

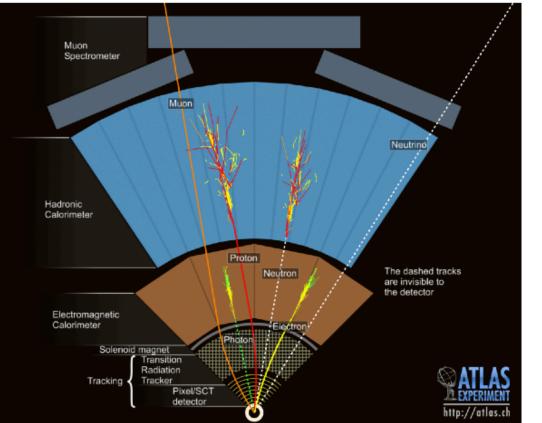
Beauty in ATLAS: New physics searches, spectroscopy and decay properties of B-hadrons

Hok-Chuen Cheng (hccheng@umich.edu)(University of Michigan, Ann Arbor)On behalf of the ATLAS collaboration

May 5-7, Phenomenology 2014 Symposium

Outline

- B-physics in a nutshell
- The ATLAS experiment at LHC
- Parity violation in the decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$
- CP violation in $B_s^0 \rightarrow J/\psi \phi$ (Brief summary)
- Rare decay of $B_s^0 \rightarrow \mu^+ \mu^-$ (Brief summary)
- Summary and outlook


B-physics in a nutshell

- B-physics investigates physics of mesons and baryons containing at least one bottom quark
- *B*-physics at ATLAS:
 - Large beauty production cross section and high luminosity provide high sensitivity to B-hadrons
 - Focus on competitive topics:
 - Testing CPViolation through decay parameters that influence CKM matrix elements
 - Studying heavy flavor meson and baryon production and decay properties, e.g. cross section, lifetime, etc
 - Testing predictions of heavy quark interaction models, e.g. HQET, factorization, heavy quark expansion, etc
 - New physics searches through rare and very rare decays which are highly suppressed in SM

ATLAS detector overview

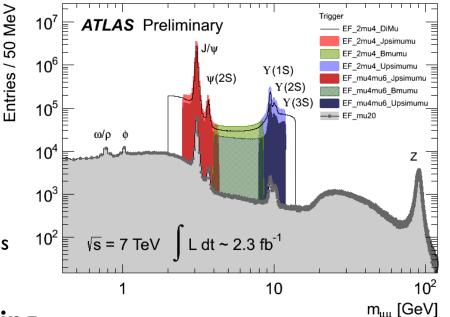
UNIVERSITY OF

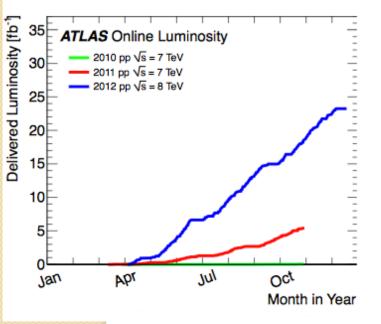
Hadronic Calorimeters

EM Calorimeters

Inner Detector

Tracking system (Pixel, SCT & TRT) reconstruct trajectories and momenta of charged particles; **crucial for identifying the b decay products EM/hadronic calorimeters** energy deposition of particles and missing energy **Muon spectrometer** precise tracking and momentum measurement of muons; **for study of b-jets containing** J/ψ (final products are a muon pair)


Triggers & data taking at ATLAS



Triggers for B-physics

UNIVERSITY OF MICHIGAN

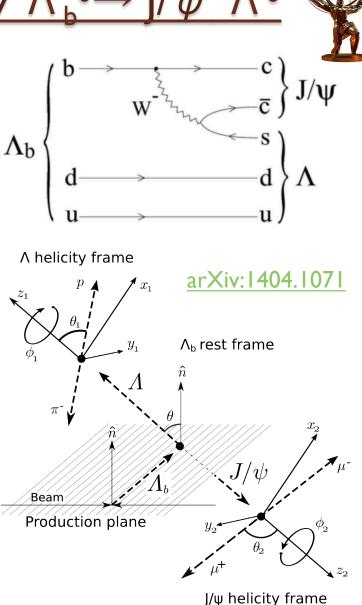
- Reduce huge collision data rate from ~40MHz to ~500Hz
- Most B-physics channels studied at ATLAS have di-muon signature $(B \rightarrow J/\psi(\mu\mu)X, B \rightarrow \mu\mu, \text{etc.})$
- Main B-physics triggers in ATLAS
 - single or di-muon triggers
 - **topological triggers** (invariant mass window for J/ψ , B_s , Upsilon(Υ), etc)

Data taking

- Run 1(2010-2012) ended. Upgrades and preparation for Run 2 in 2015 are ongoing
- Data recorded for *pp*-collisions:
 - **45 pb⁻¹ in 2010** ($\sqrt{s} = 7$ TeV, max lumi **2.1 x 10³²** cm⁻²s⁻¹)
 - **5.1 fb⁻¹ in 2011** ($\sqrt{s} = 7 \text{ TeV}$, max lumi **3.6 x 10³³** cm⁻²s⁻¹)
 - **21.3** fb⁻¹ in 2012 ($\sqrt{s} = 8 \text{ TeV}$, max lumi 7.7 x 10³³ cm⁻²s⁻¹)
- Excellent acquisition efficiency (>90%) and detector performance
- More suitable triggers for heavy quark physics in 2010 and 2011 data due to lower thresholds. Updates of analyses using 2012 data are ongoing

University of Michigan Parity violation in the decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$

- Parity violation is a well-known feature of weak interactions. It is not maximal in decays of hadrons due to the presence of strongly coupled spectator quarks
- Results of parity violation measurement can be used to test predictions made by different **quark interaction models**

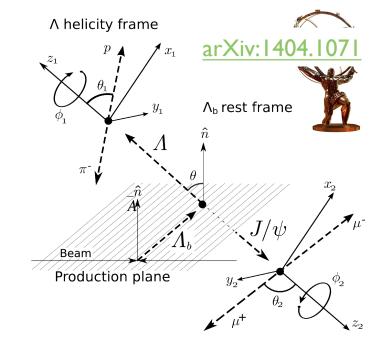

Four possible helicity amplitudes:

Amplitude	$\lambda_{J/\psi}$	λ_{Λ}
a +	0	1/2
a_	0	-1/2
b_+	-1	-1/2
b _	1	1/2

Normalization condition

$$|a_{+}|^{2} + |a_{-}|^{2} + |b_{+}|^{2} + |b_{-}|^{2} = 1.$$

Parity violating asymmetry parameter $\alpha_{\rm b} = |a_+|^2 - |a_-|^2 + |b_+|^2 - |b_-|^2$



Full angular PDF^{1,2,3}:

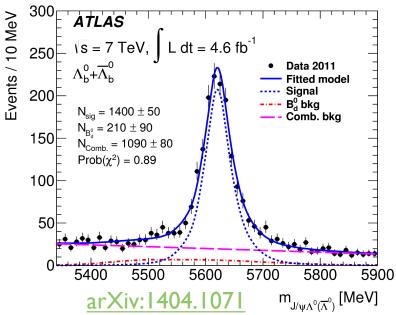
$$w(\Omega, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\Omega)$$

 f_{1i} : bilinear functions of the four helicity amplitudes A f_{2i} : functions of polarization P of Λ_b and decay parameter α_{Λ} of Λ , where $\alpha_{\Lambda} = 0.642 \pm 0.013$ F_i : functions of decay angles $\Omega(\theta, \phi, \theta_1, \phi_1, \theta_2, \phi_2)$

J/ψ helicity frame

i	f _{li}	f 2i	F _i
0	a ₊ a ₊ * + a_a_* + b ₊ b ₊ * + b_b_*	I	I. I.
2	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	α_{Λ}	$\cos heta$,
4	- a ₊ a ₊ * - a_a_* + b ₊ b ₊ * + b_b_*	I	$\frac{1}{2}$ (3 cos ² θ_2 – I)
6	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2}$ (3 cos ² θ_2 – I) cos θ_1
18	3/√2 Re(b_a_* – a₊b₊*)	α_{Λ}	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\phi_1 + \phi_2)$
19	$-3/\sqrt{2} Im(b_a^* - a_b_*^*)$	$lpha$ $_{\wedge}$	$\sin \theta_{1} \sin \theta_{2} \cos \theta_{2} \sin(\phi_{1} + \phi_{2})$

1: J. Phys. G 21, 629 (1995), arXiv:hep-ph/9405231
2: Sov. J. Nucl. Phys. 43, 817 (1986)
3: Z. Phys. C 57 115 (1993)


Parity violation in the decay $\Lambda_{b}^{0} \rightarrow J/\psi$

ATLAS

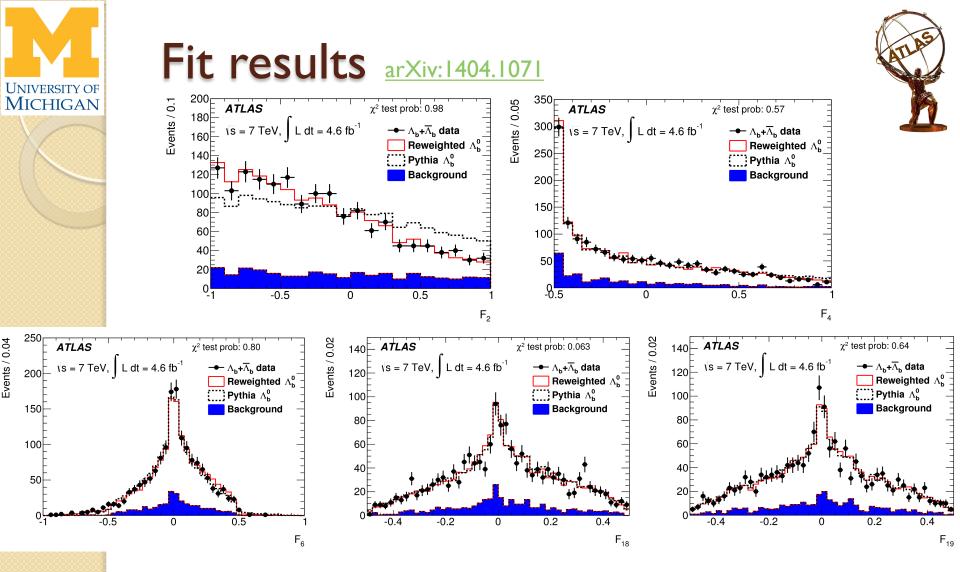
- 4.9 fb⁻¹ of 2011 data at $\sqrt{s} = 7$ TeV collected with **topological** *J*/ ψ trigger
- Λ_b^0 reconstructed through cascade decay topology $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ fit (with $J/\psi \rightarrow \mu^+\mu^-$ and $\Lambda^0 \rightarrow p\pi^-$)
- Selection results

UNIVERSITY OF

Parameter	[5340, 5900] MeV	[5560, 5680] MeV
$N_{ m sig}$	1400 ± 50	1240 ± 40
$N_{ m Comb}$	1090 ± 80	234 ± 16
$N_{B_d^0}$	210 ± 90	73 ± 30

Parameter extraction

 $\alpha_{_{h}}$ and helicity amplitude parameters can be found by solving:


$$\langle F_i
angle^{ ext{expected}} = \langle F_i
angle, \quad ext{ for } i=2,4,6,18, ext{ and } 19.$$

Imaginary exact solutions were found. χ^2 minimization fit is used to constraint the helicity amplitude parameters to real values that are statistically closest to the exact solution:


$$\chi^{2} = \sum_{i} \sum_{j} \left(\left\langle F_{i} \right\rangle^{\exp} - \left\langle F_{i} \right\rangle \right) V_{ij}^{-1} \left(\left\langle F_{j} \right\rangle^{\exp} - \left\langle F_{j} \right\rangle \right), \quad \text{for } i, j = 2, 4, 6, 18, 19$$

where V_{ij} is the covariance matrix of measured $\langle F_i \rangle$, and $\langle F_i \rangle^{exp}$ is evaluated from models including detector effects Hok-Chuen Cheng (Michigan) Pheno2014

8

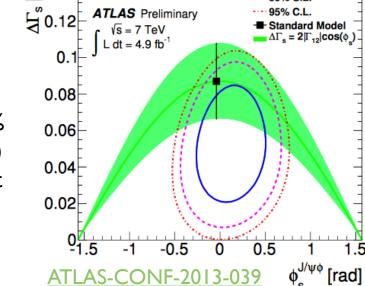
- The weighted MC and the background distributions of F_i variables are added and compared with data
- The background is estimated by adding the left and right sidebands
- Main systematics came from detector effect estimation & background contribution

Consistent with the latest LHCb result¹

 $\alpha_{\textit{b}} = \textbf{0.05} \pm \textbf{0.17} \pm \textbf{0.07}$

I: Phys. Lett. B 724 (2013) 27 2: Phys. Rev. D **65**, 074030, arXiv:hep-ph/0112145 3: Nucl. Phys. **A755**, 435 (2005), arXiv:hep-ph/0412131 4: Phys. Lett. B **614**, 165 (2005), arXiv:hep-ph/0412116 Results deviated from two theoretical predictions

pQCD²: -(0.14~0.17) at 2.6 s.d. HQET^{3,4}: 0.78 at 2.8 s.d.


Analysis using 2012 data is ongoing

<u>CP violation in $B_s^0 \rightarrow J/\psi \phi$ (Brief summary)</u>

90% C.L.

- Small theoretical uncertainty \rightarrow well predicted in the SM
- New particles can contribute to B_s-B_s box diagrams and significantly modify the SM prediction
- Update to previous measurement using flavor tagging
- 4.9 fb⁻¹ data collected in 2011 with **topological J**/ ψ trigger is used
 - Signal region defined to retain 99.8% of J/ ψ candidates (see backup slides)
 - An unbinned maximum likelihood fit (MLF) is performed on the selected events to extract decay parameters
 - Tag information is used in the MLF

SM prediction¹

UNIVERSITY OF

MICHIGAN

 $\phi_s \approx -2\beta_s = -0.0368 \pm 0.0018$ rad where $\beta_s = \arg[-(V_{ts} V_{tb}^*)/(V_{cs} V_{cb}^*)]$ $\Delta \Gamma_s = \Gamma_L - \Gamma_H = 0.087 \pm 0.021$ ps⁻¹

1: Phys.Rev.Lett. **97** (2006) 151803, arXiv:hep-ph/0605213 2: Phys. Rev. **D85** (2012) 072002, arXiv:1112.1726 3: Phys. Rev. **D85** (2012) 032006, arXiv:1109.3166 4: Phys. Rev. Lett. **108** (2012) 101803, arXiv:1112.3183

Results (see backup slides for more details) $\phi_s = 0.12 \pm 0.25 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad}$ $\Delta\Gamma_s = 0.053 \pm 0.021 \text{ (stat.)} \pm 0.009 \text{ (syst.) ps}^{-1}$

Results are consistent with CDF^2 , $D0^3$ and $LHCb^4$

<u>Rare decay of $B_s^0 \rightarrow \mu^+ \mu^-$ </u>(Brief summary)

- Flavor changing neutral current highly suppressed in SM
 - Of particular interest in **search of new physics**, complementary to direct search for physics beyond the SM
 - 4.9 fb⁻¹ data collected in 2011 by the ATLAS detector is used
 - Update to previous result using 2.4 fb⁻¹ data
 - $\mu: p_T > 4 \text{ GeV and } | \eta | < 2.5$ $B_s: p_T > 8 \text{ GeV and } | \eta | < 2.5$
 - μμ: 4.0<m(μμ)<8.5 GeV and χ2/n.d.f.<2.0
 - Signal Region: [5.066, 5.666] GeV

UNIVERSITY OF

MICHIGAN

٠

- Sidebands: [4.766, 5.066] or [4.766, 5.066] GeV
- 390K Bs candidates were selected
- Decay $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$ used as reference channel for normalization of integrated luminosity, acceptance and efficiency

$$BR(B_s^0 \to \mu^+ \mu^-) = \frac{BR(B^{\pm} \to J/\psi K^{\pm} \to \mu^+ \mu^- K^{\pm})}{\frac{f_u}{f_s} \times \frac{N_{\mu^+ \mu^-}}{N_{J/\psi K^{\pm}}} \times \frac{\frac{A_{J/\psi K^{\pm}}}{A_{\mu^+ \mu^-}}}{\frac{\epsilon_{J/\psi K^{\pm}}}{\epsilon_{\mu^+ \mu^-}}},$$

 Main systematics came from PDG branching fractions and acceptance x efficiency ratio between the rare decay and reference channel

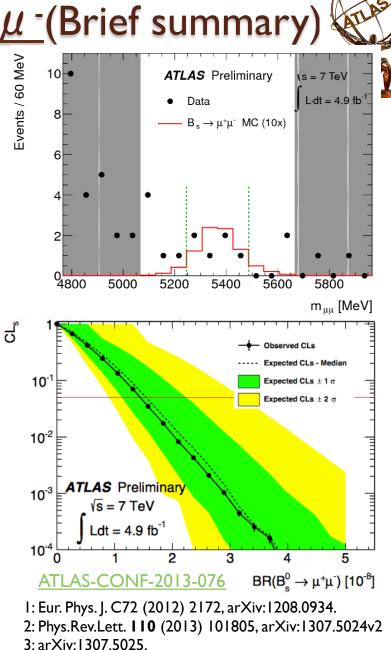
<u>Rare decay of $B_s^0 \rightarrow \mu^+ \mu^-$ (Brief summary)</u>

Main backgrounds:

UNIVERSITY OF

MICHIGAN

- Combinatorial bkg b antib->µ⁺µ⁻X
- Resonant bkg due to B-hadron decay with I or 2 hadrons misidentified as muon


Signal selection optimization:

- Performed to select best performing BDTs and final selection cuts in the BDT output variables and invariant mass window for best sensitivity to the signal
- By maximizing estimator of separation power: $\mathbf{P} = \varepsilon / (\mathbf{I} + \sqrt{\mathbf{B}})$, where ε is the signal efficiency and B is the number of bkg events

BR(B°_s → $\mu^+\mu^-$) branching fraction SM prediction¹ (3.56 ± 0.30) × 10⁻⁹ LHCb result² (2.9 ± 1.1) × 10⁻⁹ CMS result³ (3.0 ± 1.0) 10⁻⁹

<u>Results</u>

Observed limit is set to be < 15 × 10⁻⁹ at 95% CL compatible with expected limits at < 16 ± 7 × 10⁻⁹ at 95% CL

Summary and outlook

- Excellent muon identification and measurement allow ATLAS to study a wide range of *B*-physics topics at high energy which are out of reach of *B* factories
- Parity violation in decay $\Lambda_b^{\ 0} \rightarrow J/\psi \Lambda^0$ result consistent with LHCb result, which lies between two theoretical predictions (pQCD & HQET). Updates with 2012 data ongoing
- Update on CP violation measurement in $B_s \rightarrow J/\psi \phi$ with flavor tagging consistent with SM predictions
- Improved upper limits set on rare decay $B_s^0 \rightarrow \mu^+ \mu^$ consistent with expected values. Update with 2012 data needed to obtain a comparable result with other experiments
- More public results available on <u>ATLAS B-physics twiki page</u>
- More results from dedicated analyses using 2012 data are ongoing

More B-physics public results...

B-physics public results

↓ Publications

UNIVERSITY OF MICHIGAN

- ↓ CONF notes
- ↓ PUB notes
- ↓ Stand-alone plots
- ↓ CSC B-physics chapter
- Daily updated table...

Publications

Publications appearing in or submitted to peer-reviewed journals are listed below.

Short Title	Int L	Journal	Preprint	Plots
NEW Associated production of prompt J/ ψ mesons and W boson in at \sqrt{s} = 7TeV	4.6 fb-1	To be submitted to JHEP	arXiv:1401.2831	Link
NEW Production cross section of B+ at \sqrt{s} = 7TeV	2.4 fb-1	JHEP 10 (2013) 042	arXiv:1307.0126v2	Link
Inclusive $\Upsilon(nS)$ differential cross sections and ratios	1.8 fb-1	Phys. Rev. D 87 (2013) 052004	arXiv:1211.7255	Link
ϕ_s and $\Delta\Gamma_s$ from time dependent angular analysis of $Bo_s \to J/\psi \; \phi$	4.9 fb-1	JHEP 12 (2012) 072	arXiv:1208.0572	Link
Measurement of the Λ_b lifetime and mass	4.9 fb-1	Phys. Rev. D 87 (2013) 032002	arXiv:1207.2284	Link
b-hadron production cross-section from D*µX final states	3.3 pb-1	Nucl. Phys. B864 (2012) 341-381	arXiv:1206.3122	Link
Search for the decay $B_0_{s} \rightarrow \mu\mu$	2.4 fb-1	Phys. Lett. B713 (2012) 180-196	arXiv:1204.0735	Link
Observation of a new χ_b state in radiative transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$	4.4 fb-1	Phys. Rev. Lett. 108 (2012) 152001	arXiv:1112.5154	Link
Y(1S) Fiducial Production Cross-Section	1.1 pb-1	Phys. Lett. B703 (2011) 428-446	arXiv:1106.5325	Link
Differential cross-sections of inclusive, prompt and non-prompt J/ψ production	2.3 pb-1	Nucl. Phys. B 850 (2011) 387-344	arXiv:1104.3038	Link
Analyses performed within other ATLAS Physics Groups:				
D*+/- production in jets	0.3 pb-1	Phys. Rev. D 85, 052005 (2012)	arXiv:1112.4432	Link
Inclusive production of electrons and muons (b/c cross section)	35 pb-1	Phys. Lett. B 707 (2012) 438-458	arXiv:1109.0525	Link
Centrality dependence of J/ψ production in heavy ions collisions	6.7 µb-1	Phys. Lett. B 697 (2011) 294-312	arXiv:1012.5419	Link

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults

THANK YOU

0

0

BACK UP SLIDES

25m-

 Image: Contract of the contract of the

44m

Toroid magnets Muon chambers Solenoid magnet Transition radiation tracker Semiconductor tracker

ATLAS is a general purpose detector, designed for a wide range of physics scenario (SM, Higgs, SUSY, BSM, etc.)

 $w(\Omega, \vec{A}, P) = rac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, lpha_{\Lambda}) F_i(\Omega)$

i	<i>f</i> , :	f_{2i}	F_i
0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1
1	$a_+a_+^*-aa^*+b_+b_+^*-bb^*$	Р	$\cos heta$
2	$a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-b_{+}b_{+}^{*}+b_{-}b_{-}^{*}$	α_{Λ}	$\cos \theta_1$
3	$a_+a_+^st + aa^st - b_+b_+^st - bb^st$	$P \alpha_{\Lambda}$	$\cos\theta\cos\theta_1$
4	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}+\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2} (3 \cos^2 \theta_2 - 1)$
5	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}+rac{1}{2}b_{+}b_{+}^{*}-rac{1}{2}b_{-}b_{-}^{*}$	Ρ	$rac{1}{2}\left(3\cos^2 heta_2-1 ight)\cos heta$
6	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2}(3\cos^2\theta_2-1)\cos\theta_1$
7	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-rac{1}{2}b_{+}b_{+}^{*}-rac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$rac{1}{2}\left(3\cos^2 heta_2-1 ight)\cos heta\cos heta_1$
8	$-3Re(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos \phi_1$
9	3 <i>Im</i> (a ₊ a <u>*</u>)	$P \alpha_{\Lambda}$	$\sin heta \sin heta_1 \sin^2 heta_2 \sin \phi_1$
10	$-\frac{3}{2}Re(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin heta\sin heta_1\sin^2 heta_2\cos(\phi_1+2\phi_2)$
11	$\frac{3}{2}$ Im(b_b_{+})	$P \alpha_{\Lambda}$	$\sin heta \sin heta_1 \sin^2 heta_2 \sin (\phi_1 + 2 \phi_2)$
12	$-\frac{3}{\sqrt{2}}Re(b_a^*+a_b^*)$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\phi_2$
13	$\frac{3}{\sqrt{2}}Im(b_a^*+a_b^*)$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\phi_2$
14	$-rac{3}{\sqrt{2}}$ Re($b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos \theta \sin \theta_1 \sin \theta_2 \cos \theta_2 \cos (\phi_1 + \phi_2)$
15	$\frac{3}{\sqrt{2}}Im(b_a^* + a_+b_+^*)$	$P \alpha_{\Lambda}$	$\cos heta \sin heta_1 \sin heta_2 \cos heta_2 \sin (\phi_1 + \phi_2)$
16	$\frac{3}{\sqrt{2}}$ Re(a_b_+^* - b_a_+^*)	Р	$\sin\theta\sin\theta_2\cos\theta_2\cos\phi_2$
17	$-\frac{3}{\sqrt{2}}$ Im(a_b_+^* - b_a_+^*)	Ρ	$\sin\theta\sin\theta_2\cos\theta_2\sin\phi_2$
18	$\frac{3}{\sqrt{2}}Re(b_a_{-}^* - a_{+}b_{+}^*)$	$lpha_{\Lambda}$	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\phi_1 + \phi_2)$
19	$-\frac{5}{\sqrt{2}}$ Im(b_a^* - a_+b_+^*)	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$

<u>CP violation in $B_s^0 \rightarrow J/\psi \phi$ </u>

Event selection

- $J/\psi \rightarrow \mu^+ \mu^-$ candidates
 - at least one pair of oppositely charged muon candidates
 - pair of muon tracks refitted to a common vertex
 - $\chi^2/d.o.f. < 10$
 - 2.959 < m($\mu^+\mu^-$) < 3.229 GeV for both muons with |eta| < 1.05
 - 2.913 < m($\mu^+\mu^-$) < 3.273 GeV for one muon with 1.05 < |eta| < 2.5
 - 2.852 < m($\mu^+\mu^-$) < 3.332 GeV for both muons with 1.05 < |eta| < 2.5
- $\phi \rightarrow K^+K^-$ candidates
 - reconstructed from oppositely charged tracks not identified as muon
 - $p_{\rm T} > 0.5 \,\,{\rm GeV}$
 - |eta| < 2.5
- $B_s^0 \rightarrow J/\psi \phi$ candidates
 - reconstructed by fitting four tracks each with
 - at least I hit in pixel detector
 - at least 4 hits silicon strip detector
 - $\chi^2/d.o.f. < 3$
 - fitted $p_T(K^+/K^-) > I \text{ GeV}$
 - 1.0085 < m(K⁺K⁻) < 1.0305 GeV

<u>CP violation in $B_s^0 \rightarrow J/\psi \phi$ </u>

Likelihood function

An unbinned maximum likelihood fit is performed on the selected events to extract the parameters of the $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay. The fit uses information about the reconstructed mass *m*, the measured proper decay time *t*, the measured mass and proper decay time uncertainties σ_m and σ_t , the tag probability, and the transversity angles Ω of each $B_s^0 \rightarrow J/\psi\phi$ decay candidate. There are three transversity angles; $\Omega = (\theta_T, \psi_T, \phi_T)$ and these are defined in section 5.1.

The likelihood function is defined as a combination of the signal and background probability density functions as follows:

$$\ln \mathscr{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_s \cdot \mathscr{F}_s(m_i, t_i, \Omega_i) + f_s \cdot f_{B^0} \cdot \mathscr{F}_{B^0}(m_i, t_i, \Omega_i) + (1 - f_s \cdot (1 + f_{B^0})) \mathscr{F}_{bkg}(m_i, t_i, \Omega_i)) \}$$

$$(3)$$

where N is the number of selected candidates, w_i is a weighting factor to account for the trigger efficiency, f_s is the fraction of signal candidates, f_{B^0} is the fraction of peaking B^0 meson background events calculated relative to the number of signal events; this parameter is fixed in the likelihood fit. The mass m_i , the proper decay time t_i and the decay angles Ω_i are the values measured from the data for each event *i*. \mathscr{F}_s , \mathscr{F}_{B^0} and \mathscr{F}_{bkg} are the probability density functions (PDF) modelling the signal, the specific B^0 background and the other background distributions, respectively. A detailed description of the

ATLAS-CONF-2013-039

<u>CP violation in $B_s^0 \rightarrow J/\psi \phi$ </u>

$$\begin{split} \phi_s &= 0.12 \pm 0.25 \; (\text{stat.}) \pm 0.11 \; (\text{syst.}) \; \text{rad} \\ \Delta \Gamma_s &= 0.053 \pm 0.021 \; (\text{stat.}) \pm 0.009 \; (\text{syst.}) \; \text{ps}^{-1} \\ \Gamma_s &= 0.677 \pm 0.007 \; (\text{stat.}) \pm 0.003 \; (\text{syst.}) \; \text{ps}^{-1} \\ |A_0(0)|^2 &= 0.529 \pm 0.006 (\text{stat.}) \pm 0.011 \; (\text{syst.}) \\ |A_{\parallel}(0)|^2 &= 0.220 \pm 0.008 (\text{stat.}) \pm 0.009 \; (\text{syst.}) \\ \delta_{\perp} &= 3.89 \pm 0.46 \; (\text{stat.}) \pm 0.13 \; (\text{syst.}) \; \text{rad} \end{split}$$

Table 7: Summary of systematic uncertainties assigned to parameters of interest.

	ϕ_s	$\Delta \Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ	$\delta_{\perp} - \delta_{S}$
	(rad)	(ps ⁻¹)	(ps^{-1})				(rad)	(rad)	(rad)
		2							
ID alignment	$< 10^{-2}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$< 10^{-2}$	$< 10^{-2}$	-
Trigger efficiency	$< 10^{-2}$	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-2}$	$< 10^{-2}$	$< 10^{-2}$
B_d^0 contribution	0.03	0.001	$< 10^{-3}$	$< 10^{-3}$	0.005	0.001	0.02	$< 10^{-2}$	$< 10^{-2}$
Tagging	0.10	0.001	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.002	0.05	$< 10^{-2}$	$< 10^{-2}$
Models:									
default fit	$< 10^{-2}$	0.002	$< 10^{-3}$	0.003	0.002	0.006	0.07	0.01	0.01
signal mass	$< 10^{-2}$	0.001	$< 10^{-3}$	<10 ⁻³	0.001	$< 10^{-3}$	0.03	0.04	0.01
background mass	$< 10^{-2}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.06	0.02	0.02
resolution	0.02	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.002	0.04	0.02	0.01
background time	0.01	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$	0.002	0.01	0.02	0.02
background angles	0.02	0.008	0.002	0.008	0.009	0.027	0.06	0.07	0.03
Total	0.11	0.009	0.003	0.009	0.011	0.028	0.13	0.09	0.04

ATLAS-CONF-2013-039

Rare decay of $B_s^0 \rightarrow \mu^+ \mu^-$

Discriminative variables

Variable	Description	Rank
L _{xy}	Scalar product in the transverse plane of vectors	1
I _{0.7} isolation	Ratio of $ \sim pBT $ to the sum of $ \sim pBT $ and the transverse momenta of all tracks with isolation $p_T > 0.5$ GeV within a cone $R < 0.7$ from the <i>B</i> direction, excluding <i>B</i> decay prod.	2
α _{2d}	Absolute value of the angle in the transverse plane between vectors $\sim x$ and $\sim pB$	3
P _{L min}	Minimum momentum of the two muon candidates along the B direction	4
рТВ	B transverse momentum	5
ct significance	Proper decay length divided by its uncertainty	6
X_{z}^{2} , χ_{xy}^{2}	Significance of the separation between production (PV) and decay vertex (SV)	7
<i>D</i> xy min, <i>D</i> z min	Absolute values of the minimum distance of closest approach in the xy plane or along z of tracks in the event to the B vertex	8
ΔR	R-parameter in two dimensions, R=V($\Delta \eta^2 + \Delta \varphi^2$)	9
<i>d</i> 0 max, <i>d</i> 0 min	Absolute values of the maximum and minimum impact parameter of B-decay products in the transverse plane	10
ATL-COM-PHYS	-2014-333 Hok-Chuen Cheng (Michigan) P	heno2014