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Abstract 
This report describes the development of an MPI parallelization 
support on top of the existing OpenMP parallel version of the MLfit 
benchmark for a hybrid evaluation on multicore and distributed 
computational hosts. MLfit benchmark is used at CERN openlab as a 
representative of data analysis applications used in the high energy 
physics community. The report includes the results of scalability runs 
obtained with several configurations and systems. 

1 Introduction 
This report describes the MPI parallelization for the MLfit benchmark (version 5). It 
also includes the results of scalability tests when running in several software 
configurations (such as, only OpenMP, only MPI, and a tradeoff between them) and 
hardware solutions (single multi-socket host, multiple hosts). Also, comparisons of 
the performance when running on a conventional cluster of server hosts and on a 
DELL microserver are presented. 

Descriptions of the algorithm and its OpenMP parallelization can be found in 
[Jar11]. Scalability results for the version of the code based on OpenMP 
parallelization (version 4) are reported in [Jar12]. They are used as a reference for the 
new version of the application described in this report. 

Implementing MPI parallelization on top of OpenMP parallelization allows going 
beyond the constraint of the parallel execution on a single host. In this respect MPI is 
the de facto standard for massive HPC parallelization on distributed hosts connected 
by network links. The standard does not make any basic distinction whether the MPI 
processes are running on a single multicore host or if they are distributed on 
independent hosts. In response to the rise of multicore systems, however, it is possible 
to consider the hybrid parallelization where each MPI process can run several 
OpenMP parallel threads. Therefore, it becomes possible to exploit both shared 
memory parallelism enforced by OpenMP and message passing parallelism between 
processes enforced by MPI. 

The current report is organized as follows: section 2 describes the MPI 
implementation and section 3 reports on the tests and results when running the 
application with different configurations on several hardware systems. 
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2 MPI implementation 
2.1 Algorithm description 
In the parallel OpenMP implementation described in [Jar11] the input data are stored 
in memory in arrays of N elements. Each OpenMP thread, then, executes on a given 
independent subset of consecutive elements of the input N elements. The elements are 
statically partitioned. The partitioning is implemented in a way so that one thread can 
have at most one element of difference with respect to the other threads, to ensure an 
equal load-balancing. A reduce operation is performed in parallel on the final results, 
with each thread summing its own results in a different accumulator; finally, the 
master thread sums up all accumulators. This algorithm is modified to exploit both 
MPI and OpenMP in the computation. Each MPI process holds a copy of the whole 
input dataset. The same algorithm of the decomposition of the data elements, 
described before, is applied twice, for the MPI processes and then for the OpenMP 
threads belonging to each MPI process. A sketch of the algorithm is shown in the 
following picture: 

 
Step 1: MPI Decomposition 

!!= 0 … !!−1 … !! … !!!!−1 … !!!! … !!=N − 1 

 

 
 

Step 2: OpenMP Decomposition (in this case shown for the MPI process i) 

!!! = !! … !!!−1 … !!! … !!!!!−1 … !!!!! … !!! = !!!!−1 

 
The MPI decomposition determines the index limits !! of elements of the input data 
arrays so that the MPI processes with rank ! = 0,1,… (! − 1), where P is the number 
of MPI processes involved, execute on the elements in the range [!! ,!!!! − 1]. Then 
the OpenMP decomposition runs for each MPI process for determining the 
subsequent index limits !!! for the OpenMP threads ! = 0,1,… (! − 1), where T is the 
number of OpenMP threads. Therefore, the OpenMP thread t of the MPI process i 
runs on the elements of the input data arrays with indices in the range [!!! ,!!!!! − 1]. 
Also, the reduce operation is performed in two steps. The first step consists of 
performing the reduction for the OpenMP threads of each MPI process as already 
described in the OpenMP-only implementation. In this way each MPI process holds a 
partial result of the reduction. The second step consists of broadcasting all partial 
results to all MPI processes, so that each MPI process will have all partial results. The 
MPI function Allgather is used for this operation. Then a second reduction is 
executed on the MPI partial results to get the final results on all MPI processes. Note 
that the same algorithm for the reduction used for OpenMP, based on double-double 
compensation algorithm [Jar11], is used for the reduction of the MPI partial results. 
Then, after each likelihood evaluation, all MPI processes will proceed to execute the 
same part of code (e.g. the minimization in a maximum likelihood fit), so that at the 
very end of the application each MPI process will have the same final results. This 
implementation choice allows limiting the number of MPI communications with 
respect to a configuration where only an MPI process drives the evaluation since it 
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does not require any exchange of other values in the remaining part of the application, 
e.g. the values of the parameters of the probability density functions during the 
minimization in a maximum likelihood fit. A check after each likelihood evaluation is 
executed to ensure that there were no errors during the evaluation. Each process sends 
an integer that can be zero in case of error or the number of analyzed events otherwise, 
respectively. Then the MPI function Allreduce is called to sum up all integers and 
the result is compared with the total number of events. The application stops if the 
comparison fails. 

To conclude, the application runs exactly the same as in the OpenMP-only 
implementation within one MPI process, except for the different start and end values 
of the indices for the input data elements. The only real difference from the OpenMP-
only case is that each worker now owns a different sum accumulator relative only to 
its subset of data. In order for the final result to be computed, a second parallel 
reduction must be performed thus summing up all the MPI partial results owned by 
each worker. It must be underlined that the Allgather and Allreduce calls are 
the only communication functions for each evaluation of the likelihood function, with 
a small number of results to be moved between MPI processes. Hence, a negligible 
overhead due to MPI communications is expected. 

2.2 Implementation design 
A first design requirement for the inclusion of MPI support in the MLfit application is 
the possibility to compile without MPI support without losing functionality, i.e. 
switching back to the OpenMP-only parallelization. This is achieved by using 
preprocessor macros. In particular all calls to MPI APIs are decorated with special 
disabling macros, in a way so that it is possible to completely disable MPI, removing 
all the function calls and replacing them with default operations valid for OpenMP-
only execution [Car11]. 

A second design requirement is the possibility to encapsulate explicit MPI calls 
inside more advanced functions, i.e. all MPI calls inside the MLfit application must 
be called through special wrapper functions. This allows to decouple the MLfit code 
from the MPI direct calls, in particular reducing the required number of changes in the 
MLfit initial code. A singleton class has been implemented for that. The class 
provides some static public methods for the MPI initialization and finalization, 
request of the MPI rank and number of processes, reduce operation, and timing. The 
singleton design pattern is particularly effective since the MPI initialization, which is 
placed in the default constructor of the class, is called only once, the first time the 
MPI support is requested in the MLfit, i.e. there is no need to explicitly initialize MPI 
in the MLfit code. A specific test to check if the MPI was initialized is made at the 
beginning of the execution of each public method. MPI finalization is placed in the 
destructor of the class, which is automatically called at the end of the execution of the 
application.  

Timing of the MPI application is a delicate matter since it requires a common time 
reference between multiple processes that can potentially run on different network 
connected systems. An explicit synchronization between all MPI processes (by means 
of an MPI Barrier operation) is made before taking time references. Then, in the 
implementation described in this report, only the MPI process with rank 0 (master 
process) takes care of providing the timing of the application. 

Finally, the implementation takes care of correct printing to standard output for the 
entire application. In particular it provides two possibilities: all MPI processes can 
print (in this case a label that reports the MPI rank is put at the beginning of each line) 
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or only an MPI process with a given rank can print, the outputs from the other 
processes being discarded. Furthermore the implementation provides a thread-safe 
mechanism in the case of output from several OpenMP threads, which is based on 
critical regions and independent buffers for each thread. In detail, the implementation 
intercepts all calls to the C++ std::cout stream, redirecting its default 
std::streambuf buffer to a new buffer by using the std::cout.rdbuf 
method. Then, methods overflow and sync of this new buffer are overloaded, so 
that they can properly handle the print operation. The real internal buffers are 
implemented as std::string per each OpenMP thread. To summarize, the 
implementation allows printing to standard output without modifying the original 
application source code. The default for the MLfit application is that only the master 
MPI process can print to standard output. 

3 Tests and scalability results 
3.1 Technical Setup 
Four systems are used in the tests: 

A. Intel Sandy Bridge-EP system (Intel(R) Xeon(R) CPU E5-2680) 
a. Dual-socket, 16 cores @ 2.70GHz 
b. Cache size per CPU: 20480KB 
c. Memory size: 64GB 

B. Intel Westmere-EX system (Intel(R) Xeon(R) CPU E7-4870) 
a. Quad-socket, 40 cores @ 2.40GHz 
b. Cache size per CPU: 30720KB 
c. Memory size: 128GB 

C. Intel Westmere-EP system (Intel(R) Xeon(R) CPU X5650) 
a. Dual-socket, 12 cores @ 2.67GHz 
b. Cache size per CPU: 12288KB 
c. Memory size: 48GB 

D. Intel Sandy Bridge system (Intel(R) Xeon(R) CPU E3-1280) 
a. Single-socket, 4 cores @ 3.50GHz 
b. Cache size per CPU: 8192KB 
c. Memory size: 8GB 

 
All systems have Turbo mode disabled. The Westmere system has Linux version: 
Scientific Linux CERN SLC release 5.7, based on Red Hat Enterprise Linux release 
5.7, while the Sandy Bridge system has release 6.2. Code is compiled with Intel ICC 
v12.1.0 and Intel MPI v4.0.3. Vectorization is based on AVX for the Sandy Bridge 
systems (by using the compiler flag –mavx) and SSE for the Westmere systems (–
msse3), respectively. Concerning multi-node systems, tests are performed on 2 
Westmere-EP servers (system C in the list) and a microserver system (DELL 
PowerEdge C5220) equipped with 4 hosts (system D). The network connection is 
based on standard 1Gb Ethernet copper links, one link per each host, connected on the 
same switch to limit latency. 

OpenMP threads of the MPI processes are bound to cores of CPUs on different 
sockets before filling the cores of a given CPU. This allows to maximize the available 
cache memory per each thread. For the same reason, the processes’ topology used in 
the multi-node tests maximizes the number of hosts involved. The systems are SMT-



 5 

enabled, which means that the hardware threading feature is activated and used during 
the tests. Thus, if there are no more physical cores available, the jobs are pinned to 
hardware threads by requiring 2 threads per core.  

3.2 Comparison of MLfit version 4 and 5 
The first set of tests is a comparison of the performance (wall-clock time) obtained 
when running version 5 of the code with respect to version 4 (OpenMP-only 
implementation). This can be used for validating the new version. These initial tests 
have been executed only on the Sandy Bridge-EP system (system A). The same 
likelihood model described in [Jar12] is used. Also the dimensions of the blocks and 
the number of OpenMP threads are the same. The input data sample is composed of 
1,000,000 events. These characteristics are used in all tests presented in the current 
report. The number of OpenMP threads shown refers to the total number of threads 
obtained by the product of the number of MPI processes per node and the number of 
OpenMP threads per each MPI process. Two independent verifications have been 
performed: 

1. Compiling version 5 without MPI support 
2. Compiling version 5 with MPI support and running with a single MPI process. 

In both cases the performance results are consistent (within statistical errors) with the 
results obtained when running version 4. That proves that version 5 without MPI 
support or when it is requesting only one MPI process, is just like version 4 based on 
OpenMP-only parallelization. 

3.3 Single-host performance results 
Tests have also been executed on systems A and B. The goal is to compare the 
performance results obtained when running a single MPI process with several 
OpenMP threads ((1 MPI)×(# OpenMP)) with respect to several MPI processes each 
one with a given number of OpenMP threads ((# MPI)×(# OpenMP)). A side effect of 
the latter configuration is that all input data are replicated for each MPI process, so 
the memory footprint increases. The topology for the affinity of the threads 
maximizes the cache memory per each thread, e.g. 4 MPI processes with 2 OpenMP 
threads each on a dual-socket system will run with 2 MPI processes per socket, i.e. 4 
OpenMP threads per socket. 

Results show that the configurations (# MPI)×(# OpenMP) gives between 1% and 
2% better performance with respect to the configuration (1 MPI)×(# OpenMP) for a 
given total number of threads. In particular, the best configuration is reached when 
considering an MPI process per socket, so that the corresponding OpenMP threads 
run on that socket. Results of the comparison for this configuration with respect to the 
configuration (1 MPI)×(# OpenMP) are: 

1. +1.2% for the dual-socket system (A), i.e. (2 MPI)×(# OpenMP) 
2. +1.9% for the quad-socket system (B), i.e. (4 MPI)×(# OpenMP) 

The improvement is due to better access to the input data, replicated per each MPI 
process, the application being NUMA-aware only for the arrays of generated results. 

3.4 Multi-host performance results 
Tests of scalability are executed using the cluster composed by the two systems of 
type C. For comparison they are also executed on the system B using the 
configuration (4 MPI)×(# OpenMP) (see section 3.3 for an explanation of the 
configuration). In these tests we are interested to the scalability of the application, i.e. 
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strong scaling. We look at the speed-up, defined as the ratio between the execution 
time spent by the application running in sequential, i.e. (1 MPI)×(1 OpenMP), and the 
execution time spent when running in parallel with a certain number of MPI processes 
and OpenMP threads. The fraction of code that it is parallelized is 99.7%. The 
sequential execution time is about 1200 seconds when running on the system C. 
Taking in account the considerations described in section 3.3 for sockets and MPI 
processes, the topology used for the tests on the two systems of type C is (4 MPI)×(# 
OpenMP), where 2 MPI processes are launched on each system and then their 
corresponding OpenMP threads are pinned within the sockets of the system. Plots of 
application scalability are shown in Figure 1. The results when running on the two 
Westmere-EP systems are compatible with the results obtained from running on the 
single Westmere-EX system. A slight drop of the performance is seen for the 
Westmere-EP results when running large number of total threads. This is due to the 
smaller size of the L3 cache memory that limits the scalability on the Westmere-EP 
systems. For instance the performance when running in total 6 OpenMP threads for 
each of the two hosts is about 3.2% better than running the corresponding 12 OpenMP 
threads on a single host, i.e. with all cores engaged. The same behavior is not present 
on Westmere-EX, where the scalability is close to the expectation, since the system 
has a bigger L3 cache per CPU and it is a quad-socket system. The breakdown per 
function call of the execution time when running with the configuration (4 MPI)×(12 
OpenMP) on the Westmere-EP systems, i.e. full load, is shown in Figure 2. Ignoring 
what are the specific functions related to the red bars, the important point from this 
plot is that the workload is balanced across the OpenMP threads and MPI processes 
for the most time-consuming functions. Then only the master thread of each MPI 
process runs specific functions, which are represented by the bars at the right of the 
plot: loading data (blue), MPI Allgather function and reduce operation (yellow), 
MPI Allreduce function (gray), remaining functions (black). All MPI functions in 
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Figure 1 Speed-up results when running on the two Westmere-EP systems and 
the Westmere-EX system. Note that 48 (80) threads case for Westmere-EP 

(Westmere-EX) plot engages SMT. 
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this configuration affect of 1.4% of the total execution time. Therefore it is possible to 
conclude that MPI overhead can be considered small in these tests. 
 
 

 
Figure 2 Breakdown per function call of the execution time when running with the configuration (4 

MPI)×(12 OpenMP) on the two Westmere-EP systems (bar length represent exclusive time). Note that node 
0 and 1 (2 and 3) refers to the MPI processes running on the same system. 

The last tests presented in this report are executed on the DELL PowerEdge C5220 
microserver with 4 hosts of type D, i.e. 16 cores in total. For comparison the tests 
were also executed on system A, which has the same number of total cores. Note that 
the comparison is made between a 4-core CPU (E3 family) and an 8-core CPU (E5 
family). In particular the total L3 cache size available on the former is much smaller 
than on the latter (8MB versus 20MB, respectively). The same consideration applies 
to the L3 cache size per each core (2MB versus 2.5MB). This introduces some 
performance penalty. Indeed, already when running sequentially, the performance of 
the E3 CPU is 1.2% lower (frequency scaled) than when running on the E5 CPU, and 
it increases to 6.2% when running 4 threads in total. The configurations used in these 
tests are (4 MPI)×(# OpenMP) for the microserver hosts, i.e. an MPI process per host, 
and (2 MPI)×(# OpenMP) for system A, respectively. Hence, the number of MPI 
communications remains the same during the tests, being increased is only the 
number of OpenMP threads. Plots of scalability are shown in Figure 3. The drop in 
performance of the microserver results becomes considerable when a high number of 
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total threads are involved: 4.5% per 12 threads, 5.5% per 16 threads, and 13.6% per 
32 SMT threads. The effect for 12 and 16 threads, which are the cases when no SMT 
threads are engaged, can be directly correlated to the penalty due to the smaller cache 
size on the E3 CPU. However, this effect does not fully explain the drop in 
performance when using SMT. In this case it is the SMT contribution itself that has 
less impact in the E3 based system with respect to the E5 dual-socket system: +22.2% 
and +31.2%, respectively. Running on a single host of the microserver with 4 and 8 
OpenMP threads the SMT contributes for +25.0%, which is in agreement with the 
results when all 4 hosts are used (taking in account also the higher number of threads). 
The MPI functions contributions for the configurations (# MPI)×(8 OpenMP) with 
respect to the corresponding total execution time are: 
• 2 MPI processes: 1.6% (total execution time 90.9 seconds) 
• 3 MPI processes: 2.6% (total execution time 61.5 seconds) 
• 4 MPI processes: 3.4% (total execution time 46.9 seconds) 

Therefore the exclusive execution time for the MPI functions is 1.5-1.6 seconds, with 
a small dependency on the number of nodes involved. 

4 Conclusion 
The scalability results of the version 5 of the MLfit benchmark are overall satisfactory. 
The MPI parallelization already helps when running in a single host, when combined 
with the OpenMP parallelization requiring an MPI process per socket. The 
performance when running on a small cluster, composed by two hosts, is excellent, 
very close to the theoretical expectation. Finally, the possibility to use a system based 
on microserver can be a suitable solution with respect to a multi-socket server (dual or 
quad). Frequency scaled, the single Sandy Bridge-EP server system with 16 cores (2 
E5 CPUs) is 16% faster than 4 hosts equipped with 4-core E3 CPU. The main 

Figure 3 Speed-up results when running on the microserver system with 4 hosts 
and the Sandy Bridge-EP system. Note that 32 threads case uses SMT. 
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limitation comes from the smaller L3 cache size of the 4-core E3 CPU, and a small 
penalty is found to be due to MPI communications. It is worth to consider that: 
• One DELL PowerEdge C5220 microserver system can host up to 12 nodes. A 

test with 5 hosts shows that the microserver system is 6.6% faster than the 
single dual-socket system (frequency scaled). 

• The 4-core E3 CPUs are available with higher clock frequency respect to the 8-
core E5 CPUs. The comparison of performance without frequency scaling 
shows that the microserver with 4 hosts at 3.5GHz is 12.1% faster than the 
single dual-socket system with CPUs at 2.7GHz. 

Therefore either using more hosts or higher frequency CPUs can easily compensate 
for the small drop in performance reported in the tests. 
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