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Abstract

Track reconstruction based on the Kalman filter has been implemented for straight line
tracks in data taken with the EUDET beam telescope. The information filter formulation
of the Kalman filter has been used to implement the combinatorial Kalman filter and the
Deterministic Annealing Filter to deal with noisy input data. In addition to the Kalman filter
based track finding, a new and simple to develop and implement track finding method based
on cluster finding has been studied. The methods have been tested and compared using a
simple simulation. The simulation studies show that both the combinatorial Kalman filter
and the cluster track finder have high track finding efficiency, and that the Deterministic
Annealing Filter is able to reduce the noise contamination and improve the precision of the
track estimates. Real test beam data has been reconstructed with excellent goodness of fit.
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1 Introduction

The EUDET telescope is a high precision beam telescope used in test beam characterization of particle
detectors. The goal of the beam telescope is to provide information about the particles passing through
it for analysis of devices under test.

Track reconstruction is the process of obtaining the optimal parametrized description of particle
tracks at the point of intersection with the devices under test. This consists of track finding and track
fitting. Track finding determines which measurements have been created by the same particle from data
that contain noise hits and measurements created by other tracks. Track fitting is finding the optimal
parameters for describing the track, as well as the correct description of the parameter uncertainties.

The Kalman filter [1] has been implemented for track fitting of EUDET data. The implementation
has also been used as a core for methods for track finding. The simple geometry of the experiment, as
well as the lack of a magnetic field, makes it possible to use the information filter formulation of the
Kalman filter. This offers some advantages in numerical stability, as well as the ability to describe a
complete lack of information for the initial guess of the track parameters.

Three different approaches to track reconstruction of test beam data have been implemented and
compared with simulation experiments.

• The combinatorial Kalman filter [2], which is a track finder based on the Kalman filter.

• The combinatorial Kalman filter followed by the Deterministic Annealing Filter (DAF). The DAF
is an iterative method that considers all the hits in the detector, using optimal track estimates in
deciding on including or rejecting a hit [3]. The information filter can deal with several weighted
hits per plane with only minor adjustments, making it ideal for implementing the DAF.

• The cluster track finder followed by the DAF. The cluster track finder is a new track finding method
based on cluster finding. It takes advantage of the beam constraints in the test beam experiment,
and the ability of the DAF to deal with imperfections in the track finder.

In the following, the experimental setup and the track model are described. The methods that were
implemented for track fitting and track finding for the ATLAS IBL test beam with the EUDET telescope
in 2010 and 2011 are then described. A validation of the implementations using a simple simulation
experiment is presented, as well as results from real test beam data.

1.1 The experimental setup

The EUDET telescope was developed by the EUDET1 and AIDA2 projects [4]. The telescope consists
of six MIMOSA26 sensors, each having 576 × 1152 pixels with a pitch of 18.4 µm in both directions,
covering an area of approximately 10.6×21.2 mm². The sensor planes are distributed in two arms, where
devices under test are placed in the middle, as illustrated in Figure 1. The reconstruction of the EUDET
telescope data is done within the EUTelescope software framework3.

The telescope has been used to reconstruct a monochromatic beam of π+ generated by the Super
Proton Synchrotron at CERN. The particle beam is collimated, and near orthogonal to the EUDET sensor
planes.

1Detector R&D towards the International Linear Collider
2Advanced European Infrastructures for Detectors and Accelerators
3see http://eutelescope.web.cern.ch/
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Figure 1: Schematic overview of the EUDET telescope, with ATLAS pixel devices (APIX). The position
along the z-axis are noted under the detector planes. The exact z-positions of the planes vary between
experiments, but these values are from the real and simulated data presented in the following.

1.2 The track model

The material in the test beam instrumentation is assumed to be concentrated in planes with no spatial
thickness, and no interactions between the particles and air are assumed to occur. In these planes, the
particles will interact with the material through multiple Coulomb scattering, changing the angle of the
trajectory.

Without a magnetic field the energy or momentum of a particle can not be determined from the
trajectory. The only effect of the beam energy on the trajectory is to determine the amount of scattering
that can occur in a plane. As the energy loss can not be determined, all particles are assumed to have the
same energy and momentum throughout the experiment.

The beam telescope is described in a three-dimensional, right-handed Cartesian coordinate system,
where the y-axis is in the vertical direction, and the z-axis is parallel to the nominal beam direction. At a
plane k, the particle track is described with the parameters

xk =


x
y

dx/dz
dy/dz

 . (1)

The position where the particle intersects with the plane is described by x and y, and dx/dz and dy/dz
are direction tangents of the angles in the xz and yz planes. The uncertainties of an estimate of xk are
described in the covariance matrix Ck.

If there is no material between the planes, the parameters on the front side of plane k can be calculated
from the parameters on the back side of plane k − 1. This process is deterministic.

xk = FkxB
k−1 (2)

(3)

The superscript B denotes parameters on the back side of a plane, after the particle has interacted with
the material in the plane. The transport matrix, Fk, depends on the propagation length along the z-axis,
∆zk.

Fk =


1 0 ∆zk 0
0 1 0 ∆zk

0 0 1 0
0 0 0 1

 (4)

The change in angle of the particle due to multiple Coulomb scattering has an expectation value of
zero. The uncertainties of scattering in orthogonal planes, parallel to the z-axis, are Gaussian and can be
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calculated from the Highland formula [5].

σplane =
0.0136

E

√
X
X0

(1 + 0.038ln(
X
X0

)) (5)

To estimate the uncertainties, the beam energy, E, as well as the amount of material, X
X0

, must be known.
The beam energy is in units of GeV, the thickness in units of radiation lengths.

The changes in the track parameters due to material interactions in a plane are

xB
k = xk + ω, (6)

where xk are the track parameters on the front side of the plane, xB
k are the track parameters on the back

side of the plane, and ω is a Gaussian stochastic term. The stochastic term has an expectation value

E{ω} =


0
0
0
0

 , (7)

and the covariance matrix

cov{ω} =


0 0 0 0
0 0 0 0
0 0 σ2

xz 0
0 0 0 σ2

yz

 . (8)

The standard deviations in the two planes, σxz and σyz, are equal and calculated from Eq. 5.
The detectors in the test beam give two-dimensional measurements of the position of a particle in the

detector planes. The measurements are modeled as a sum of the true position of the particle in the plane
and a stochastic term due to measurement uncertainties.

mk = Hxk + ε (9)

The measurement errors have an expectation value

E{ε} =

(
0
0

)
, (10)

and a covariance matrix cov{ε} = V.
The matrix H describes the projection from the four-dimensional track parameter space to the two-

dimensional measurement space. The projection is the same in all planes.

H =

(
1 0 0 0
0 1 0 0

)
(11)

The measurements are defined to be on the front side of the measurement planes.

2 Track fitting with the information filter

The Kalman filter is a recursive formulation of the least squares estimator. It starts at the first or last
measurement plane in the detector system, and works by alternating between updating and predicting
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the track estimate. Updating is combining a prediction and a measurement in a plane, predicting is
propagating the updated estimate to the next measurement plane.

The Kalman filter can run either in the forward direction, reading in the measurements in the same
order they were created, or oppositely in the backward direction. The optimal estimate of the track
parameters is obtained only when all measurements have been included in the fit. To obtain the optimal
estimates in all the planes, estimates from a forward running and a backward running Kalman filter are
combined in a process called smoothing.

The information filter is a reformulation of the Kalman filter that does not keep track of the explicit
parameters and covariance matrix, but the weight matrix, W = C−1, and the information vector, i = Wx.

In a complex high energy physics experiment, the explicit track parameters are needed for propa-
gating the particle state. In the simple track model in the test beam experiment, however, it possible to
perform the propagation with implicit parameters. In this case, the information filter formulation offers
some advantages in numerical stability compared to the standard formulation.

The information filter is able to describe a complete lack of knowledge about the track parameters in
both position and direction with a weight matrix that is a null matrix. This lack of knowledge can only
be approximated with large diagonal elements in an explicit covariance matrix.

2.1 Update

A new measurement is included in the implicit parameter estimate by combining the information from
the prediction and the measurement in a plane.

The measurement projected into parameter space can be described as

xm = HT mk, (12)

with the weight matrix

Wm = HT V−1
k H =

(
V−1

k 0
0 0

)
, (13)

where 0 is the 2 × 2 null matrix. The weigh matrix reflects that no information about the direction of the
particle exists in the measurement.

The updated information vector is the weighted sum of the prediction and the measurement, where
the weights are the weight matrices. The updated weight matrix is the sum of the weights.

Wk|kxk|k =Wk|k−1xk|k−1 + Wmxm (14)

Wk|k =Wk|k−1 + Wm (15)

The explicit parameters are the weighted average of the measurement and the prediction.

xk|k =(Wk|k−1 + Wm)−1(Wk|k−1xk|k−1 + Wmxm) (16)

The information filter does not need the explicit parameters, and the update simply becomes

ik|k =ik|k−1 + HT V−1
k mk (17)

Wk|k =Wk|k−1 + HT V−1
k H. (18)
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2.2 Prediction

The propagation of the parameter vector from the back side of plane k − 1 to the front side of plane k is
described in Eq. 2. The propagation of the uncertainties is done with linear error propagation.

Ck|k−1 = FkCB
k−1|k−1FT

k (19)

In the simple track model, a track can be propagated without needing the explicit states as long as the
z-position of the points where the track intersects with the material planes are known. The deterministic
parameter transformations from the back side of plane k − 1 to the front side of plane k are described by
the inverse transport matrix, F−1.

Wk|k−1 = (FkCB
k−1|k−1FT

k )−1 = (F−1
k )T WB

k−1|k−1F−1
k (20)

ik|k−1 = Wk|k−1FkxB
k−1|k−1 = (F−1

k )T iB
k−1|k−1 (21)

The transport matrix describes the linear transformation of the parameters when they are propagated
a distance ∆zk along the z-axis, where ∆zk is the difference between the z position of the points where the
particle intersects with planes k and k − 1. The case where the z-positions are not known exactly a priori
will be discussed after the Deterministic Annealing Filter is introduced.

2.3 Multiple Coulomb scattering

Multiple scattering is taken into account by adding the covariance matrix of the material interactions to
the covariance matrix of the parameters.

CB
k = Ck + cov{ω} (22)

Inverting Wk to obtain Ck and CB
k to obtain WB

k would introduce numerical instabilities and require
an initial weight matrix that is not a null matrix.

Only the covariance matrix elements that describe the uncertainties of the direction tangents are
altered, and this uncertainty can be described with a 2 × 2 matrix

cov{ω} = UT QU, (23)

where

Q =

(
σ2

xz 0
0 σ2

xy

)
and U =

(
0 0 1 0
0 0 0 1

)
. (24)

Using the the Woodbury matrix identity [6], this problem can be solved by inverting the 2× 2 matrix
Q instead of the 4 × 4 weight matrices.

WB
k = (Ck + UT QU)−1 (25)

= Wk − AkWk, (26)

where

Ak =WkUT (Q−1 + UWkUT )−1U. (27)

Since ik depends on Wk, this must also be updated.

iB
k =ik − Akik (28)

This method is faster than relying on inversion of the 4 × 4 matrices.
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2.4 Test statistics

The difference between the predicted position and the measurement is described by the residual vector,
rk|k−1, and the corresponding covariance matrix Rk|k−1.

rk|k−1 = HT xk|k−1 −mk (29)

Rk|k−1 = HT Ck|k−1H + Vk (30)

To test that the model assumptions hold, the fitted χ2 of the tracks are studied.

χ2 =

n∑
k

χ2
k (31)

χ2
k = rT

k|k−1R−1
k|k−1rk|k−1 (32)

If the measurements are unbiased, the stochastic processes that are encountered are Gaussian and cor-
rectly described, and the residuals in the different planes are uncorrelated, the fitted χ2 should follow a
χ2 distribution with Ndof = Nm−Np degrees of freedom. Nm is the number of measurements, and Np = 4
is the number of fitted track parameters. Each two-dimensional pixel measurement increments Ndof by 2.
As a straight line can pass through one or two points with zero residuals, the χ2 increments for the first
two measurements that are included are zero.

The Kalman filter is a least squares estimator, finding the parameters that minimize χ2 for each track.
According to the Gauss-Markov theorem [7], the least squares estimator is the linear unbiased estimator
with the smallest variance given that:

1. the measurements are unbiased,

2. the normalized residuals have the same variance,

3. and the residuals in the different planes are uncorrelated.

If the fitted χ2 does not follow the theoretical χ2 distribution with the same number of degrees of freedom,
it is an indication that these assumptions do not hold, or that the residuals are not Gaussian.

If the geometry description of the experiment is not correct, the measurements will be biased. The
normalized residuals will only have the same variance if the measurement uncertainties and the amount
of scattering in the planes are correctly described. If the measurement errors are in part due to systematic
effects, measurement errors can be correlated between planes.

2.5 Smoother

The track estimate can be optimal only when information from all the measurements have been included.
For a plane in the middle of the telescope, information from Kalman filters running in opposite directions
are combined. Analogously to the Kalman filter update, the information is combined by taking the
weighted average of the two predictions, where the weights are the inverse covariance matrices.

C∗k =
[
WFW

k|k−1 + WBW
k|k+1

]−1
(33)

x∗k =C∗k
(
iFW
k|k−1 + iBW

k|k+1

)
(34)

The implicit parameter estimate at the front side of plane k is described by WFW
k|k−1 and iFW

k|k−1 for
a forward running filter, and WBW

k|k+1 and iBW
k|k+1 for a backward running filter. The explicit, smoothed

estimate of the parameters in plane k are x∗k and C∗k. The asterisk indicates that the estimates do not
contain information from the measurement in plane k.

The sum of squared normalized residuals with respect to the smoothed predictions in all planes does
not follow a χ2 distribution, as the residuals are correlated.
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3 Track finding

For the Kalman filter to work, it needs a list of measurements to be fitted. The process of going from all
hits in the detector to a set of hits assumed to belong to the same track is called track finding. Because
of detector noise, less than perfect detection efficiency, and the chance that more than one particle passes
through the detector at each trigger, an event in the EUDET telescope rarely contains only a single hit
per detector plane.

A good track finder must have a high probability for including a measurement that truly belong to
the track, and a low probability of including a hit that does not. It must have a high probability of finding
a real particle track, and a low probability of reporting a combination of hits not created by the same
particle as a track.

Two pure track finders have been implemented. The combinatorial Kalman filter is an efficient search
for hit combinations in a directed graph structure that is based on Kalman filter updates and predictions.
A cruder and simpler to implement method, called the cluster track finder, has been developed, taking
advantage of the small angular spread in the beam. This is based on clustering hits that are close in the
global xy plane.

In addition to this, the Deterministic Annealing Filter (DAF) has been implemented. The DAF blurs
the lines between track fitting and track finding. It is an iterative procedure that uses the information
filter smoother to assign weights to all the hits in the planes. An initial weight must be assigned from a
track finder.

3.1 The combinatorial Kalman filter

Assuming a particle will create either one or zero measurements per detector plane, the information from
an event in the test beam setup can be seen as a directed acyclic graph, where every hit is a vertex. A
vertex can be connected to another through a directed edge. In this case, every vertex emits a directed
edge to every vertex corresponding to a hit further downstream in the experiment. Such a graph is drawn
in Figure 2.

A path is a sequence of edges that connect a set of vertices. The length of the path is the number
of edges it contains, a path containing a single vertex is of length zero. The measurements created by
a track would create such a path. This path can be of any length, and is not required to start in the first
measurement plane, or to end up in the last.

The adjacency matrix, A, of a graph with n vertices is an n × n matrix, where the matrix element
ai j is the number of edges connecting vertex i to vertex j. The hits in the beam telescope form a graph
where the adjacency matrix element ai j is 1 in the case that vertex j is further downstream than vertex i,
and 0 otherwise. The number of possible paths of length l can be calculated by summing all the matrix
elements in the matrix Al. The total number of paths is

∏
k (Nk + 1) − 1, where Nk is the number of hits

in plane k. There exists 728 distinct paths in the graph in Figure 2. Studying every possible combination
of hits is impractical even at this hit density, and more efficient searches are needed.

The high detection efficiency of the EUDET telescope means that the probability of a real track in
the detector creating a very short path is small. The probability of accepting a path not corresponding
to a real particle track decreases with the length of the path. Only paths above some minimum length
are considered acceptable track candidates, but this requirement alone does not sufficiently reduce the
complexity. The graph in Figure 2 has 496 distinct paths containing four or more vertices.

The combinatorial Kalman filter is a heuristic search through the graph, where only edges likely
to lead to an acceptable track are followed. The search starts at some vertex in the graph, and creates
paths by following the edges to new vertices in depth-first. The recursive nature of the Kalman filter
makes it possible to assess the likelihood of finding a good track by following an edge in the graph.
This is done by calculating the χ2 increment of including the connected vertex in a Kalman filter fit of
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Figure 2: The directed acyclic graph for an event with two hits per plane and six measurement planes.
A hit is a vertex, and every vertex is connected with an edge to all vertices representing hits further
downstream. Vertices are drawn as red dots, the edges are black arrows. The position of the vertices in
the horizontal direction corresponds to the measurement plane of the hit, the position of the vertex in the
vertical direction has no significance. The measurements created by a particle would form a path in this
graph, containing anywhere from zero to six vertices.

the path, Eq. 32. If the χ2 increment is above a cut-off value, χ2
CKF , the edge is not followed, and the

entire subgraph starting with the connected vertex is excluded. With a tight cut in the χ2 increment, the
complexity of the problem is greatly reduced.

The χ2 increment can only be calculated when the path contains two or more vertices. To speed up
the search further, the collimated nature of the particle beam is taken into account. Cuts in the angles of
the straight line between the two first vertices makes it possible to exclude edges emitting from the first
vertex in the search.

A path of length larger than zero can be split into subset paths, paths made up of a subset of the
vertices in the path. To avoid reporting subset paths of an accepted track as solutions, the search starts
by considering the edges emitting from a vertex v that skip the fewest measurement planes. If an edge
passes the cuts, the search follows this edge until a track is accepted or every path in the subgraph is
excluded. After returning to the vertex v, further edges that skip planes are only considered if following
edges that skip fewer planes has not lead to an accepted track.

The combinatorial Kalman filter has been implemented as a recursive function, that attempts to ex-
tend a path to a vertex in a measurement plane k. The function arguments are a path containing one or
more vertices corresponding to hits upstream of the plane, as well as the Kalman filter prediction based
on the vertices in the path. The last vertex in the path is vi<k. The function performs the following tasks:

1. If every edge emitting from vi<k has been excluded, and the path is of sufficient length, the function
will be called in plane k = Np + 1, where Np is the number of planes in the experiment. The track
quality of the fitted path is then checked with cuts in χ2/Ndof. If the candidate passes the cuts, the
track is accepted. The function then returns.

2. A Kalman filter prediction is made from the estimate in the previous plane, containing all mea-
surements in the path leading to plane k.

3. Every edge connecting vi<k to a vertex corresponding to a hit in plane k is considered. All the
edges that lead to a path that passes cuts in the angle or χ2 increment are followed. Following an
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edge means the function calls itself in plane k + 1 after updating the Kalman filter estimate, and
extending the path with the new vertex.

4. If no vertex in the plane lead to the path being extended, the plane is skipped. This is only done if
it is possible to obtain a path of sufficient length in the remaining planes. The function calls itself
in plane k + 1 without updating the estimate with a hit or extending the path.

5. The function returns.

The search is started in every vertex corresponding to a hit in the first plane. In following planes,
searches are started in every vertex corresponding to a hit that has not been included in an accepted track
originating from a search started further upstream. This is done for all planes where it is possible to
achieve a path of sufficient length.

Both the speed and accuracy of the method depend on whether the χ2 increments follow a real
χ2 distribution. A poor description of the detector geometry, the amount of scattering encountered, or
measurement uncertainties, makes optimal edge rejection harder.

3.2 Deterministic Annealing Filter

The DAF is an extension of the Kalman filter, that deals with imperfections in track finding. While the
combinatorial Kalman filter uses the χ2 increments of a Kalman filter to accept or reject hits, the DAF
uses smoothed predictions containing information from all the hits in the planes.

The DAF is an iterative procedure that assigns weights to all the hits. It alternates between using the
information filter smoother for fitting the set of weighted hits, and improving the weights based on the
previous fit. The fitter needs an initial set of weights for the hits, which is achieved by setting the weight
of all the hits that the track finder has identified as belonging to the track to one, and all the other weights
to zero. If more than one hit per plane is assigned a weight in the track finder, the weights are normalized
so that the total weight in the plane is one.

3.2.1 Weight assignment

The ith hit in plane k, mk,i, is assigned the weight

wk,i =
exp(−χ2

k,i/2T )

exp(−χ2
DAF/2T ) +

∑
j

exp(−χ2
k, j/2T )

, (35)

where χ2
k,i is calculated from the smoothed predictions at the plane.

χ2
k,i =(mk,i −Hx∗k)T (HC∗k,iH

T + Vk,i)−1(mk,i −Hx∗k) (36)

If the smoothed prediction is Gaussian and correctly estimated, the measurement uncertainties are known
and Gaussian, and the measurement truly belongs to the track, χ2

k,i should follow the χ2 distribution with
two degrees of freedom.

The weight depends on a cut-off value, χ2
DAF , which is the χ2 value that will obtain a weight of 0.5,

and a “temperature”, T , that determines how fast the weight will drop off around the cut-off. The weight
function at different T is shown in Figure 3a. The term

∑
exp(−χ2

k, j/2T ) in the denominator introduces
competition between hits, as illustrated in Figure 3b.

The DAF iterates through a predetermined set of temperatures, generally starting at a high tempera-
ture and ending up at a low temperature, with a harder cut-off, after several iterations.
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(a) Weight function for a single hit.
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(b) Weight function with a competing hit.

Figure 3: Weight function as a function of measurement χ2 at different temperatures with and without a
competing hit. χ2

m is the χ2 of the competing hit, χ2
DAF is the cut-off value.

3.2.2 DAF update and prediction

The information filter update becomes a sum over all the weighted hits in the plane

Wk|k = Wk|k−1 +
∑

i

wk,iHT V−1
k,i H (37)

ik|k = ik|k−1 +
∑

i

wk,iHT V−1
k,i mk,i. (38)

In some cases it is possible to improve the transport matrices, Fk, used in the information filter
predictions. If one of the detector planes in the experiment is tilted such that it is not orthogonal to
the z-axis, the propagation distance, ∆z, depends on the position and direction of the track. Since the
explicit state of the track is made available to estimate the hit weights, it is possible to also improve the
∆z estimated for all the propagation matrices between the iterations in the DAF.

A good first estimate of the z-position of a plane is the z-position of the hit with the largest weight
from the track finder.

3.2.3 DAF test statistics

Test statistics can be calculated for the DAF similar to the standard Kalman filter.

χ2 =

n∑
k=1

mk∑
i=1

wi,krT
i,k|k−1R−1

i,k|k−1ri,k|k−1 (39)

Ndof = −4 + 2
n∑

k=1

mk∑
i=1

wi,k, (40)

where n is the number of measurement planes, and mk is the number of hits in plane k.
Since the weights, and the number of degrees of freedom, in this case are not integers, this is not a

true χ2 distribution. But if the temperature and cut-off for the weight function are tuned such that hits
tend to get a weight very close to one, or very close to zero, the fitted χ2 will be close to the theoretical
χ2 distribution with the number of degrees of freedom rounded to the nearest integer.
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3.3 Cluster track finder

The DAF can reject outliers, pick up new hits that are close to the track, and deal with more than one hit
per plane. This means that the requirements for accuracy in the track finder can be reduced.

A crude track finder that is very simple to implement has been developed for the test beam. The track
finder works by projecting all hits to the first measurement plane using the nominal beam angle. Then a
cluster finder groups all hits that are closer to any other hit in the cluster than a given radius. All hits in
the cluster are then given a weight of 1, all hits outside the cluster get an initial weight of 0. If more than
one hit in the same plane gets a weight of 1, the weights in the plane are normalized such that the sum is
one. After assigning weights to the hits, the track is fitted with the DAF.

4 Simulation experiments

The implemented track reconstruction methods were tested using a simple simulation model, with a
geometry and detector response similar to that of the test beam experiments with the EUDET telescope
in the SPS π+ beam, with three ATLAS pixel planes as devices under test.

The objects of the simulation experiments are to validate the information filter and the combinatorial
Kalman filter, to see if the DAF is able to improve the tracks from the combinatorial Kalman filter, and
to see if the cluster track finder followed by the DAF can compete with the combinatorial Kalman filter
followed by the DAF.

This simulation is not intended as a complete and realistic model for the beam telescope or the
ATLAS pixel devices.

4.1 Simulation model

The simulation model consists of nine planes orthogonal to the z-axis, and placed at the z positions in
Figure 1. Each plane has a sensitive area of 5 mm × 5 mm.

Each simulated particle is initialized with a position that is uniformly distributed within a 3 mm× 3 mm
square in the center of the sensors. The initial direction tangents are independently drawn from Gaussian
distributions with a mean of zero and a standard deviation of 1 × 10−4, similar to conditions observed in
the SPS test beam experiments.

The beam energy is 100 GeV throughout the experiment, and all the planes have a thickness of
X
X0

= 0.01. The amount of scattering a particle undergoes in a plane is drawn from a Gaussian distribution
with a mean of zero and a standard deviation calculated from the Highland formula, Eq. 5.

The measurements errors are Gaussian with uncorrelated errors in x and y. The EUDET measure-
ments have a standard deviation of 4.3 µm in both directions. The ATLAS pixel planes have a standard
deviation of 400 µm/

√
12 in the x-direction, and 50 µm/

√
12 in the y-direction.

Noise hits are simulated by randomly placing hits uniformly within the 5 mm × 5 mm sensitive area
of the sensors. This is a larger area than the area where the initial track states are generated, to prevent
tracks from scattering out of the area where noise hits are simulated, and complicating the analysis. The
performance of the methods were tested at different noise densities.

The simulated noise is distributed in a smaller area than that of the real EUDET sensors. The noise
density rises much quicker with the number of noise hits per plane in simulated data than what it would
do in real test beam data. This was done to reduce the time needed to study very high noise densities.

4.2 Validating the information filter implementation

To validate the information filter implementation, events with single tracks, 100% detection efficiency,
and no noise hits were simulated. In this case, track finding is trivial. The quality of the track fits are
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then tested by studying the χ2 distribution.
The geometry, amount of material, and measurement uncertainties are the same in the simulation and

the reconstruction. In this case, a perfect χ2 distribution is an indication that the optimal parameters are
found, and that the stochastic processes are treated correctly in the information filter.

The probability of observing a χ2 value that is equal to, or greater than the fitted χ2 value, given that
the observations truly are χ2 distributed, is called the p-value. To better visualize how well the fitted
χ2 match the real χ2 distribution, the p-values are also plotted. If the fitted χ2 really does follow the χ2

distribution, the p-values should follow a uniform distribution. The distributions are shown in Figure 4.
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Figure 4: Track quality plots from 1 million simulated tracks, with a perfect geometry description. The
empirical distributions are in gray ( ), the theoretical distributions are indicated in red ( ). Both plots
are a representation of the same data. The p-value plots are more sensitive to deviance from the model,
and will be used to present the χ2 distributions in the following.

4.3 The combinatorial Kalman filter

To challenge the combinatorial Kalman filter, noise hits as well as detector inefficiencies were introduced
to the simulation. Each measurement plane was simulated to have a 95% detection efficiency, and the
track finder was tested on data with an increasing number of noise hits per plane. Only the simulated hits
in the EUDET planes were used in the track reconstruction. The three ATLAS pixel planes were treated
as dead material planes.

The cumulative binomial probability of a particle generating four or more hits in the six detector
planes with 95% detection efficiency per plane is approximately 99.78%. As the probability of finding
ghost tracks is greatly increased if allowing tracks with only three hits, the track finder is at most allowed
to skip two measurement planes per track.

The cuts in the direction tangents between the two first hits were set to |dx/dz| < 0.0005 > |dy/dz|,
which are relatively conservative.

Only tracks with χ2/Ndof < 6.0 were considered. If more than one track was found in an event, the
track with the lowest χ2/Ndof was used in the analysis.

To study the quality of the track finder, the following quantities calculated using simulation truth
were studied:

• Ghost tracks: The percentage of events where a track was accepted where more than half the
included hits are noise hits.

• Tracking efficiency: The percentage of events where a track that is not a ghost track is accepted.
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• Missed hits: The percentage of real measurements that are not included in the fitted tracks. Mea-
surements from events where a ghost track, or no track at all, was accepted are not included in the
calculation.

• Contamination: The percentage of noise hits among all the hits included in accepted tracks,
excluding ghost tracks.

• Precision: To measure the precision of the track sample, the generalized variance [8] of the es-
timated track parameters at the first ATLAS pixel plane has been used. The generalized variance
is the determinant of the empirical covariance matrix, calculated from the difference between the
estimated and the true parameters at the plane.

These figures of merit are shown in Figure 5 as functions of increasing noise density, at varying cut-off

values in the χ2 increment for the combinatorial Kalman filter. The inverse generalized variance of the
combinatorial Kalman filter with χ2

CKF = 36 and 0 noise hits was used as a normalization factor for the
precision.

At very low χ2
CKF , the probability of missing hits is high. This reduces the tracking efficiency. With

a lower average number of hits in the tracks, the capability of separating real measurements from fake
hits is reduced.

As χ2
CKF increases, the performance reaches a plateau. A hit with a very large χ2 increment will

cause the final track to fail the χ2/Ndof cut, leading to the hit being rejected later on in the process. This
is a much slower way of rejecting hits than having an appropriate χ2

CKF cut.
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Figure 5: Figures of merit for the Combinatorial Kalman filter as a function of an increasing number of
simulated noise hits per plane. The dashed line that lies in the region where the performance reaches a
plateau, represents a cut in the χ2 increment, χ2

CKF , of 36. This will be used for comparison with the
other reconstruction methods. The figures of merit are calculated from samples of 1 million tracks.
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4.4 Combinatorial Kalman filter followed by the DAF

To compare the performance of the combinatorial Kalman filter followed by a DAF fit to the combinato-
rial Kalman filter alone, the same quantities as in the previous section were used, but adapted to deal with
the weighted hits. For the DAF, the contamination is the percentage of the total weight that is assigned
to noise hits. The total weight is the sum of all the weights assigned to hits. A missing hit is a real
measurement assigned a weight less than 0.5. The requirement of having three or more hits, is changed
to requiring Ndof > 1.5. A ghost track is a track where more than half of the total weight is assigned to
noise hits.

The results are presented in Figure 6, where the performance is shown for different χ2
DAF for the

weighting function. The more accurate χ2 calculated from smoothed predictions lead to decreased con-
tamination, reduced percentage of missing hits, and improved precision for the DAF fitted tracks.

For reasonable χ2
DAF , the tracking efficiency and the number of ghost tracks are approximately the

same as for the combinatorial Kalman filter without the DAF. If χ2
DAF is too high, the probability of

including noise hits that bring the χ2/Ndof of the track fit above the cut value is increased, and the
tracking efficiency is reduced.
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Figure 6: Figures of merit for the combinatorial Kalman filter followed by a DAF fit as a function of an
increasing number of simulated noise hits per plane for varying χ2 cut-off values, χ2

DAF . The dashed line
indicates the performance of the combinatorial Kalman filter without a DAF fit with χ2

CKF = 36. This is
the same as the dashed line in Figure 5. The figures of merit are calculated from samples of 1 million
tracks.

The DAF used 6 iterations, with decreasing temperatures of 25, 20, 14, 8, 4 and 1. These values were
selected by studying simulated data with 20 noise hits per plane, and reconstructed with χ2

CKF = χ2
DAF

= 36. The values are a compromise between high tracking efficiency and a low probability of missing
hits. The precision was not improved by including lower temperatures, or iterating several times over the
lowest temperature.

The weights assigned to each simulated hit is plotted in Figure 7. With no noise hits, the weights
all follow the weight function from Eq. 35. With added noise, the hits start competing for weight, and
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the picture becomes more complex. The minimum weight that can be assigned to a hit is limited by the
weight function with a competing hit with χ2 = 0. Note that the weights are calculated before the final
track fit, and the χ2 is calculated after the final fit.
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Figure 7: The χ2 versus the assigned weight after the final DAF fit. The weights are calculated with
χ2

DAF = 25 and T = 1. The vast majority of hits in the visible χ2 range are assigned a weight of one, and
lie in the red regions of the plots.

4.5 The cluster track finder followed by the DAF

The performance of the cluster track finder followed by a DAF fit is shown in Figure 8. Every cluster
with 3 or more hits was fitted with the DAF. The cluster radius needs to be large enough to connect the
hits generated by the particle, but if the clusters become too large the DAF is not able to recover. When
the clusters become too large, the performance of the method breaks down as the noise density increases.

With a larger spread in initial angular direction, or with more multiple scattering, the method would
break down at lower noise densities.

The tracking efficiency is lower than that of the combinatorial Kalman filter, but above 99% even at
very high noise densities. The other quantities behave as the combinatorial Kalman filter followed by the
DAF. As all the tracks are fitted with the same χ2

DAF , the contamination and amount of missing hits do
not vary much with the cluster radius.

At high noise densities, a large number of clusters can be found. As each cluster must be fitted with
the DAF, the method is somewhat slower than the combinatorial Kalman filter. Even at the unprecedented
noise densities tested here, the speed of the track finding would not be an issue at the data rate produces
by the EUDET telescope.

Finding the radius that maximizes the number of accepted tracks appears to be a good way of cali-
brating the method.

4.6 Comparison of the methods

To test whether the track states are estimated correctly in noisy conditions, the smoothed predictions in
the first plane were compared to the true states of the simulated particles, xtrue. The estimated covariance
matrix of the smoothed prediction should describe the uncertainties of this difference. The χ2 of the
difference is

χ2 = (xtrue − x)T C−1(xtrue − x), (41)
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Figure 8: Figures of merit for the cluster track finder followed by the DAF with χ2DAF = 36 as a function
of an increasing number of simulated noise hits per plane. The radius is the maximum distance between
hits in a cluster. The dashed line represents the combinatorial Kalman filter with χ2

CKF cut of 36.This is
the same as the dashed line in Figure 5. The figures of merit are calculated from samples of 1 million
tracks.

with four degrees of freedom. Figure 9 shows the p-values of the χ2 distribution for the combinatorial
Kalman filter, the combinatorial Kalman filter followed by the DAF, and the cluster track finder. The
combinatorial Kalman filter ran with a χ2

CKF of 36, the DAF with χ2
DAF of 36, and the cluster finder with

a radius of 100 µm. The tracks fitted with the DAF have p-values that follow a uniform distribution. The
p-values for the tracks fitted without the DAF has a small excess close to 0, meaning very high fitted χ2.

The combinatorial Kalman filter has a tracking efficiency very close to the theoretical 99.78% for
tracks with four or more hits. The DAF offers improved noise rejection, and is able to produce tracks
with less contamination and less probability of missing real hits, compared to the combinatorial Kalman
filter alone.

The cluster track finder has a lower tracking efficiency than the combinatorial Kalman filter imple-
mentation, but still has a high tracking efficiency up to noise densities much higher than what has been
observed in test beam data. The main advantage of this method is that it is very simple to implement
compared to the combinatorial Kalman filter.

Real measurements become harder to separate from noise hits with more scattering and more noise
hits. An event with several real tracks will behave differently from a single track with random noise hits.
The optimal cut values for the combinatorial Kalman filter and the DAF will vary with these conditions,
and a much more realistic simulation would be needed to tune the parameters for real data.

5 Track quality in real data

To test the implementation on real data, a sample consisting of 40000 tracks from a 120 GeV π+ beam at
CERN SPS was used. The data were recorded in November of 2010.
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Figure 9: P-values of the differences between the true, simulated parameters and the estimated track
parameters with 20 noise hits per plane. The distributions are normalized so that the area is 1. The p-
values are for the combinatorial Kalman filter alone (CKF), the combinatorial Kalman filter followed by
the DAF (CKF + DAF), and the cluster track finder (CLU). The small excess near 0 in the combinatorial
Kalman filter without the DAF is likely due to the higher contamination.

5.1 Test statistics

In the simulation, the Gauss-Markov assumptions hold perfectly. For real data, this is not necessarily
the case. For the measurements to be unbiased, the geometrical description must match reality. For the
normalized residuals to have the same variance, the amount of material the particle passes through must
be correctly accounted for, and the uncertainties of all the measurements must be known.

To obtain a correct description of geometry of the measurement planes, the Eutelescope package uses
Millepede II4. To estimate the amount of material in the experimental setup, as well as the resolution for
all the measurement planes, the method described in [9] was used. After this, the fitted χ2 of the track
sample closely follows the theoretical distribution, as shown in Figure 10.
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Figure 10: P-value plots for real 120 GeV π+ data before numerical alignment, after numerical alignment,
and after estimation of material and resolution. Only tracks with hits in all detector planes have been used
to create the plots. The distributions are normalized so that the area is 1.

5.2 Error correlation

The third Gauss-Markov assumption is that the measurement errors are uncorrelated. The Kalman filter
treats measurements as if they are a function of the true position of the particle, and smeared by a
stochastic variable, ε.

mk = Hxtrue + ε (42)

The covariance matrix of ε is the covariance matrix of the measurement.
The ATLAS pixel devices included in the real data have cells that are 50 µm×400 µm. Most clusters

in the test beam do not extend beyond one 400 µm wide column, so the position estimates tends to be in

4see http://http://www.desy.de/˜blobel/mptalks.html
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the center of the column. The measurement errors then depend more on the position of the particle within
the pixel column, than the stochastic nature of the signal formation in the sensor. These measurements
are also highly non-Gaussian, as the position of particles within the cell is close to a uniform distribution
in the experiment.

If the columns of two ATLAS pixel sensors are aligned so they have a large overlap in the collimated
beam, the errors will be correlated, as can be seen in Figure 11b. Including correlated measurements in
the track fit can make the true resolution of the smoothed predictions worse for all the planes, even when
the fitted χ2 are still very close to the theoretical distribution.

In the short pixel direction, the problem is smaller, since the stochastic nature of the measurement
errors are larger compared to the pitch.

6 Summary and conclusions

The Kalman filter has been implemented in the information filter formulation for straight line track fitting
for data taken with the EUDET beam telescope. The implementation has been used in a combinatorial
Kalman filter for track finding, as well as in an implementation of the DAF. The methods take advantage
of the collimated beam, and a very simple track model.

In simulated data, with a sensor detection efficiency of 95%, and requiring 4 or more hits per track,
the combinatorial Kalman filter is able to find close to the theoretical limit of 99.78% of all the tracks at
much higher noise densities than what is common in real data.

The DAF is able to improve track finding by increasing the probability of rejecting noise hits as well
as reducing the probability of rejecting a real measurement. The precision is improved compared to the
combinatorial Kalman filter alone.

A very simple to implement track finder based on a cluster finding algorithm and the DAF has been
implemented. The track fitter has a lower tracking efficiency than the combinatorial Kalman filter, but
performs well at low noise densities. The fitted tracks are of the same quality as tracks fitted with the
combinatorial Kalman filter followed by the DAF.

Due to the highly collimated beam in the SPS test beam, error correlations in the long pixel direction
can occur between ATLAS pixel planes. Including correlated measurements in the fit can make the
precision of the fit worse.

After numerical alignment and numerically obtained estimates of material amounts and sensor reso-
lutions, the fitted χ2 of tracks from real data is very close to following the χ2, even with non-Gaussian,
correlated measurement errors in the ATLAS pixel devices.

A Appendix: Speed optimization of the fitter

The information filter described here was used to implement the material and resolution estimation
method described in [9]. The method requires the track sample to be refitted several thousand times,
and a fast track fitter is needed.

Running two Kalman filters with two dimensions, one for x and dx/dz and one for y and dy/dz,
is faster than running one with all four parameters. Covariance between x and y is introduced if the
measurement covariance matrices have non-zero off-diagonal elements. The pixel devices give uncorre-
lated measurements in x and y in the local frame. But if the device is rotated around the z-axis, there is
correlation between x and y in the global frame of the track fitter.

Since the misalignment in the rotation around the z-axis should be small, the corrections to the
measurement covariance matrices from the alignment constant have been ignored to gain speed and
simplicity.
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Using 32-bit floating point numbers instead of 64-bit double precision floating point numbers, and
using the single instruction, multiple data (SIMD) instruction sets available in modern computer archi-
tectures can improve the speed of track fitting [10]. The implementation described here has been created
using the linear algebra package Eigen5 that uses explicit vectorization, and using 32-bit floating point
numbers.
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Figure 11: The two top plots show the normalized residuals in the first ATLAS pixel plane (APIX 1)
versus the second ATLAS pixel plane(APIX 2). The ATLAS pixels are 50µm × 400µm, and correlations
are clearly visible between the measurements in the long direction between the planes. The two bottom
plots show the residuals in the third EUDET plane versus the fourth. The residuals are calculated from
smoothed predictions where both hits are excluded from the fit. The plots are made from real data.
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