] in proton–

proton collisions. However, although the Standard Model has been incredibly successful

at describing fundamental particles and the forces that act between them, there are still

several unexplained phenomena that pose some of the big questions in science:

• Why are the masses of the fundamental particles so different, e.g. the top quark

and neutrinos?

• Why are there three families of quarks and leptons?

• Where is the anti-matter in the Universe?

• Why does the visible matter constitute only 5% of the Universe and what are dark

matter and dark energy that constitute the rest?

• Is there a Grand Unification Theory that merges the fundamental forces into one?

That the Standard Model can not answer all these questions, points towards the

need for new theories or phenomena such as Supersymmetry, which unifies the forces

at high energies and provides a candidate for dark matter, or extra spatial dimensions,

such as required by string theory. Such phenomena are being searched for at high energy

using the LHC and any successor. It is widely held that a next energy frontier accelerator

should collide electrons and positrons at around the Tera-electron-Volts (TeV) energy

scale. As electrons and positrons are point-like, fundamental objects and the centre-of-

mass energy is controlled, a significantly cleaner environment can be achieved than at

the LHC that collides protons. Such a future electron–positron collider would therefore

have the potential to search for new physics as well as being able to measure to high

precision new phenomena discovered already at the LHC.

The gradient at which charged particles can be accelerated using today’s radio-

frequency (RF) or microwave technology is limited to about 100 MeV/m by RF

breakdown on and fatigue of the cavity walls. To reach the TeV scale in a linear

accelerator, the length of the machine is therefore tens of kilometres. Circular electron

colliders are feasible at these energies only at the 100 km scale due to limitations imposed

by synchrotron radiation [3]. At these scales it becomes difficult to find a suitable stable

geological site and the construction cost of such a machine is estimated to be in the range

of ten(s) of billions of Euros. Therefore, a new high-gradient accelerator technology must

be developed to ensure that the energy frontier in particle physics can be investigated

experimentally within affordable cost, time-scale and space constraints.

Ionized gases, or plasmas, with densities over a thousand times lower than that

of the atmosphere, can sustain accelerating gradients (several 10 GeV/m) orders of

magnitude larger than RF structures [4]. These large fields are due to the collective
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response of the plasma electrons to the electric field of a laser pulse or charged particle

bunch driver. The plasma, without initial structure, supports waves or wakes travelling

at velocities near the speed of light, ideal to accelerate particles to relativistic energies.

These wakefields have a longitudinal component able to extract energy from the driver

and transfer it to a trailing witness bunch (of e.g. electrons). The wakes also have

transverse wakefield components with focusing strength orders of magnitude larger

than that of conventional magnets, allowing for the two beams to remain transversely

small over long distances. This combination of large plasma fields and long confined

propagation distances can lead to the large energy gain necessary for high-energy

physics applications, but over much shorter distances than with today’s RF and magnet

technology.

The potential of plasma as the medium for high gradient acceleration has been

demonstrated with short and intense laser pulse drivers yielding electron bunches of up

to 2 GeV energy gain in cm-long channels [5, 6] that corresponds to about 100 GV/m

average accelerating fields. High gradients have also been demonstrated with a short,

high charge electron bunch driver with an energy gain of 42 GeV in 85 cm, corresponding

to 52 GV/m [7].

However, in both of these pioneering experiments the energy gain was limited by

the energy carried by the driver (∼ 100 J) and the propagation length of the driver in

the plasma (< 1 m). The laser pulse and electron bunch driver schemes therefore require

staging [8, 9], i.e. the stacking of many 10 − 25 GeV acceleration, or plasma, stages to

reach the ∼ 1 TeV energy per particle or equivalently ∼ 2 kJ of energy in ∼ 2 × 1010

electrons and positrons. The scheme proposed in this paper solves these propagation-

length and energy limitations by using a proton bunch to drive the wakefields.

Bunches with 3×1011 protons and 19 kJ of energy (the CERN SPS 400 GeV beam),

and with 1.7 × 1011 protons and 110 kJ of energy (the CERN LHC 4 TeV beam) are

produced routinely today. Because of their high energy and mass, proton bunches can

drive wakefields over much longer plasma lengths than other drivers. They can take

a witness bunch to the energy frontier in a single plasma stage, as was demonstrated

in simulations [10]. This proton-driven scheme therefore greatly simplifies and shortens

the accelerator. In addition, because there is no gap between the accelerator stages, this

scheme avoids gradient dilution.

2. Self-modulation instability of particle beams in plasmas

Despite the great potential of proton-driven plasma wakefield acceleration, there are a

number of challenges to overcome. The major challenge is the length of the existing

proton bunches. A plasma can be understood as an ensemble of oscillators swinging at

the plasma frequency. To enforce the resonant swinging of these oscillators, the driver

must contain a Fourier component close to the plasma frequency. The maximum field
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of a plasma wake scales as

Emax ≈
√
ne[cm−3]

1014
GV/m, (1)

where ne is the plasma electron density. Consequently, plasma densities of at least

ne ≈ 1014 cm−3 are required to reach accelerating gradients of GeV/m and above. The

corresponding plasma wavelength is

λp ≈

√√√√ 1015

ne[cm−3]
mm. (2)

At these densities, the plasma wavelength is of the order of a millimetre. On the other

hand, proton bunches available today are much longer, σz = 3− 12 cm. Having a nearly

Gaussian shape, they are not resonant and thus no strong plasma wakefields can be

excited directly.

Fortunately, a mechanism has been discovered that automatically splits the proton

bunch propagating in plasma into a number of micro-bunches: the self-modulation

instability (SMI) [11, 12]. The instability starts from a seeding wave whose transverse

field acts on the beam and modulates its radius. The modulation has a period

very close to the plasma wavelength. Its amplitude grows exponentially from head

to tail of the bunch and along the propagation distance. The physics of the

instability is now well understood, and theoretical predictions agree well with results of

simulations [13, 14, 15, 16, 17]. At saturation, the initially long and smooth beam is

split into a train of micro-bunches that resonantly excite a strong plasma wave. This

plasma wave is inherently weakly nonlinear [18], so the way of its excitation is almost

independent of the charge sign of the drive beam. An example of a self-modulated bunch

as observed in 3D simulations using the particle-in-cell code VLPL [19, 20] is shown in

Figure 1. Numerical simulation of a self-modulating proton beam in the real geometry

is a challenging problem, e.g. the resolution must be carefully chosen [21].

3. Uniform-density plasma cell

The second challenge also arises because of a large disparity between the bunch

length and the plasma wavelength. The proton bunch must be split into some

100 micro-bunches to drive the high amplitude wake. All these micro-bunches must

work constructively. This translates into a very strict requirement on the plasma

density uniformity [22]. Simulations show that electron trapping and subsequent stable

acceleration are mainly affected by density gradients. The relative plasma density

variations must be controlled down to

δne

ne

≈ λp
2πσz

. (3)

This means that for realistic proton bunches we have to control the plasma density

below 0.5% over distances of many metres [23].
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Figure 1. Proton beam density nb, plasma electron density ne, and the longitudinal

component of the wakefield Ez after 4 m of propagation in plasma. The coordinate

ζ = ct− z is counted from the bunch head. The region 10 cm behind the bunch head

is zoomed in.

The best option to achieve the high density uniformity is to fill an evacuated vessel

with a neutral gas and ionize it instantaneously with a laser. The laser pulse must be

short, shorter than λp. If the laser co-propagates together with the proton bunch, the

fast creation of plasma inside the bunch has the same effect as a sharp leading edge of

the bunch would have; it reliably seeds the self-modulation.

4. Injection and acceleration of the witness beam

The third challenge is a detailed understanding of the interactions of the proton bunch

with the plasma to optimize the injection capture efficiency (maximize the size of the

stable longitudinally focusing and accelerating phase-space “bucket”) and properties

(minimize the phase space volume) of the accelerated electrons. Theory and simulations

show that the witness beam should not be injected before the self-modulation instability

reaches saturation [13, 14]. The reason is the low phase velocity of the wake during the

self-modulation linear growth stage. One might split the plasma cell in two parts: the

proton bunch would self-modulate in the first part and witness particles could be injected

into the second, accelerating plasma cell. Yet, injecting the witness bunch axially into

the second plasma cell is technologically difficult. It is expected that the plasma density

will not be uniform in the first centimetres behind the cell entry. The irregular wake

in the plasma density gradient can easily scatter low energy (10 − 20 MeV) electrons

foreseen from an injector.

The solution is the side injection of particles into the wake of an already modulated

bunch [13, 24]. In this case, the witness electrons propagate at a small angle with

respect to the driver and are gradually “sucked-in” at the right phase by the wake’s

transverse fields (see Figure 2). Simulations show that this leads to high quality quasi-
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Figure 2. Maps of the wakefield potential at three positions along the plasma. The

relative size of the wakefield potential is indicated by the colour map. At z = 3.6 m (left

image), the low energy electrons (shown as black dots) are injected from the side, at an

angle of 9 mrad, (top on the figure) towards the wakefield. At z = 3.8 m (middle image)

the electrons have reached the wakefield potential wells, some are reflected while some

reach the axis and can be trapped. At z = 4.6 m (right image), two trapped electron

micro-bunches are visible near the axis (r = 0) and a few electrons are still drifting

out radially.

monoenergetic acceleration of electrons.

To maximize the capture efficiency of externally injected electrons into the stable

longitudinally focusing accelerating bucket, it will be necessary to have an electron

injector with the flexibility of tuning the injection energy from 5 MeV to 20 MeV, as well

as the capability to change the phase-space volume of the “cold” electron source (charge

and emittance) in order to understand the dynamics of the plasma wakefield channel,

electron capture and acceleration. Such flexibility is offered by a radio-frequency electron

gun (RF gun) fitted with a laser-driven photocathode as the emitter.

5. AWAKE experiment at CERN

To address these challenges, the AWAKE experiment at CERN [25] will be the first

proton-driven plasma wakefield experiment world-wide. The conceptual design of the

proposed AWAKE experiment is shown in Figure 3: The laser and proton bunches are

made co-linear. The laser ionizes the metal vapor in the first plasma section and seeds

the self-modulation instability. The self-modulated proton bunch (shown in the left

hand side inset) enters a second plasma section where it drives the plasma wakefield
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Figure 3. Conceptual design of the AWAKE experiment, showing the major sections

and description of expected effects.

structure (shown in the right side inset). The electrons are injected in the wakefields

and their multi-GeV energy is measured with an electron spectrometer.

The AWAKE experiment will be installed in the CERN Neutrinos to Gran Sasso

(CNGS) facility [26]. A design of the experimental setup is shown in Figure 4. Nominally

a proton bunch with intensity of the order of 3 × 1011 protons, a length of 12 cm and

energy of 400 GeV is extracted every 30 s from the SPS and transported along more

than 800 m of beam line towards the AWAKE experimental area that will be installed

in the upstream part of the (previous) CNGS facility. The focused transverse beam-

size at the plasma cell is σr = 0.2 mm and the transverse normalized emittance is

εN = 3.5 mm mrad. The laser beam is merged with the proton beam ∼ 20 m upstream

of the entrance of the plasma cell in a junction system. The area downstream of the

plasma cell houses the beam diagnostics systems and the electron spectrometer. The

proton beam will be dumped in the existing CNGS hadron stop, ∼ 1, 000 m downstream

of the experimental area, thus avoiding any backscattering of particles and radiation into

the AWAKE experimental area.

The plasma cell technology which best fulfills the requirements of the experiment is

an alkali metal vapor source, as alkali metals have been used in previous experiments [27]

and have low ionization potentials (e.g. 4.2 eV for the first electron of rubidium). The

vapor is therefore relatively easy to ionize with a laser pulse, with the threshold intensity

being as low as 1.7 × 1012 W/cm2. Rubidium has a large ion mass, which makes the

plasma less sensitive to ion motion [28].

Figure 5 shows an example of an electron bunch energy spectrum as obtained from

numerical simulations using the simulation tool LCODE [29] for the side injection case

and the nominal proton bunch parameters. A simulation of what would be seen on a

scintillator screen in the electron spectrometer downstream of the plasma cell is also
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Figure 4. Design of the layout of the AWAKE experiment.

shown as well as the energy reconstructed from this spatial spread. Electron bunches of

energy 16 MeV, charge 0.2 nC, and length σze = 2.5 mm are side injected after 3.9 m of

plasma. Approximately 5% of electrons are trapped and accelerated to the end of the

10 m plasma. This amount of charge is not high enough to observe beam loading, but

sufficient to characterize accelerating gradients. The final energy spread is ∼ 2% r.m.s.,

which can be accurately reconstructed by the electron spectrometer, indicating that

percent level energy spread can be reached. The peak gradient seen in this simulation

is above 1 GeV/m, and the average gradient witnessed by the electrons is 350 MeV/m.

In addition to the electron spectrometer, several other diagnostic systems will be

used to characterize the beams and plasma so as to better understand the physics

of self-modulation and acceleration of electrons in the wake of the proton beam [30].

Examples are shown in Figure 5c) in which a proton beam passes through a metal foil,

thereby producing a cone of optical transition radiation that will be measured using a

streak camera. Additionally, transverse coherent transition radiation will be produced

and detected using electro-optical sensors; this will be the first experimental use of this

recent concept [31].

First protons to the experiment are expected at the end of 2016 and this will be

followed by an initial 3 − 4 year experimental program of four periods of two weeks of



Proton-driven plasma wakefield acceleration 10

(a)

(b) (c)

Figure 5. a) Simulated impact position of accelerated electrons on a scintillator screen

having passed through a magnetic spectrometer. b) The electron energy spectrum

reconstructed using the energy spectrometer (blue line) compared with the energy

distribution exiting the plasma cell (red line). c) A modulated proton beam passing

through a conducting foil, leading to transition radiation, detected using a streak

camera and electro-optic sensors.

data taking.

6. Towards the TeV Frontier

The AWAKE experiment at CERN will test the principle of proton beam self-modulation

in plasma and electron acceleration in the excited wake. However, the future use of

proton-driven plasma wakefield acceleration as the energy-frontier technique requires

additional research effort. The keys here are a scalable plasma source and shorter

proton bunches.

Metal vapor plasma sources, ionized with lasers, routinely reach plasma densities

of the order of 1017 cm−3 but suffer from limitations of available laser power and are

difficult to scale. A solution could be a helicon-wave plasma cell or discharge plasma

cell that are potentially scalable in length over very long distances. These types of

plasma cell follow a strictly modular concept although have a number of challenges such

as density uniformity which are being addressed by an R&D program.

Shorter proton bunches will allow plasma wakes to be driven with either far fewer

micro-bunches (via the SMI) or directly with an un-modulated bunch. This would

dramatically reduce the uniformity requirements on the plasma, simplify the plasma

cell technology, and improve the overall energy efficiency of the scheme [10]. Various
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schemes within the current set-up of the CERN accelerators are being considered [32]

as well as compression via magnetic chicanes [33] and the production of short proton

bunches at source [34].

The results of the AWAKE experiment will inform future larger-scale R&D projects

on proton-driven plasma wakefield acceleration and could lead to future high energy

colliders for particle physics. Simulations have already shown [16] that electrons can be

accelerated to the multi-TeV scale (e.g. 3 TeV after 4 km) using the 7 TeV LHC proton

beam which is modulated prior to electron acceleration, following the scheme to be

investigated by the AWAKE experiment. An alternative initial application is to provide

the electron beam for the LHeC project [35] in which it is planned to collide a 50 GeV

electron beam with the LHC proton beam. The SPS or LHC beams could be used to

accelerate electrons using proton-driven plasma wakefield acceleration which are then

used as the electron beam or as the injector to it. Some of the key issues in designing

a compact electron–positron linear collider and an electron–proton collider based on

existing CERN accelerator infrastructure have been identified [36].

7. Outlook

The AWAKE experiment at CERN will be the first proton-beam driven plasma wake

field acceleration experiment worldwide. Its success will open a pathway towards

a revolutionary plasma-based TeV lepton collider. This revolution will then enable

groundbreaking particle physics discoveries.
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