
G. Anders, G. Avolio, G. Lehmann Miotto, L. Magnoni

CERN, Geneva, Switzerland

The Run Control System and the Central Hint and
Information Processor of the Data Acquisition
System of the ATLAS Experiment at the LHC

1. Introduction

The Trigger and Data Acquisition1 (TDAQ) system of the ATLAS2
detector at the Large Hadron Collider (LHC) at CERN is composed of a
large number of distributed hardware and software components (about
3000 machines and more than 15000 concurrent processes at the end of
LHC’s Run I) which in a coordinated manner provide the data-taking
functionality of the overall system.

The Run Control (RC) and the Central Hint and Information Processor
(CHIP) are key components of the Online Software3 framework that
encompasses the software to configure, control and monitor the TDAQ
system.

The RC system steers the data acquisition by starting and stopping processes and by carrying all data-taking
elements through well-defined states in a coherent way. During the LHC Long Shutdown 1 (LS1) the RC has been
completely re-designed and re-implemented in order to better fulfill the new requirements which emerged during the
LHC Run 1 and were not foreseen during the initial design phase.

Given the size and complexity of the TDAQ system, errors and failures are bound to happen and must be dealt with.
The data acquisition system has to recover from these errors promptly and effectively, possibly without the need
to stop data taking operations. That’s why the RC is assisted by the CHIP that can be considered as its “brain”. CHIP
supervises the ATLAS data taking, takes operational decisions and handles abnormal conditions. It automates
procedures and performs advanced recoveries.

2. The Run Control - Architecture

3. The Run Control - Controller Performances 4. CHIP - Architecture

5. CHIP – Rule Testing and Performance Profiling 6. Conclusions

RC and CHIP
ready for LHC

Run 2

Clear separation
between steering

(RC) and
supervising (CHIP)

functionality

Performance
measurements and

regular tests
(dedicated test

sessions, unit tests)

Experience of
LHC Run 1

References
1. The ATLAS Collaboration, 2002, ATLAS high-level trigger, data-acquisition and controls: Technical Design

Report
2. The ATLAS Collaboration, 2008, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3
3. Lehmann G., Soloviev I., Configuration & control of the ATLAS trigger and data acquisition, in TIPP09
4. EsperTECH, http://esper.codehaus.org/ (May 2014)

Run
Control

CHIP

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000

T
im

e
 (

m
s)

N u m b e r o f C h i l d A p p l i c a t i o n s

T r a n s i t i o n T i m e s f o r a C o n t r o l l e r

Status update

CHIP actions

Status update/Problem
reporting

Commands

CHIP
Root
CTRL

CTRL

APP 1

APP 2

Applications in the ATLAS TDAQ systems are organized
in a tree-like hierarchical structure (the run control tree),
where each application is managed by a parent
Controller. The topmost node of the tree is the Root
Controller. Controller applications are responsible to
keep the system in a coherent state by starting and
stopping their child applications and by sending them the
proper commands needed to reach a state suitable for
data-taking.

Operations across the run control tree are synchronized
using Finite State Machine (FSM) principles. FSM
transitions are usually initiated by the human operator via
a graphical user interface: commands are sent directly to
the Root Controller and then automatically propagated
throughout the tree by intermediate controllers. Once an
application completes the execution of a command (or
changes its internal status by any reason) it notifies the
parent controller which in this way can evaluate when a
coherent state is reached.

Moreover controller applications are the RC elements interacting with CHIP. Controllers inform CHIP about any
change in their own status or in the status of their controlled children. CHIP, in its turn, is able to detect any anomaly
in the system analyzing the status of all the applications and can notify the controllers about actions to be taken in
order to resolve the issue. Examples of actions are setting a simple error flag or restarting/ignoring offending
applications. It is also possible for controllers to directly report problems to CHIP in very well defined scenarios.

From a performance point of view it is important to keep low the overhead introduced by the RC system in dispatching
commands and receiving their acknowledgments. In order to evaluate such an overhead, the time needed by a controller
application to fully perform an FSM state transition is measured as a function of the number of child applications.

The plot shows the time needed by a controller to
perform an FSM state transition as a function of the
number of child applications (evenly distributed on a
rack of 39 nodes). Child applications are configured to
have a zero burning time during state transitions (i.e.,
they just receive commands from the parent controller
and notify it when the command execution starts or
completes).

With 936 child applications the time needed to
perform a state transition is less than 180 ms. Taking
into account that transition actions performed by real-
life applications during physics runs take tens of
seconds and that during LHC Run 2 a single controller
will supervise O(100) children, the controller’s
performance is considered fully satisfactory.

The observed linear scaling is somehow expected
given the high number of child applications with
respect to the available HW concurrency.

Tests have been executed on nodes equipped with
two Intel Xeon E5645 CPUs, 24 GB of RAM and Gb
link connection.

Application
and Controller

(RC)

Operational Data

Application
messages

Configuration
Service

Test Management

Information Gathering Information Processing Result Distribution

Open-source Complex
Event Processing engine

CHIP

C
us

to
m

 e
ve

nt
 in

je
ct

or
s

Send application command
(restart, disable, ignore, …)

Start external application
(follow-up of failed test, …)

Perform advanced recovery
(exclude/include detector

components from readout, …)

Start automatic procedure
(clock switch, warm start, …)

Continuously monitoring,
taking actions if necessary

Logging
Knowledge base
(rules in text files)

The CHIP is an application which gathers information from various sources and employs an open-source Complex
Event Processing engine in order to aggregate, correlate and analyze this information. Furthermore it has the
possibility to interact with the so-called Test Management service which allows it to make informed decisions based on
the outcome of the test results.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

IN
SE

R
T_

IN
TO

_I
SE

ve
nt

_P
ix

el
1

IN
SE

R
T_

IN
TO

_A
ct

io
n_

A
pp

Er
ro

r_
N

ew
IN

SE
R

T_
IN

TO
_W

ar
m

St
ar

t_
St

ar
tO

fR
un

_N
ew

IN
SE

R
T_

IN
TO

_W
ar

m
St

ar
t_

En
dO

fR
un

_N
ew

IN
SE

R
T_

IN
TO

_P
ro

bl
em

_F
sm

O
ut

_R
es

ol
ve

d
IN

SE
R

T_
IN

TO
_P

ro
bl

em
_A

pp
E

rro
r_

R
es

ol
ve

d
SU

BS
C

R
IB

ER
_S

to
pl

es
s

SE
T_

C
H

IP
C

on
fig

G
et

Al
lE

R
SE

ve
nt

G
et

Al
lS

to
pl

es
s

IN
SE

R
T_

IN
TO

_I
SE

ve
nt

_P
ix

el
2

IN
SE

R
T_

IN
TO

_I
SE

ve
nt

_P
ix

el
3

IN
SE

R
T_

IN
TO

_P
ro

bl
em

_A
pp

E
rro

r_
N

ew
IN

SE
R

T_
IN

TO
_W

ar
m

St
ar

t_
W

ar
m

St
ar

t_
N

ew
C

R
EA

TE
_C

O
N

TE
XT

_P
er

R
C

Ap
pl

ic
at

io
n

D
EL

ET
E_

FR
O

M
_P

ro
bl

em
Ta

bl
eH

an
dl

in
g

IN
SE

R
T_

IN
TO

_A
ct

io
n_

R
em

ov
eE

rro
r

C
R

EA
TE

_C
O

N
TE

XT
_S

eg
m

en
te

dB
yA

pp
lic

at
io

n
IN

SE
R

T_
IN

TO
_R

C
Ap

pl
ic

at
io

n
G

et
Al

lS
ta

te
m

en
tM

et
ric

s
IN

SE
R

T_
IN

TO
_W

ar
m

St
ar

t_
W

ar
m

St
op

_N
ew

D
EL

ET
E_

FR
O

M
_E

rro
rT

ab
le

G
et

Al
lIS

Ev
en

t
IN

SE
R

T_
IN

TO
_C

on
tro

lle
r

C
R

EA
TE

_C
O

N
TE

XT
_S

eg
m

en
te

dB
yP

ro
bl

em
Pe

rA
…

IN
SE

R
T_

IN
TO

_A
pp

lic
at

io
n

IN
SE

R
T_

IN
TO

_S
to

pl
es

s_
R

es
et

Af
te

rS
to

p_
N

ew
IN

SE
R

T_
IN

TO
_P

ro
bl

em
_C

hi
ld

In
co

nS
ta

te
_N

ew
IN

SE
R

T_
IN

TO
_A

pp
lic

at
io

nC
ha

ng
eS

ta
te

IN
SE

R
T_

IN
TO

_T
es

tF
ol

lo
w

U
p_

N
ew

IN
SE

R
T_

IN
TO

_P
ro

bl
em

_C
hi

ld
In

co
nS

ta
te

_R
es

ol
ve

d
IN

SE
R

T_
IN

TO
_T

TC
R

es
ta

rt_
N

ew
IN

SE
R

T_
IN

TO
_H

ltR
ec

ov
er

y_
S

to
p

SU
BS

C
R

IB
ER

_P
ro

bl
em

Ex
ec

ut
or

--0

Average Wall Time
Average CPU Time

At its core, CHIP employs the CEP engine ESPER4 which has advanced built-in testing and monitoring
support. The knowledge base is given by a set of rules (ESPER statements). This setup allows for:

Example of metrics analysis

Statement name

Ti
m

e
[m

s]

1. Rule testing
• Correct logic of new rules can be

tested by artificial injection of events
in a unit test

2. Metrics analysis
• Monitor CPU usage of individual rules
• CPU intensive rules can be revised

3. Configurable threading model

4. Sophisticated anomaly detection
• CHIP is prepared for sophisticated

anomaly detection, since the CEP
engine is well-suited for complex
correlations of all data from the
various information providers.

Test an application
(test after recovery action, …)

This diagram shows the CPU time and wall time needed
for the evaluation of different ESPER statements (not all
existing statements shown). The evaluation time of each
statement is averaged over the duration of an approx. 15
minutes long test session, during which the RC was used

to cycle the DAQ system through various states and
during which various failures were provoked.

http://esper.codehaus.org/

	Slide Number 1

