
A
TL

-D
A

Q
-P

R
O

C
-2

01
4-

00
4

04
/0

7/
20

14

A Highly Parallel FPGA Implementation of a 2D-

Clustering Algorithm for the ATLAS Fast TracKer

(FTK) Processor

N. Kimura, A. Annovi, M. Beretta, M. Gatta, S. Gkaitatzis, T. Iizawa, K. Kordas, T. Korikawa, S. Nikolaidis,
C. Petridou, C-L. Sotiropoulou, K. Yorita and G. Volpi

Abstract– The highly parallel 2D-clustering FPGA

implementation used for the input system of the Fast TracKer

(FTK) processor for the ATLAS experiment of the Large Hadron

Collider (LHC) at CERN is presented. The LHC after the 2013-

2014 shutdown periods is planned to have increased luminosity,

which will make it more difficult to have efficient online selection

of rare events due to the increase of the overlapping collisions.

FTK is a highly-parallelized hardware system that improves the

online selection by executing real time track finding using the

information from the silicon inner detector. The FTK system

requires fast and robust clustering of the hits retrieved from the

silicon detector on FPGA devices. We show the development of

the original input boards and the implemented clustering

algorithm. For the complicated 2D-clustering, a moving window

technique is used to minimize the use of FPGA resources. The

combination of custom developed boards and implementation of

the clustering algorithm provides sufficient processing power to

meet the specifications for the silicon inner detector of ATLAS up

to the maximum LHC luminosity planned until 2022. The

developed algorithm is easily adjustable to other image

processing applications that require real-time 2D-clustering.

I. INTRODUCTION

nline selection of interesting events in the ATLAS

experiment [2] is a very challenging task. After the 2013-

2014 shutdown periods, the LHC will run with energy of 13 or

14 TeV and with instantaneous luminosities which could

exceed 10
34

 cm
-2

s
-1

, with a bunch crossing period of 25 ns. It

is expected that the pileup will reach 60 or more proton-proton

collisions, which will render more difficult to have efficient

online selection of rare events. The LHC experiments will

need to adapt to the more crowded events, maintaining the

physics output and the quality of the final results. FTK [1] is

an approved ATLAS trigger upgrade project, and it is

Manuscript received May 22, 2014. This work was supported from Istituto

Nazionale di Fisica Nucleare; Grant-in-Aid for Scientific Research from the

Japan Society for the Promotion of Science and MEXT, Japan; and the
European community FP7 People grants ARTLHCFE 254410 FP7-PEOPLE-

2009-IOF and FTK 324318 FP7-PEOPLE-2012-IAPP.

Naoki Kimura, Tomoya Iizawa, Tomohiro korikawa and Kohei Yorita are
with the Department of Physis of the Waseda University, 3-4-1 Okubo

Shinjuku Tokyo, Japan

 S. Gkaitatzis, Calliope-Louisa Sotiropoulou, Kostas Kordas, Spiridon
Nikolaidis and Chara Petridou are with the Department of Physics of the

Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece (emails:

lsoti@physics.auth.gr, snikolaid@physics.auth.gr).
Alberto Annovi, Matteo Beretta, Maurizio Gatta and Guido Volpi are with

the INFN National

Laboratory, Italy (emails: alberto.annovi@cern.ch, matteo.beretta@lnf.infn.it,
guido.volpi@pi.infn.it).

developed to reconstruct tracks with transverse momentum

above 1 GeV for any event accepted by level 1 trigger of up to

100 kHz. The system is specialized in performing tracking

through custom and commercial electronics, using a

multistage parallel algorithm. The fast full tracking of FTK

makes possible new trigger selections, which are robust

against pile-up. A 2D clustering algorithm is implemented on

the FTK input mezzanine board (FTK IM) that receives the

data from the ATLAS silicon inner track detector. The ATLA

silicon Inner Detector [3] consists of Pixel modules (344x128

pixels) [4] (Fig. 1) and Strip modules (768 micro-strips) [5].

II. FTK IM

 The FTK IM is the most upstream input mezzanine board of

the FTK system. The board has 12 PCB layers, and it is

equipped with two Xilinx Spartan 6 LX150T FPGAs [6], 4 S-

LINK receiver modules, which will receive the input from the

ATLAS inner track detector, a memory chip to store the

pseudo data for test purposes, a FMC connector to the Data

Formatter [1] motherboard and other basic parts (Fig. 2). The

data from the ATLAS inner track detector Read Out Drivers

(RODs) are received by more than 300 S-LINKs [7]

Fig. 1. ATLAS Pixel Module [4]

O

mailto:lsoti@physics.auth.gr

Fig. 2. FTK IM board

running at 2.0 Gbps. One FPGA on the FTK IM receives data

from 2 RODs. Data from each ROD arrives as 32 bit words at

a maximum 40 MHz after the S-LINK decoding. At most 1

Pixel ROD is connected to each FPGA for efficient usage of

FPGA resources. Finally, the FTK IM sends the clustered hit

data to the next board by using 16 DDR lines working at 200

MHz, allowing a data throughput of 32 bits words at 50 MHz.

Both input and output speeds are confirmed by board testing.

III. CLUSTERING

 Clustering signifies identification of the group of

contiguous hits in the data from inner track detector. Data

from Strip modules are 1D hits position that arrives almost

sorted by position, so clustering algorithm is relatively simple.

Therefore this paper focuses on the complicated 2D Pixel

clustering implementation, and the common logic functions

shared among Strip and Pixel clustering. The data from the

Pixel modules is received by S-LINK receiver and data is de-

serialized to 32 bits data and forwarded to input FIFO. Then

event information as exemplified by event headers/trailers is

converted to FTK format and only pixel hit information are

sent to clustering part.

 The clustering implementation is designed in three separate

processing modules: a) the hit decoder module, b) the grid

clustering module and c) the centroid calculation module.

A. Hit Decoder Module

 The hit decoder transforms the incoming data from the

ATLAS format to a format useful to the following processing

step, the grid clustering module. It is a pre-processing step that

selects, formats and organizes the information that is used by

the clustering algorithm such as start /end event words (the

flag words that mark the beginning and the end of an event),

module headers/trailers (the flag words that mark the

beginning and the end of this from one pixel module as well as

the module number) and of course the pixel hits. The code is

robust against bit errors in the input data. In the rare case when

the arriving hit data are not identified by a start event word or

a module header the data are dropped. In addition the hit

decoder can reintroduce missing control word such as end

event words and module trailers in order to guarantee a valid

data stream to the next modules.

 The most important role of the hit decoder module is to

properly align all the incoming data. The ATLAS pixel

module’s 16 front-end (FE) chips are arranged as a 2x8 grid

on the module surface and they are numbered in anti-

clockwise. The hits data are readout in the same FE sequence.

This means that half of the pixel module data arrive in reverse

column order than the other half. The hit decoder module

needs to restore the order of the hits since the clustering

algorithm is based on the assumption that hits are ordered by

increasing column number sequence.

 To achieve a Last In First Out (LIFO) is used to store all the

hits that arrive from read out chips with number from 0 up to 7.

When a hit arrives from a read out chips with number from 8

up to 15 it is stored in a separate register. The value of the

register is compared with the last value stored in the LIFO and

the hit with the smallest column value is propagated to the

next processing module. In this way increasing column

sequence is restored. Two small FIFOs are added as input and

output buffering for synchronization purposes.

B. Grid Clustering Module

 The grid clustering module is the one that actually identifies

the clusters and it is the most computationally intensive block

of the implementation. The module uses a “moving window”

technique to minimize computational time per cluster

identification as well as needed FPGA resources. The

“window” is actually a rectangular grid of pixel cells of

generic size. Its size depends on the maximum expected

cluster size per application and it must be big enough to fit this

cluster size. The “window” is “moving” in the sense that

during the several passes of the cluster identification process it

is virtually placed in different positions of the pixel module

and every time it is filled with data from different areas of the

pixel module plane.

 On the starting of a module processing it is filled with data

around the first received hit. This hit is used as a reference hit

and it is placed on the middle row of either column 0 or

column 1 of the window. The two alignment options are

required because of the double column scrambling of the data.

A first hit from an odd column in the pixel module is placed in

column 1 inside the clustering grid in order to allow for one

column space for hits from the previous (even) column in case

they arrive later. The hits are read from the input until the first

hit with a column beyond the column range spanned by the

“window” arrives. This hit is kept in the input FIFO and

processed later. At this point, all the hits that belong to the

“window” are loaded to the grid, while the hits that do not

belong to the window but are within the window column span

(above or below it) are stored in a separate circular buffer. The

cluster identification process begins by selecting two grid

pixel cells as “seeds” (column 0 and column 1 on the middle

row) (blue colored cells – Fig. 3, a). The “seed” cells that

contain a hit when selected change their state to “selected”.

The “selected” state is propagated on the next clock cycle to

all neighboring hits (arrow – Fig. 3, b and c). On the same

cycle a hit that was previously selected is now read out (black

colored cells – Fig. 3, c and d).

 When a hit is read out the cell returns to an “empty” state

(grey colored cell – Fig. 3, d) using the same process all the

Fig. 3. Cluster Readout Process

hits that form a cluster are read out. The hit information that is

read out of the grid is propagated to the next processing

module in its relative coordinates with respect to the reference

hit. After the cluster hits are all read out, a cluster flag word is

sent to the next module that contains the absolute coordinates

of the reference hit. The hits that remain in the grid and that do

not belong to the identified cluster are also read out in the next

processing step and they are saved in the circular buffer in

their absolute coordinates. The hits that are recovered from the

grid to be stored in the circular buffer are not in column

sequence with the previous hits of the circular buffer.

 On the next run of the clustering module the grid is loaded

with hits from the circular buffer. The leftmost hit stored in

the circular buffer is chosen as a new reference hit. This hit

value is stored in a separate register, called the “leftmost

register”, as the circular buffer is being filled. While reading

from the circular buffer to load the grid, hits that do not belong

to the grid need to be saved again in the circular buffer. Extra

functionality had to be added to the circular buffer to control

simultaneous reading and writing of hits without accessing

twice the same data. If after reading the circular buffer there

are hits in the input FIFO that belong to the columns of the

circular buffer these hits are read until a hit with a column

number outside the grid arrives at the input. The clusters are

identified using the same process used on the first run. A

clustering module process all the data related to a pixel

detector module, so the cycle is repeated until a pixel detector

module trailer word is received from the clustering input and

the circular buffer is empty. For the current clustering module

implementation a “window” of 8x21 pixels is used (8 for the z

or η direction and 21 for the r-Φ). The most common cluster

size in the ATLAS pixel module is of 2x3 pixels. The bigger

grid is used to allow identification of the rarer but still existing

bigger clusters, or clusters generated by merging hits from two

or more clusters. Clusters of bigger size than the grid size,

which means clusters extending from the reference hit beyond

one of the grid edges, will be split. Clusters that touch a grid

edge will be identified by a flag in the output.

 The algorithm is executed in a pipeline, which means that

clusters are identified and read out from the clustering module

and then processed by the centroid module simultaneously.

Different numbers of clustering modules can be implemented

at the output of the hit decoder to identify clusters in parallel.

These modules will work independently on different pixel

module data. Therefore, the implementation offers the

versatility to choose the best performance over FPGA resource

tradeoff.

C. Centroid Calculation Module

 The centroid calculation module is the post-processing step

in the clustering implementation that performs the data

reduction process, and it is currently under development. It is

the module where the cluster data is replaced with one set of

coordinates, the centroid coordinates. For each cluster a

centroid value is calculated. The centroid is then corrected by

a variable calculated by taking into account the absolute pixel

position in the detector as well as the charge deposition in

each cluster measured by the Time-over-Threshold (ToT)

information as measured from the FE. The ToT value for each

hit is stored in the same word as the hit coordinates and while

the hits are placed in the clustering window of the grid

clustering module these values are stored in a separate

memory (ToT memory) and are recovered while the cluster

hits are read out.

 One fundamental characteristic of the 2D clustering

implementation is that different clustering engine can work

independently and in parallel to identify different clusters,

therefore increasing performance while exploiting more FPGA

resources. However, the pixel data are received through S-

LINK as a single data stream and the processing units that

follow the clustering implementation also require a single data

stream, therefore data parallelizing and serializing modules are

introduced in order to interface the parallel clustering modules

with the single input and output data streams. A parallel

distributor module was developed that splits the data stream to

the different engines by choosing for each arriving module the

least busy one. Start event and end event words are propagated

to each clustering engine that is used for a given event in order

to keep track of the event boundaries. In order to guarantee

that the event sequence is maintained, the sequence of arriving

Level-1 IDs (event identifiers) is propagated through a FIFO

to the data merger. The data merger module is used to serialize

the data output. It restores the original event sequence. Fig. 4

shows three separate processing modules for the clustering in

an example that is implemented with four parallel engines.

IV. RESULTS

We produced the 10 prototypes of FTK IM boards. The

boards passed basic hardware tested after production. The

boards work well with a 2.0 Gbps input over optical fibers that

are internally decoded to 32 bits words at 40 MHz, and 200

MHz DDR output rate. Data communication tests have been

performed. No bit errors have been observed after checking

10
16

 bits, which meets the requirement from the ATLAS

experiment. The clustering algorithm was tested in firmware

simulation with realistic Monte Carlo data.

Ten boards where then taken to ATLAS and tested with

data from the real RODs. The FTK IM board received hits

data from ROD correctly and clustered outputs were

consistent with expectation. The single flow 2D clustering was

used for the test, and the algorithm works perfectly with real

ROD data.

 The 2D clustering algorithm was expanded to parallel

version, and it is working well in firmware simulation. The

implementation of 16 parallel engines has achieved a 65 MHz

maximum clock frequency and occupies 40 % of a FPGA

resource of FTK IM. This parallelized 2D clustering

implementation has a more than enough processing power

required for the Pixel detector even under the worst case

condition of 80 overlapping pp collisions per bunch crossing

that correspond to the maximum LHC luminosity planned

until 2022.

REFERENCES

[1] ATLAS collaboration, Fast TracKer (FTK) Techinical Design Report,

CERN-LHCC-2013-007 ATLAS-TDR-021
[2] ATLAS collaboration, G.Aad et al., The ATLAS Experiment at the

CERN Large Hadron Colooider, 2008 INST 3 S08003

[3] ATLAS collaboration, ATLAS Inner Detector Techical Design Report,
CERN-LHCC-97-16 and CERN-LHCC-97-17

[4] ATLAS collaboration, G. Aad et al, ATLAS pixel detector electronics

and sensors, JINST 3(2008) P07007

[5] Y. Unno, Nucl. Instr. and Meth. A 453 (2000) 109.

[6] Xilinx Inc, Spartan-6 Family Overview, :

http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
[7] E. Van der Bij, R. McLaren and Z. Meggyesi, S-LINK: A Prototype of

the ATLAS Read-out Link., 4th Workshop on Electronics for LHC

Experiments, Rome, Italy, 21 - 25 Sep 1998, pp.375-379

Fig. 4. Clustering Implementation

http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://cds.cern.ch/record/368415
http://cds.cern.ch/record/368415

