
C
ER

N
-O

PE
N

-2
01

4-
02

9
01

/0
9/

20
12

Comparison	 of	 Software	
Technologies	 for	 Vectorization	
and	 Parallelization	

Sverre Jarp, Alf io Lazzaro, Andrzej Nowak,
Liviu Valsan
CERN openlab, September 2012 – version 1.0
White-paper as part of the collaboration
between CERN openlab and Intel SSG

Executive Summary
This paper demonstrates how modern software development methodologies can be
used to give an existing sequential application a considerable performance speed-up
on modern x86 server systems. Whereas, in the past, speed-up was directly linked to
the increase in clock frequency when moving to a more modern system, current x86
servers present a plethora of “performance dimensions” that need to be harnessed
with great care. The application we used is a real-life data analysis example in C++
analyzing High Energy Physics data. The key software methods used are OpenMP,
Intel Threading Building Blocks (TBB), Intel Cilk Plus, and the auto-vectorization
capability of the Intel compiler (Composer XE). Somewhat surprisingly, the Message
Passing Interface (MPI) is successfully added, although our focus is on single-node
rather than multi-node performance optimization. The paper underlines the
importance of algorithmic redesign in order to optimize each performance dimension
and links this to close control of the memory layout in a thread-safe environment. The
data fitting algorithm at the heart of the application is very floating-point intensive so
the paper also discusses how to ensure optimal performance of mathematical
functions (in our case, the exponential function) as well as numerical correctness and
reproducibility. The test runs on single-, dual-, and quad-socket servers show first of
all that vectorization of the algorithm (with either auto-vectorization by the compiler
or the use of Intel Cilk Plus Array Notation) gives more than a factor 2 in speed-up
when the data layout in memory is properly optimized. Using coarse-grained
parallelism all three approaches (OpenMP, Cilk Plus, and TBB) showed good parallel
speed-up on the available CPU cores. The best one was obtained with OpenMP, but
by combining Cilk Plus and TBB with MPI in order to tie processes to sockets, these
two software methods nicely closed the gap and TBB came out with a slight
advantage in the end. Overall, we conclude that the best implementation in terms of
both ease of implementation and the resulting performance is a combination of the
Intel Cilk Plus Array Notation for vectorization and a hybrid TBB and MPI approach for
parallelization.

 2

Table of Contents

Executive Summary ... 1	
Introduction .. 3	
The “seven performance dimensions” of PC servers .. 4	
Description of the ML application ... 6	

Vectorization approaches .. 8	
Parallelization approaches .. 8	

Tests .. 13	
Benchmark configuration .. 13	
Technical setup .. 14	
Performance results .. 15	

Single-socket Ivy Bridge system .. 15	
Dual-socket Sandy Bridge-EP system ... 18	
Quad-socket Sandy Bridge-EP system .. 19	

Conclusions .. 20	
References ... 22	

 3

Introduction
In this report we present an evaluation of several technologies used to vectorize and
parallelize a maximum likelihood (ML) data analysis application [COW98]. The code
has been developed by CERN openlab, and represents a prototype of the RooFit
package (which is part of the ROOT software framework developed at CERN),
generally used in the high energy physics (HEP) community for data analysis [ROF06].

If in the past the increase in computing performance was mainly driven by the
increment of the execution units’ frequency, nowadays microprocessor vendors are
rather deploying transistors in making more complex units, but with limits on their
frequency and the consequent power consumption. From the programmer’s point of
view there are two main hardware areas that are rapidly expanding: the vector
register dimensions and the number of computational cores that can execute a
common application. The former allows single-instruction multi-data (SIMD)
executions by using vectorization-programming techniques; for example, with the AVX
instruction set extension it is possible to compute four double-precision vector
operations at the same execution cost as a single double-precision scalar operation.
The number of computational cores can be considered either for the increment of
cores available in a single node, i.e. a multi-core shared memory system, or for the
increment of such nodes connected together within a cluster, i.e. a distributed
memory system. In both cases the execution of the applications has to properly
spread across the many cores by means of parallelization-programming techniques.
These hardware considerations are valid for the conventional CPUs and for the more
recent computational devices, the so-called accelerators, mainly used to offload the
CPUs for intensive floating-point applications. The accelerators, such as Graphics
Processing Units and Intel Many Integrated Cores (MIC), present higher number of
cores (many-core) and wider vector registers with respect to CPUs for fine-grained
application parallelism.

It is worth underlining that it is becoming more and more vital to design the software
applications and to program taking into account the new hardware complexity in
order to reach the peak performance of the systems. Several technologies are
already at the disposal of the software programmers. The challenge is to introduce
such technologies in existing software applications with the minimum number of
changes, maximizing the performance on a large variety of systems. For this reason it
is useful to compare the technologies in terms of changes required for
accommodating them in existing applications and to analyze the resulting
performance.

In this report we have primarily focused on the comparison of some of the
vectorization and parallelization technologies in terms of programming feasibility,
allowing us to improve our ML application with limited effort. We show the
advantages/disadvantages that we have found for each technology. We have also
looked at the performance on several x86-64 based systems commonly used by the
HEP community. For vectorization we have considered the loop auto-vectorization

 4

feature in the Intel compiler and the Intel Cilk Plus Array Notation. For parallelization
in a shared memory system we have considered OpenMP, Intel Threading Building
Blocks (TBB), and Intel Cilk Plus. Hybrid parallelization by using the aforementioned
technologies together with Message Passing Interface (MPI) has been implemented
to allow running on distributed memory systems. However, in this report we do not
show results of tests of parallel execution on multiple nodes, since we have
concentrated our efforts on the single node execution. Further details on the
vectorization and parallelization technologies can be found in the respective
documentation available on the Internet.

The report is structured as follows: a brief description of the hardware complexity, a
description of the ML fit application and the strategies adopted to vectorize and
parallelize it; then we describe in detail the comparisons of the technologies and
finally we give the performance results when running on several x86-64 platforms.

The “seven performance dimensions” of PC servers
The complexity of microprocessors can be described in what we call the “seven
performance dimensions” that are available in modern computing system designs
[JAR11]. The dimensions are illustrated in Figure 1.
They can split in two categories: three dimensions,
namely pipelining, superscalar, and SIMD/Vector,
together with symmetric multithreading (SMT) are
related to performance of a single computational core
unit (intra-core dimensions); multi-core, multi-socket,
and multiple nodes are related to extra-core
performance. We focus here on the x86-64
architecture, but complexity is equally present in
processors based, for instance, on the SPARC
architecture from Oracle, the POWER architecture from
IBM, or the Itanium architecture from Intel.

In the Pentium days, from an execution point of view,
there were basically only two major performance
dimensions: pipelining (with frequency increases every
6 – 12 months) and to a very limited extent,
superscalar execution (the so-called “U and V pipes”).
The latest x86-64 systems however have six superscalar execution ports, allowing up
to four independent instructions on average to be concurrently executed. As far as
the programmer is concerned, superscalar execution and pipelining cannot be
addressed directly. Usually the compilers and the CPU execution unit will organize the
instructions in order to maximize the number of ports involved. Historically PCs with
more than one Pentium processor on the motherboard were rare, so, when people
needed more performance than what was available in a single system, they would
split the load across multiple systems (multiple nodes dimension). Today clusters can
reach several thousands of nodes, inter-connected by fast network links. The de

Figure 1 The seven dimensions
of performance in a modern

microprocessor.

 5

facto software standard communally used for managing the parallel execution of the
applications in such clusters is MPI.

Another performance dimension became more commonplace with the introduction of
the Pentium Pro processor, namely the multiple-socket dimension. Currently, dual-
socket and quad-socket systems are commonly available in computer centers.
Nowadays, these systems follow a non-uniform memory access (NUMA) pattern when
accessing memory, i.e. the CPU of a given socket can access directly only a portion of
the total memory and indirectly, through a request to the corresponding CPUs, the
rest of the memory. The direct and indirect memory accesses have different latencies.
Thereby programmers must pay attention to memory allocations and memory access
patterns.

In 2001 we saw the introduction of SIMD vectors in the second wave of Streaming
SIMD Extensions (SSE2). In a 128-bit register, one could now perform two 64-bit
(double-precision) operations or four 32-bit (single-precision) operations in parallel.
Thus another performance dimension was born. In 2011 Intel introduced a new
extension in its processors, Advanced Vector Extensions (AVX), which doubles the
dimension of the registers. Furthermore, the Intel MIC platforms use 512-bit registers
and there is a high possibility of these registers becoming available in the server
CPUs space. Therefore, x86-64 CPUs can be considered as truly vector
computational-capable systems. Programmers can exploit vectorization directly,
using intrinsic operations for example, or indirectly by using the auto-vectorization
feature offered by the compilers. In both cases a correct organization of the data in
vectors is compulsory.

In 2004 we were blessed with the first multi-core processors. The cores (two or more
cores on a die) were complete processing units with an entire set of execution logic,
their own instruction and data caches, and so on. Modern x86-64 processors can
contain up to 16 cores, although between 4 and 8 cores are normally available in
computer center server processors. SMT is just a “pseudo-dimension” that was first
introduced on the x86-64 architecture one year prior to multi-core, with the
availability of the Intel Pentium D. It differs from multi-core since it does not provide
more execution logic on the processor die; it simply allows two (or more) hardware
threads to compete for the available logic and caches. Modern x86-64 CPUs have the
possibility to execute two hardware threads and the speed-up depends on the
applications (usually in the range between 1.2x and 1.3x). Considering dual-socket
systems with 6 cores CPUs and SMT enabled, these systems can run up to 24
parallel hardware threads with shared memory. Programmers have to use
parallelization technologies for designing and implementing their applications, with
the consequent increase in complexity of dealing with parallel executions with
respect to sequential executions (for example, due to false sharing and race
conditions). Beside the aforementioned NUMA effect, it is important to consider the
correct usage of the CPU cache memories, and in particular the last level cache (LLC)
memory which in most cases is shared between the cores within the CPU. It can be
useful to pin the threads to the cores by using affinity mask settings to avoid
swapping of threads between the cores.

 6

We can now conclude that five dimensions can be directly of interest to the
programmers by using vectorization (SIMD/Vector) and parallelization (SMT, multi-
core, multi-socket, and multiple nodes) technologies. We underline the fact that the
dimensions are multiplicative, but that a lot of existing software was not designed to
take advantage of all of them, especially the ones that naturally relate to data-level
parallelism. As already mentioned, current CPUs are potentially able to execute four
SIMD operations in double precision (using AVX instructions). This gives a speed-up
of a factor 4x on the execution of the applications. Of course, the programmers must
design their applications to exploit these vector operations. On the other hand, rapid
advancements in multicore and multi-threading technologies open new challenges
and it is more apparent than ever that the future of efficient computing lies in the
effective utilization of parallel and many-core architectures.

Description of the ML application
The HEP community makes large use of many complex data analysis techniques, like
maximum likelihood fits, neural networks, and boosted decision trees. These
techniques are largely used in HEP experiments to analyze the collected data. Data
samples are usually a collection of ! independent events, an event being the
measurement of a set of ! observables ! = !!… !! (energies, masses, spatial and
angular variables...) recorded in a brief span of time by particle physics detectors.
The events can be classified in ! different species. Each observable !! is distributed
for the given species ! with a probability distribution function (PDF) !!! !!;!!! where
!!! are parameters of the PDF that can be related to the prediction obtained from
physics models. If the observables are uncorrelated, then the total PDF for the
species ! is expressed by

!! !;!! = !!! !!;!!! .
!

!!!

The PDFs are normalized over their observables, as function of their parameters,
which implies an analytical or numerical evaluation of their integral. The extended
likelihood function is

ℒ =
!! !!!

!!!

!! !!!! !!;!!

!

!!!

!

!!!

,

where !! are the number of events belonging to each species. The maximization of
this function (the maximum likelihood technique) over the given data sample allows
to estimate the values and errors of the free parameters of the maximization. It is
usual to minimize the equivalent function – ln ℒ , the negative log-likelihood (!"")

!"" = !!
!

!!!
− ln !!!! !!;!!

!

!!!

!

!!!

,

 7

that is a sum of logarithms. The terms of the sum can be graphically visualized as a
tree, where the leaves are the PDFs !!! !!;!!! , which are then linked to the
corresponding product PDFs !! !!;!! , and finally to the root that is !!!! !!;!!!

!!!
(sum PDF). Product and sum PDFs are denoted as composite PDFs. Therefore, the
root has ! child nodes, each with ! children, which means that in the tree there are
!× ! + 1 + 1 nodes in total. The evaluation of the term in the sum of logarithms
consists in traversing the entire tree, first evaluating the leaves and then moving up
to the root. A final reduction of the logarithm results is performed and then combined
with !!!

!!! to get the !"" value. A sketch of the tree is shown in Figure 2.

Figure 2 Sketch of the !"" evaluation tree.

The time spent for the !"" evaluation depends on the number of events and the
complexity of the PDFs. The search for the minimum for !"" can be carried out
numerically [MIN72]. The whole procedure of minimization requires several
evaluations of the !"" , which themselves require the calculation of the
corresponding PDFs for each observable and each event of the data sample. Hence,
it becomes important to speed-up the evaluation to have fast data analyses.

The common software used in HEP community for the evaluation of the !"" is RooFit,
which is part of the general data analysis framework ROOT. The code is implemented
in C++ and all floating-point operations are performed in double precision. Currently
RooFit implements an algorithm for the !"" evaluation that is based on a single
external loop over the events, where each iteration evaluates the entire tree for a
given event and then accumulates the values for the reduction operation. The values
of the observables are organized in memory as arrays (an array for each observable),
each array composed of ! double precision numbers that are read-only during the
process of minimization. Each PDF has a common interface with an overloaded

 8

virtual method that returns the value of the PDF for the specific values of the
observables. Given this algorithm design, the implementation cannot take full
advantage of data vectorization and other code optimizations (like function inlining).
The parallelization is implemented by splitting the loop over the events in different
concurrent blocks, with a reduction operation to get the final sum. It is based on fork
calls, without shared memory objects to avoid race conditions. Therefore, the side
effect of the implementation of this algorithm is that there is a proportional increase
of the memory footprint with respect to the number of parallel threads.

CERN openlab has developed a prototype that makes use of a redesigned and
optimized algorithm with respect to the algorithm used in RooFit. For each !""
evaluation the tree is traversed sequentially only once. The algorithm starts
evaluating the basic PDFs, belonging to a given product PDF, looping over all values
of their observables, and storing the results in arrays (an array for each PDF). Then it
does the evaluation of the corresponding product PDF, looping and combining the
arrays of results of the daughter PDFs in a new array. It repeats the procedure for all
product PDFs. After that it loops again and combines the arrays of results of the
product PDFs to get a new array of results for the sum PDF (final results). So in total
there are !× ! + 1 + 1 loops, i.e. a loop for each node of the tree, instead of the
single external loop of the original RooFit algorithm. Eventually, the algorithm
calculates the logarithm of the final results and their sum (reduction). The main
change to the implementation is that now the virtual method for the evaluation of
each PDF is called only once per !"" evaluation and it runs internally the loop over
all events, which is implemented as a for loop. It returns the corresponding array of
results, each one composed by ! double precision numbers. These arrays are
allocated in memory at the beginning of the minimization process and deallocated at
the end. It is important to note that the ! loop iterations are independent. The loops
access consecutive elements of the arrays of observables and results, allowing
coalescing of memory accesses and data vectorization, with a significant speed-up in
the execution. The drawback of this new algorithm with respect to the original RooFit
is that it has to manage several arrays of results, so a correct use of cache memories
becomes important.

Vectorization approaches
The Intel compiler was able to auto-vectorize the loops in the original application
after we have added the #pragma ivdep directive before each loop. Note that the
functions inside the loops use transcendental operations. The Intel compiler uses the
Short Vector Math Library (SVML) library to vectorize in this case. As an alternative to
#pragma ivdep directive, we can use the Intel Cilk Plus Array Notation for
replacing the loops, which gives a very clear way to express loop vectorization.

Parallelization approaches
The easiest way to introduce parallelization is at level of the !× ! + 1 + 1 for
loops. We have used two different technologies:

 9

1. OpenMP, via the #pragma omp parallel for directive applied before
the for loop.

2. Intel Cilk Plus, via the _Cilk_for keyword which replaces the for keyword.
This solution is defined as fine-grained parallelism. Since it requires explicitly for
loops, it cannot use the vector syntax based on Intel Cilk Plus Array Notation. The
arrays of data and results are shared among the threads, so that there is a negligible
increment in the memory footprint of the application when running in parallel.
Furthermore, race conditions can easily be avoided since the parallel regions are
confined to the loop iterations. Also the loop that computes the reduction has been
parallelized. The reproducibility of the results of the reduction is compulsory for
achieving a stable behavior during the minimization procedure, i.e. stable results of
the ML fits. For this purpose a specific algorithm was implemented. It preserves the
order of the operations for a given number of threads and it reduces the rounding
problem due to non-associative floating point arithmetic, using the double-double
compensation algorithm 2Sum [SUM01]. To use this algorithm a new type was
defined, which overloads the sum operator. In the case of OpenMP it is not possible
to use the reduction clause because it does not allow the use of custom type
variables. Therefore we implemented our own parallel block-wise reduction algorithm.
Intel Cilk Plus provides a special template class (cilk::reducer_opadd<>) for
the reduction that also works with custom types and gives reproducibility results.
Consequently, the Intel Cilk Plus implementation becomes easier than in OpenMP.

The scheduling of iterations in the OpenMP parallelization is statically partitioned for
all loops, i.e. each thread executes a fixed number of iterations. The static
partitioning is implemented in such a way that one thread can have maximum one
iteration of difference with respect to the other threads, to ensure an equally
balanced workload. The same technique is applied to the loop that performs the
reduction operation. In the case of Intel Cilk Plus the dynamic scheduler is used for
all loops, leaving for the runtime system to decide the grain size of the loops. Both
OpenMP and Intel Cilk Plus allow running the application when removing completely
any parallel-related code for scalability tests by either setting the environment
variables (OMP_NUM_THREADS and CILK_NWORKERS, respectively) or the compiler
flag -cilk-serialize in the case of Intel Cilk Plus.

Although fine-grained parallelism has the big advantage of easy implementation in a
thread-unsafe application, implementations show some limitations that reduce the
overall performance:

• For each !"" evaluation, !× ! + 1 + 1 independent parallel regions have to
be considered. This leads to a larger overhead than necessary, which
drastically reduces the scalability.

• !× ! + 1 + 1 arrays of results and ! arrays of observables have to be man-
aged, each array composed of ! double precision values. The amount of data
to manage becomes considerable in the case of complex models and large
data samples, so it is crucial to have an optimal organization of data inside
the cache memories. Tests have proved that there is a significant penalty to
the scalability due to LLC load misses. An analysis of the problem shows that

 10

the culprits are the loops of the composite PDFs, which have to combine
arrays of results with just a simple operation.

To remove the potential overhead due to fine-grained parallelism, the entire !""
evaluation was redesigned using a different pattern: there is only one parallel region
for each evaluation, and this region will start at the root of the tree. This solution is
defined as coarse-grained parallelism. In the case of the OpenMP implementation,
the parallelization starts at the root level via a #pragma omp parallel directive.
The partitioning of the loop iterations is done as before, but now each thread
executes the entire evaluation from the root to the leaves, including the reduction,
within its own partition only. The Intel Cilk Plus implementation based on
_Cilk_for keyword cannot be accommodated for the coarse-grained parallelism.
Therefore, we have implemented a new algorithm based on _Cilk_spawn and
_Cilk_sync keywords. The algorithm splits the events in blocks, each block being
executed in parallel by a _Cilk_spawn call. The user decides the block dimension
!. Then this value is used to determine the number of blocks !! = !/!, where ! is
adjusted so that the minimum value of !! is equal to the number of available Intel
Cilk Plus workers (which is also the default behavior when the user does not provide
a block dimension). The !"" evaluation is executed for the events in the blocks,
including the reduction. Each block is dynamically executed by an Intel Cilk Plus task.
A sketch of the necessary code is the following:

This algorithm also reduces the load on memory by splitting the data domain into
blocks so that the entire procedure of evaluation is done block by block (block
splitting optimization). The optimization directly targets cache misses, since it
increases locality and thereby increases cache efficiency. For this reason it was also
added to the OpenMP implementation. In this case the procedure of decomposition
applies to the events executed by each thread following the following order of
execution: start of the parallel region, decomposition of the events for the threads,

int nBlocks = (userBlockDim==0) ? __cilkrts_get_nworkers() :
 std::max(__cilkrts_get_nworkers(),
 int(double(nEvents)/userBlockDim+0.5));

int blockDim = nEvents/nBlocks;

// Result of the reduction
cilk::reducer_opadd<ValueAndError_t> result;

for (int iBlock = 0; iBlock<nBlocks-1; iBlock++) {
 // RunNLL runs the NLL evaluation for the
 // events with indices [iBlock*blockDim, (iBlock+1)*blockDim[and
 // it accumulates the result of the reduction
 _Cilk_spawn RunNLL(iBlock*blockDim, blockDim, result);
}

// Take care of the remaining events
RunNLL((nBlocks-1)*blockDim, nEvents-(nBlocks-1)*blockDim, result);

_Cilk_sync;

 11

each thread splits the execution of its events into blocks, static execution of the block
by each thread. Clearly the application will benefit from systems with a bigger LLC
size. In the case of OpenMP it is also beneficial to use a scattered affinity topology
that maximizes the cache memory available per thread, i.e. threads are bound to
cores of CPUs on different sockets before filling the cores of a given CPU. For
example, running with 4 threads on the dual-socket systems means 2 threads per
CPU (instead of 4 threads on the same CPU). We set the affinity mask by using the
Intel environment variable KMP_AFFINITY.

We have also implemented an Intel TBB version of the algorithm for the coarse-
grained parallelism. A sketch of the implemented code is the following:

The beauty of this parallelization technology is that Intel TBB provides automatic
block splitting. Each block is dynamically executed by an Intel TBB task and there is a
deterministic reduction (like in Intel Cilk Plus). The Intel TBB implementation is very
concise.

Although coarse-grained parallelism improves performance in terms of parallel
scalability, it can have problematic consequences in the case of a complex C++ code
like RooFit. Indeed, the parallel region covers a larger portion of the execution, so it is
crucial not to modify member variables of the object the method is running on, or
global variables, without carefully assuring that race conditions are avoided.

The last implementation includes the possibility to simultaneously exploit MPI
together with the other parallelization technologies. Each MPI process holds a copy of
the whole input dataset. Then two decompositions of the events are considered:

struct RunTBB {
 ValueAndError_t result; // local result of the reduction
 NLL& nll; // internal pointer to the NLL object

 RunTBB(NLL& _nll) : nll(_nll), result(0) { }
 RunTBB(RunTBB &other, tbb::split) : nll(other.nll), result(0) { }

 void operator()(const tbb::blocked_range<size_t>& range) {

 // RunNLL runs the NLL evaluation for the
 // events with indices [range.begin(), range.end()[and
 // it accumulates the result of the reduction
 nll.RunNLL(range.begin(), range.size(), result);
 }

 void join(RunTBB& other) {
 result += other.result;
 }
};

// Call to TBB parallelization
tbb::parallel_deterministic_reduce(TBBRange(0, nEvents, blockDim),
 nll);

 12

1. The same algorithm of decomposition of data elements described for OpenMP
threads is applied for the MPI processes, i.e. each process manages a fixed
number of events during the minimization process.

2. The events belonging to each MPI process are partitioned and analyzed
following the specific technology OpenMP, Intel Cilk Plus or Intel TBB.

Note that each MPI process allocates the results array for its corresponding number
of events. Also, the reduce operation is performed in two steps. The first step
consists of performing the reduction for each MPI process as already described in the
non-MPI implementation. In this way each MPI process holds a partial result of the
reduction. The second step consists of broadcasting all partial results to all MPI
processes, so that each MPI process will have all partial results. The MPI function
Allgather is used for this operation. Then a second reduction is executed on the
MPI partial results to get the final results on all MPI processes. Note that the same
algorithm for the reduction based on double-double compensation algorithm is used
for the reduction of the MPI partial results. Then, after each !"" evaluation, all MPI
processes will proceed to execute the same part of code for the minimization, so that
at the very end of the application each MPI process will have the same final results.
This implementation choice allows limiting the number of MPI communications with
respect to a configuration where only an MPI process drives the evaluation since it
does not require the exchange of any other values in the remaining part of the
application, e.g. the values of the parameters of the PDFs during the minimization. A
check after each !"" evaluation is executed to ensure that there were no errors
during the evaluation. Each process sends an integer value that can be the number
of analyzed events or zero in case of an error. Then the MPI function Allreduce is
called to sum up all integers and the result is compared with the total number of
events. The application stops if the comparison fails. It must be underlined that the
Allgather and Allreduce calls are the only communication functions for each
evaluation of the likelihood function, with a small number of results to be moved
between MPI processes. Hence, a negligible overhead due to MPI communications is
expected.

To conclude, we have 5 implementations that can be classified as follows:
• Fine-grained parallelism (w/o block splitting, vectorization based on #pragma

ivdep only)
Ø OpenMP
Ø Intel Cilk Plus

• Coarse-grained parallelism (w/ block splitting, vectorization based either on
#pragma ivdep or Intel Cilk Plus Array Notation)
Ø OpenMP (static scheduling of the blocks)
Ø Intel Cilk Plus (dynamic scheduling of the blocks)
Ø Intel TBB (dynamic scheduling of the blocks)

All these implementations can be executed with MPI. We have made a single
executable with some command line parameter options for setting the
implementation and block size to use:

§ -e: use coarse-grained parallelism (by default is fine-grained parallelism).

 13

§ -a <int>: specifies the technology to use. Values are: 0 for OpenMP, 1 for
Intel TBB, 2 for Intel Cilk Plus.

§ -n <int>: set the number of events. The events are read from an external
file.

§ -b <int>: set the block size.
The results are reproducible, independently of the number of threads/tasks and the
implementation used. Therefore it is possible to compare their execution
performance.

Tests
Benchmark configuration
The likelihood function definition was taken from the data analysis performed at the
BaBar experiment [BBR09]. Thus, this is an example of a real-world application in
use by the HEP community. There are 3 observables and 5 species. In total there are
21 PDFs: 7 Gaussians, 5 polynomials, 3 Argus functions, combined by 5 PDFs for
multiplication and one for addition. All PDFs have an analytical integral. Input data
was composed of 1,000,000 entries per 3 observables, for a total of about 23MB.
Results are stored in 21 arrays of 1,000,000 values, i.e. about 160MB. When the
events were organized in blocks, a heuristic approach was followed to decide their
dimensions, which depends on the number of parallel threads. They can be put in
relation with the cache size available on the system, so the dimensions decrease
accordingly with the number of threads. In particular the block dimensions allow
having the fastest execution for a given execution. The MINUIT2 package was used to
minimize the !"" function [MIN72]. The number of necessary !"" evaluations to
find the minimum for the set of initial parameters used in our tests was 5890. It is
worth underlining that the application is floating-point intensive; in particular the
execution of the exponential function takes about 60% of the total execution time.

The execution times reported are the average over three consecutive runs of the
application. The reference sequential execution time was taken when running the
OpenMP implementation with coarse-grained parallelism and a single thread
(OMP_NUM_THREADS=1). We found that the best block size for this configuration is
10,000 events for all systems used. First of all we compared the reference
sequential execution times obtained, respectively, with the times obtained after
running the AVX vectorization version based on the loop auto-vectorization feature of
the Intel compiler and the Intel Cilk Plus Array Notation. Then we looked at the speed-
up given by vectorization with respect to a non-vectorized version of the code. We
also compared the sequential execution times of several different OpenMP and Intel
Cilk Plus implementations, with vectorization based on the loop auto-vectorization
feature of the Intel compiler and AVX instructions. Finally we computed the scalability
results where the speed-up values were obtained from the ratio between the
reference sequential execution time and the corresponding parallel execution times
with a given number of threads, both with vectorization based on the loop auto-
vectorization feature of the Intel compiler and AVX instructions. The fraction of

 14

sequential execution time that corresponds to code that can be parallelized is
99.75%. Note that the Intel Cilk Plus and Intel TBB implementations manage
automatically the maximum number of threads that can run on the systems. We
compared their performance with the OpenMP implementations executed with the
numbers of software threads matching the number of hardware threads.
Consequently, the block sizes used in Intel Cilk Plus and Intel TBB implementations
are the same used in the OpenMP implementations executed with the maximum
number of threads.

Technical setup
Three systems were used in the tests with the following configurations:

A. Single-socket system
• Intel Ivy Bridge Xeon E3-1265L @ 2.5GHz CPU
• 4 cores with SMT-enabled: 8 hardware threads
• 8MB L3 cache size
• 8GB RAM DDR3 1333MHz

B. Dual-socket system
• Intel Sandy Bridge Xeon E5-2680 @ 2.7GHz CPU
• 2x8 cores with SMT-enabled: 32 hardware threads
• 20MB L3 cache size per CPU
• 64GB RAM DDR3 1333MHz

C. Quad-socket system
• Intel Sandy Bridge E5-4650 @ 2.7GHz CPU
• 4x8 cores with SMT-enabled: 64 hardware threads
• 20MB L3 cache size per CPU
• 256GB RAM DDR3 1333MHz

All systems are able to execute SSE and AVX vector instructions. They were SMT-
enabled, which means that the hardware threading feature was activated and used
during the tests. When executing the OpenMP implementation an affinity mask
setting was used for pinning threads to physical cores. If there were no more physical
cores available, the jobs were pinned to hardware threads, requiring 2 threads per
CPU core. Turbo mode was disabled in all systems because we were interested in
scalability tests.

The systems were running 64-bit Scientific Linux CERN 6.2 (SLC6), based on Red Hat
Enterprise Linux 6 (Server). The default SLC 6 Linux kernel (version 2.6.32-220.1.el6)
was used for all the measurements. The code was compiled with ICC v13.0.0
(20120316), using the following standard flags:
-O2 –m64 -fPIC -funroll-loops -finline-functions -ip -vec-
report1 –tbb -w1 -Wall -openmp -openmp-report2

We have used Intel MPI v4.0.3.

 15

Performance results
The results are presented in corresponding sections per each system. The
vectorization tests and the comparison of the sequential executions were executed
only for the single-socket system.

Single-socket Ivy Bridge system
The reference sequential execution time was 1888 seconds when running a non-
vectorized version of the code, obtained by using the –no-vec compiler flag. The
reference sequential execution of the application with the AVX vectorization based on
the loop auto-vectorization feature of the Intel compiler was 1.8% (standard deviation
is 0.2%) faster than the corresponding execution of the code vectorized with the Intel
Cilk Plus Array Notation.

We compiled the code in three different configurations by using the flags:

1. –no-vec
2. –msse3
3. –mavx

The average speed-up results obtained through a comparison of the reference
sequential execution times of such configurations are shown in Table 1. We found
that the speed-up results did not significantly depend on vectorization technology
and the number of threads (standard deviation is 0.03x). A description of the
vectorization performance can be found in Ref. [JAR12].

 –no-vec –msse3

–msse3 1.82x

–mavx 2.23x 1.23x
Table 1 Average speed-up results for different vectorization

configurations (given by the indicated compiler f lags) on the single-
socket system. The results are obtained from the ratio between
execution t imes for the configurations in the columns and the

corresponding configurations in the rows.

The comparison of the reference sequential execution time with respect to the
sequential execution time of the other implementations is the following:

• OpenMP implementation, fine-grained parallelism: 13.3% slower.
• Intel Cilk Plus implementation, fine-grained parallelism: 13.7% slower.
• Intel Cilk Plus implementation, coarse-grained parallelism: 0.3% faster.

We used OMP_NUM_THREADS=1 in the case of the OpenMP implementation, while
we used the Intel compiler flag -cilk-serialize for the Intel Cilk Plus
implementation. The sequential execution times of the OpenMP and Intel Cilk Plus
implementations based on fine-grained parallelism were consistent one with each
other and slower than the reference sequential OpenMP execution (13.5% in
average). This was expected because they do not use the block splitting optimization.
As expected, the Intel Cilk Plus implementation based on coarse-grained parallelism

 16

gave a consistent performance boost with respect to the reference sequential
OpenMP execution, which is based on coarse-grained parallelism too.

Threads Block size (# events)
1 10,000
2
4 and 8

5,000
1,000

Table 2 Block dimensions used in the tests
performed on the single-socket system. Note that

the 8 threads case uses SMT.

The block sizes used in the scalability tests are reported in Table 2. The scalability
results for the OpenMP implementation based on coarse-grained parallelism are
shown in Figure 3. We can clearly see that this implementation scaled badly when
running with 4 threads, i.e. the number of cores available on the system (speed-up is
2.87x against 3.97x expected, with a standard deviation of 0.01x). Analysis of the
problem showed that it was a consequence of the small L3 cache size and the static
partitioning of the events over the threads. We found also that setting the affinity
allowed to stabilize the execution times (the standard deviations were at least twice
larger without setting the affinity).

Figure 3 Scalabil i ty results for the OpenMP implementation based on coarse-grained
paral lel ism running on the single-socket system. The sol id black l ine without markers

is the theoretical speed-up obtained by Amdahl’s law with a paral lel fraction of
99.75%. The 8 threads result uses SMT.

Finally we compared the performance of the different implementations when the
system was fully loaded. In Figure 4 we show the results of the speed-up obtained
with respect to the reference sequential execution time. The numbers draw two
interesting conclusions:

 17

• The implementations based on coarse-grained parallelism scaled better than
those based on fine-grained parallelism (being almost twice faster). This was
an expected consequence of the parallel implementation runtime overhead
and the block splitting optimization.

• Among the implementations based on coarse-grained parallelism, both Intel
Cilk Plus and Intel TBB implementations gave better performance results than
the OpenMP implementation. As aforementioned, the OpenMP
implementation suffered from the small L3 cache size and the static
partitioning of the events over the threads, while the other two
implementations used dynamic partitioning of the events in tasks. The Intel
TBB implementation gave the best performance, slightly better (4%) than the
corresponding Intel Cilk Plus performance.

We also tried the hybrid MPI implementations, using 2 MPI processes, but we did not
find any benefit in performance. Note that in this case the number of OpenMP
threads was accordingly reduced by a factor 2 so that the total number of running
threads was equal to the number of MPI processes times the number of OpenMP
threads. This procedure is automatic for the Intel Cilk Plus and Intel TBB
implementations, whose runtime systems are able to recognize the Intel MPI runtime
system underneath.

Figure 4 Comparison of several implementations for the three analyzed systems. The speed-up

values were obtained running the implementations with ful l - loaded systems with respect to
reference sequential execution t ime. Socket-aff inity and hybrid MPI paral lel ization were not

used in the tests.

 18

Dual-socket Sandy Bridge-EP system
The block sizes used in the scalability tests are reported in Table 3.

Threads Block size (# events)
1 and 2 10,000
4
8
16 and 32

5,000
2,000
1,000

Table 3 Block dimensions used in the tests on the
dual-socket system. Note that the 32 threads

case uses SMT.

The scalability results for the OpenMP implementation based on coarse-grained
parallelism are shown in Figure 5. We can clearly see that the scalability was very
close to the theoretical expectation, with some degradation when the system was
fully loaded (mainly due to the OpenMP runtime overhead when a high number of
threads were involved). We found that setting the affinity was crucial to stabilize the
execution times, which otherwise suffered large variations (in average 20%, but in
some runs the execution time was twice longer).

Figure 5 Scalabil i ty results for the OpenMP implementation based on coarse-grained

paral lel ism running on the dual-socket and quad-socket systems. Data labels on the left
(r ight) of the markers are for the dual-socket (quad-socket) system. The sol id black l ine

without markers is the theoretical speed-up obtained by Amdahl’s law with a paral lel
fraction of 99.75%. The 32 threads result for the dual-socket system and the 64 threads

result for the quad-socket system, respectively, use SMT.

The results for the performance comparison of the different implementations when
the system was fully loaded are shown in Figure 4. Contrary to the results obtained

 19

on the single-socket system, in the dual-socket case the Intel Cilk Plus and Intel TBB
implementations based on the coarse-grained parallelism are much slower than the
corresponding OpenMP implementation. We found that this is intrinsically due to the
execution on a multi-socket system (probably a NUMA effect). Indeed, it turned out
that using the command:
numactl --interleave=all <app> <options>

so that the threads were bound into the cores of a given socket, the difference
became smaller (see Figure 6). This can be considered an affinity at the level of the
different sockets (socket-affinity). However, performance improved a lot when
running the hybrid MPI parallelization, using a number of MPI processes equal to the
number of sockets. These results are shown in the same Figure 6. We found that this
is mainly due to two effects:

• Intel MPI runtime system automatically does socket-affinity when running with
Intel Cilk Plus or Intel TBB.

• The multi-processes parallelization based on MPI reduces the parallel
implementation runtime overhead, especially when a high number of threads
are involved (the side effect being the increase in the total memory used).

We noticed also that for the dual-socket system, which has enough L3 cache, there
was a small benefit coming from the dynamic partitioning of the events in tasks used
in the Intel Cilk Plus and Intel TBB implementations. The Intel TBB implementation
based on coarse-grained parallelism gave the best performance, like in the single-
socket case, which was very close to the corresponding OpenMP implementation,
while the corresponding Intel Cilk Plus implementation was 6% slower. Eventually we
also tried the hybrid MPI implementations with 4 MPI processes, but they did not give
any benefit in performance.

Quad-socket Sandy Bridge-EP system
The block sizes used in the scalability tests are reported in Table 4. Most of the
conclusions previously described for the dual-socket system holds also for the quad-
socket system. Therefore, here we report only the differences.

Threads Block size (# events)
1, 2 and 4 10,000
8
12
16 and 24
32 and 64

5,000
3,000
2,000
1,000

Table 4 Block dimensions used in the tests on
the quad-socket system. Note that the 64

threads case uses SMT.

The scalability results for the OpenMP implementation based on coarse-grained
parallelism are shown in Figure 5. We found that the OpenMP runtime overhead
significantly impaired the scalability for a high number of threads.

 20

Figure 6 Comparison of several implementations for the dual-socket and quad-socket systems.
The speed-up values were obtained running the implementations with ful l - loaded systems with
respect to reference sequential execution t ime. Socket-aff inity and hybrid MPI paral lel ization

were used in the tests.

The results of the performance comparison of the different implementations when
the system was fully loaded, with and without socket-affinity and hybrid MPI
parallelization, respectively, are shown in Figure 4 and Figure 6. As naively expected,
the performance degradations for the Intel Cilk Plus and Intel TBB implementations
were bigger than in the dual-socket case, since the execution spread over four
sockets. Therefore, it is crucial for this system to use socket-affinity. Moreover, the
hybrid MPI implementations reduced dramatically the parallel implementation
runtime overhead due to the lower number of threads involved. Eventually we also
tried the hybrid MPI implementations with 8 MPI processes, but it did not give any
benefit in performance.

Conclusions
We have described in this report the vectorization and parallelization of the ML fit
application developed by CERN openlab. We have compared the different
technologies used from an ease of use and performance perspective. The purpose
was to study the most productive methods to improve the performance of an existing
application on contemporary platforms.

First of all we found that for getting good performance it was crucial to organize data
in vectors aligned in memory and perform the computation on such vectors by means
of loops that can be vectorized. The vectorization was achieved by using the auto-

 21

vectorization of the Intel compiler, adding the #pragma ivdep directive before
each loop, or using the Intel Cilk Plus Array Notation for replacing the loops. We found
that the latter gives a very clear way to express loop vectorization, although the
execution of the application was about 2% slower than the version based on
#pragma ivdep. Overall performance boost was about 2.2x when using AVX vector
registers with respect to a non-vectorized version of the application.

Concerning the parallelization we found that it is very beneficial to invest effort in
making the code thread-safe, to achieve the execution of the largest possible parallel
regions (coarse-grained parallelism). This in turn reduces the overhead of the parallel
technology runtime, improving scalability for large number of parallel threads. We
found that other important points needed to achieve better performance were the
management of the data inside cache memories, affinity of threads into the cores of
the systems and scheduling of the threads runtime execution. Furthermore,
specifically for our application it was also important to assure the reproducibility of
results across different parallel executions and across executions with different
number of threads. Among the three different implementations based, respectively,
on OpenMP, Intel Cilk Plus, and Intel TBB, the last one gave the best results in terms
of performance with the minimum number of changes required to our C++
application source code. When comparing the performance on systems with different
number of sockets and high number of cores, we found that the hybrid MPI
implementation improved the performance when combined with Intel Cilk Plus and
Intel TBB parallel implementations, especially by using a number of MPI processes
equal to the number of sockets. The application scaled very close to the theoretical
expectation, also when using SMT, reaching a speed-up of about 35x on 32 SMT-
enabled cores.

To conclude, the best implementation in terms of feasibility and performance for our
ML fit application was the one based on Intel Cilk Plus Array Notation for
vectorization and hybrid Intel TBB with MPI for parallelization.

 22

References
COW98 G. Cowan: Statistical Data Analysis, Clarendon Press, Oxford (1998)

ROF06 W. Verkerke and D. Kirkby: The RooFit Toolkit for Data Modeling,
proceedings of PHYSTAT05, Imperial College Press (2006)

JAR11 S. Jarp et al.: How to harness the performance potential of current multi-
core processors, J. Phys.: Conf. Ser. 331 012003 (2011)

MIN72 F. James: MINUIT - Function Minimization and Error Analysis, CERN
Program Library Long Writeup D506 (1972). Also see the webpage
http://seal.web.cern.ch/seal/MathLibs/Minuit2/html/

SUM01 P. Kornerup et al.: On the Computation of Correctly-Rounded Sums, IEEE
Transactions on Computers 61 3 (2012)

BBR09 B. Aubert et al.: B meson decays to charmless meson pairs containing η
or η’ mesons, Phys. Rev. D80, 112002 (2009)

JAR12 S. Jarp et al.: Evaluation of the Intel Sandy Bridge-EP server processor,
CERN openlab report, CERN-IT-Note-2012-005 (2012)

