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A Highly Parallel FPGA Implementation of a 2D-

Clustering Algorithm for the ATLAS Fast TracKer 

(FTK) Processor 
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Abstract– The highly parallel 2D-clustering FPGA 

implementation used for the input system of the Fast TracKer 

(FTK) processor for the ATLAS experiment of the Large Hadron 

Collider (LHC) at CERN is presented. The LHC after the 2013-

2014 shutdown periods is planned to have increased luminosity, 

which will make it more difficult to have efficient online selection 

of rare events due to the increase of the overlapping collisions. 

FTK is a highly-parallelized hardware system that improves the 

online selection by executing real time track finding using the 

information from the silicon inner detector. The FTK system 

requires fast and robust clustering of the hits retrieved from the 

silicon detector on FPGA devices. We show the development of 

the original input boards and the implemented clustering 

algorithm. For the complicated 2D-clustering, a moving window 

technique is used to minimize the use of FPGA resources. The 

combination of custom developed boards and implementation of 

the clustering algorithm provides sufficient processing power to 

meet the specifications for the silicon inner detector of ATLAS up 

to the maximum LHC luminosity planned until 2022. The 

developed algorithm is easily adjustable to other image 

processing applications that require real-time 2D-clustering. 

I. INTRODUCTION 

nline selection of interesting events in the ATLAS 

experiment [2] is a very challenging task. After the 2013-

2014 shutdown periods, the LHC will run with energy of 13 or 

14 TeV and with instantaneous luminosities which could 

exceed 10
34

 cm
-2 

s
-1

, with a bunch crossing period of 25 ns. It 

is expected that the pileup will reach 60 or more proton-proton 

collisions, which will render more difficult to have efficient 

online selection of rare events. The LHC experiments will 

need to adapt to the more crowded events, maintaining the 

physics output and the quality of the final results. FTK [1] is 

an approved ATLAS trigger upgrade project, and it is  
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developed to reconstruct tracks with transverse momentum 

above 1 GeV for any event accepted by level 1 trigger of up to 

100 kHz. The system is specialized in performing tracking 

through custom and commercial electronics, using a 

multistage parallel algorithm. The fast full tracking of FTK 

makes possible new trigger selections, which are robust 

against pile-up. A 2D clustering algorithm is implemented on 

the FTK input mezzanine board (FTK IM) that receives the 

data from the ATLAS silicon inner track detector. The ATLA 

silicon Inner Detector [3] consists of Pixel modules (344x128 

pixels) [4] (Fig. 1) and Strip modules (768 micro-strips) [5].  

II. FTK IM 

 The FTK IM is the most upstream input mezzanine board of 

the FTK system. The board has 12 PCB layers, and it is 

equipped with two Xilinx Spartan 6 LX150T FPGAs [6], 4 S-

LINK receiver modules, which will receive the input from the 

ATLAS inner track detector, a memory chip to store the 

pseudo data for test purposes, a FMC connector to the Data 

Formatter [1] motherboard and other basic parts (Fig. 2). The 

data from the ATLAS inner track detector Read Out Drivers 

(RODs) are received by more than 300 S-LINKs [7]  

 
Fig. 1. ATLAS Pixel Module [4] 
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Fig. 2. FTK IM board 

running at 2.0 Gbps. One FPGA on the FTK IM receives data 

from 2 RODs. Data from each ROD arrives as 32 bit words at 

a maximum 40 MHz after the S-LINK decoding. At most 1 

Pixel ROD is connected to each FPGA for efficient usage of 

FPGA resources. Finally, the FTK IM sends the clustered hit 

data to the next board by using 16 DDR lines working at 200 

MHz, allowing a data throughput of 32 bits words at 50 MHz. 

Both input and output speeds are confirmed by board testing.  

III. CLUSTERING 

 Clustering signifies identification of the group of 

contiguous hits in the data from inner track detector. Data 

from Strip modules are 1D hits position that arrives almost 

sorted by position, so clustering algorithm is relatively simple. 

Therefore this paper focuses on the complicated 2D Pixel 

clustering implementation, and the common logic functions 

shared among Strip and Pixel clustering. The data from the 

Pixel modules is received by S-LINK receiver and data is de-

serialized to 32 bits data and forwarded to input FIFO. Then 

event information as exemplified by event headers/trailers is 

converted to FTK format and only pixel hit information are 

sent to clustering part.  

 The clustering implementation is designed in three separate 

processing modules: a) the hit decoder module, b) the grid 

clustering module and c) the centroid calculation module.    

A. Hit Decoder Module 

 The hit decoder transforms the incoming data from the 

ATLAS format to a format useful to the following processing 

step, the grid clustering module. It is a pre-processing step that 

selects, formats and organizes the information that is used by 

the clustering algorithm such as start /end event words (the 

flag words that mark the beginning and the end of an event), 

module headers/trailers (the flag words that mark the 

beginning and the end of this from one pixel module as well as 

the module number) and of course the pixel hits. The code is 

robust against bit errors in the input data. In the rare case when 

the arriving hit data are not identified by a start event word or 

a module header the data are dropped. In addition the hit 

decoder can reintroduce missing control word such as end 

event words and module trailers in order to guarantee a valid 

data stream to the next modules. 

 The most important role of the hit decoder module is to 

properly align all the incoming data. The ATLAS pixel 

module’s 16 front-end (FE) chips are arranged as a 2x8 grid 

on the module surface and they are numbered in anti-

clockwise. The hits data are readout in the same FE sequence. 

This means that half of the pixel module data arrive in reverse 

column order than the other half. The hit decoder module 

needs to restore the order of the hits since the clustering 

algorithm is based on the assumption that hits are ordered by 

increasing column number sequence.  

 To achieve a Last In First Out (LIFO) is used to store all the 

hits that arrive from read out chips with number from 0 up to 7. 

When a hit arrives from a read out chips with number from 8 

up to 15 it is stored in a separate register. The value of the 

register is compared with the last value stored in the LIFO and 

the hit with the smallest column value is propagated to the 

next processing module. In this way increasing column 

sequence is restored. Two small FIFOs are added as input and 

output buffering for synchronization purposes. 

B. Grid Clustering Module 

 The grid clustering module is the one that actually identifies 

the clusters and it is the most computationally intensive block 

of the implementation. The module uses a “moving window” 

technique to minimize computational time per cluster 

identification as well as needed FPGA resources. The 

“window” is actually a rectangular grid of pixel cells of 

generic size. Its size depends on the maximum expected 

cluster size per application and it must be big enough to fit this 

cluster size. The “window” is “moving” in the sense that 

during the several passes of the cluster identification process it 

is virtually placed in different positions of the pixel module 

and every time it is filled with data from different areas of the 

pixel module plane. 

 On the starting of a module processing it is filled with data 

around the first received hit. This hit is used as a reference hit 

and it is placed on the middle row of either column 0 or 

column 1 of the window. The two alignment options are 

required because of the double column scrambling of the data. 

A first hit from an odd column in the pixel module is placed in 

column 1 inside the clustering grid in order to allow for one 

column space for hits from the previous (even) column in case 

they arrive later. The hits are read from the input until the first 

hit with a column beyond the column range spanned by the 

“window” arrives. This hit is kept in the input FIFO and 

processed later. At this point, all the hits that belong to the 

“window” are loaded to the grid, while the hits that do not 

belong to the window but are within the window column span 

(above or below it) are stored in a separate circular buffer. The 

cluster identification process begins by selecting two grid 

pixel cells as “seeds” (column 0 and column 1 on the middle 

row) (blue colored cells – Fig. 3, a). The “seed” cells that 

contain a hit when selected change their state to “selected”. 

The “selected” state is propagated on the next clock cycle to 

all neighboring hits (arrow – Fig. 3, b and c). On the same 

cycle a hit that was previously selected is now read out (black 

colored cells – Fig. 3, c and d). 

 When a hit is read out the cell returns to an “empty” state 

(grey colored cell – Fig. 3, d) using the same process all the 



 

 
Fig. 3. Cluster Readout Process 

hits that form a cluster are read out. The hit information that is 

read out of the grid is propagated to the next processing 

module in its relative coordinates with respect to the reference 

hit. After the cluster hits are all read out, a cluster flag word is 

sent to the next module that contains the absolute coordinates 

of the reference hit. The hits that remain in the grid and that do 

not belong to the identified cluster are also read out in the next 

processing step and they are saved in the circular buffer in 

their absolute coordinates. The hits that are recovered from the 

grid to be stored in the circular buffer are not in column 

sequence with the previous hits of the circular buffer. 

 On the next run of the clustering module the grid is loaded 

with hits from the circular buffer. The leftmost hit stored in 

the circular buffer is chosen as a new reference hit. This hit 

value is stored in a separate register, called the “leftmost 

register”, as the circular buffer is being filled. While reading 

from the circular buffer to load the grid, hits that do not belong 

to the grid need to be saved again in the circular buffer. Extra 

functionality had to be added to the circular buffer to control 

simultaneous reading and writing of hits without accessing 

twice the same data. If after reading the circular buffer there 

are hits in the input FIFO that belong to the columns of the 

circular buffer these hits are read until a hit with a column 

number outside the grid arrives at the input. The clusters are 

identified using the same process used on the first run. A 

clustering module process all the data related to a pixel 

detector module, so the cycle is repeated until a pixel detector 

module trailer word is received from the clustering input and 

the circular buffer is empty. For the current clustering module 

implementation a “window” of 8x21 pixels is used (8 for the z 

or η direction and 21 for the r-Φ). The most common cluster 

size in the ATLAS pixel module is of 2x3 pixels. The bigger 

grid is used to allow identification of the rarer but still existing 

bigger clusters, or clusters generated by merging hits from two 

or more clusters. Clusters of bigger size than the grid size, 

which means clusters extending from the reference hit beyond 

one of the grid edges, will be split. Clusters that touch a grid 

edge will be identified by a flag in the output. 

 The algorithm is executed in a pipeline, which means that 

clusters are identified and read out from the clustering module 

and then processed by the centroid module simultaneously. 

Different numbers of clustering modules can be implemented 

at the output of the hit decoder to identify clusters in parallel. 

These modules will work independently on different pixel 

module data. Therefore, the implementation offers the 

versatility to choose the best performance over FPGA resource 

tradeoff. 

C. Centroid Calculation Module 

 The centroid calculation module is the post-processing step 

in the clustering implementation that performs the data 

reduction process, and it is currently under development. It is 

the module where the cluster data is replaced with one set of 

coordinates, the centroid coordinates. For each cluster a 

centroid value is calculated. The centroid is then corrected by 

a variable calculated by taking into account the absolute pixel 

position in the detector as well as the charge deposition in 

each cluster measured by the Time-over-Threshold (ToT) 

information as measured from the FE. The ToT value for each 

hit is stored in the same word as the hit coordinates and while 

the hits are placed in the clustering window of the grid 

clustering module these values are stored in a separate 

memory (ToT memory) and are recovered while the cluster 

hits are read out. 

 

 One fundamental characteristic of the 2D clustering 

implementation is that different clustering engine can work 

independently and in parallel to identify different clusters, 

therefore increasing performance while exploiting more FPGA 

resources. However, the pixel data are received through S-

LINK as a single data stream and the processing units that 



 

follow the clustering implementation also require a single data 

stream, therefore data parallelizing and serializing modules are 

introduced in order to interface the parallel clustering modules 

with the single input and output data streams. A parallel 

distributor module was developed that splits the data stream to 

the different engines by choosing for each arriving module the 

least busy one. Start event and end event words are propagated 

to each clustering engine that is used for a given event in order 

to keep track of the event boundaries. In order to guarantee 

that the event sequence is maintained, the sequence of arriving 

Level-1 IDs (event identifiers) is propagated through a FIFO 

to the data merger. The data merger module is used to serialize 

the data output. It restores the original event sequence. Fig. 4 

shows three separate processing modules for the clustering in 

an example that is implemented with four parallel engines.  

 

IV. RESULTS 

We produced the 10 prototypes of FTK IM boards. The 

boards passed basic hardware tested after production. The 

boards work well with a 2.0 Gbps input over optical fibers that 

are internally decoded to 32 bits words at 40 MHz, and 200 

MHz DDR output rate. Data communication tests have been 

performed.  No bit errors have been observed after checking 

10
16

 bits, which meets the requirement from the ATLAS 

experiment. The clustering algorithm was tested in firmware 

simulation with realistic Monte Carlo data.  

Ten boards where then taken to ATLAS and tested with 

data from the real RODs. The FTK IM board received hits 

data from ROD correctly and clustered outputs were 

consistent with expectation. The single flow 2D clustering was 

used for the test, and the algorithm works perfectly with real 

ROD data.  

 The 2D clustering algorithm was expanded to parallel 

version, and it is working well in firmware simulation. The 

implementation of 16 parallel engines has achieved a 65 MHz 

maximum clock frequency and occupies 40 % of a FPGA 

resource of FTK IM. This parallelized 2D clustering 

implementation has a more than enough processing power 

required for the Pixel detector even under the worst case 

condition of 80 overlapping pp collisions per bunch crossing 

that correspond to the maximum LHC luminosity planned 

until 2022. 
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