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Abstract.

The twistor transform of a classical open string defines natural canonical variables for
twistor quantization in dimensions where one can solve the reality constraints on the
twistor description of the string. The first dimension where this can be done covariantly
is three. The twistor formulation of this theory is discussed as a prototype for higher
dimensional situations. This type of covariant analysis generalizes to the dimension ten
case more readily than to dimension four.
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1. Introduction.

In a flat Minkowskian space-time of any dimension the classical real strings correspond to pairs of null
curves. The description of strings in terms of such confoémally invariant structures permits the introduction
of twistor methods (Penrose 1967, Penrose and MacCallum 1972, Penrose and Rindler'1986). The twistor
description of classical null curves is now wéll established in diménsions three (Hitchin 1982, Shaw 1985), four

" (Shaw 1985, 1986a) and six (Hughston and Shaw 1986a). The results in dimensions three and four describe
the geometrical picture underlying the parameterizations of minimal surfaces given by Weierstrass (1866),
Montcheuil (1905) and Eisenhart (1911) and work is in progress to extend these ideas to higher dimensions

and the supersymmetric regime (see e.g. Fairlie and Manogue 1986, Shaw 1986a,b).

It is important to appreciate that the twistor approach generates complex null curves more readily than
real null curves. For example, a holomorphic curve in complex projective 3-space defines a holomorphic
null curve in complex four-dimensional Minkowski space, which defines a spacelike minimal surface in the
associated real Minkowski space. To obtain timelike strings it is necessary to introduce reality conditions
on the twistor curves. The ease with which one can solve the reality conditions depends in a criticai way
on the dimension and signature of the underlying space-time. This has implications for the guantization
in twistor space, where one imagines replacing reality conditions by holomorphic differential constraints
on “wave functions” on the loop space of the twistor space.. It turns out that this procedure is most
straightforward when the space-time is of a dimension and signature where it makes sense to define a real
spinor and, by implication, a real twistor. While this is not the case in dimension four (restrictiﬁg attention
to Minkowskian signature) it is possible in three dimensions and also in ten dimensions. In dimension three
the twistor realization of the conformal group SO(2, 3) is the real symplectic group Sp(4, R), whereas in four
dimensions the corresponding groups are SO(2,4) and SU(2,2) respectively. It should be emphasized that
at this early stage in the development of twistorial string models these reality considerations should not be
regarded as being dimensional constraints at the same level as those found in string theory: the approach to
twistor quantization considered here is the most obvious and least subtle line of approach and one cannot
yet rule out a more sophisticated approach for dealing with the dimension four case. At the same time
it is somewhat curious that the light-cone gauge quantization of a free superstring is Lorentz covariant in
both ten and three dimensions, while the corresponding free bosonic quantization is covariant in twenty-six
and three dimensions. The covariance in three dimensions (also two) is present for different reasons than
in twenty-six or ten, and does not require that the theory contain a tachyon. The three-dimensional case is

therefore interesting for a variety of reasons, and is the main subject of this note.
The goal of the analysis is to find a twistorial formulation of classical string theory which is fit for
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quantization. The approach to quantization is to find a set of t.wistor variables with respect to which the
symplectic structure on the space of strings is diagonal and the reality conditions are at worst first cle;ss
constraints. The standard twistor quantization may then be invoked. Generically, if one denotes a twistor
by Z, then the quantization represents the quantum states as holomorphic functions of Z and the classical
quantity Z is quantized by
Z — —¥ia—Z- .

The difficulty with the four dimensional case, as it stands at present, is that the only known choice of
canonical variables leads to reality conditions whose Poisson bracket algebra fails to close: the constraints
are second class. This is also the prevailing situation in six dimensions. However, in the case of three
dimensions one can solve the reality conditions before quantization and the only remaining constraints are
first class. The classical Poisson algebra of these residual constraints is a twistorial realization of the Lie
algebra of the group Dif f(S'). In some sense this represents, at the classical level, a “fermionization” of the
bosonic string alluded to by Sparling (1986). Twistors provide a “square root” for space-time geometry; the
corresponding twistor loop space provides' a square root for bosonic string theory (see also Hughston 1986).

The theory to be described represents a prototype for more general twistorial string theories. The ideas
described below generalize to ten dimensions in an obvious way, and also isolate the problems which have to
be faced and overcome in dimension four. 4

The plan of this work is as follows. In section two 3-dimensional twistor geometry is introduced via the
twistor equation. The appropriate reality structures are described in section three. In section four the process
of twistor quantization for null geodesics is reviewed. This is important since the real null geodesics are the
classical ground states of the string. In section five classical string theory is recast in twistor terms. An open
string corresponds to a quasi-periodic curve on twistor space and these curves can be associated with the loop
space of twistor space. The symplectic structure of the space of open strings turns out to be the loop integral
of the symplectic form of twistor space itself. This suggests natural canonical variables, namely the Fourier
coefficients in an expansion of the loop. The constraint algebra is then investigated, revealing dimension three
as being particularly straightforward. In section six the quantization is considered. Some exact solutions
(both massless and massive) of the quantum constraints are exhibited. The quantum constraints yield a
twistorial representation of the Virasoro (1970) algebra, but with a curious difference: the central charge of
the algebra corresponds to dimension two rather th;a,n three.

Throughout this note the string tension T is set at unity.



2. The twistor equation in three dimensions.

Let 2% = (¢, z, z) be coordinates for Minkowskian 3-space M 2, with metric
ds? = dz®dz, = dit? — de? — d2?

The points-of Mj 5 correspond to symmetric 2-index spinors z4% via
2AB — 1 lt-z =
Al e t+z
and

2%z, = 2det 248 = 248D, cepp

Complex conjugation on tensors is extended to spinors as an involutory operation {. The inner product on
spin space defined by

<a,a>=iaatBeyp

defines the group SU(1,1). The properties of such spinors on Lorentzian 3-spaces are discussed in more
detail in section three and elsewhere (Shaw, 1983).

The twistor equation is the condition

Vicpway(z) =0

on a spinor field w4 (z), where V¢p = V(cDp) is the spinor covariant derivative. Equivalently one may write
VCDLUA(:L‘) = 6‘_4(07!’1)) . (21)

for some spinor field 74. Application of the Ricci identity implies that w4 is constant and that consequently
the solution to (2.1) is
wi(z) = w? + 24875

A

where.w# is constant. The twistor correspondence is defined by the zeroes of w*(z):

wA + 24815 =0 . , (2.2)

Twistor space may be considered as the set of pairs Z* = {w#, m4}. It comes equipped with an antisymmetric
metric £q48 = €[], defined by ‘

2878 = wpa — Q74

where

Zf":{wA’”A} > Zg:{QA>PA} .
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Raising and lowering of indices is defined in the usual way:
Za = Zpé'pa = {rA,—wA}

and Z%Z, = 0.
The incidence relation (2.2) defines the twistor correspondence between space-time and twistor space.
Given a space-time point £4B the set of all twistors incident with z is an isotropic 2-plane: If Z¢ and Z§

are any two points incident with z then

28750 =0 . | (2.3)

Projectively one obtains a null line in projective twistor space. Any two twistors satisfying (2.3) define a
unique point in space-time. Conversely, given a pair {w?,7,} the corresponding space-time structure is a

v-plane (in general odd dimension), which in this dimension is a null line:
4B = z{,‘B + trir? .
The structure of these relations can be reduced much further. If one defines

F = wATl’A

and write

T4 = (m,m) =m((,1) ; F=-nn} ,

then all of the information of the incidence relations is contained in the pair (7, ), which may be regarded
in a natural way as local coordinates for part of T(CP'). Much of the theory of twistors in three dimensions
can be developed by working only with the space T'(CP!) (see Hitchin, 1982). For example, the points z of

the space-time correspond to holomorphic sections of T((C'P!), which are necessarily quadratic in ¢:
n=t+z+22(+¢3(t-2) .

Note that the approach of Hitchin involves Euclidean 3-space, so that the complex conjugation conventions
used here are different. The variables (7,¢) play an impogtant role in the contour integral formulae for

massless fields which arise from twistor quantization of the null geodesics.



3. Reality Structures.

Suppose that a twistor Z¢ is incident with a real space-time point:

£1AB _ 4AB

- Applying t to (2.2) gives
w4 +a:AB7rL =0,

and so

2°Z} =whrl —wMr, =0 . (8.1)
This condition can be solved by requiring that Z* is itself real:
Zte = g , (3.2)

which, with an appropriate choice of spinor basis, means that all the components of Z* are real. More

generally, Z% could be real up to a phase:
Z1* = exp(—2i7)Z* (3.3)

so that the twistor is now exp(iy) times a real twistor. The most general twistor satisfying (3.1) does not
necessarily satisfy (3.3), but the twistors which do satisfy (3.3) are of considerable importance, as will be
demonstrated shortly.

For any choice of w4 the vector

I
is real and any real vector in Mj 2 can be thus expressed. The vector is null if and only if
4ot .
If one represents the null geodesic as

4B(t) = =48 + trt(A7B)

with
Tamtd =0 , (3.4)
then the null geodesic defines a twistor Z* = {w4, 74} by the incidence condition (2.2). This twistor satisfies
(3.4) and hence also (3.3). Note that the condition (3.3) is equivalent to the pair of conditions
z°2t =0 , man™ =0 . (3.5)
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This leads to two essentially equivalent twistorial views of classical real null geodesics: a real picture
and a complex picture. If one works with scaled null geodesics, the null tangent vector V4B defines both

A unique up to a phase satisfying 'fr“‘ﬁ'L = 0.

a real spinor 74 (unique up to £) and a complex spinor #
The incidence relations define a real twistor and a twistor subjtect to (3.5) respectively. These two views of
null geodesics lead to different quaﬂtization procedures. One can solve the reality condition at the classical
level by making the twistors real, and then quantize. Alternatively one can quantize the complex classical
picture and impose the reality conditions at the quantum/ level. This latter approach is the true “twistor
quantization” and will be considered in the next section.

The real picture is interesting for a variety of reasons. The spinorial structures described above give
a concrete realization of the geometrical structures which are present. The space of unscaled real null
geodesics is precisely the space of real Z* modulo real rescalings, and is therefore RP3. The antisymmetric
metric defines the symplectic group Sp(4, R), which is the twistor translation of the 3-dimensional conformal
group SO(2,3). The points of My, are (non-projectively) the isotropic 2-planes of R*, i.e. the Lagrangian
Grassmannian associated with Sp(4, R). The crucial difference between dimensions three and four is that the
real conformal group is realized twistorially as a real symplectic group rather than a complex unitary group,
and this results in considerable simplifications in the description of real strings. Otherwise, the symplectic
structufe plays the same roles as does the unitary structure in one greater dimension. For example, the
“future tube” of My is characterized as the set of complex points 4% = X4B —~ {YAB where Y is

timelike and future-pointing. Points on the corresponding lines in twistor space must satisfy
—-iZ°Z}, >0 . (3-6)

One further remark is pertinent. With the present conventions on complex conjugation and the e-spinor
this spinor is real:

eLB =+€aB - CX0)

Thus the action of complex conjugation commutes with the raising and lowering of spinor indices. This is
the opposite of what is most convenient when one considers spinors on Lorentzian 3-surfaces as embedded
in a Lorentzian 4-space (as is done in Shaw 1983). In the present context it simplifies matters considerably

to adopt (3.7)

- wer
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4. Twistor Quantization I: Null Geodesics.
Consider the space N of scaled real null geodesics. In terms of standard coordinates {z®, p,}, with
pap® =0 ,2% > 2% +1p* ,
N is equipped with a 2-form
w = dps A dz®.

Suppose first that one writes

paBp=7maTp , wi+z4B1p=0 ,
where Z% = {w#, 74} is real. Then an elementary. calculation gives
w=—dzA8 Ad(ra7p) = 2dw? Adry =dZ* NdZ, . (4.1)
Now suppose instead that one writes

PAB = 7rA7r}3 , wi+z4Brg =0 , (4.2)

=0, 2°2l =0 . (4.3)
In this case a sirﬁilar calculation gives
w=dw? Adrl, — drg Adw! = dZ% AdZ}, . (4.4)
Note the similarity between this latter result and the usual situation in four dimensions, where one has
w=dZ*ANdZs , Z°Z,=0 .

Here the action of complex conjugation on twistors is the standard one appropriate to 4-dimensional
Minkowski space. The inner product is invariant under the action of SU(2,2). In three dimensions the
constraint that the “norm” of Z% vanish is supplemented by the proportionality condition 74 WL = 0. The

first form of w is obtained from the second by solving this constraint by the choice

xtd =qg4 |

The various expressions for the symplectic 2-form suggest a host of qﬁantization procedures. For the
present the standard “twistor quantization” will be given. This corresponds to the polarizations suggested

by (4.4). Z* and Z} are regarded as canonical variables and one adopts the quantization rule

.0
Zl—~igoe

:



. with constraints given by the quantized and normal-ordered form of (4.3), that is

(E+m_0,.p-ZaZa
and
0
A —
" oer 0

The quantui’n states are holomorphic functions
F(Z%) = F(w*,74)

homogeneous of degree —2 and subject to
OF
A -
ks a 1=

(4.5)

The states are subject to two holomorphic differential constraints and may be regarded as arbitrary holo-

morphic functions of just two independent complex variables. This may be accomplished directly. Using the

homogeneity condition and (4.5) one can show that F' must be of the form
F=miH(n() ,
where ¢ and 7 are defined as in section two, that is,
T =2 Ll
= "=t

The corresponding contour integral defines a massless field ¢(z) as

4o)= fdcH(m0) |
where 7 is restricted to z, i.e.
n=t+z422(+(3(t—-2) .
Such fields satisfy the Mj 2 wave equation:

o%¢ 8% 9%

In section six the polarizations suggested by (4.1) will be considered.

(4.6)

(4.7)

(4.8)

(4.9)



5. The Twistor Transform of a Classical Open String.
An open string in Mj 5 corresponds to a quasi-periodic null curve in M, . If the world sheet of the
string is given as X (7, o) and one works in the conformal gauge, where the induced metric of the world-sheet

is conformal to the flat metric

ds? =dr? - ds?

then one can write A _
X*(r,0) = ¢°(r = ) + °(r + ) (5.1)
where ¢°(s) is both null and periodic:
$°(s)a(s) =0, $°(s +2m) = §%(s) . (5:2)
Here and throughout the operation " denotes fl—;. The periodicity condition is equivalent to
¢%(s +2m) = ¢°(s) + P* , (5.3)

where P? is indeed the total momentum of the string.

Consider now the twistorial picture of such an object. Note that the original characterization of the
string as a timelike minimal surface is not conformally invariant (where the conformal invariance refers
to Irescalings of Mi,2). In flat space-time the open string corresponds to a null curve, a notion which is
conformally invariant. (In a general background the twistor approach would involve more than this simple
observation. One would go further and regard the null curves, rather than the strings, as the basic objects
of interest. This is an appealing approach since one can construct the conformal metric given a knowledge
of the null curves.) This change of viewpoint makes it possible to introduce twistor methods. Firstly, since

$4(s) is null there is a spinor field 74(s) such that
¢4B(s)mp(s) =0 . (5.4)

Since the curve is real one imposes

T (s)mh(s) =0 . (5.5)

As before, this condition could be solved by choosing 74(s) to be real. One normalizes 74 so that ¢4B =
xt4xB . 1t follows from (5.3) that
e
PAB = [ ds xt4xB | (5.6)

Yo ’ -

Now the pefqi-;dicity of 4.2“ implies that one can expand 74(s) in a Fourier series as

7i(s) = Z T2 exp(—ins) . (5.7)

n=-—00



The reality condition (5.5) implies that for all ¢ the following constraints are satisfied:

Q)= D, mArh =0 . (5.8)

n=-00

These constraints may be solved by demanding that '
-n

mh=al, . | (5.9)

A curve Z%(s) in twistor space may be defined by imposing the incidence relations at every point on

the curve:

wA(s) + ¢4B(s)mB(s) =0 . (5.10)

The relation (5.4) implies that the space-time curve is also incident with Z<:
wh(s)+ ¢*B(s)ip =0 . (5.11)
From (2.3) it follows that Z%(s) must satisfy:
Z%(s)Za(s) =0 . (5.12)

Similarly the'reality of ¢ implies that the following constraints must hold:

z2%(s)zk(s)=0 , . (5.13)
Z%(s)ZL(s)=0 , (5.14)
Z%(s)Zi(s) =0 . (5.15)

These last three constraints and (5.8) can all be solved by requiring that Z(s) is real and satisfies (5.12).
In contrast to the case of real null geodesics, the complex twistor picture of a real string is significantly
more complicated than the real twistor picture. In the real picture the only constraint is (5.12). In the
complex picture one must also impose (5.8), (5.13), (5.14) and (5.15). Recall that in the case of null
geodesics the complex twistor picture required two extra constraints. In the case of the string there are four,
which are straightforward to solve. At this point it is useful to recall the corresponding situation in four
dimensions ‘(Shaw, 1986a). In four dimensions (Minkowskian signature) the real null curves are represented

by complex twistor curves Z%(s) subject to (cf. section four)
Z%(8)Zal(s) =0 , : (5.16)

2%(8)Za(s) =0 | (5.17)
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2%(8)Za(s) =0 . . (5.18)

At present it is not known how to solve these equations in a covariant manner cotresponding to what one
can do in three dimensions, where one chooses the twistor to be real. This represents a sighificant difference
between the two dimensions and causes difficulties when one considers the qua-ntization.

Now consider again the theory in three dimensions. Equation (5.7) defines a Fourier expansion for 74(s)
and one wants to do the same for w“(s). However, this is not possiblé directly since the curve w(s) is not

periodic. Indeed, from (5.3) it follows that
wh(s 4 27) = w(s) — PABxp(s) . (5.19)

Another difficulty is that the translations do not act properly on the twistor fields as given. Under a

space-time translation of the string: X% — X% + V@ the null curve ¢° transforms according to
1
-tV

and so

wi(s) = wh(s) - -;—VABWB(S) . ) (5.20)

This is half the displacement in twistor space that one expects. Both these problems can be solved as follows.

First define

1 Lo - .
AB _ - pAB = tA,. B
I —27rP "=E_ 7 oy (5.21)
and
1 w
a a
v = —-271' _,.-ds ¢ (S) y (5.22)

the latter quantity being the average < ¢* >, with respect to the given parameterization. Now define Q4(s)
by
wi(s) = {v48 — sT*B}rp(s) + QA(s) . (5.23)

The new curve P%(s) = {Q24(s), ma(s)} has several useful properties. Note first that Q#(s) is periodic, so

that P*(s) defines a loop on twistor space. Also, under translations Q4 transforms correctly:
QA(s) — Q4(s) — VABrp(s) .

Some other useful properties of this new curve will be noted shortly. The constraints are modified when

expressed in terms of P*(s). For example, (5.12) and (5.14) are replaced, respectively, by

PePy +I4Br, rp =0 , P*P!+048x,xL =0, (5.24)
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and similar modifications are made to equations (5.13) and (5.14).

The principal use of the loops P%(s) is that they can be used to cast the symplectic structure into a
particularly straightforward form. From any .Lagrax.lgi‘dn field theory one can construct an-associated (not
necessarily non-degenerate) symplectic 2-form (see e.g. Woodhouse, 1980). Applying these ideas to string
theory, suppose that one has a string X (7, o) and two neighbouring strings X? + V¢, X* + V£. 'Workin.g

in the conformal gauge the symplectic form is described by an integral:
w
20(,%5) = | do{ViViar = ViViar) - (5.25)
0

The integral can be taken over the 7 = 0 cross-section, for the equations of motion and boundary condtions
ensure that w is independent of 7. The immediate goal is to translate (5.25) into an integral on twistor

space. First one writes it in terms of variations of the associated null curves. With (5.1) holding let
Vi = 6:;¢%(1 — o) + 6i9%(r +0) .
Substitution and some reorganisation gives

2w(Vy, Vo) = ) ds{626%(5)6164(s) — 610%(s)8264(s)} + §2¢"(—-1r)61¢a(7r) — 619%(—m)d2da(m) . (5.26)

-7

Note that the boundary terms do not vanish since one can vary the total momentum of the curve.
The precise translation of (5.26) into twistor space depends on whether the real or complex viewpoint
¢AB = gAyxB

is adopted. In the real case one sets . Now let V;* correspond to variations §; P* in P®. Then

some calculation leads to:

W(Vl,V2)=/ ds 61P°‘62Pa . (527)

-
Thus if the open strings in space-time are represented by loops in twistor space subject to (5.24) then the
symplectic structure on the space of open strings is just the integral around the loop of the standard twistor
symplectic structure. This formula is significantly more straightforward than its space-time counterpart,
although it does not have the manifest reparameterization invariance of the latter.

In the complex picture a similar result is obtained [cf. (4.1) vs. (4.4)]. When all the reality constraints

are satisfied, writing 42 = 747!B leads to
n
2w(Vi,Va) = [ ds {6,P*6,P} — 6,P*6, P1} . (5.28)
-

Clearly (5.28) reduces to (5.27) when the reality conditions are solved. It is important to realize that the

second expression (5.28) is actually quite general, and a corresponding expression can be written down in all
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dimensions for which the twistor description of an open string is known. For example, in four dimensions,

when the constraints (5.16-18) are satisfied, one has
L
2w(Vi,Va) =i [ ds {61 P%6;Py — 62P*61P,} . (5.29)
-

A similar expression exists in six dimensions also (Hughston and Shaw, 1986).

‘ The form of the symplectic structure suggests natural canonical twistor variables, namely the Fourier
coefficients in an expansion of the loop. Although the form of w shows that these coefficients always define
a natural symplecﬁc frame, it is not necessarily the case that these coefficients are the appropriate variables
to be used in canonical quantization. Their viability depends to a great extent on the behaviour of the
constraints, and we anticipate that the complex picture may be more problematic due to the profusion of
constraints in that picture. The essential difficulty is the phase invariance in the complex twistor picture.

The symplectic form given by (5.28) or (5.29) is obviously highly degenerate. In four dimensions, for
example, if one sets 6; P* = i¢; P* then restricted to such tangent directions w = 0. Before quantization it
is necessa-ry then to examine in detail the proposed “canonical variables” and the Poisson bracket algebra of
the constraints, with respect to the real and complex twistor variables.

One expands P*(s) as

P“(s):\/-% Z P2 exp(—ins) . (5.30)

n=-00

In the real case the reality conditions are

Pe = pie
These coefficients define a symplectic frame, by inspection of (5.27) and (5.28). In the real case one obtains

o] o]
w= Y dP¥AdP_no=dP§ NdPyo+2» dPZAdP}, , (5.31)

n=-00 n=1
and in the complex case, :
[ o]
w= Y dPFAdP}, . (5.32)
n=-—0o0

This suggests what the natural canonical variables should be. Note that if one restricts all PZ to be zero
except for n = 0 one recovers the symplectic form appropriate to null geodesics. The constraints are easily

expanded in terms of the Fourier coefficients. The condition P* Pa + 4B x mp = 0 becomes
o
Lr= Y [~inP% Poa+ PP, _pamapl=0 . © (5.33)
n=-—0o -
In the complex case one also has (5.8), and the Fourier versions of P*P} = 0, i.e.

[o2]

A=Y PPl,.=0; (5.34)

n=-00
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P“PI + HABWAWL =0, ie.

o0

B" = Z [z(n + T)P:Prt+r,ab + PABWn,AWJ;-}-r,B] =0 > (535)

n=-oo

finally P* P} + IAC (nhiry — moih) = 0, ie.

o0
Cr= Y in(n+r)PePl,, o+ 2mP4Px, 47l =0 . ‘ (5.36)

n=-o00
Consider now the Poisson brackets of these various quantities. In the complez case one tries to consider

the canonical variables as the set {P,?,P,I,a, —00 < n < oo}. The Poisson bracket in the complex case is

therefore

r=—o0

(=]
_ of Og dg Of
har= 3 {aPﬂ 0Pl OPZ 8Pl,
Now define Uy, , = P,‘,”P,I_,_q,a and Vy 4 = PABﬂ’n,Awl_,_,,B so that A, = ) Uy, etc. The Poisson brackets of

the I/ and V functions are

{un,q’um,s} = bn,m+slm,s+q — Omntqln,stq >

{Un,q, Vm,s} = 6n,m+svm,s+q - 6m,n+rqvn,s+q , (5.37)
{vn,qum,s} =0 )

from which the constraint algebra can be calculated. It is at this point that one runs into difficulties
with the complex picture, for the constraint algebra fails to close. That is, with respect to the hypothe-
§ized canonical variables, the constraints are second class. The problematic commutator is that of two C

constraints. Explicitly, one finds that
{C:Cs} = i(5* = ¢*)Coq + 2i(s — @)Dstq (5.38)
where D, is a new constraint, given by
(o]
D, = Zinz(n + D)Un,p + (3n% + np)Vsp . (5.39)
—o0
Repeated application of the Poisson brackets gives another constraint £,; and so on. It is not clear whether
one can quantize the'theory in this form, since the quantum constraints would generate, by commutation,
an infinite tower of constraints above those present at the classical level. This sort of behaviour also occurs
in four dimensions. The constraint (5.18) turns out to be second class in exactly the same way, when one
Fourier expands the fields and tries the canonical variables suggested by (5.28). An interesting escape route
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is suggested by enlarging the classical theory to allow solutions not satisfying the D constrainté: This is a
mild complexification of the system which appears to be quantizable-the remaining constraints (5.16) and
(5.17) generate a Poisson bracket algebra which is the semi-direct sum of the Lie algebra of Dif f (S1) with
a commutative algebra. ;I‘he consequences of this are under consideration, as is the situation when one
considers the quantization of finite-dimensional subsets of the classical phase space. (‘Hughston and Shaw,
1986b). Alternatively, one might consider adding the additional constraints to the quantum theory. In this
case it is not clear whether one is left with a non-trivial theory containing an appropriate spectrum of states.

Returning to the dimension three case, and in contrast to the dimension four case, one is in the fortunate
position of being able to solve the reality conditions at the classical level. Thus the appearance of equations
like (5.38) does not matter in this dimension. One has to investigate one set of constraints, given by (5.33).
(A major concern therefore is how one can achieve a corresponding reduction in four dimensions.)

Now consider the situation where the reality conditions have been solved, so that P]* = P2 and the
canonical variables are those suggested by (5.31): one considers only the positive values of n. The only
constraints are those given by (5.33), and one wants to express these conditions in terms of the positive-n
coefficients. Note first that

L_,=L], . (5.40)

so that one need only consider non-negative r initially. In this case it follows that

Ms

Ly =) [i(2m+r)Pgy Pho+2P* P, 47l gl
m=1
r o
+ D _[imP&Pr_ma + PAPr,_p a7tm ] (5.41)
m=0
Thus
oo
Loy =Y [-i2m+ )P}, Pma+2PABx! 7. 5]

m=1

. r

+ Z [_imPJIQPrt—m,a + PABWI—m,ATIn,B] . (542)

m=0

In the real case one takes as the definition of Poisson brackets that which is suggested by (5.31):

[ 8F 89 89 Of \ X[ ofr a9 89 Of
2”’”‘{6%4 Bron Bwd Oro, +§ 9P opT. OPaopl.| (5.43)

It is then a straightforward but somewhat lengthy calculation (which is therefore omitted) to verify that

with this definition of the Poisson bracket, the algebra of the £, closes, with, for all integers m and =,

{Lm,Ln} =1i(m— n)£m+ﬂ . (5.44)
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One recovers the Lie algebra of Dif f(S') from the twistor Poisson bracket algebra. The two sets of con-
straints with n > 0 and n < 0 each generate a closed sub-algebra under Poisson brackets. Also, the constraint

" Lo defines the mass m of the system, via

Lo = §l;m2 + f:l %inPPl =0 . (5.45)
n=

Thus m = 0 if énly P§ is non-vanishing, giving the correct correspondence with the case of null geodesics

discussed before. This defines sensible canonical variables with which to consider the quantization: the only

constraints are first class and the theory reduces appropriately to the null geodesic case.

Before discﬁssing quantization, it is useful to consider the sense in which the frarﬁework described above
is a prototype for other types of theory. If one restricts attention to space-times of Minkowskian signature,
then one cannot adapt directly the covariant analysis given above to four dimensions, because there is no
covariant way of eliminating the phase invariance. The same remarks apply to six dimensions. To use the
same kind of approach one needs to consider dimensions in which the action of complex conjugation on
spinors is similar to that in dimension three. The next even dimension in which this occurs is actually ten!
It turns out that with a slight shift in our interpretation of the equations (such as allowing the spinor indices
A to run from 1 to 16 instead of 1 to 2) and the insertion of some invariant 10-dimensional spinors, the.
formalism can be carried over in detail to the dimension ten case. Because of the periodicity associated with
the reality conditions one anticipates similar constructions in Minkowski space in dimensions 18, 26 and so
on.

In ten dimensions there are two kinds of twistor: real twistors and pure twistors. Whilst the latter
type is probably the most appropriate geometrical notion of a twistor, here the first kind of quantity will
be considered (see Shaw 1986b for further discussion of these two spaces). The two reduced spin spaces are
16-dimensional and complex conjugation is involutory and maps each reduced space to itself. The two spaces
are naturally dual to one another, so a Dirac spinor can be thought of as a pair (a?,84). The I'-matrices
are block anti-diagonal, with entries v,z and 42, and each v matrix is symmetric and real. The Clifford
algebra is

7aB7"7C +74p7"7C = 20765
where a runs from 1 to 10 and gg; is the metric. The quantities

1
ABCD _ aAB,CD
M TN O

and corresponding quantities with indices raised and lowered with G and its inverse define the spinor trans-

lation of the metric. It satisfies the conditions

GA(BCD) _ g GABCD _ (AB)(CD)
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A consequence of these relations is that a real vector V@ is null if and only if its spinor equivalent V42 can

be written as

VAB = GABCD 1o

where 74 is real. (This is not equivalent to V4qp = mamp.) One may define a real twistor as a pair

7% = {C;JA, w4}, and incidence with a space-time péint 24P is expressed, as before, by the condition
wA +24Brg =0 .
As before, a space-time point may be simultaneously incident with two twistors Zf* and Z§ if and only if
Z{Z9,a = wf7r2"4 - w2A1rl,A =0,
and the symplectic from translates to twistor space though the identity
2dw Adry = dpag N\ dzAB » PAB = GSEWCWD

To deal with an open string one procedes in the same way, defining quasi-periodic curves Z(s) subject
to

Z%(8)Za(s) =0

with incidence relations corresponding to (5.10) and (5.11), and a symplectic structure formally identical to
(5.27). The 3-dimensional theory does indeed carry over to the ten-dimensional case, provided one makes
appropriate insertions of the G4pcp spinor at various points. The details of the calculation may be easily

reconstructed from the 3-dimensional results and therefore need not be given here.
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6. Twistor Quantization II: Open Strings.

At this point it is helpful to collect together some relevant facts about the classical theory. In doing so
it is convenient to rescale the twistor variables. Let Z% = v2P2, where Z}® = Z& and Z2 = {wA,p 4}.

Then the symplectic structure is given by

oo

w=dwf Ndpoa— Y dZ} , NdZZ (6.1)
n=1 * -

and the constraints are given by
= 1
L, = E 1(771 + ") +er ot o PABpm‘}-r,ApIn,B
m=1
+ Z Za Zy - m,a + Z"PABpr—m APm,B (62)

and their complex conjugates. In (6.2) the total momentum PAP is given by

PAB = "Po ps + ZP(A 1B) . (6.3)

n=1
One may write down a corresponding expression for the angular momentum tensor M?%® as a sum over

modes. This is given in the space-time by

. : .
b — / do {X°X2-Xx%x23} , (6.4)

0
the integral being taken over any constant-r cross-section. This tensor may be expressed in spinor form as

M® = M(AK)BL) _ AB.KL | KL AB (6.5)

)

where 42 is both symmetric and real. In terms of the twistor loop coordinates defined by (5.23) one finds

that
pAB = [ ds Q4xB) | A (6.6)
and hence that
W8 = 2l B>+Z (WP + Wi 4pB)) (6.7)
n..l

This result is another useful consequence of the change of variables given by (5.23): both the total momentum
and the total angular momentum are a diagonal sum over the momenta associated with each mode.

One may adopt as the quantization rule the holomorphic one suggested by (6.1). The quantum states
are “functions” f(p¢,Z%) of a spinor and a sequence of twistors which are holomorphic in their twistor

arguments. One makes the replacements

i)
A . t .
Wy — 1 Z )
0 apo,A ’ ma 62,?

(6.8)



and require that the states f(po, Zn) satisfy the quantized versions of the constraints.

At this point one must face various issues concerning the qua.mum-mechanical forms of the constraint
and momentum functions. Cleaﬂy both the momentum and angular momentum operators are free of factor-
ordering ambiguities. Of the constraints only Ly contains a factor-ordering problem, resulting at this stage
in an ambiguity in the mass (squared) operator. A related problem concerns the details of how one elevates
the remaining constraints to the quantum level. Recall that at the classical level, since we have a real theory, .
then if £, = 0 for » > 0 then £, = 0 for » < 0, and vice versa. The constraints for r non-negative form
a closed algebra under the action of Poisson brackets, as do those for r non-positive. Thus one considers
quantization with the imposition of just “half” the constraints at the quantum level, since just half the
constraints and reality characterize the classical theory.

To deal with both of these issues it is helpful to take a step back and consider again the quantization of

the real null geodesics, but this time within the real picture. In this case the symplectic form is
w= d(.u(‘;1 Adpo a

with no constraints and a momentum operator PAB = LpfpP. There is absolutely no difficulty in quantizing
this system. With the first part of (6.8) one realizes the states of the theory as functions f(p#). These

represent the spinorial Fourier transform of the corresponding space-time fields, which one may recovers as

¢(z) = / / dpo, 4 /\dpé‘f(po,c)exp{—;;po,Apo,Bz‘AB } - (6.9)

The integral is over real pg 4 and ¢(z) is manifestly positive-frequency. It is also massless. Now at the
classical level the real null geodesics are contained within the set of quasi-periodic null curves (= open
strings). It is therefore appropriate to make the same requirement at the quantum level, and so the following

hypothesis is made:
The functions f(p§) are allowed quantum string states, and these states are massless.

This is a stringént requirement, and has a number of interesting consequences. First, it requires that

the quantum-mechanical form of £ is ordered precisely as in (5.44). Denoting the operator forms by carets,

then
R 1, .
Lo = Ty +ﬂ2=1nE’,1 , (6.10)

where E, = zZ2 5827 is the nth homogeneity operator. The operator Lo differs from its normal-ordered form

by an infinite constant:

e o)
Lo=Lo+2) n , (6.11)

n=1
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and that this particular constraint has the consequence that any state which is homogeneous in each of its
twistor arguments is necessarily a mass eigenstate.

Second, if » < 0 then

ﬁrf(Po,A) = ‘ét-—-rf(pO,A) =0, - (6.12)
but if » > 0 then
- T im o 1 . ;
Lrf(Po,a) = E [TZ’"Z'_'"’“ + E'PABpr—m,Apm,B]f(po,A) . . (6.13)
m=0 .

Thus the hypothesis demands that one does not admit the positive r constraints when one chooses the
holomorphic polarization. If instead one had chosen the anti-holomorphic polarization then one would have
excluded the negative r constraints. Thus the constraints to impose are therefore the £} for r > 0, and these

are given by the quantized conjugates of (6.2); that is,

o0
A r A 1 .
Lh=3 (m+ D) Z5ilh e+ =P %0 pBhsra
m=1 ’

27
| —im 1
+2 =52 2] et T PAPE bl (6.14)
m=0
where Zjn,ﬂ = —isaz—,g- if m > 0 and {po,B,—ia—%—.;} if m = 0. Thus ﬁ;fn’B is given explicitly as —iz;a;g' if

m > 0 and is multiplication by po g if m = 0.

One may check directly that the algebra of these operators is given by
L2 = (r-9)Lly, (6.15)

for r > 0 and s > 0. Thus to define the states f(po, Z,) it is sufficient to impose just three constraints:

Llf=0, (6.16)
Lr=0, (6.17)
Llf=0, (6.18)

the remaining constraints being generated by commutation of the operators and the use of (6.15).
It is straightforward to construct a host of exact solutions of the quantum constraint equations. The
functions f(po,4) are the basic allowed states. The next-set of states to consider are functions f(po,a, Z7),

independent of Z7 for n > 2. It is easy to see that in this case

Llf=0,k>3. (6.19)
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Writing Z¢ = {w{f', 71,4} the momentum operator acting on such functions is

1 ) 8 .
Pup = 5P0,aP0,B ~ 'P1(A T BY (6.20)
Owy .
so that the mass-squared operator is
0 1 0 0
22 _ _ . A B L 3
m T ZYP()‘PO P14 6w{3 + 2P€P1 Bwf awf . | (621)
The constraints are then
v A 1
Eft o ’f=0, (6.22)
of i 1 0 of
PoAGpa T poaduf T 2n PG P0B guF = O (6.23)
a \?
(PO,A a—w;r) f=0. (6.24)
1
These equations can be simplified as follows. Define 5 by
- Po,A“’i1

1’0’7.]‘.; . (6.25)

This variable is obviously homogeneous of degree zero in each of p; 4 and Z{*. The condition (6.24) may be

solved by writing
f= G(’L pO,A’pl,A) . (6-26)

Furthermore, the Z; homogéneity operator acting on f is now

G
2
P14 (aplrf‘>n.po (6.27)

and the mass-squared operator is now given by

po (26
wf =35 o (6.28)

The remaining constraints are then (dropping the obvious subscripts)

oG 1 9%G
P1,4 1A + ir o7 0, (6.29)
d 0 . gy G _
(pO,A 904 + 1) n i(po,BP1)” Po,a Bpia 0. (6.30)

The solution space to this system contains both massless and massive states. For a massless state G must

be linear in 7:

G = A(po,a>P1,4) + 1B(Po,4)P1,4) » (6.31)
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where A and B are each homogeneous of degree zero in p; 4. Some manipulations with (6.30) shows that A

and B are in fact independent of p, 4 and that B must be homogeneous of degree -1 in p; 4:

9B _ _p . (6.32)

G = A(po, ) + 1B(Po,4) » Po,a Bpon

To obtain massive states one proceeds similarly. Let G be homogeneous of degree —k (k non-negative)

in its p; 4, dependence. The constraints give

G

and the mass m = v27k. Now set G = exp(:l:\/fmn)H(poyA,pl,A), where

0
(PI,A EEWA + k) H=0, (6.34)
3} i 1 6H

—+ 1> H+ =0 . 6.35
(Po,A 0po,a V2m py P} Po.a op1,4 (6.35)

These last two conditions can be solved easily by writing

- Ay—k
H = (po,apt) ™" ¢(Po,4) > (6.36)

where ¢ is homogeneous of degree k¥ — 1. Thus the massive states of this type correspond to functions
homogeneous in each of their spinor arguments. This is a particular case of a quite general feature. Although
the P* are coordinates for R*, the quantization is actually taking place on RP3. The symplectic form given
by (5.27) is degenerate in directions given by vectors §; P%(s) = ¢;(s)P*(s), so that it is only non-degenerate
on the tangent space of the loop space of the projective space RP3. It is, however, more convenient to
quantize on the non-projective space and observe the homogeneous character of the resulting states.

One can build up more complicated states by considering functions of a spinor and several twistors. In
this way twistor states of various mass and spin can be constructed. A more thorough examination of the
resulting spectrum of states will be given elsewhere. Note however that by making appropriate restrictions
on the homogeneities of ‘the functions involved it appears that we one exclude tachyonic states from the
theory. It is not knoWn at present whether there is some natural and minimal universal restriction on the
twistor states which excludes tachyonic states. Of course, by making the functions have zero or negative
homogeneity in each of the twistors Z7 the mass-squared becomes non-negative, but some weaker condition
may suffice.

In the present approach the classical ground state (null geodesic) is quantized correctly as a massless

system, which is in sharp contrast with other conventional approaches. In three dimensions this can also be
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achieved within the light-cone gauge approach. The fact that the Lorentz algebra closes identically when
there is only one transverse state means that it is not necessary that the theory contain a tachyon. This is

certainly consistent with the preliminafy results from the bresent approach.

The other issue of considerable importance in this context is the notion of an appropriate inner product
on the states. At present it is not known what form this might take. Thé inner products constructed in twistor
theory, when written down in the twistor space, are of a quite different character from those constructed in
conventional quantum theory, a.ﬁd in the case of simple massless fields arise as contour integrals over regions
of twistor space, rather than as inner products with respect to some L? norm. The conventional notion
of a norm fails for example in four dimensions because the inner product on twistor space is not positive
definite, and one is dealing with homogeneous functions for which the usual idea of a norm is inadequate.
One anticipates some generalization of the contour integral inner product to the string states, and then one

may be able to discuss in detail the status of negative-norm states within the twistor model.

It is also of considerable interest to generalize the model described here to other dimensions. The
generalization to dimension ten appears to be particularly straightforward. The difficulties with dimensions
four and six parallel closely those with the complex picture in dimension three. The essential difficulty is that
the infinite set of complex twistors represent far too many variables to describe the true degrees o_f freedom of
the string. This is mainly the result of the phase invariance of the complex twistor description. As well as the
reparameterizations which lead to the Virasoro algebra one has an additional invariance group of maps of the
circle into U(1), since the twistor representation of the string is invariant under multiplication by exp{i¢(s)}
for ¢(s) an arbitrary periodic function of s. In the case of three dimensions we may eliminate this invariance
before qua:ﬁtization by making the twistors real. This could be called the “real gauge”. An analogue of
this choice of gauge is needed for dimension four before the twistor quantization can be discussed in that
dimension. The possible gauge choices and the nature of the resulting theory will be discussed elsewhere, as
will the possibility of defining the quantum theory by imposing all the constraints generated by commutation.
The phase invariance is also reflected in the huge degeneracy of the symplectic structure (5.29), which is
degenerate with respect to tangent vectors defining phase rotations or real rescalings of P*(s). In three
dimensions one had only to deal with the real rescalings. The quantization in four dimensions is really of
loops in the projective space CP3, and the prevailing difficulties stem mainly from attempting to use the

complex homogeneous coordinates as canonical variables.

It is appropriate to conclude by describing in more detail the quantum constraint algebra. This is one
of the more curious features of the twistor model. The algebra (6.15) has been given for r > 0 and s > 0

only, and involves the operators £} = £_,. The full algebra is a central extension of the Poisson bracket
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algebra (5.44), and takes the form
L., L,] = (s—- r)[:,...., +e(r)bp,—s . (6.37)

One may compute c(r) by evaluating the commutator against the simple states f(po,4), using expressions
(6.13) and (6.14). One obtains a non-zero ¢(r) because the second derivatives in the finite sum in (6.14) act
. on the quadratic terms in (6.13) to give a scalar contribution to the commutator. One finds that

e(r) = — %(ﬂ +2) . | (6.38)

Now the central charge in the Virasoro algebra is always an odd cubic, and the linear term can be adjusted
by adding a constant to Lo. However, the coefficient of r3 is an invariant and is given here as 1/6. In
a standard space-time covariant quantization in dimension D the coefficient is D/12. Thus the (twistor)
Virasoro algbra in dimension three corresponds to the spacetime algebra obtained in dimension two.

The algebra given by (6.37-8) is not quite in standard form. If one defines

5 1
Vo=Lo+ 7
then the algebra becomes
d
[Vins Val = (m — n)Vipyn + ﬁ(m3 — m)ém,—n (6.39)
and the states f(p, Z) satisfy
Vo -hlf(p,2) =0, Vauf(p,Z)=0, m2>1, (6.40)

where d =2 and h = ‘1;,
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