A 5o~ 10k

B ‘

P.N. LEBEDEV PHYSICAL INSTITUTE
USSR ACADEMY OF SCIENCES

Riet S High energy physics
and cosmic rays

Preprint Ne 186

V.l Fal'ko, I.S. Shapiro
THE TRIPLET PAIRING IN NUCLEI

CERN LIBRARIES, GENEVA

MURAURHMRAR RN

CM-P00067808

Moscow 1986




High energy physics
and cosmic rays

Preprint N° 186

*
V.I.Fal'ko, I.S.Shapiro

THE TRIPIET PAIRING IN NUCLEI

Moscow 1986

)
Institute for Solid State Physics, Chernogolovka



Summar>ry

The classification of phases of triplet superfluidity is
offered for the case of strong spin-orbital coupling. The two-gap
character of quasiparticle spectrum is showh . Some new collective
modes in nuclear spectra are discussed. The asymptotic formulas
for nuclear moment of inertia are obtained in high spin regibn.

The theoretical results are compared with experimental data.



Introduction

Triplet cooper pairing (spin of the pair S=1) in nuclei was
not so far investigated *) + Meanwhile, the properties of nucleon
interactions don't exclude it. That is why it is interesting to
fcmndf what physical effects triplet pairing in nuclei could induce.

The three groups of qualitative consequenges of triplet
pairing draw the peculiar attention:

(1) the enrichement of spectra of collective excitations of
nuclei owing to the variety of phases of triplet pairing;

(2) the anisottopy of triplet superfluid., It is remarkabile
that the anisotropy is not connected with ad hoc introdred
nonspherical effective potential;

(3) the two-gap structure of quasiperticle excitation spectrum
for some superfluid phases.

The theory of triplet pairing was developed in connection
with superfluidity of He3 /3/. In this liquid the spin-orbital
coupling is weak and in the first approximation could be neglected$$2
In nuclear matter the spin-orbital coupling is strong and it is the

reason for differences between superfluid phases of these two
liquids.

*) The possibility of triplet pairing in neutron stars was discussed
in /Vana some other works (see ref. in /1/ )e The first sugg-

estion about superfluidity in neutyon stars was in ref. /2/

**) We call spin-orbital coupling not only the spin-orbital
interaciions, but also tenscr forces.
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In nuclear physics we are interrested not in ground state
(which corresponds to the minimum of free eenergy) but also in
excited (quasistationary) states, which could correspond to differ-
ent superfluid phases. In section 1 we represent the whole phase
analysis for the case of triplet pairing with strong spin-orbital
coupling.

The wavefunctions of nuclei in different phases must be "strong-
ly orthogonal" (for example, the mJio\fjve transitions dctwecw them
must be hindered), Hence we obtain some nonintercombining bands in
nuclear spectra. In section 2 we investigate the level of the strong
orthogonality. We construct the wavefunctions by meansof so called
quasispin method.

The next section3 is devoted to quasiparticle excitations.

The phasges witﬁ two-gap spectra are enumerated there and the stru-
cture of two-gap multiplets for even nuclei is described. The multip-
olarity of electromagnetic transitions within multiplet components

15 sstoblished too.

In section 4 we consider the rotational spectra of nuclei
with triplet (or nontrivial singlet) pairing., We obtain formulas
for high-spin behavior of nuclear moment of inertia in different
phases and make attempt to describe some experimental data.

In section 5 we discuss the order parameter boundary conditions.

We want to emphasize that in present paper we don't consider
the concrete microscopic nuclear models which make conditions for
triplet pairing. We understand our aim in picking out the possible

consequences of hypothetical triplet pairing in nuclei.



1. The e analygis

First, we remind briefly some basic points of the theory,{-boual
allthisig represeni:ed in reviews /3/ mentioned above.
The matrix element

<NLE, (B) G (R N2> =§ w (BD a
is called the wave function of cooper pair. Here N is the number
of identical fermions (neutrons or protons), ¢ ('t“) are the
fermion annihilation operators, o and F) are spinor indices; ?
end r are the coordinates of relative motion and center of mass
coordinates of particles in pair:

by

g sr1'-r2 ; ra(r1+r2)/2
To extract the scalar (S = 0) and vector (s = 1) parts in

Pair wavefunction we must represent f = ( f “P) as & sum of
Pauli matrixes '

f = a(¥,3)i6, +'€(?.§)1623’ (1.2)
with

a(¥,~P) = a(#, 3 ; b(#,-8) = - b(£§) (1.3)
Only the states with odd (even) orbital momentum L are possible
in the case of triplet (singlet) peiring. Later we shall be
restricted with triplet p-pairing (L = 1),
If spin-orbital coupling is strong, orbital and spin angular
momente must be combined into-tgtal angular momentum of the pair J ,
which can take values 0, 1, 2, So, the cooper pairfs state iz
characterized with angular momentum J and it's projection on

some axis. The superfluid state is the bese-condensate of cooper



pairs, and each phase is defined by the choice of §J and M « The
phases, differ"wg»in sign of M only, are equivalent (because ﬁ have
equal rights with .t‘;*). Such qualitative consideration gives us €
superfluid phases /5/ « The concrete form of wavefunctions for
2ocly phases will be constructed under formalism proposed later.

Under fixed orbital quantum number I it is expediently %o
extract angular variables ?=§/g . In phenomenological analysis
We can ignore an incidental g dependence and rewright

Y = By, ¢,y ; 1,3=1,23 (1.4)
The complex tensor B is called order parameter (OP). The energy
of the systen § =P[B] is a functional on OP. In strong spin-
orbital coupling limit P is invariant under two kinds of OP's
transformations., Firstly, F stays uncha.ngeable under SO(3) rotations
" of OP, At second, F is real value and then it stays unchanéable
under U(1) transformations B = Be.iq’ . So we can wright the
whole symmetry group of F as G= S0(3)®U(1) :

Plea] =7[p] . eec
Two OPs B and B' , which could not be transformed one into
another with some G-transformation ( B'# gB ), obviously describe
different phases, Particularly, irreducible tensor Bif;] with
different J describe different phases.

The degeneration space gB (all OPs {2lowqiw to ome phase )
is equivalent to the ca-gpace G/H of group Gwith maximal stable
subgroup H of tensor B :

HB =B (1.5)



The subgrouf: H consists of discrete and continuous parts. The
continuous one may be constructed on
= 1)+ %, (1.6)
generators only. The operator IJ is the generator of rotations
around axis 2 sand "3/3¢ is the generator of U(1) tra.nsformation
B » Beib
The OP's structure we obtain after resolving the equation

h, B =0, (1.7)
which immedialy {»oQQOWS from (1.5). We can resolve (1.7) for
integer M = =J, ..., J only, because Ig B‘m = MBJM.

_ The OP in
(J, M) phase remains uncha.né'able under rotations around axis z
with simultaneous multiplication all B-components by eiMdb. Becauge
an arbitrariness in direction of 2 the (J , M )and (J =M )
phases are equivalent. So we see that the formal analysis leads us
to the same results as prelimina.ry consideration,

Resolving equation (1.7) we find a tensor structure of OP and
then the discrete part HD of the stationary subgréup H . The
knowledge of H makes possible to establish the degeneration space. .
The results of the calculations are presented in table 1. The
homotopy groups o}'\ﬂdegeneration space :i‘ and '.*'2 are also
described there., It s nontriviality means the possibility of existe-
ence of stable vortices (1\’1) and (31, 2) - singular points in the
bulk of the liquid.

We note, that in all ( J ¥ o ) phases the nuclear superfluid
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is anisotropic. The axis of pair's angular momentum quentizcodiown
is physically picked out. So in nuclei with triplet pairing the
spherical symmetry is spontaneously broken. (In ( g » M =0) =
phases only the axial symmetry remains.) »

2, Wave functions of nuclei with triplet pairi

The wave functions (WF) |J M>> of a nuclei in different
phases ( g, M ) must be "stronglyorthogonal" because of necessity
of global changes in whole condensate's state. It means that
matrix elements

+ +
<J' Ml' 31 eoe an a,n+1 eece azn ‘ J M> (2.1)
ol oduct o er
of any finite number'quasiparticle operator is small exponentially

Pq?{-& Qe vurwmbor
U N. In macroscopic syvstems values (2.1) are negligibly small.

But in muclei N ~ 102, and we must estimate the level of hindering
of interphase 8 - transitions. _ 7 A
We construct the triplet pairing wave functions by the
quasispin method. I.E. we perform the hamiltonian ﬂ _ of the
system as&sum of some Lee gi‘oup éenemtors i‘—u.
A= '{-J‘k I o | (2.2)
In (2.2) Kk is the quasiparticle momentum, ol . are numerical
functions of k. (We suggest that pairs consist of quasiparticles
with opposite momenta).

' The hamiltonian F] we diagonalize with transformation
%( QK) from quasispin group.

Do) I %+(w.<) = (... 0., ) (2.3)



The eigenfunction |J > of the hamiltonian are obtained from
physical vacuum state |0> with the "rotation"

lau> = MNd(e) 0> (2.4)
One could use the gr:up S50(5) for this aim, as has been done in
ref./ 6/ « But we shall demonstrate that the general case could be
described by simpler group S0(3) ® S0(3).

Since nucleus size is sufficiently larger than 'ku (the
inverse ¥Yermi momentum) we can classify the quasiparticle states
with momentum quantum number. On the other hand, the correlation
length is larger thaﬁenucleu's radius and we ate interested
in homogeneous superfluid states only ( B(r) = const). We
introduce the hamiltonian corresponding to such p-pairing states

in the form

H=
V7]

T o + _+
e~ Gehe/m,kzk,kg(‘szem}‘PQ“Q_kPQ :

> I

¢/ (—is'vn’ 6\2)«?/ A _yryr an’/s 4 (2.5)

g = € Q+ Q (2,6)
¢ T % Tk Tke Kd

(We recown the quasiparticle energy GK-QT’O‘M the Fermi~-levelts

energy.) In (2.5) the tensor ¢ contains effective constants

87 of short range interactions in chamnnels with different

angular momenta J = 0, 1, 2 of pairs of interacting particles:

Gmitme = 3°8,Lm&.'m' * & i

+ 8 (Sue&m, + g‘.un'gml{ - gg‘mg‘m')(a.?]



w“ 10 -

’
The sum on t in (2.5) includes ks' |<3>0 only.
We suppose, that the system prevents some J = pairing. Since
we shall work with approximate hamiltonian

A A

H= A, - %azki[w o'f(k)l, Qn .k,. + e,c.}

+ 35 S BB (2.8)

Por it s eigenstates

%4 '

Rty =Ele> (2.9)
we shall look among coherent states

¢ (2) FeliD$ > = Fo@-ND 7 o)

In expression (2.8) we use OP Blj normalized as

B.. = 3&_@ \ - (2.11)
9 d¢; lg=o

Vector Db(k) is connected with OP with an equation analogous
to (1.4) '

bJ(k) = k:lBi;) ' (2.12)
To distinguish a convenient quasispin group structure for the
hamiltonian (2.8), we must know = commutation relations between

it s terms. In the triplet case the spin matrix construction
takes place in (2.8) and the commutator

[ec Sg*] 2i 8 (Q 7@*) | (2.13)

plays an important role. :
The transformation of the tensor BJM under rotations around
axis 2z follows the law (1.8). From expressions (1.8) and (2.12)

we ascertain that b is collinear to b in (M = 0} « cage.
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Hence bxb* = 0. Therefore (M = O)-case is almost identical
to singlet pairing, because the presence of spin matrix does wot
influence on dinemical group. In (M ¥ 0)-case T and »* change
under rotations in different way, and vector %x%* differs
from zero. Asa'result, the quasispin group in (M#0)-case differs
from M = O one, and we shall congider these cases separstely.

Now we introduce operators

Y 1 + + . = ~ A + \
I(k)s= 5 a’k.(e‘-ksz(ls?«le)a? (Z + iy) s I =1, (2.14)

2 1 + §' L+ 1
I.(k) = Z( e .8 + Xa ,a )= (2.15)
3 S ¢ aad “p T Cax Tqp’ T 2
with FA§\12 (these vectors are defined in Table 1)e The

three operators satisfy the commutation relations of the Lee
algebra of the group S0(3). In addition,

2a12a0
and the weights of it s irreducible representations could be O
or 1/2,

The hamiltonian (2.8) we rewright in the form (2.2) as

H'= 2%6‘ + 3,3‘:5"3 + \‘-\\(T.) (2.16)
with .

A = Z (2¢, T0-2g 1R EONT 1, (®) +1 (W)
Rotation

B(we) = [1[Gs 3k “2*0-:‘9.;5"“% (2.17)

with



= & | 2,18
s o = N feFT g7 80T (2.18)
e
diagonalizes hamiltonian (2.16). (K =X1/2 is Z - axis spin

projection.)

The _ vacuum state Y 0> (g . the eigenstate of
13(1“:) with eigenvalue -1/2. We obtain the ground state of
superfluid condensate acting with transformation D (2.17 ) on
the . vacuum. The energy of this state is directly calculated

E:°=<3'Q|I?l’|3'0> =

= 9. 5p BB + ‘k[_?_i €.— 92ROV + €Y

These results are identical to formulas for singlet pairing.
(We must replace the 24 coefficient with 1 and vector 'ﬁ
with scalar function a .)

For M # O case, Dxb # O. Using Table 1 we can see, for
example, that in (2,2)-phase 1-BxD* = 2-|b»d*| =, end
€13 .

The convinient quasispin group for (J , M # O)-phases are
defined with operators

- 2
I, =1 > %k (1«2'8')* e (2.20)
and
- 1
ILEM =1 S (e o, , +288 8, (TP, )~ (2.21)
3! Z‘E-* 1% *aa axtap © “up 2
r = £1/2 1is quasiparticle's spin projection to the axis z .
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For fixed M and k three operators I, »I_ = I++ and I,

are the S0(3)-group generators, and operators ?(E,,t) with
different M (and k ) commute., Therefore we obtai# fee algebra
ofﬂé%oup S0(3) ® S50(3). It s irreducible representatims are of 0
and 1/2 weights. Hamiltonian (2.8) we rewright in form (2.16) with

A = Z 126, T, (M) -
’-A

- \IZ_ q;L\8 120 I@:xi»?*d1 [T, +T_)\

To obtain the operators of quasispin rotation (which diagonalize
hamiltonian \?\(1'3 ) we use the expression (2.17) with some
changes. Rotational parameters (O depend not on momenta k

only but also on spin variables o :

€
cos Wy, = V\E + gg [IT)\\Z - 2(‘5‘;1‘)* '] (2.22)

The WF | JM> in M # O phases we obtain by acting with
transformation (2.17) on |0 state. The wavefunctions \ou>
obtained by this way are of positive P-parity, bacause all operatcrs
-

I are invariant under space reflections.

The ground state energy is

+ 2- . e 3
Esn=9-% BB +2 1€, ~Jeraq2 (18172, [0 £¥) Y (2.23)
am~ 3P rkik\[k = 2 )
One can see from (2.23) that quasiparticle energy in (M#d)-phases
depends on spin projection to the axis ib xi* » and the

quasiparticle gpectrum evinces two-gap structure. ThTg Cwill

be dyscussed in details in Section 3.
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Now we find the level of interphase orthogonality. We calculate
for this aim the scalar product <1sol 3P0'> of WFs of
condensates with singlet S-pairing and (J = 0) triplet pairing.
The quasispin groups in these cases have SO(3)-structure. To obtain
the sixXlest estimation we consider the case of equal pairing gaps

(Atriplet & \b\z =8 |a|2 singlet) and parameters
€O« in these two states.

5o\ 32, > = n costd = expctz_ln

\‘G"--Q-A!k X
After us:lng an ordinary approximations (we ‘w.{' AlK) = A(k‘:)
and cué integration at kF ) the matrix element takes form

L 12257 = omp %_‘ . A—-N’l (2.24)
For nuclei with N ~ 100, €c ~40 MeV and A ~ 1 MeV
<1s°\3 D ~5.1072
and the factor of hinding of interphase transitions is of 10'3.
So we had shown that the existence of different typee of
pairing in nuclei results in new qualitative features in nuclear

spectra: the existence of bands of nonintercombining collective

levels.

3. Quasiparticle excitations

Accordingly to scheme proposed in Section 2, we obtain the ,
n - quasiparticle wave functions after quasispin rotation (2.17)
of vector

<‘?'a:&°‘t) ‘°>

The quasiparticle energy spectrum



= >
€anChyp) = S €2+ §2(181%2u 1881 1)

is found to be of two-gap character in ( M # O)-phases. (We remind
that M is the quasiparticle spin projection onthe axis ib xb*
This splitting also existe’/T/ ixf' hgo called o and P- phases')
of superfluid He3 o The existence of phases with two-gap spectra
is a qualitative peculiarity of triplet pairing, contrary to
always spin-independent spectrum of singlet pairing. Two phases
(singlet (L, M) and triplet (J = L, M) ) with similar symmetry,
properties differ, first of all, in structure of quasiparticle
spectra described above., The gap equations are also different in
th se cases., In ref./ v authors didn't take this fact into account
and therefore their results need an additional consideration.

The two-gap character of some triplet phases could result in

interesting features in spectra of even-even nuclei. The states

dat *_ )
L, By, lo> L E é(k,/u.)-f-e(k)/*:_
with two quasiparticles with opositely directed momenta are
splitted in common spin projection on some axis (for example,

z - axis in (2,2)-phase). This splitting

AE*=|eCk+h) — € (k,-4)/
is of the gap order. The X - trensitions between ( i, =/iq)
and (pma, = - M2 ) levels are of M1 character, becausethey are
connected with AMm =% 1 gpin reorientgtion. The A /V\ =12
E2-transition could be the result of relativistic corrections
only and is hindered by fgctor 1072,

*) In re:f./ 8/ the existence of F - phase in vortex core
wag proposed.
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So the existence of successive Mi-transitions among two-
quasiparticles states could be the test for band with triplet
pairing in nuclei. Each cascade consists of two x-rays with
close energies. Because of gap dependence on k direction (i.e.
on orbital quasiparticle properties) +the transition energy
could vary in wide range (o0.1+1 MeV),.

4. The rotational spectra

The combination of anisotropy of superfluid in ( J ¥ 0)-phases
with finie sizes of nucleus makes possible the collective rotation
of condensate. In this section we are interested in the dependence
of nuclear moment of inertia on angular momentum. We also define

here relative directions of rotation and an 'axis of cooper pair
spin quantizq{'\om.

The basic point of our approach ingOP.

We use the Ginzbourg-Landau approximation (we consider the
energy of the system to be Q& polyhomial function of OP), On this
way we can obtain the simple qualitative description of properties

of nuclear rotation.

We rewright the energy E m(i) of rotating nucleus
in form
Ep(D =Ep@) + TR (4.1)

Rotational frequency is denoted by ﬁ- . and E JM(i) is the
energy in rotating frame. We express E JM(Si) as a sum of
scalars of the lowest or ders constructed ot OP and 32 o
In the case of ( J , M # O)-phases the expression for E'SM Ui)
begins with the first order texm ,S%Ljai J;" rjnB*ln .
Uising the Table 7 we salculate



1,Jd=M

* —‘A 2 e 92

SlieileanB 1n = ¢ SzA ; Cc= - (4.2)

with A2 = Sp(BB*) . We assume, that the terms of higher orders
in ._Q. ~are neglegibly small. Then

EJM(SZ.) = ( -d+PQz)A + KA (4.3)

Effective parameter b/ differs for different phases, be:ausethere
are three independent wvariants of the fourth order of OP. We suppo-
se that A  is positive and some equilibrium OP exists, P could
be taken positive too. Energy (4.3) is minimrzed by condition
1%/57_ = -1, So guclemvr-‘q%oegates around the axis of

quantyza{"m o:j;L gondensate's spin. This unusial rotationsl axis
orientation is connected with the axial .enisotropy of OP (in (M#0)-
phases OP is built on -\7 = Q + i‘;,\r vectors, -K\r.\.'z\ )e At the same
time the effective potential might be axi?ily symmetric, bacause it
~is connected with matrix element (‘?ﬂ“&) R i.e.lsome BB*  combi-

nation. So our approach differs from'Bne ctandard Cranking
model.

we obtain '\_After minimizing energy E m(i)
2 c(ié&.
AT ()= = ¥ » ¥>° (4.4)
Using the defixnition

N G (4.5)

and e89.14.°"..{4.4), wa ohtnin

Myl e Ha(0) m ke T :
gt gyl = TF, W - 1 ¥ (4.6).



with
> d
Fom Voy s T=F 36
Note that I, is the nuc(}wr spin value in ( J, M ¥ O) phase

-2t 4.7
(o o

without any rotation.
Effective moment of inertia we define with expression

A = 9 Egu (D) 1

_ = (4.8)
23D AT 23, '——-D
Formula (4.8) qualitatively differs from formula
v = C + DI° (4.9)
Dt'o‘t.V\&(‘)/ used in nuclear rotation spectra. We see that in high

spin the (J, M # 0)-phase has almost constant effective moment

of inertia
FES>T) = R (4.10)
The (J, O)-phase shows quite another behavior. The vector
ei;]lninB*ln equals zero, and nucleus could rotate in
ortogonal te Z - axis direction only. This situation is analogous
to the stondard cranking model.
—
For small SL we define
Bip(R) = (-do =702 n2 & pat (4.11)
with positive o, 7 » b/ . The >0 requirement is connected

»

with negativity of the second order correction to the ground state
energy in perturbation theory. Now we find the difference beiween
expressions (4.3) and (4.11). In the first the sign of S -
correction to energy is not comnected with perturbation theory

laws. Therefore we shall call (J, M # O)-phases as rotatively-



-gtable phases.

Minimizing E Jo(&_) we obtain

2
2(Q) - 2% (4.12)
2%
Using formulas (4.1), (4.5), (4.11) and (4.12) we find the rota-
tional spectrum structure

_ B0 2,2 2,2 . 1.2 2
{EZ CI /Ig + 1+ N(I /Ig + 1)1 1]-13
with E Jo(o) defined with expressions (4.7) and
2 2 o
BE

In low spin region I«‘Ic we can use poly.nomial approximation
(4.9) for effective moment of inertia with the coefficients

. 3
Cm 1— and D= —% -L—
Zo('vl dv"?-
In high spin region IP» I, q.(4.13) shows asymptotic behavior
of rotational energy

1/3 5. 2/3
Byo(I) = Ego(0) — 3 X/,.za) J(?) (4.14)
and effective moment of inertias
1/3 2/3
2

Similar asymptotic was obtained in ref, /10/ for gome variant of
IBM and in vez,/11/

The reaults presented above are alsovafid for nontrivial



singlet pairing (for example , quadrupole pairing).

So we see that multiphase superfluidity must suggest the
existence of rotational bands with qualitatiﬁgvaifferent spin-
dependence of moment of inertia. This circumstance mak% probable
the band crossing. Moreover, the 14/3 energy dependence (4.14)
could result the two-fold band crossing.

Let us turn now to comparison of formulas (4.6) and €4.19)
with experimental data. We studied 34 isotopes in rare-earth and

actinide regions (Xe13o, Ce128’13o, Ba128, Gd156, Dy156’158,
E7{1‘)‘8,164,166, Yb164’166’174, Hf166,168, 170,174’ w166—176’

Hg184’186, Th222’228’230, U232~2369 Pu242’244). The peremeters

varied were ol , F , X » M which stay constant along each
described band. In all cases the theoretical and experimental
data coinsidence was in the range of 1-5%,

An expressive example of Dy156

spectra is represented in
Fig.2. The data for two rotational bands were taken from ref./12/,
The ground state band we interprete as ( J , O)-phase (4.13) and
pide-band as ( J , M # 0)-phase (4.6). We want to turn reader's
attention to the possible inverse band crossing at high spin,
mentioned above,

The spin-dependence of effective moment of inertia in nuclei

Hf168 and Er164
refo/13/)o

are represented in Fig.3 (experimental data from

5. The boundary conditions
Near the boundary of nucleus (on the1/k scale) the OP is

-

nonhomogenueos in 7 direction ( 1 is normal to the nuclear

suftace). The requirement of continuity of normal partoQ&EOP
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and it s derivative in n direction define the boundary conditions.
niBij(R) =0 (5.1)
For axially symmetric phases ( J, 0 ) eq.(5.1) nullifies
the OP. For phases ( J , J ) eq.(5.1) could be satisfied without
destruction of 0P, In ref./14/ for analogous situation in He3 it
was proposed, that the surface phase could differ from volume phase.
For finite system condition (5.1) means, that ( J , J ) phases are
prefered. The possibility of superfluidity conservation on the
nuclear surface could change the surface energy of the drop and
influence nn QQ\A‘\Q&W wam shape 0§ o wuedeus, ,
Simulteniously, the tangential vector field ViBg? (with
vector V from Table 1) exists on the surface. According to the
Poincaré theorem the singularity of that field always exists. The
theorem or nullifies OP, either demands the nonhomogeneous
OP's structure. Iw the second case the problem of the scale of such
nonhomogeneity exists, because the size of nucleus is smaller than
correlation length., Nevertheless, if we suggest the existence of
topological singularities, we should consider the new type of
excitations connected with the motion of the surface singularity.

Conclusions
Lon,

In present paper we distinguished the possiblg\sequences of
hypothetical triplet pairing in nuclei, The most interesting of them
are the existence of nonintercombining collective bandsand the two-
gap spectrum of quasiparticle excitations with successive Mi-
transitionsQd»wh}multiplet components. If our interpretation of
experimentsl data has some relation with reality, we should expect

the two-gap multiplets in rotatively~-steble band reglon(Section 4).
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Note, that some indications to existence of group of levels
nonintercombining with the low energy part of spectrum was obtained
in rer,/1%/,

In this previos investigation we did not consider the effects
of the space quantization on quasiparticles properties. In our
oppinion the main qualitative features of triplet pairing don't
depend on the concrete Lmiifxc\Q quasiparticle level structure.

The whole microscopic analygis of the possibility of different
types of pairing needs the self consistent consideration not of
effective potential only but also of some superfluid collective
modes, The usual potential scheme her 4 Q\/ cawn and¥er
the question, does the triplet pairing in nuclei exist.
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FIGURE CAPTION

The two-gap multiplet of two-quasiparticle excitations
in even-even nuclei. The successive M1-transitions fefween
states with different quasiparticle spin projections s

and JA2 are shown.

Rotational spectrum of Dy156. Experimental data are taken
from ref./ 12/ o The theoretical energies are presented in
brekkets, We describe the ground state band with formula
(4.13) and side-band with formule (4.6) for rotatively-

stable band, '

The moment of inertia '3 dependence on angular momentum,
The experimental data ( x ) for waa'(a) and Er164 (b) are .
taken from rer./12/, mne +l coretica? results are g:vou

4y curves I and IT,



Table1

2> el
The tensor structure of OP for different phases of triplet
pairing with strong spin-orbital coupling.
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* E(Mev )

32 — (9.742)
30 —8.650(8.707)
28 ——T7,738(7.746)
26 T 6.877(6.857)
24 —6.069(6.061)
18 ——4,025(4.034)
16 ——3,499(3.511)
12 ““*-2.707(2.6843
10 — (2.380
8 = (2.150)
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