Lepton-number and lepton-flavour violation in B decays

Phenomenology Symposium 2014

Nicola Skidmore on behalf of the LHCb collaboration

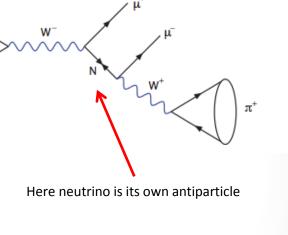
Overview

- Lepton-number violation search for Majorana neutrinos
 - $B^- \rightarrow \pi^+ \mu^- \mu^-$

- Lepton-flavour violation
 - $B_{s}^{0} \rightarrow e \mu \text{ and } B^{0} \rightarrow e \mu$
 - τ⁻ -> μ⁺ μ⁻ μ⁻

Rare Decays at LHCb

- Currently no sign of New Physics from direct searches
- Decays that are forbidden in SM or have very small branching fractions allow to probe contributions from new processes/heavy particles at a scale beyond that of direct searches
- Rare decay measurements used to set constraints on theories beyond the SM
- LHCb particularly well suited for rare decay searches
 - Efficient triggering
 - Excellent particle identification
 - Precise vertexing (VELO)

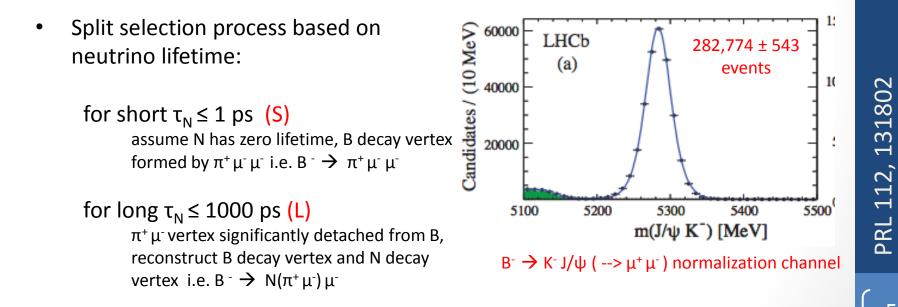

Lepton-number violating decay $B^{-} \rightarrow \pi^{+} \mu^{-} \mu^{-}$

- B⁻ $\rightarrow \pi^+ \mu^- \mu^-$ decay forbidden by SM as violates conservation of lepton-number
- May proceed via production of Majorana neutrinos – similar to neutrinoless double beta decay
- Most sensitive B meson decay channel for Majorana searches
- Sensitive to neutrino lifetimes up to 1000 ps and neutrino masses 250-5000 MeV

B

• Previous best measurement by LHCb (0.41 fb⁻¹)

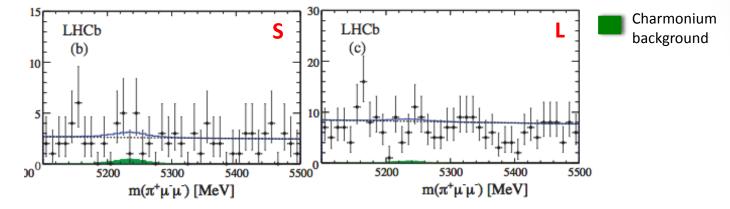
CLEO	${\cal B}$ (B ⁻ $ ightarrow$ $\pi^+ \mu^- \mu^-$) < 1400 x 10 ⁻⁹	at 90% C.L. prd65:111102(2002)
Babar	${\cal B}$ (B ⁻ $ ightarrow$ $\pi^+ \mu^- \mu^-$) < 107 x 10 ⁻⁹	at 90% C.L. prd85:071103(2012)
LHCb (0.41fb ⁻¹)	${\cal B}$ (B ⁻ $ ightarrow$ $\pi^+ \mu^- \mu^-$) < 13 x 10 ⁻⁹	at 95% C.L. prd85:112004(2012)



131802

PRL 112,

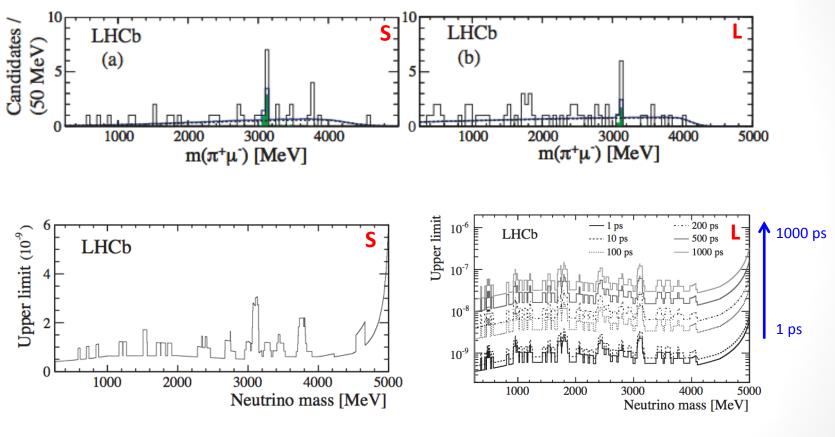
Analysis Method


- Use full 3 fb⁻¹ of data collected by LHCb at 7/8 TeV centre-of-mass energy
- Use normalization channel $B^- \rightarrow K^- J/\psi (\rightarrow \mu^+ \mu^-)$

6

Results

• No signal observed for either **S** or **L** selection channels



Use CLs method to set upper limit on branching fraction [Nucl.Instrum.Meth. A434 (1999)]

 \mathcal{B} (B⁻ $\rightarrow \pi^+ \mu^- \mu^-$) < 4.0 x 10⁻⁹ at 95% C.L. (S) Best limit to date

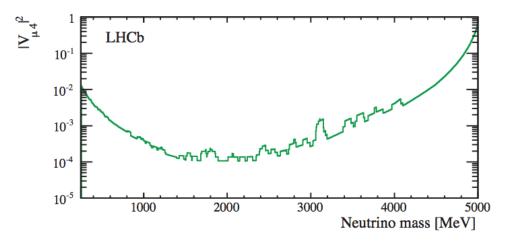
- Detection efficiency varies as a function of m_N and τ_N
- Calculate branching fraction upper limits (95% C.L.) as function of m_{N} (S) or m_{N} and τ_{N} (L)

Results

Branching fraction upper limits as a function of m_N

Branching fraction upper limits as a function of m_{N} and τ_{N}

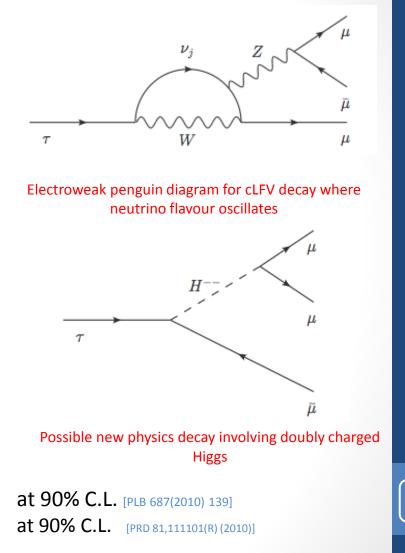
PRL 112, 131802


Results

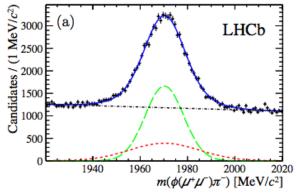
 Set upper limits on coupling of single 4th-generation Majorana neutrino to muons |V_{µ4}|, as function of m_N (95% C.L.)

$$\mathcal{B}(B^- \to \pi^+ \mu^- \mu^-) = \frac{G_F^4 f_B^2 f_\pi^2 m_B^5}{128\pi^2 \hbar} |V_{ub} V_{ud}|^2 \tau_B \left(1 - \frac{m_N^2}{m_B^2}\right) \frac{m_N}{\Gamma_N} |V_{\mu 4}|^4$$
[JHEP05(2009)030]

where


 $\Gamma_N = \left[3.95m_N^3 + 2.00m_N^5(1.44m_N^3 + 1.14)\right]10^{-13}|V_{\mu4}|^2$

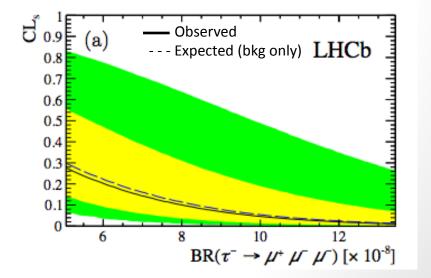
8


Lepton-flavour violating decays $\tau^{-} \rightarrow \mu^{+} \mu^{-} \mu^{-}$

- Decay forbidden in SM due to leptonflavour conservation
- Observation of neutrino oscillations indicates charged LFV decays possible via loops, \mathcal{B} < 10⁻⁴⁰
- New physics can enhance branching fractions (e.g. new heavy particles entering loops, models with doubly charged Higgs) to as high ~ 10⁻⁷
- Previous measurements at B factories Belle $\mathcal{B}(\tau^{-} \to \mu^{+} \mu^{-} \mu^{-}) < 2.1 \times 10^{-8}$ Babar $\mathcal{B}(\tau^{-} \to \mu^{+} \mu^{-} \mu^{-}) < 3.3 \times 10^{-8}$

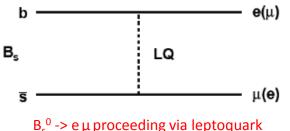
Analysis Method

- Use 1 fb⁻¹ of data collected by LHCb in 2011 at 7 TeV centre-of-mass energy
- LHCb collected ~ 8 x 10¹⁰ τ in detector acceptance in 2011 [PRB 724 (2013)]
- Normalization channel $D_s^- \rightarrow \phi (\mu^+ \mu^-) \pi^-$
- Study events in binned 3-D space:
 - Likelihood variable based on 3-body decay topology (BDT) Including vertex quality and displacement from primary vertex
 - Likelihood variable based on muon particle identification (Neural network) Including information from RICH, calorimeters, muon stations and kinematics
 - Invariant mass of τ ⁻ candidate


 $D_{s}^{-} \rightarrow \phi (\mu^{+} \mu^{-}) \pi^{-}$ normalization channel

Results

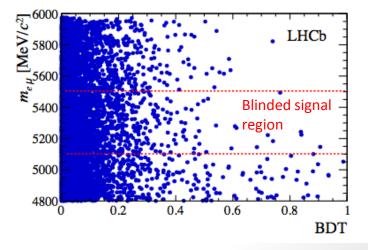
 Number of observed τ -> μ⁺ μ⁻ μ⁻ events compatible with background expectation


 Use CLs method to set upper limit on branching fraction **\mathcal{B}** ($\tau^{-} \rightarrow \mu^{+} \mu^{-} \mu^{-}$) < 8.0 (9.8) x 10⁻⁸ at 90% (95%) C.L.

- First limit on τ⁻ -> μ⁺ μ⁻ μ⁻
 obtained at a hadron collider
- Result compatible with limits set by Belle, expect 50 fb⁻¹ post upgrade

Lepton-flavour violating decays $B_s^0 \rightarrow e \mu \text{ and } B^0 \rightarrow e \mu$

- B_s⁰ -> e μ and B⁰ -> e μ forbidden by leptonflavour conservation in SM
- Allowed in BSM models such as SUSY and Pati-Salam Leptoquark model [Phys. Rev. D 10(1974) 275]



 $B_{s}^{\circ} \rightarrow e \mu \text{ proceeding via leptoquark}$

- Prediction of new interaction between leptons and quarks mediated by spin-1 gauge boson leptoquark
- Direct production searches for leptoquarks at ATLAS and CMS only leptoquarks coupling quarks and leptons of same generation
 Lower bounds on leptoquark masses in range >0.4 to >0.9 TeV/c²
- These indirect searches probe leptoquarks which couple quarks and leptons from different generations
- Previous best branching fraction measurements from CDF [PRL 102, 201801] $\mathcal{B}(B_s^0 \to e \mu) < 2.6 \times 10^{-7}$ $\mathcal{B}(B^0 \to e \mu) < 7.9 \times 10^{-8}$ at 95% C.L.

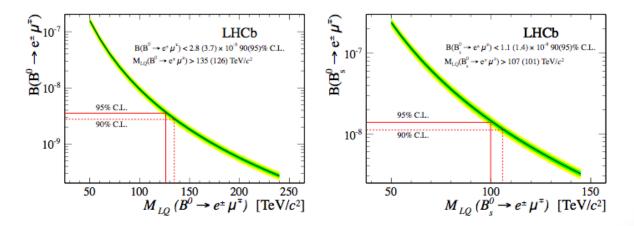
Analysis Method

- Use 1 fb⁻¹ of data collected by LHCb at 7 TeV centre-of-mass energy
- Use normalization channel $B^0 \rightarrow K^+ \pi^-$
- Two-stage multivariate analysis (BDT) most important discriminating variables: B impact parameter, angle between B momentum and vector joining primary and secondary vertices
- Correct electron momenta for loss due to bremsstrahlung
- Study events in binned 2-D plane:
 - Invariant mass of B candidate
 - Output of second multivariate discriminant (BDT)
- Remaining dominant background eµ pairs originating from different B decays

PRL 111, 141801

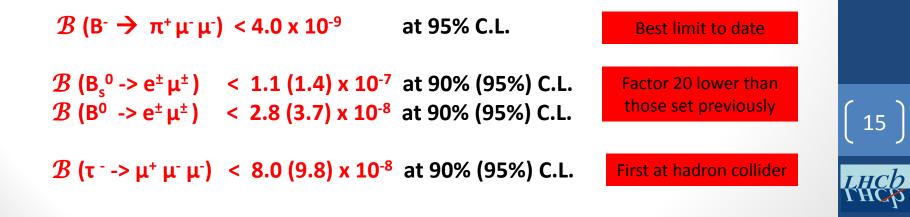
14

Results


- Data consistent with background-only hypothesis
- Set upper limits on branching fractions using CLs method

 \mathcal{B} (B_s⁰ -> e µ) < 1.1(1.4) x 10⁻⁸ \mathcal{B} (B⁰ -> e µ) < 2.8(3.7) x 10⁻⁹ at 90% (95%) C.L.

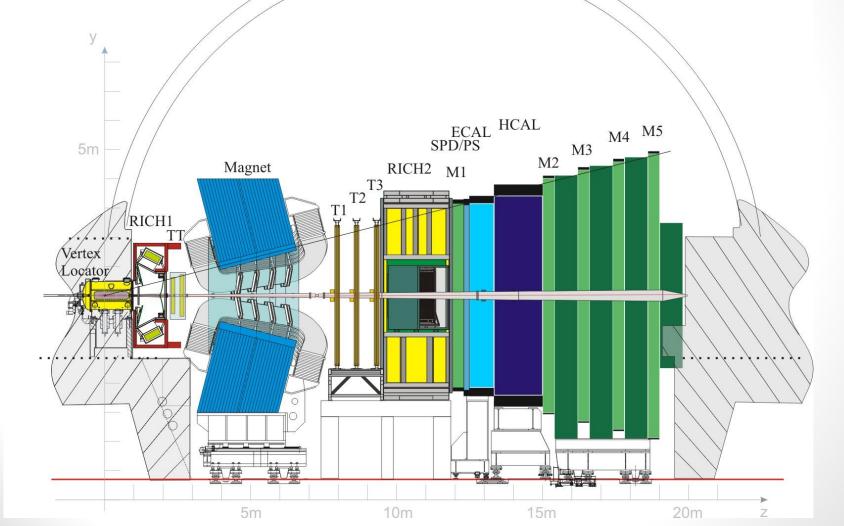
Factor 20 lower than those set previously


→ lower bounds on masses of Pati-Salam Leptoquarks $M_{LQ}(B_s^0 \rightarrow e \mu) > 101(107) \text{ TeV/c}^2$ $M_{LQ}(B^0 \rightarrow e \mu) > 135(126) \text{ TeV/c}^2$ at 90% (95%) C.L.

Factor 2 higher than those set previously

Summary

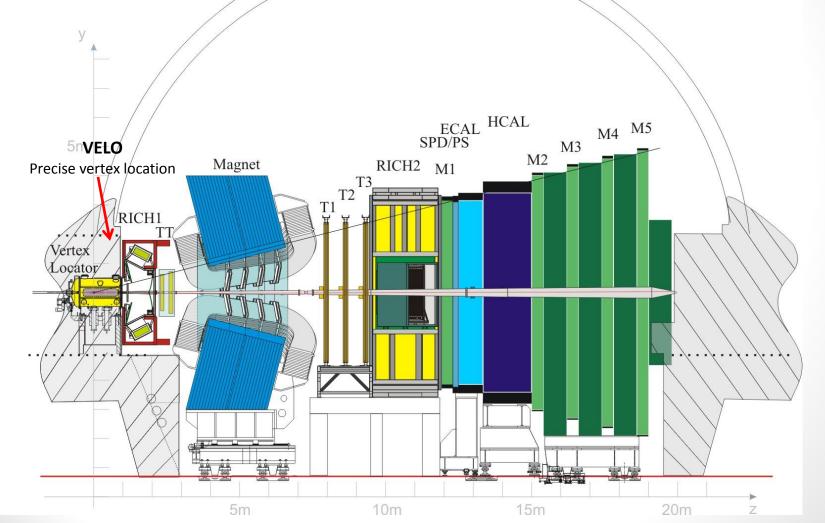
- In absence of signal upper limits set on branching fractions of:
 - Lepton-number violating decay $B^- \rightarrow \pi^+ \mu^- \mu^-$, probing Majorana neutrinos
 - Lepton-flavour violating decays $B_s^0 \rightarrow e \mu$ and $B^0 \rightarrow e \mu$, leading to lower bounds on masses of Pati-Salam leptoquarks
 - Lepton-flavour violating decay τ -> μ⁺ μ⁻ μ⁻, first limit set on this decay at hadron collider



JINST 3 (2008) S08005

.6

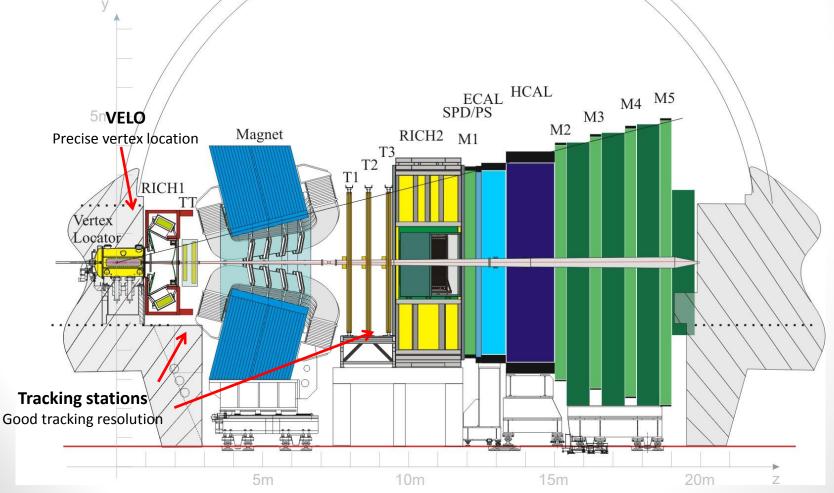
LHCb Detector

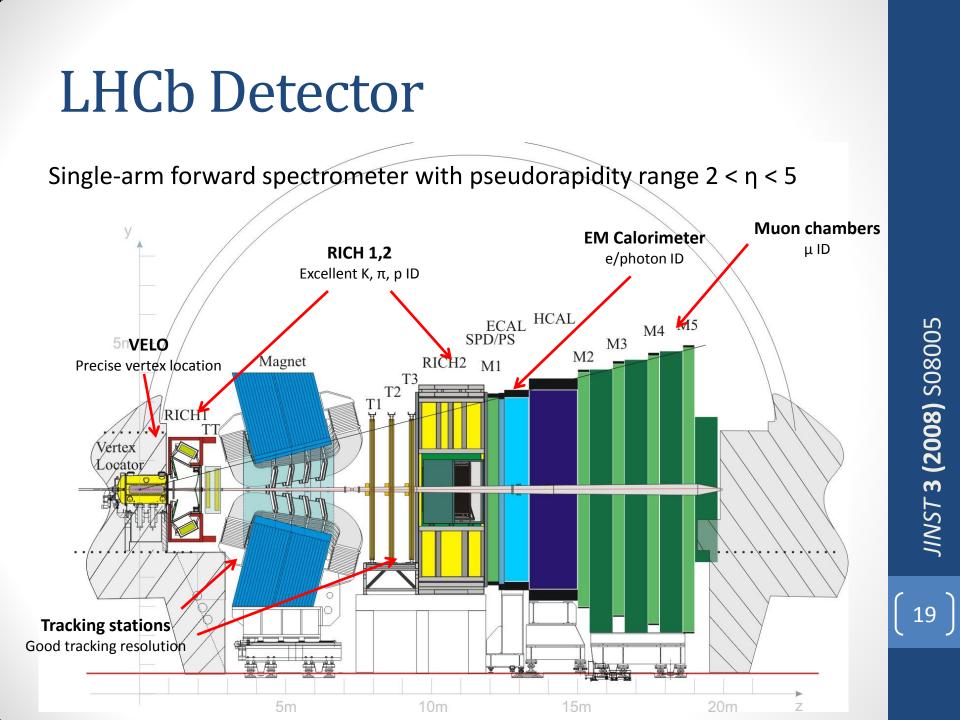

Single-arm forward spectrometer with pseudorapidity range 2 < η < 5

JINST 3 (2008) S08005

LHCb Detector

Single-arm forward spectrometer with pseudorapidity range 2 < η < 5




JINST 3 (2008) S08005

8

LHCb Detector

Single-arm forward spectrometer with pseudorapidity range 2 < η < 5

