

Recontres de Blois - 19-23rd May 2014

Matthew M Reid

University of Warwick
On behalf of the LHCb collaboration

Overview

- There are many ways in which one can measure CP violation in the Bsystem.
- This talk will discuss decays methods involving $\bar{b} \to \bar{c}c\bar{s}$ transitions and measurement of the phase $\phi_s = -2\beta_s$.
- I will present two analyses;
 - $B_s^0 \rightarrow J/\psi \ (\phi \rightarrow K^+K^-)$ and
 - B_s^0 → $J/\psi \pi \pi$ (new, hot off the press!).
- Mention new recently **observed decay mode** that could aid ϕ_s measurements in future.
 - $B_s^0 \rightarrow J/\psi K_s K^{\pm} \pi^{\mp}$ (new, hot off the press!).
- Summary.

Phenomenology

CPV phenomenology

CPV in decay amplitudes (only way for charged particles ⊗). Asymmetry in decay amplitudes for conjugate decay.

$$\Gamma(X \to f) \neq \Gamma(\bar{X} \to \bar{f})$$

$$|\bar{A}_{\bar{f}}|$$

when
$$\left| \frac{A_{\overline{f}}}{A_f} \right| \neq 1$$

Example
$$A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{\mp}\pi^{\pm})$$

CPV in mixing. Difference between mixing probabilities

$$(X_H, X_L) \neq (X_S^0, \overline{X}_S^0)$$

mass eigenstate ≠ flavour eigenstate

"almost CP-Even"
$$|X_L\rangle=p\left|X_q^0\right\rangle+\mathrm{q}\left|\bar{X}_q^0\right\rangle$$

"almost CP-Odd"
$$|X_H\rangle=p\left|X_q^0\right\rangle-\mathbf{q}\left|\overline{X}_q^0\right\rangle$$

CP violation if $|q/p| \neq 1$

Interference between $X_q^0 \to f_{CP}$ and $X_q^0 \to \overline{X}_q^0 \to f_{CP}$ to CP eigenstates.

CPV can occur even if $|\bar{A}_f/A_f| = 1$ and |q/p| = 1,

$$\Im m\left(\left|\frac{q}{p}\frac{\bar{A}_f}{A_f}\right|\right) \neq 0$$

CPV phenomenology

$$\Gamma(X \to f) \neq \Gamma(\bar{X} \to \bar{f})$$
when $\left|\frac{\bar{A}_{\bar{f}}}{A_f}\right| \neq 1$
Example $A_{CP}(B^{\mp} \to \pi^{\pm}\pi^{\mp}\pi^{\pm})$

Cry in mixing. Difference between mixing probabilities

$$(X_H, X_L) \neq (X_S^0, \overline{X}_S^0)$$

mass eigenstate ≠ flavour eigenstate

"almost CP-Even"
$$|X_L\rangle = p \left|X_q^0\right\rangle + q \left|\bar{X}_q^0\right\rangle$$
"almost CP-Odd" $|X_H\rangle = p \left|X_q^0\right\rangle - q \left|\bar{X}_q^0\right\rangle$
CP violation if $|q/p| \neq 1$

Interference between $X_q \to f_{CP}$ and $X_q^0 \to \overline{X}_C^0 \to f_{CP}$ to CP eigenstates.

CPV can occur even if $|\bar{A}_f/A_f| = 1$ and |q/p| = 1,

$$\Im m\left(\left|\frac{q}{p}\frac{\bar{A}_f}{A_f}\right|\right) \neq 0$$

CPV phenomenology

CPV in decay amplitudes (only way for charged particles ⊗). Asymmetry in decay amplitudes for conjugate decay.

$$\Gamma(X \to f) \neq \Gamma(\bar{X} \to \bar{f})$$
when $\left| \frac{\bar{A}_{\bar{f}}}{A_f} \right| \neq 1$

Example $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{\mp}\pi^{\pm})$

CPV in mixing. Difference between mixing probabilities

$$(X_H,X_L)\neq (X_S^0,\bar{X}_S^0)$$

mass eigenstate ≠ flavour eigenstate

"almost CP-Even"
$$|X_L\rangle=p\left|X_q^0\right\rangle+\mathrm{q}\left|\bar{X}_q^0\right\rangle$$

"almost CP-Odd"
$$|X_H\rangle=p\left|X_q^0\right\rangle-\mathbf{q}\left|\bar{X}_q^0\right\rangle$$

CP violation if $|q/p| \neq 1$

Interference between $X_q^0 \to f_{CP}$ and $X_q^0 \to \overline{X}_q^0 \to f_{CP}$ to CP eigenstates.

CPV can occur even if $|\bar{A}_f/A_f| = 1$ and |q/p| = 1,

$$\Im m\left(\left|\frac{q}{p}\frac{\bar{A}_f}{A_f}\right|\right) \neq 0$$

B_s mixing parameters

• Mixing in neutral decay described by a 2x2 mixing matrix. $H_{ij} = M_{ij} - i\Gamma_{ij}$. CPT implies that mass and lifetime of particle and anti-particle are the same $(M_{11} = M_{22})$ and $\Gamma_{11} = \Gamma_{22}$. This leads to 3 mixing observables.

Virtual off-shell decay M_{12} .

Mass difference (mixing frequency)

constrains magnitude of NP contribution to oscillations (off-shell component, $\bar{b} \rightarrow \bar{t}W^-$)

$$\Delta \mathbf{m} = \mathbf{m}_{\mathrm{H}} - \mathbf{m}_{\mathrm{L}} \approx 2|M_{12}|$$

B_s mixing parameters

• Mixing in neutral decay described by a 2x2 mixing matrix. $H_{ij} = M_{ij} - i\Gamma_{ij}$. CPT implies that mass and lifetime of particle and anti-particle are the same $(M_{11} = M_{22})$ and $\Gamma_{11} = \Gamma_{22}$. This leads to 3 mixing observables.

Virtual off-shell decay M_{12} .

On-shell decay (Γ_{12})

Mass difference (mixing frequency)

constrains magnitude of NP contribution to oscillations (off-shell component, $\bar{b} \rightarrow \bar{t}W^-$)

$$\Delta \mathbf{m} = \mathbf{m}_{\mathrm{H}} - \mathbf{m}_{\mathrm{L}} \approx 2|M_{12}|$$

Lifetime difference. (on-shell component)

$$\Delta\Gamma_{S} = \Gamma_{L} - \Gamma_{H} \approx 2|\Gamma_{12}|\cos\phi_{q}^{mix}$$

B_s mixing parameters

• Mixing in neutral decay described by a 2x2 mixing matrix. $H_{ij} = M_{ij} - i\Gamma_{ij}$. CPT implies that mass and lifetime of particle and anti-particle are the same $(M_{11} = M_{22})$ and $\Gamma_{11} = \Gamma_{22}$. This leads to 3 mixing observables.

Mass difference (mixing frequency)

constrains magnitude of NP contribution to oscillations (off-shell component, $\bar{b} \rightarrow \bar{t}W^-$)

$$\Delta \mathbf{m} = \mathbf{m}_{\mathrm{H}} - \mathbf{m}_{\mathrm{L}} \approx 2|M_{12}|$$

Lifetime difference. (on-shell component)

$$\Delta\Gamma_{\rm S} = \Gamma_{\rm L} - \Gamma_{\rm H} \approx 2|\Gamma_{12}|\cos\phi_{a}^{mix}$$

CP-violating mixing phase

$$\phi_q^{mix} = arg(-M_{12}/\Gamma_{12})$$

10

- Occurs when we have interference between two decay paths to CP eigenstates (in this talk flavourless).
- Leads to an overall weak phase

$$\phi_q = \phi_q^{mix} - 2\phi^{dec} = -2 \arg\left(-\frac{V_{tb}V_{tq}^*}{V_{cb}V_{cq}^*}\right)$$

- Occurs when we have interference between two decay paths to CP eigenstates (in this talk flavourless).
- Leads to an overall weak phase

$$\phi_q = \phi_q^{mix} - 2\phi^{dec} = -2 \arg\left(-\frac{V_{tb}V_{tq}^*}{V_{cb}V_{cq}^*}\right)$$

We measure the time dependent CP asymmetry.

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) - \Gamma(B_S^0 \to J/\psi \pi \pi)(t)}{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) + \Gamma(B_S^0 \to J/\psi \pi \pi)(t)} = \frac{\mathbf{S} \sin(\Delta m t) - \mathbf{C} \cos(\Delta m t)}{\cosh(\frac{\Delta \Gamma t}{2}) + \mathbf{A}_{\Delta \Gamma} \sinh(\frac{\Delta \Gamma t}{2})}$$

 CP observables depend on decay amplitudes and phases in mixing and decay, where;

- Occurs when we have interference between two decay paths to CP eigenstates (in this talk flavourless).
- Leads to an overall weak phase

$$\phi_q = \phi_q^{mix} - 2\phi^{dec} = -2 \arg\left(-\frac{V_{tb}V_{tq}^*}{V_{cb}V_{cq}^*}\right)$$

We measure the time dependent CP asymmetry.

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) - \Gamma(B_S^0 \to J/\psi \pi \pi)(t)}{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) + \Gamma(B_S^0 \to J/\psi \pi \pi)(t)} = \frac{S \sin(\Delta m t) - C \cos(\Delta m t)}{\cosh(\frac{\Delta \Gamma t}{2}) + A_{\Delta \Gamma} \sinh(\frac{\Delta \Gamma t}{2})}$$

- CP observables depend on decay amplitudes and phases in mixing and decay, where;
 - 1. S corresponds to mixing induced CPV,

- Occurs when we have interference between two decay paths to CP eigenstates (in this talk flavourless).
- Leads to an overall weak phase

$$\phi_q = \phi_q^{mix} - 2\phi^{dec} = -2 \arg\left(-\frac{V_{tb}V_{tq}^*}{V_{cb}V_{cq}^*}\right)$$

We measure the time dependent CP asymmetry.

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) - \Gamma(B_S^0 \to J/\psi \pi \pi)(t)}{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) + \Gamma(B_S^0 \to J/\psi \pi \pi)(t)} = \frac{\mathbf{S} \sin(\Delta m t) - \mathbf{C} \cos(\Delta m t)}{\cosh(\frac{\Delta \Gamma t}{2}) + \mathbf{A}_{\Delta \Gamma} \sinh(\frac{\Delta \Gamma t}{2})}$$

- CP observables depend on decay amplitudes and phases in mixing and decay, where;
 - 1. S corresponds to mixing induced CPV,
 - 2. C is related to CPV in decay,

- Occurs when we have interference between two decay paths to CP eigenstates (in this talk flavourless).
- Leads to an overall weak phase

$$\phi_q = \phi_q^{mix} - 2\phi^{dec} = -2 \arg\left(-\frac{V_{tb}V_{tq}^*}{V_{cb}V_{cq}^*}\right)$$

We measure the time dependent CP asymmetry.

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) - \Gamma(B_S^0 \to J/\psi \pi \pi)(t)}{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) + \Gamma(B_S^0 \to J/\psi \pi \pi)(t)} = \frac{\mathbf{S} \sin(\Delta mt) - \mathbf{C} \cos(\Delta mt)}{\cosh\left(\frac{\Delta \Gamma t}{2}\right) + \mathbf{A}_{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma t}{2}\right)}$$

- CP observables depend on decay amplitudes and phases in mixing and decay, where;
 - S corresponds to mixing induced CPV,
 - C is related to CPV in decay,

 $A_{\Delta\Gamma}$ measures admixture of B_{qL} and B_{qH} that decay to final state (hence provides effective lifetime).

• PS -> VV decay, means we have an CP admixture due to relative orbital angular momentum between vector mesons $(J^P = 1^-)$.

 Requires an angular analysis to separate out CP-odd and CP-even components of the decay.

• PS -> VV decay, means we have an CP admixture due to relative orbital angular momentum between vector mesons ($J^P = 1^-$).

Requires an angular analysis to separate out CP-odd and CP-even

components of the decay. $h^ h^+$ h^+ B_s^0 $\mu^+\mu^ \mu^+$

 $\theta_{hh}(\theta_{J/\psi})$ angle between $h^+(\mu^+)$ momentum and direction opposite to B_s^0 momentum in the resonant $h^+h^-(J/\psi)$ COM system.

• PS -> VV decay, means we have an CP admixture due to relative orbital angular momentum between vector mesons ($J^P = 1^-$).

Requires an angular analysis to separate out CP-odd and CP-even

components of the decay. y $h^ h^ h^+$ h^+ h^+

 $\theta_{hh}(\theta_{I/\psi})$ angle between $h^+(\mu^+)$ momentum and direction opposite to B_s^0 momentum in the resonant $h^+h^-(I/\psi)$ COM system.

 χ angle between h^+h^- and $\mu^+\mu^-$ decay planes (rotation from h^-).

PS -> VV decay, means we have an CP admixture due to relative orbital angular momentum between vector mesons ($J^P = 1^-$).

Requires an angular analysis to separate out CP-odd and CP-even

components of the decay. \overline{B}_{s}^{0} $h^+h^ \mu^+\mu^-$

 $\theta_{hh}(\theta_{I/\psi})$ angle between $h^+(\mu^+)$ momentum and direction opposite to B_s^0 momentum in the resonant $h^+h^-(I/\psi)$ COM system.

 χ angle between h^+h^- and $\mu^+\mu^-$ decay planes (rotation from h^-).

Predominantly $B_s \to J/\psi K^+K^-$ via P-wave, observed small S-wave.

CPV in $B_s \rightarrow J/\psi \overline{\phi}$

[Phys. Rev. D 87, 112010]

• An unbinned maximum likelihood fit is performed on $1fb^{-1}$ (~26k evts).

Distinct separation between CP-odd and CP-even.

 Γ_L and Γ_H visible, thus $\Delta\Gamma_S$ can be obtained.

The results using $B_s^0 \to J/\psi \, \varphi$ data corresponding to $\mathcal{L} = 1 \, \mathrm{fb}^{-1}$ are:

$$\Phi_s = 0.07 \pm 0.09 \text{ (stat)} \pm 0.01 \text{ (syst) rad}$$
 $\Gamma_s = 0.663 \pm 0.005 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1}$
 $\Delta \Gamma_s = 0.100 \pm 0.016 \text{ (stat)} \pm 0.003 \text{ (syst) ps}^{-1}$

20/05/2014

CPV in $B_s \rightarrow J/\psi \phi$

An unbinned maximum likelihood fit is performed on $1fb^{-1}$ (~26k evts).

- Historical account, measurements proceed in 3 steps:
 - 1. Time dependent measurement of CPV mixing phase ϕ_s (1 fb^{-1}). Focused on the $J/\psi f_0(980)$ part of phase space to be sure final state is close to 100% CP-odd.

- Historical account, measurements proceed in 3 steps:
 - 1. Time dependent measurement of CPV mixing phase ϕ_s (1 fb^{-1}). Focused on the $J/\psi f_0(980)$ part of phase space to be sure final state is close to 100% CP-odd.
 - 2. Analyse the CP content (decay can proceed via resonances) using angular amplitude analysis $(3 fb^{-1})$.

- Historical account, measurements proceed in 3 steps:
 - 1. Time dependent measurement of CPV mixing phase ϕ_s (1 fb^{-1}). Focused on the $J/\psi f_0(980)$ part of phase space to be sure final state is close to 100% CP-odd.
 - 2. Analyse the CP content (decay can proceed via resonances) using angular amplitude analysis $(3 fb^{-1})$.
 - 3. Use the good work from 2) and extend to a time-dependent measurement of CPV mixing angle ϕ_s (3 fb^{-1}). NEW!

- Historical account, measurements proceed in 3 steps:
 - 1. Time dependent measurement of CPV mixing phase ϕ_s (1 fb^{-1}). Focused on the $J/\psi f_0(980)$ part of phase space to be sure final state is close to 100% CP-odd.
 - 2. Analyse the CP content (decay can proceed via resonances) using angular amplitude analysis $(3 fb^{-1})$.
 - 3. Use the good work from 2) and extend to a time-dependent measurement of CPV mixing angle ϕ_s (3 fb^{-1}). NEW!
- Why do an amplitude angular analysis?
 - **Angular**: when the resonance is non scalar we need to account for the relative orbital angular momentum between mesons (same as $B_s^0 \to J/\psi \phi$).

$$CP|J/\psi X\rangle = \eta_{J/\psi X}|J/\psi X\rangle$$

 $B_S^0 : J^P = 0^-$
 $J/\psi : J^{PC} = 1^{--}$
 $X: J^{PC} = 0^{++}(f_0), 2^{++}(f_2)$

- Historical account, measurements proceed in 3 steps:
 - 1. Time dependent measurement of CPV mixing phase ϕ_s (1 fb^{-1}). Focused on the $J/\psi f_0(980)$ part of phase space to be sure final state is close to 100% CP-odd.
 - 2. Analyse the CP content (decay can proceed via resonances) using angular amplitude analysis $(3 fb^{-1})$.
 - 3. Use the good work from 2) and extend to a time-dependent measurement of CPV mixing angle ϕ_s (3 fb^{-1}). NEW!
- Why do an amplitude angular analysis?
 - Angular: when the resonance is non scalar we need to account for the relative orbital angular momentum between mesons (same as $B_s^0 \to J/\psi \phi$).
 - **Amplitude**: $B_s^0 \to J/\psi X$ where $X \to \pi\pi$ so a dedicated amplitude analysis required to fit the spectrum, provides fractions of the CP components.

$$CP|J/\psi X\rangle = \eta_{J/\psi X}|J/\psi X\rangle$$

 $B_S^0 : J^P = 0^-$
 $J/\psi : J^{PC} = 1^{--}$
 $X: J^{PC} = 0^{++}(f_0), 2^{++}(f_2)$

- Result from L = $1 fb^{-1}$ corresponding to ≈ 7500 events.
- Since assumed CP-odd no angular analysis was required.
- Input Γ_s , $\Delta\Gamma_s$ and Δm_s are fixed from data available.

$$\Gamma(\bar{B}_s^0 \to f_{odd}) = Ne^{-\Gamma_S t} \left\{ \frac{e^{\Delta \Gamma_S t/2}}{2} (1 + cos\phi_S) + \frac{e^{\Delta \Gamma_S t/2}}{2} (1 - cos\phi_S) + sin\phi_S \sin(\Delta m_S t) \right\},$$

Need to measure the time dependent CP asymmetry.

$$A(t) = \frac{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) - \Gamma(B_S^0 \to J/\psi \pi \pi)(t)}{\Gamma(\bar{B}_S^0 \to J/\psi \pi \pi)(t) + \Gamma(B_S^0 \to J/\psi \pi \pi)(t)}$$

• Leads to a measured value of $\phi_s = -19.0^{+173+4}_{-174-3} \ mrad$. Consistent with SM expectation, large statistical uncertainty.

(arXiv.1204.5675)

2) Amplitude $B_s \rightarrow J/\psi \pi \pi$

- Recent amplitude analysis has been performed using $L = 3 fb^{-1}$.
- First precise study of CP content.
- Five resonances required; $f_0(980)$, $f_2(1525)$, $f_2(1270)$, $f_0(1500)$, $f_0(1790)$.

- CP-odd > 97.7% @ 95% *CL*.
- Analysis of mixing angle between $f_0(550)$ and $f_0(980)$ states gives,
 - $|\phi_m| < 7.7^{\circ}$ @ 90% CL.

 Using the CP amplitude analysis on last page, a time-dependent measurement of the mixing angle can be made.

$$\Gamma(t, m_{hh}, \Omega) = \mathcal{N}e^{-\Gamma t} \left\{ \frac{|\mathcal{A}|^2 + |\lambda|^2 |\overline{\mathcal{A}}|^2}{2} \cosh \frac{\Delta \Gamma_s t}{2} + \frac{|\mathcal{A}|^2 - |\lambda|^2 |\overline{\mathcal{A}}|^2}{2} \cos(\Delta m_s t) - |\lambda| \mathcal{R}e(e^{-i\phi_s} \mathcal{A}^* \overline{\mathcal{A}}) \sinh \frac{\Delta \Gamma_s t}{2} - |\lambda| \mathcal{I}m(e^{-i\phi_s} \mathcal{A}^* \overline{\mathcal{A}}) \sin(\Delta m_s t) \right\}$$

$$\overline{\Gamma}(t, m_{hh}, \Omega) = \left| \frac{p}{q} \right|^2 \mathcal{N}e^{-\Gamma t} \left\{ \frac{|\mathcal{A}|^2 + |\lambda|^2 |\overline{\mathcal{A}}|^2}{2} \cosh \frac{\Delta \Gamma_s t}{2} - \frac{|\mathcal{A}|^2 - |\lambda|^2 |\overline{\mathcal{A}}|^2}{2} \cos(\Delta m_s t) - |\lambda| \mathcal{R}e(e^{-i\phi_s} \mathcal{A}^* \overline{\mathcal{A}}) \sinh \frac{\Delta \Gamma_s t}{2} + |\lambda| \mathcal{I}m(e^{-i\phi_s} \mathcal{A}^* \overline{\mathcal{A}}) \sin(\Delta m_s t) \right\}$$

$$\mathcal{A} \equiv \sum_i A_i \qquad \overline{\mathcal{A}} \equiv \sum_i (\eta_i A_i) \qquad \lambda \equiv \eta_i \frac{q}{p} \frac{A_i}{A_i}$$

• We sum over individual $\pi^+\pi^-$ resonant traversity amplitudes, which are functions of $m(\pi^+\pi^-)$ invariant mass and three helicity angles Ω .

$$\phi_s=75\pm67\pm8$$
 (fixed $|\lambda|=1$ CPV in decay not allowed), $\phi_s=70\pm67\pm8$ and $|\lambda|=0.89\pm0.05\pm0.01$,

(arXiv.1404.5673)

• Using the CP amplitude analysis on last page time-dependent measurement of the mixing angle can be made.

$$\Gamma(t,m_{hh},\Omega) = \mathcal{N}e^{-\Gamma t} \left\{ \frac{|\mathcal{A}|^2 + |\lambda|^2 |\overline{\mathcal{A}}|^2}{2} \cosh \frac{\Delta \Gamma_s t}{2} + \frac{|\mathcal{A}|^2 - |\lambda|^2 |\overline{\mathcal{A}}|^2}{2} \cos(\Delta m_s t) - |\lambda| \mathcal{R}e(e^{-i\phi_s} \mathcal{A}^* \overline{\mathcal{A}}) \sinh \frac{\Delta \Gamma_s t}{2} - |\lambda| \mathcal{I}m(e^{-i\phi_s} \mathcal{A}^* \overline{\mathcal{A}}) \sin(\Delta m_s t) \right\}$$

$$\overline{\Gamma}(t,m_{hh},\Omega)$$
No evidence for CPV in decay is seen.
$$\phi_s \text{ consistent with SM expectation}$$

$$\phi_s^{SM} = 36.3^{+1.6}_{-1.5} \text{ mrad}$$
and previous LHCb measurement.
$$\phi_s \text{ which are functions of } m(n-n) \text{ invariant mass and are centerery} \text{ angles } \Omega.$$

$$\phi_s=75\pm67\pm8$$
 (fixed $|\lambda|=1$ CPV in decay not allowed) , $\phi_s=70\pm67\pm8$ and $|\lambda|=0.89\pm0.05\pm0.01$,

(arXiv.1404.5673

New decays

Measurement $J/\psi K_S^0 K\pi$

- New branching fraction measurements of $B^0_{(s)} \to J/\psi K_S^0 h^{(\prime)+} h^- (h^{(\prime)} = K, \pi)$ has been performed using $L = 1 \ fb^{-1}$. (arXiv.1405.3219)
- $B^0 \to J/\psi K_S^0 \pi \pi$ confirmed and first observations of $B_S^0 \to J/\psi K_S^0 K \pi$ and $B^0 \to J/\psi K_S^0 K K$ greater than 7 σ .

Mode	Total Yield	Significance	
$B^0 o J/\psi K_S^0 \pi \pi$	717	>30.0	
$B^0 \to J/\psi K_S^0 K \pi$	27	2.4	
$B^0 o J/\psi K_S^0 KK$	45	7.7	
${\rm B}_{\rm s}^0\to J/\psi K_S^0\pi\pi$	14	2.7	
${ m B}_{ m S}^0 ightarrow J/\psi K_S^0 K\pi$	525	30.0	
${\rm B}_{\rm s}^0\to J/\psi K_S^0 KK$	5	0.5	

Measurement $J/\psi K_S^0 K \pi$

- We measure $B^0 \to J/\psi K_S^0 \pi \pi$ relative to $B^0 \to J/\psi K_S^0$.
- This provides a measurement that has 4x better statistical precision over current PDG average.

$$\mathcal{B}(B^0 \to J/\psi \, K^0 \pi^+ \pi^-) \ = \ (43.0 \pm 3.0 \, (\mathrm{stat}) \pm 3.3 \, (\mathrm{syst}) \pm 1.6 \, (\mathrm{PDG}) \big) \times 10^{-5} \, ,$$

$$\mathrm{PDG:} \, B(B^0 \to J/\psi \, K_S^0 \pi \pi) = (\ \mathbf{100.0} \pm \mathbf{40.0} \) \times \mathbf{10^{-5}}$$

• A cross check was performed measuring $B(B^0 \to \psi(2S)K^0)$ where the PDG uncertainty is much smaller, good agreement was found.

$$\mathcal{B}(B^0 \to \psi(2S)K^0) \ = \ (4.7 \pm 0.7 \, (\mathrm{stat}) \pm 0.4 \, (\mathrm{syst}) \pm 0.6 \, (\mathrm{PDG})) \times 10^{-4} \, ,$$

$$\mathrm{PDG:} \, B(B^0 \to \psi(2S)K^0) = (\ 6.\ 2 \pm 0.\ 5\) \times 10^{-4} \, .$$

Measurement $J/\psi K_S^0 K \pi$

• Using $B^0 \to J/\psi K_S^0 \pi \pi$ updated branching fraction we measure all other modes.

$$\mathcal{B}(B^0 \to J/\psi \ \overline{K}^{0} K^{\pm} \pi^{\mp}) = (11 \pm 5 \, (\text{stat}) \pm 3 \, (\text{syst}) \pm 1 \, (\text{PDG})) \times 10^{-6} \,,$$

$$< 21 \times 10^{-6} \, \text{at} \, 90\% \, \text{CL} \,,$$

$$< 24 \times 10^{-6} \, \text{at} \, 95\% \, \text{CL} \,,$$

$$\mathcal{B}(B^0 \to J/\psi \, K^0 K^+ K^-) = (20.2 \pm 4.3 \, (\text{stat}) \pm 1.7 \, (\text{syst}) \pm 0.8 \, (\text{PDG})) \times 10^{-6} \,,$$

$$\mathcal{B}(B_s^0 \to J/\psi \, \overline{K}^0 \pi^+ \pi^-) = (2.4 \pm 1.4 \, (\text{stat}) \pm 0.8 \, (\text{syst}) \pm 0.1 \, (f_s/f_d) \pm 0.1 \, (\text{PDG})) \times 10^{-5} \,,$$

$$< 4.4 \times 10^{-5} \, \text{at} \, 90\% \, \text{CL} \,,$$

$$< 5.0 \times 10^{-5} \, \text{at} \, 95\% \, \text{CL} \,,$$

$$\mathcal{B}(B_s^0 \to J/\psi \, \overline{K}^0 K^\pm \pi^\mp) = (91 \pm 6 \, (\text{stat}) \pm 6 \, (\text{syst}) \pm 3 \, (f_s/f_d) \pm 3 \, (\text{PDG})) \times 10^{-5} \,,$$

$$\mathcal{B}(B_s^0 \to J/\psi \, \overline{K}^0 K^+ K^-) = (5 \pm 9 \, (\text{stat}) \pm 2 \, (\text{syst}) \pm 1 \, (f_s/f_d)) \times 10^{-6} \,,$$

$$< 12 \times 10^{-6} \, \text{at} \, 90\% \, \text{CL} \,,$$

$$< 14 \times 10^{-6} \, \text{at} \, 95\% \, \text{CL} \,,$$

Summary

- Still no tension with the SM regarding ϕ_s .
- Measurements still statistically limited.
- Update for $B_s^0 \to J/\psi(\phi \to K^+K^-)$ coming soon!
- We have more modes becoming available, $J/\psi K_S^0 h^{(\prime)+}h^-$ and others such as $B_S^0 \to J/\psi \pi \pi \pi \pi$ (arXiv:1310.2145).
- LHC run 2 will start in 2015 (~ April):
 - COM energy 13/14 *TeV* so production cross section of $\sigma_{b\bar{b}}$ ~doubles.

Summary

- Still no tension with the SM regarding ϕ_s .
- Measurements still statistically limited.
- Update for $B_s^0 \to J/\psi(\phi \to K^+K^-)$ coming soon!
- We have more modes becoming available, $J/\psi K_S^0 h^{(\prime)+}h^-$ and others such as $B_S^0 \to J/\psi \pi \pi \pi \pi$ (arXiv:1310.2145).
- LHC run 2 will start in 2015 (~ April):
 - COM energy 13/14 *TeV* so production cross section of $\sigma_{b\bar{b}}$ ~doubles.
- Next time we should begin making constraints on NP through ϕ_s . Bring it on!!!!

Backup

The LHCb detector

• Forward arm spectrometer in $2 < \eta < 5$ range.

Previous measurements

• CDF: $B^0 \rightarrow J/\psi K_S^0 \pi \pi$

http://xxx.lanl.gov/pdf/hep-ex/0108022v1.pdf

• 3.3 σ evidence observing 39 evts.

• Belle: $B^0 \to J/\psi K_1(1270)^0$

http://arxiv.org/pdf/hep-ex/0105014.pdf

• Observed 6.2 evts to our mode $B^0 \to J/\psi K_S^0 \pi \pi$.

Previous measurements

CDF: $B^0 \rightarrow J/\psi K_S^0 \pi \pi$

http://xxx.lanl.gov/pdf/hep-ex/0108022v1.pdf

Belle: $B^0 \to J/\psi K_1(1270)^0$

http://arxiv.org/pdf/hep-ex/0105014.pdf

Combined world average:

$$B(B^0 \to J/\psi K^0 \pi \pi) = (100 \pm 40) \times 10^{-5}$$

40% uncertainty, dominated 3.3σ evidend by statistical precision.

to our mode

eV)

evts.

5.300

Amplitude $B_s \rightarrow J/\psi \pi \pi$

- CP-even fraction < 2.3% @ 95% CL.
- Table shows the relevant resonant components and their CP contribution.

	Component	Solution I	Solution II
	$f_0(980)$	$70.3 \pm 1.5^{+0.4}_{-5.1}$	$92.4 \pm 2.0^{+0.8}_{-16.0}$
	$f_0(1500)$	$10.1 \pm 0.8^{+1.1}_{-0.3}$	$9.1\pm0.9\pm0.3$
	$f_0(1790)$	$2.4 \pm 0.4^{+5.0}_{-0.2}$	$0.9 \pm 0.3^{+2.5}_{-0.1}$
	$f_2(1270)_0$	$0.36 \pm 0.07 \pm 0.03$	$0.42 \pm 0.07 \pm 0.04$
	$f_2(1270)_{\parallel}$	$0.52 \pm 0.15^{+0.05}_{-0.02}$	$0.42 \pm 0.13^{+0.11}_{-0.02}$
($f_2(1270)_{\perp}$	$0.63 \pm 0.34^{+0.16}_{-0.08}$	$0.60 \pm 0.36^{+0.12}_{-0.09}$
	$f_2'(1525)_0$	$0.51 \pm 0.09^{+0.05}_{-0.04}$	$0.52 \pm 0.09^{+0.05}_{-0.04}$
	$f_2'(1525)_{\parallel}$	$0.06^{+0.13}_{-0.04} \pm 0.01$	$0.11^{+0.16+0.03}_{-0.07-0.04}$
	$f_2'(1525)_{\perp}$	$0.26 \pm 0.18^{+0.06}_{-0.04}$	$0.26 \pm 0.22^{+0.06}_{-0.05}$
	NR	-	$5.9 \pm 1.4^{+0.7}_{-4.6}$
	Sum	85.2	110.6
	$-\mathrm{ln}\mathcal{L}$	-93738	-93739
	χ^2/ndf	2005/1822	2008/1820

Table 2: Possible resonance candidates in the $\overline{B}_s^0 \to J/\psi \pi^+ \pi^-$ decay mode and their parameters used in the fit.

parameters used in the ne.									
Resonance	Spin	Helicity	Resonance	Mass (MeV)	Width (MeV)	Source			
			formalism						
$f_0(500)$	0	0	BW	471 ± 21	534 ± 53	LHCb [19]			
$f_0(980)$	0	0	Flatté		see text				
$f_2(1270)$	2	$0,\pm 1$	$_{ m BW}$	1275.1 ± 1.2	$185.1^{+2.9}_{-2.4}$	PDG [6]			
$f_0(1500)$	0	0	$_{\mathrm{BW}}$		see text				
$f_2'(1525)$	2	$0,\pm 1$	$_{\mathrm{BW}}$	1522^{+6}_{-3}	84^{+12}_{-8}	LHCb [28]			
$f_0(1710)$	0	0	$_{ m BW}$	1720 ± 6	135 ± 8	PDG 6			
$f_0(1790)$	0	0	$_{\mathrm{BW}}$	1790^{+40}_{-30}	270^{+60}_{-30}	BES $[27]$			
$\rho(770)$	1	$0,\pm 1$	$_{\mathrm{BW}}$	775.49 ± 0.34	149.1 ± 0.8	PDG 6			

Resonant contribution and the models used to describe poles.

$f_0(980) - f_0(550)$ angle

arXiv.1305.6554

When the σ and f_0 are considered as $q\bar{q}$ states there is the possibility of their being mixtures of light and strange quarks that is characterized by a 2×2 rotation matrix with a single parameter, the angle ϕ , so that their wave-functions are

$$|f_0\rangle = \cos \phi |s\bar{s}\rangle + \sin \phi |n\bar{n}\rangle$$

 $|\sigma\rangle = -\sin \phi |s\bar{s}\rangle + \cos \phi |n\bar{n}\rangle,$
where $|n\bar{n}\rangle \equiv \frac{1}{\sqrt{2}} (|u\bar{u}\rangle + |d\bar{d}\rangle).$ (1)

While there have been several attempts to measure the mixing angle ϕ , the model dependent results give a wide range of values. We describe here only a few examples. D^{\pm} and D_s^{\pm} decays into $f_0(980)\pi^{\pm}$ and $f_0(980)K^{\pm}$ give values of $31^{\circ} \pm 5^{\circ}$ or $42^{\circ} \pm 7^{\circ}$ [10]. $D_s^{+} \to \pi^{+}\pi^{+}\pi^{-}$ transitions give a range $35^{\circ} < |\phi| < 55^{\circ}$ [11]. In light meson radiative decays two solutions are found either $4^{\circ} \pm 3^{\circ}$ or $136^{\circ} \pm 6^{\circ}$ [12]. Resonance decays from both $\phi \to \gamma \pi^{0} \pi^{0}$ and $J/\psi \to \omega \pi \pi$ give a value of $\simeq 20^{\circ}$. On the basis of SU(3), a value of $19^{\circ} \pm 5^{\circ}$ is provided [13]. Finally, Ochs [14], averaging over several processes, finds $30^{\circ} \pm 3^{\circ}$

When these states are viewed as $q\bar{q}q\bar{q}$ states the wave functions becomes

$$|f_0\rangle = \frac{1}{\sqrt{2}} \left([su][\bar{s}\bar{u}] + [sd][\bar{s}\bar{d}] \right), \quad |\sigma\rangle = [ud][\bar{u}\bar{d}].$$
 (2)

In this Letter we assume the tetraquark states are unmixed, for which there is some justification [2,10,15], with a mixing angle estimate of $< 5^{\circ}$ [9].

CPV mixing and decay

ingredients to measure asymmetry

$$A_{CP}(t) = \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)}$$

- flavour tagging
 - determine initial flavour of B meson at t=0
 - need to control the rate of wrong tags
- decay time reconstruction
 - resolution
 - acceptance
- fast B_s oscillation Δm_s
- LHCb decay time resolution ≈45 fs
- flavour tagging required

