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Executive Summary 
This paper demonstrates how modern software development methodologies can be 
used to give an existing sequential application a considerable performance speed-up 
on modern x86 server systems. Whereas, in the past, speed-up was directly linked to 
the increase in clock frequency when moving to a more modern system, current x86 
servers present a plethora of “performance dimensions” that need to be harnessed 
with great care. The application we used is a real-life data analysis example in C++ 
analyzing High Energy Physics data. The key software methods used are OpenMP, 
Intel Threading Building Blocks (TBB), Intel Cilk Plus, and the auto-vectorization 
capability of the Intel compiler (Composer XE). Somewhat surprisingly, the Message 
Passing Interface (MPI) is successfully added, although our focus is on single-node 
rather than multi-node performance optimization. The paper underlines the 
importance of algorithmic redesign in order to optimize each performance dimension 
and links this to close control of the memory layout in a thread-safe environment. The 
data fitting algorithm at the heart of the application is very floating-point intensive so 
the paper also discusses how to ensure optimal performance of mathematical 
functions (in our case, the exponential function) as well as numerical correctness and 
reproducibility. The test runs on single-, dual-, and quad-socket servers show first of 
all that vectorization of the algorithm (with either auto-vectorization by the compiler 
or the use of Intel Cilk Plus Array Notation) gives more than a factor 2 in speed-up 
when the data layout in memory is properly optimized. Using coarse-grained 
parallelism all three approaches (OpenMP, Cilk Plus, and TBB) showed good parallel 
speed-up on the available CPU cores. The best one was obtained with OpenMP, but 
by combining Cilk Plus and TBB with MPI in order to tie processes to sockets, these 
two software methods nicely closed the gap and TBB came out with a slight 
advantage in the end. Overall, we conclude that the best implementation in terms of 
both ease of implementation and the resulting performance is a combination of the 
Intel Cilk Plus Array Notation for vectorization and a hybrid TBB and MPI approach for 
parallelization. 
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Introduction 
In this report we present an evaluation of several technologies used to vectorize and 
parallelize a maximum likelihood (ML) data analysis application [COW98]. The code 
has been developed by CERN openlab, and represents a prototype of the RooFit 
package (which is part of the ROOT software framework developed at CERN), 
generally used in the high energy physics (HEP) community for data analysis [ROF06]. 
 
If in the past the increase in computing performance was mainly driven by the 
increment of the execution units’ frequency, nowadays microprocessor vendors are 
rather deploying transistors in making more complex units, but with limits on their 
frequency and the consequent power consumption. From the programmer’s point of 
view there are two main hardware areas that are rapidly expanding: the vector 
register dimensions and the number of computational cores that can execute a 
common application. The former allows single-instruction multi-data (SIMD) 
executions by using vectorization-programming techniques; for example, with the AVX 
instruction set extension it is possible to compute four double-precision vector 
operations at the same execution cost as a single double-precision scalar operation. 
The number of computational cores can be considered either for the increment of 
cores available in a single node, i.e. a multi-core shared memory system, or for the 
increment of such nodes connected together within a cluster, i.e. a distributed 
memory system. In both cases the execution of the applications has to properly 
spread across the many cores by means of parallelization-programming techniques. 
These hardware considerations are valid for the conventional CPUs and for the more 
recent computational devices, the so-called accelerators, mainly used to offload the 
CPUs for intensive floating-point applications. The accelerators, such as Graphics 
Processing Units and Intel Many Integrated Cores (MIC), present higher number of 
cores (many-core) and wider vector registers with respect to CPUs for fine-grained 
application parallelism.  
 
It is worth underlining that it is becoming more and more vital to design the software 
applications and to program taking into account the new hardware complexity in 
order to reach the peak performance of the systems. Several technologies are 
already at the disposal of the software programmers. The challenge is to introduce 
such technologies in existing software applications with the minimum number of 
changes, maximizing the performance on a large variety of systems. For this reason it 
is useful to compare the technologies in terms of changes required for 
accommodating them in existing applications and to analyze the resulting 
performance.   
 
In this report we have primarily focused on the comparison of some of the 
vectorization and parallelization technologies in terms of programming feasibility, 
allowing us to improve our ML application with limited effort. We show the 
advantages/disadvantages that we have found for each technology. We have also 
looked at the performance on several x86-64 based systems commonly used by the 
HEP community. For vectorization we have considered the loop auto-vectorization 
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feature in the Intel compiler and the Intel Cilk Plus Array Notation. For parallelization 
in a shared memory system we have considered OpenMP, Intel Threading Building 
Blocks (TBB), and Intel Cilk Plus. Hybrid parallelization by using the aforementioned 
technologies together with Message Passing Interface (MPI) has been implemented 
to allow running on distributed memory systems. However, in this report we do not 
show results of tests of parallel execution on multiple nodes, since we have 
concentrated our efforts on the single node execution. Further details on the 
vectorization and parallelization technologies can be found in the respective 
documentation available on the Internet. 
 
The report is structured as follows: a brief description of the hardware complexity, a 
description of the ML fit application and the strategies adopted to vectorize and 
parallelize it; then we describe in detail the comparisons of the technologies and 
finally we give the performance results when running on several x86-64 platforms. 

The “seven performance dimensions” of PC servers 
The complexity of microprocessors can be described in what we call the “seven 
performance dimensions” that are available in modern computing system designs 
[JAR11]. The dimensions are illustrated in Figure 1. 
They can split in two categories: three dimensions, 
namely pipelining, superscalar, and SIMD/Vector, 
together with symmetric multithreading (SMT) are 
related to performance of a single computational core 
unit (intra-core dimensions); multi-core, multi-socket, 
and multiple nodes are related to extra-core 
performance. We focus here on the x86-64 
architecture, but complexity is equally present in 
processors based, for instance, on the SPARC 
architecture from Oracle, the POWER architecture from 
IBM, or the Itanium architecture from Intel.  
 
In the Pentium days, from an execution point of view, 
there were basically only two major performance 
dimensions: pipelining (with frequency increases every 
6 – 12 months) and to a very limited extent, 
superscalar execution (the so-called “U and V pipes”). 
The latest x86-64 systems however have six superscalar execution ports, allowing up 
to four independent instructions on average to be concurrently executed. As far as 
the programmer is concerned, superscalar execution and pipelining cannot be 
addressed directly. Usually the compilers and the CPU execution unit will organize the 
instructions in order to maximize the number of ports involved. Historically PCs with 
more than one Pentium processor on the motherboard were rare, so, when people 
needed more performance than what was available in a single system, they would 
split the load across multiple systems (multiple nodes dimension). Today clusters can 
reach several thousands of nodes, inter-connected by fast network links. The de 

Figure 1 The seven dimensions 
of performance in a modern 

microprocessor.  
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facto software standard communally used for managing the parallel execution of the 
applications in such clusters is MPI. 
 
Another performance dimension became more commonplace with the introduction of 
the Pentium Pro processor, namely the multiple-socket dimension. Currently, dual-
socket and quad-socket systems are commonly available in computer centers. 
Nowadays, these systems follow a non-uniform memory access (NUMA) pattern when 
accessing memory, i.e. the CPU of a given socket can access directly only a portion of 
the total memory and indirectly, through a request to the corresponding CPUs, the 
rest of the memory. The direct and indirect memory accesses have different latencies. 
Thereby programmers must pay attention to memory allocations and memory access 
patterns. 
 
In 2001 we saw the introduction of SIMD vectors in the second wave of Streaming 
SIMD Extensions (SSE2). In a 128-bit register, one could now perform two 64-bit 
(double-precision) operations or four 32-bit (single-precision) operations in parallel. 
Thus another performance dimension was born. In 2011 Intel introduced a new 
extension in its processors, Advanced Vector Extensions (AVX), which doubles the 
dimension of the registers. Furthermore, the Intel MIC platforms use 512-bit registers 
and there is a high possibility of these registers becoming available in the server 
CPUs space. Therefore, x86-64 CPUs can be considered as truly vector 
computational-capable systems. Programmers can exploit vectorization directly, 
using intrinsic operations for example, or indirectly by using the auto-vectorization 
feature offered by the compilers. In both cases a correct organization of the data in 
vectors is compulsory. 
 
In 2004 we were blessed with the first multi-core processors. The cores (two or more 
cores on a die) were complete processing units with an entire set of execution logic, 
their own instruction and data caches, and so on. Modern x86-64 processors can 
contain up to 16 cores, although between 4 and 8 cores are normally available in 
computer center server processors. SMT is just a “pseudo-dimension” that was first 
introduced on the x86-64 architecture one year prior to multi-core, with the 
availability of the Intel Pentium D. It differs from multi-core since it does not provide 
more execution logic on the processor die; it simply allows two (or more) hardware 
threads to compete for the available logic and caches. Modern x86-64 CPUs have the 
possibility to execute two hardware threads and the speed-up depends on the 
applications (usually in the range between 1.2x and 1.3x). Considering dual-socket 
systems with 6 cores CPUs and SMT enabled, these systems can run up to 24 
parallel hardware threads with shared memory. Programmers have to use 
parallelization technologies for designing and implementing their applications, with 
the consequent increase in complexity of dealing with parallel executions with 
respect to sequential executions (for example, due to false sharing and race 
conditions). Beside the aforementioned NUMA effect, it is important to consider the 
correct usage of the CPU cache memories, and in particular the last level cache (LLC) 
memory which in most cases is shared between the cores within the CPU. It can be 
useful to pin the threads to the cores by using affinity mask settings to avoid 
swapping of threads between the cores. 
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We can now conclude that five dimensions can be directly of interest to the 
programmers by using vectorization (SIMD/Vector) and parallelization (SMT, multi-
core, multi-socket, and multiple nodes) technologies. We underline the fact that the 
dimensions are multiplicative, but that a lot of existing software was not designed to 
take advantage of all of them, especially the ones that naturally relate to data-level 
parallelism. As already mentioned, current CPUs are potentially able to execute four 
SIMD operations in double precision (using AVX instructions). This gives a speed-up 
of a factor 4x on the execution of the applications. Of course, the programmers must 
design their applications to exploit these vector operations. On the other hand, rapid 
advancements in multicore and multi-threading technologies open new challenges 
and it is more apparent than ever that the future of efficient computing lies in the 
effective utilization of parallel and many-core architectures. 

Description of the ML application 
The HEP community makes large use of many complex data analysis techniques, like 
maximum likelihood fits, neural networks, and boosted decision trees. These 
techniques are largely used in HEP experiments to analyze the collected data. Data 
samples are usually a collection of !  independent events, an event being the 
measurement of a set of ! observables ! = !!… !!  (energies, masses, spatial and 
angular variables...) recorded in a brief span of time by particle physics detectors. 
The events can be classified in ! different species. Each observable !! is distributed 
for the given species ! with a probability distribution function (PDF) !!! !!;!!!  where 
!!! are parameters of the PDF that can be related to the prediction obtained from 
physics models. If the observables are uncorrelated, then the total PDF for the 
species ! is expressed by 

!! !;!! = !!! !!;!!! .
!

!!!

 

The PDFs are normalized over their observables, as function of their parameters, 
which implies an analytical or numerical evaluation of their integral. The extended 
likelihood function is 

ℒ =
!! !!!

!!!

!! !!!! !!;!!

!

!!!

!

!!!

, 

where !! are the number of events belonging to each species. The maximization of 
this function (the maximum likelihood technique) over the given data sample allows 
to estimate the values and errors of the free parameters of the maximization. It is 
usual to minimize the equivalent function – ln ℒ , the negative log-likelihood (!"") 

!"" = !!
!

!!!
− ln !!!! !!;!!

!

!!!

!

!!!

, 
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that is a sum of logarithms. The terms of the sum can be graphically visualized as a 
tree, where the leaves are the PDFs !!! !!;!!! , which are then linked to the 
corresponding product PDFs !! !!;!! , and finally to the root that is !!!! !!;!!!

!!!  
(sum PDF). Product and sum PDFs are denoted as composite PDFs. Therefore, the 
root has ! child nodes, each with ! children, which means that in the tree there are 
!× ! + 1 + 1 nodes in total. The evaluation of the term in the sum of logarithms 
consists in traversing the entire tree, first evaluating the leaves and then moving up 
to the root. A final reduction of the logarithm results is performed and then combined 
with !!!

!!!  to get the !"" value. A sketch of the tree is shown in Figure 2.  

 
Figure 2 Sketch of the !"" evaluation tree. 

The time spent for the !"" evaluation depends on the number of events and the 
complexity of the PDFs. The search for the minimum for !"" can be carried out 
numerically [MIN72]. The whole procedure of minimization requires several 
evaluations of the !"" , which themselves require the calculation of the 
corresponding PDFs for each observable and each event of the data sample. Hence, 
it becomes important to speed-up the evaluation to have fast data analyses. 
 
The common software used in HEP community for the evaluation of the !"" is RooFit, 
which is part of the general data analysis framework ROOT. The code is implemented 
in C++ and all floating-point operations are performed in double precision. Currently 
RooFit implements an algorithm for the !"" evaluation that is based on a single 
external loop over the events, where each iteration evaluates the entire tree for a 
given event and then accumulates the values for the reduction operation. The values 
of the observables are organized in memory as arrays (an array for each observable), 
each array composed of ! double precision numbers that are read-only during the 
process of minimization. Each PDF has a common interface with an overloaded 
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virtual method that returns the value of the PDF for the specific values of the 
observables. Given this algorithm design, the implementation cannot take full 
advantage of data vectorization and other code optimizations (like function inlining). 
The parallelization is implemented by splitting the loop over the events in different 
concurrent blocks, with a reduction operation to get the final sum. It is based on fork 
calls, without shared memory objects to avoid race conditions. Therefore, the side 
effect of the implementation of this algorithm is that there is a proportional increase 
of the memory footprint with respect to the number of parallel threads. 
 
CERN openlab has developed a prototype that makes use of a redesigned and 
optimized algorithm with respect to the algorithm used in RooFit. For each !"" 
evaluation the tree is traversed sequentially only once. The algorithm starts 
evaluating the basic PDFs, belonging to a given product PDF, looping over all values 
of their observables, and storing the results in arrays (an array for each PDF). Then it 
does the evaluation of the corresponding product PDF, looping and combining the 
arrays of results of the daughter PDFs in a new array. It repeats the procedure for all 
product PDFs. After that it loops again and combines the arrays of results of the 
product PDFs to get a new array of results for the sum PDF (final results). So in total 
there are !× ! + 1 + 1 loops, i.e. a loop for each node of the tree, instead of the 
single external loop of the original RooFit algorithm. Eventually, the algorithm 
calculates the logarithm of the final results and their sum (reduction). The main 
change to the implementation is that now the virtual method for the evaluation of 
each PDF is called only once per !"" evaluation and it runs internally the loop over 
all events, which is implemented as a for loop. It returns the corresponding array of 
results, each one composed by !  double precision numbers. These arrays are 
allocated in memory at the beginning of the minimization process and deallocated at 
the end. It is important to note that the ! loop iterations are independent. The loops 
access consecutive elements of the arrays of observables and results, allowing 
coalescing of memory accesses and data vectorization, with a significant speed-up in 
the execution. The drawback of this new algorithm with respect to the original RooFit 
is that it has to manage several arrays of results, so a correct use of cache memories 
becomes important. 
 

Vectorization approaches 
The Intel compiler was able to auto-vectorize the loops in the original application 
after we have added the #pragma ivdep directive before each loop. Note that the 
functions inside the loops use transcendental operations. The Intel compiler uses the 
Short Vector Math Library (SVML) library to vectorize in this case. As an alternative to 
#pragma ivdep directive, we can use the Intel Cilk Plus Array Notation for 
replacing the loops, which gives a very clear way to express loop vectorization. 
 

Parallelization approaches 
The easiest way to introduce parallelization is at level of the !× ! + 1 + 1 for 
loops. We have used two different technologies: 
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1. OpenMP, via the #pragma omp parallel for directive applied before 
the for loop. 

2. Intel Cilk Plus, via the _Cilk_for keyword which replaces the for keyword. 
This solution is defined as fine-grained parallelism. Since it requires explicitly for 
loops, it cannot use the vector syntax based on Intel Cilk Plus Array Notation. The 
arrays of data and results are shared among the threads, so that there is a negligible 
increment in the memory footprint of the application when running in parallel. 
Furthermore, race conditions can easily be avoided since the parallel regions are 
confined to the loop iterations. Also the loop that computes the reduction has been 
parallelized. The reproducibility of the results of the reduction is compulsory for 
achieving a stable behavior during the minimization procedure, i.e. stable results of 
the ML fits. For this purpose a specific algorithm was implemented. It preserves the 
order of the operations for a given number of threads and it reduces the rounding 
problem due to non-associative floating point arithmetic, using the double-double 
compensation algorithm 2Sum [SUM01]. To use this algorithm a new type was 
defined, which overloads the sum operator. In the case of OpenMP it is not possible 
to use the reduction clause because it does not allow the use of custom type 
variables. Therefore we implemented our own parallel block-wise reduction algorithm. 
Intel Cilk Plus provides a special template class (cilk::reducer_opadd<>) for 
the reduction that also works with custom types and gives reproducibility results. 
Consequently, the Intel Cilk Plus implementation becomes easier than in OpenMP. 
 
The scheduling of iterations in the OpenMP parallelization is statically partitioned for 
all loops, i.e. each thread executes a fixed number of iterations. The static 
partitioning is implemented in such a way that one thread can have maximum one 
iteration of difference with respect to the other threads, to ensure an equally 
balanced workload. The same technique is applied to the loop that performs the 
reduction operation. In the case of Intel Cilk Plus the dynamic scheduler is used for 
all loops, leaving for the runtime system to decide the grain size of the loops. Both 
OpenMP and Intel Cilk Plus allow running the application when removing completely 
any parallel-related code for scalability tests by either setting the environment 
variables (OMP_NUM_THREADS and CILK_NWORKERS, respectively) or the compiler 
flag -cilk-serialize in the case of Intel Cilk Plus. 
 
Although fine-grained parallelism has the big advantage of easy implementation in a 
thread-unsafe application, implementations show some limitations that reduce the 
overall performance: 

• For each !"" evaluation, !× ! + 1 + 1 independent parallel regions have to 
be considered. This leads to a larger overhead than necessary, which 
drastically reduces the scalability. 

• !× ! + 1 + 1 arrays of results and ! arrays of observables have to be man- 
aged, each array composed of ! double precision values. The amount of data 
to manage becomes considerable in the case of complex models and large 
data samples, so it is crucial to have an optimal organization of data inside 
the cache memories. Tests have proved that there is a significant penalty to 
the scalability due to LLC load misses. An analysis of the problem shows that 
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the culprits are the loops of the composite PDFs, which have to combine 
arrays of results with just a simple operation. 

To remove the potential overhead due to fine-grained parallelism, the entire !"" 
evaluation was redesigned using a different pattern: there is only one parallel region 
for each evaluation, and this region will start at the root of the tree. This solution is 
defined as coarse-grained parallelism. In the case of the OpenMP implementation, 
the parallelization starts at the root level via a #pragma omp parallel directive. 
The partitioning of the loop iterations is done as before, but now each thread 
executes the entire evaluation from the root to the leaves, including the reduction, 
within its own partition only. The Intel Cilk Plus implementation based on 
_Cilk_for keyword cannot be accommodated for the coarse-grained parallelism. 
Therefore, we have implemented a new algorithm based on _Cilk_spawn and 
_Cilk_sync keywords. The algorithm splits the events in blocks, each block being 
executed in parallel by a _Cilk_spawn call. The user decides the block dimension 
!. Then this value is used to determine the number of blocks !! = !/!, where ! is 
adjusted so that the minimum value of !! is equal to the number of available Intel 
Cilk Plus workers (which is also the default behavior when the user does not provide 
a block dimension). The !"" evaluation is executed for the events in the blocks, 
including the reduction. Each block is dynamically executed by an Intel Cilk Plus task. 
A sketch of the necessary code is the following: 
 

 
This algorithm also reduces the load on memory by splitting the data domain into 
blocks so that the entire procedure of evaluation is done block by block (block 
splitting optimization). The optimization directly targets cache misses, since it 
increases locality and thereby increases cache efficiency. For this reason it was also 
added to the OpenMP implementation. In this case the procedure of decomposition 
applies to the events executed by each thread following the following order of 
execution: start of the parallel region, decomposition of the events for the threads, 

int nBlocks = (userBlockDim==0) ? __cilkrts_get_nworkers() : 
              std::max(__cilkrts_get_nworkers(), 
                       int(double(nEvents)/userBlockDim+0.5)); 
 
int blockDim = nEvents/nBlocks; 
 
// Result of the reduction       
cilk::reducer_opadd<ValueAndError_t> result; 
 
for (int iBlock = 0; iBlock<nBlocks-1; iBlock++) { 
  // RunNLL runs the NLL evaluation for the 
  // events with indices [iBlock*blockDim, (iBlock+1)*blockDim[ and  
  // it accumulates the result of the reduction 
  _Cilk_spawn RunNLL(iBlock*blockDim, blockDim, result); 
} 
 
// Take care of the remaining events 
RunNLL((nBlocks-1)*blockDim, nEvents-(nBlocks-1)*blockDim, result); 
 
_Cilk_sync; 
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each thread splits the execution of its events into blocks, static execution of the block 
by each thread. Clearly the application will benefit from systems with a bigger LLC 
size. In the case of OpenMP it is also beneficial to use a scattered affinity topology 
that maximizes the cache memory available per thread, i.e. threads are bound to 
cores of CPUs on different sockets before filling the cores of a given CPU. For 
example, running with 4 threads on the dual-socket systems means 2 threads per 
CPU (instead of 4 threads on the same CPU). We set the affinity mask by using the 
Intel environment variable KMP_AFFINITY. 
 
We have also implemented an Intel TBB version of the algorithm for the coarse-
grained parallelism. A sketch of the implemented code is the following: 
 

 
 
The beauty of this parallelization technology is that Intel TBB provides automatic 
block splitting. Each block is dynamically executed by an Intel TBB task and there is a 
deterministic reduction (like in Intel Cilk Plus). The Intel TBB implementation is very 
concise. 
 
Although coarse-grained parallelism improves performance in terms of parallel 
scalability, it can have problematic consequences in the case of a complex C++ code 
like RooFit. Indeed, the parallel region covers a larger portion of the execution, so it is 
crucial not to modify member variables of the object the method is running on, or 
global variables, without carefully assuring that race conditions are avoided.  
 
The last implementation includes the possibility to simultaneously exploit MPI 
together with the other parallelization technologies. Each MPI process holds a copy of 
the whole input dataset. Then two decompositions of the events are considered: 

struct RunTBB { 
  ValueAndError_t result; // local result of the reduction 
  NLL&            nll;    // internal pointer to the NLL object 
   
  RunTBB(NLL& _nll) : nll(_nll), result(0) { } 
  RunTBB(RunTBB &other, tbb::split) : nll(other.nll), result(0) { } 
 
  void operator()(const tbb::blocked_range<size_t>& range) { 
 
    // RunNLL runs the NLL evaluation for the 
    // events with indices [range.begin(), range.end()[ and  
    // it accumulates the result of the reduction 
    nll.RunNLL(range.begin(), range.size(), result); 
  } 
   
  void join(RunTBB& other) {  
    result += other.result; 
  } 
}; 
 
// Call to TBB parallelization 
tbb::parallel_deterministic_reduce(TBBRange(0, nEvents, blockDim), 
                                   nll); 
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1. The same algorithm of decomposition of data elements described for OpenMP 
threads is applied for the MPI processes, i.e. each process manages a fixed 
number of events during the minimization process. 

2. The events belonging to each MPI process are partitioned and analyzed 
following the specific technology OpenMP, Intel Cilk Plus or Intel TBB. 

Note that each MPI process allocates the results array for its corresponding number 
of events. Also, the reduce operation is performed in two steps. The first step 
consists of performing the reduction for each MPI process as already described in the 
non-MPI implementation. In this way each MPI process holds a partial result of the 
reduction. The second step consists of broadcasting all partial results to all MPI 
processes, so that each MPI process will have all partial results. The MPI function 
Allgather is used for this operation. Then a second reduction is executed on the 
MPI partial results to get the final results on all MPI processes. Note that the same 
algorithm for the reduction based on double-double compensation algorithm is used 
for the reduction of the MPI partial results. Then, after each !"" evaluation, all MPI 
processes will proceed to execute the same part of code for the minimization, so that 
at the very end of the application each MPI process will have the same final results. 
This implementation choice allows limiting the number of MPI communications with 
respect to a configuration where only an MPI process drives the evaluation since it 
does not require the exchange of any other values in the remaining part of the 
application, e.g. the values of the parameters of the PDFs during the minimization. A 
check after each !"" evaluation is executed to ensure that there were no errors 
during the evaluation. Each process sends an integer value that can be the number 
of analyzed events or zero in case of an error. Then the MPI function Allreduce is 
called to sum up all integers and the result is compared with the total number of 
events. The application stops if the comparison fails. It must be underlined that the 
Allgather and Allreduce calls are the only communication functions for each 
evaluation of the likelihood function, with a small number of results to be moved 
between MPI processes. Hence, a negligible overhead due to MPI communications is 
expected. 
 
To conclude, we have 5 implementations that can be classified as follows: 
• Fine-grained parallelism (w/o block splitting, vectorization based on #pragma 

ivdep only) 
Ø OpenMP 
Ø Intel Cilk Plus 

• Coarse-grained parallelism (w/ block splitting, vectorization based either on 
#pragma ivdep or Intel Cilk Plus Array Notation) 
Ø OpenMP (static scheduling of the blocks) 
Ø Intel Cilk Plus (dynamic scheduling of the blocks) 
Ø Intel TBB (dynamic scheduling of the blocks) 

All these implementations can be executed with MPI. We have made a single 
executable with some command line parameter options for setting the 
implementation and block size to use: 

§ -e: use coarse-grained parallelism (by default is fine-grained parallelism). 
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§ -a <int>: specifies the technology to use. Values are: 0 for OpenMP, 1 for 
Intel TBB, 2 for Intel Cilk Plus. 

§ -n <int>: set the number of events. The events are read from an external 
file. 

§ -b <int>: set the block size. 
The results are reproducible, independently of the number of threads/tasks and the 
implementation used. Therefore it is possible to compare their execution 
performance. 

Tests 
Benchmark configuration 
The likelihood function definition was taken from the data analysis performed at the 
BaBar experiment [BBR09]. Thus, this is an example of a real-world application in 
use by the HEP community. There are 3 observables and 5 species. In total there are 
21 PDFs: 7 Gaussians, 5 polynomials, 3 Argus functions, combined by 5 PDFs for 
multiplication and one for addition. All PDFs have an analytical integral. Input data 
was composed of 1,000,000 entries per 3 observables, for a total of about 23MB. 
Results are stored in 21 arrays of 1,000,000 values, i.e. about 160MB. When the 
events were organized in blocks, a heuristic approach was followed to decide their 
dimensions, which depends on the number of parallel threads. They can be put in 
relation with the cache size available on the system, so the dimensions decrease 
accordingly with the number of threads. In particular the block dimensions allow 
having the fastest execution for a given execution. The MINUIT2 package was used to 
minimize the !"" function [MIN72]. The number of necessary !"" evaluations to 
find the minimum for the set of initial parameters used in our tests was 5890. It is 
worth underlining that the application is floating-point intensive; in particular the 
execution of the exponential function takes about 60% of the total execution time.  
 
The execution times reported are the average over three consecutive runs of the 
application. The reference sequential execution time was taken when running the 
OpenMP implementation with coarse-grained parallelism and a single thread 
(OMP_NUM_THREADS=1). We found that the best block size for this configuration is 
10,000 events for all systems used. First of all we compared the reference 
sequential execution times obtained, respectively, with the times obtained after 
running the AVX vectorization version based on the loop auto-vectorization feature of 
the Intel compiler and the Intel Cilk Plus Array Notation. Then we looked at the speed-
up given by vectorization with respect to a non-vectorized version of the code. We 
also compared the sequential execution times of several different OpenMP and Intel 
Cilk Plus implementations, with vectorization based on the loop auto-vectorization 
feature of the Intel compiler and AVX instructions. Finally we computed the scalability 
results where the speed-up values were obtained from the ratio between the 
reference sequential execution time and the corresponding parallel execution times 
with a given number of threads, both with vectorization based on the loop auto-
vectorization feature of the Intel compiler and AVX instructions. The fraction of 
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sequential execution time that corresponds to code that can be parallelized is 
99.75%. Note that the Intel Cilk Plus and Intel TBB implementations manage 
automatically the maximum number of threads that can run on the systems. We 
compared their performance with the OpenMP implementations executed with the 
numbers of software threads matching the number of hardware threads. 
Consequently, the block sizes used in Intel Cilk Plus and Intel TBB implementations 
are the same used in the OpenMP implementations executed with the maximum 
number of threads. 

Technical setup 
Three systems were used in the tests with the following configurations: 

A. Single-socket system 
• Intel Ivy Bridge Xeon E3-1265L @ 2.5GHz CPU 
• 4 cores with SMT-enabled: 8 hardware threads 
• 8MB L3 cache size 
• 8GB RAM DDR3 1333MHz 

B. Dual-socket system 
• Intel Sandy Bridge Xeon E5-2680 @ 2.7GHz CPU 
• 2x8 cores with SMT-enabled: 32 hardware threads 
• 20MB L3 cache size per CPU 
• 64GB RAM DDR3 1333MHz 

C. Quad-socket system 
• Intel Sandy Bridge E5-4650 @ 2.7GHz CPU 
• 4x8 cores with SMT-enabled: 64 hardware threads 
• 20MB L3 cache size per CPU 
• 256GB RAM DDR3 1333MHz 

 
All systems are able to execute SSE and AVX vector instructions. They were SMT-
enabled, which means that the hardware threading feature was activated and used 
during the tests. When executing the OpenMP implementation an affinity mask 
setting was used for pinning threads to physical cores. If there were no more physical 
cores available, the jobs were pinned to hardware threads, requiring 2 threads per 
CPU core. Turbo mode was disabled in all systems because we were interested in 
scalability tests. 
 
The systems were running 64-bit Scientific Linux CERN 6.2 (SLC6), based on Red Hat 
Enterprise Linux 6 (Server). The default SLC 6 Linux kernel (version 2.6.32-220.1.el6) 
was used for all the measurements. The code was compiled with ICC v13.0.0 
(20120316), using the following standard flags: 
-O2 –m64 -fPIC -funroll-loops -finline-functions -ip -vec-
report1 –tbb -w1 -Wall -openmp -openmp-report2 

We have used Intel MPI v4.0.3. 
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Performance results 
The results are presented in corresponding sections per each system. The 
vectorization tests and the comparison of the sequential executions were executed 
only for the single-socket system. 

Single-socket Ivy Bridge system 
The reference sequential execution time was 1888 seconds when running a non-
vectorized version of the code, obtained by using the –no-vec compiler flag. The 
reference sequential execution of the application with the AVX vectorization based on 
the loop auto-vectorization feature of the Intel compiler was 1.8% (standard deviation 
is 0.2%) faster than the corresponding execution of the code vectorized with the Intel 
Cilk Plus Array Notation.  
 
We compiled the code in three different configurations by using the flags: 

1. –no-vec 
2. –msse3 
3. –mavx 

The average speed-up results obtained through a comparison of the reference 
sequential execution times of such configurations are shown in Table 1. We found 
that the speed-up results did not significantly depend on vectorization technology 
and the number of threads (standard deviation is 0.03x). A description of the 
vectorization performance can be found in Ref. [JAR12]. 
 

 –no-vec –msse3 

–msse3 1.82x  

–mavx 2.23x 1.23x 
Table 1 Average speed-up results for different vectorization 

configurations (given by the indicated compiler f lags) on the single-
socket system. The results are obtained from the ratio between 
execution t imes for the configurations in the columns and the 

corresponding configurations in the rows. 

 
The comparison of the reference sequential execution time with respect to the 
sequential execution time of the other implementations is the following: 

• OpenMP implementation, fine-grained parallelism: 13.3% slower. 
• Intel Cilk Plus implementation, fine-grained parallelism: 13.7% slower. 
• Intel Cilk Plus implementation, coarse-grained parallelism: 0.3% faster. 

We used OMP_NUM_THREADS=1 in the case of the OpenMP implementation, while 
we used the Intel compiler flag -cilk-serialize for the Intel Cilk Plus 
implementation. The sequential execution times of the OpenMP and Intel Cilk Plus 
implementations based on fine-grained parallelism were consistent one with each 
other and slower than the reference sequential OpenMP execution (13.5% in 
average). This was expected because they do not use the block splitting optimization. 
As expected, the Intel Cilk Plus implementation based on coarse-grained parallelism 
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gave a consistent performance boost with respect to the reference sequential 
OpenMP execution, which is based on coarse-grained parallelism too. 
 

# Threads Block size (# events) 
1 10,000 
2 
4 and 8 

5,000 
1,000 

Table 2 Block dimensions used in the tests 
performed on the single-socket system. Note that 

the 8 threads case uses SMT. 

 
The block sizes used in the scalability tests are reported in Table 2. The scalability 
results for the OpenMP implementation based on coarse-grained parallelism are 
shown in Figure 3. We can clearly see that this implementation scaled badly when 
running with 4 threads, i.e. the number of cores available on the system (speed-up is 
2.87x against 3.97x expected, with a standard deviation of 0.01x). Analysis of the 
problem showed that it was a consequence of the small L3 cache size and the static 
partitioning of the events over the threads. We found also that setting the affinity 
allowed to stabilize the execution times (the standard deviations were at least twice 
larger without setting the affinity). 
 

 
Figure 3 Scalabil i ty  results for the OpenMP implementation based on coarse-grained 
paral lel ism running on the single-socket system. The sol id black l ine without markers 

is the theoretical speed-up obtained by Amdahl’s law with a paral lel  fraction of 
99.75%. The 8 threads result uses SMT. 

 
Finally we compared the performance of the different implementations when the 
system was fully loaded. In Figure 4 we show the results of the speed-up obtained 
with respect to the reference sequential execution time. The numbers draw two 
interesting conclusions: 
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• The implementations based on coarse-grained parallelism scaled better than 
those based on fine-grained parallelism (being almost twice faster). This was 
an expected consequence of the parallel implementation runtime overhead 
and the block splitting optimization. 

• Among the implementations based on coarse-grained parallelism, both Intel 
Cilk Plus and Intel TBB implementations gave better performance results than 
the OpenMP implementation. As aforementioned, the OpenMP 
implementation suffered from the small L3 cache size and the static 
partitioning of the events over the threads, while the other two 
implementations used dynamic partitioning of the events in tasks. The Intel 
TBB implementation gave the best performance, slightly better (4%) than the 
corresponding Intel Cilk Plus performance. 

We also tried the hybrid MPI implementations, using 2 MPI processes, but we did not 
find any benefit in performance. Note that in this case the number of OpenMP 
threads was accordingly reduced by a factor 2 so that the total number of running 
threads was equal to the number of MPI processes times the number of OpenMP 
threads. This procedure is automatic for the Intel Cilk Plus and Intel TBB 
implementations, whose runtime systems are able to recognize the Intel MPI runtime 
system underneath. 
 

 
Figure 4 Comparison of several implementations for the three analyzed systems. The speed-up 

values were obtained running the implementations with ful l - loaded systems with respect to 
reference sequential  execution t ime. Socket-aff inity and hybrid MPI paral lel ization were not 

used in the tests. 



 18 

Dual-socket Sandy Bridge-EP system 
The block sizes used in the scalability tests are reported in Table 3. 
 

# Threads Block size (# events) 
1 and 2 10,000 
4 
8 
16 and 32 

5,000 
2,000 
1,000 

Table 3 Block dimensions used in the tests on the 
dual-socket system. Note that the 32 threads 

case uses SMT. 

The scalability results for the OpenMP implementation based on coarse-grained 
parallelism are shown in Figure 5. We can clearly see that the scalability was very 
close to the theoretical expectation, with some degradation when the system was 
fully loaded (mainly due to the OpenMP runtime overhead when a high number of 
threads were involved). We found that setting the affinity was crucial to stabilize the 
execution times, which otherwise suffered large variations (in average 20%, but in 
some runs the execution time was twice longer). 
 

 
Figure 5 Scalabil i ty  results for the OpenMP implementation based on coarse-grained 

paral lel ism running on the dual-socket and quad-socket systems. Data labels on the left  
(r ight)  of the markers are for the dual-socket (quad-socket) system. The sol id black l ine 

without markers is the theoretical speed-up obtained by Amdahl’s law with a paral lel  
fraction of 99.75%. The 32 threads result  for the dual-socket system and the 64 threads 

result  for the quad-socket system, respectively,  use SMT. 

 
The results for the performance comparison of the different implementations when 
the system was fully loaded are shown in Figure 4. Contrary to the results obtained 
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on the single-socket system, in the dual-socket case the Intel Cilk Plus and Intel TBB 
implementations based on the coarse-grained parallelism are much slower than the 
corresponding OpenMP implementation. We found that this is intrinsically due to the 
execution on a multi-socket system (probably a NUMA effect). Indeed, it turned out 
that using the command: 
numactl --interleave=all <app> <options> 

so that the threads were bound into the cores of a given socket, the difference 
became smaller (see Figure 6). This can be considered an affinity at the level of the 
different sockets (socket-affinity). However, performance improved a lot when 
running the hybrid MPI parallelization, using a number of MPI processes equal to the 
number of sockets. These results are shown in the same Figure 6. We found that this 
is mainly due to two effects: 

• Intel MPI runtime system automatically does socket-affinity when running with 
Intel Cilk Plus or Intel TBB. 

• The multi-processes parallelization based on MPI reduces the parallel 
implementation runtime overhead, especially when a high number of threads 
are involved (the side effect being the increase in the total memory used). 

We noticed also that for the dual-socket system, which has enough L3 cache, there 
was a small benefit coming from the dynamic partitioning of the events in tasks used 
in the Intel Cilk Plus and Intel TBB implementations. The Intel TBB implementation 
based on coarse-grained parallelism gave the best performance, like in the single-
socket case, which was very close to the corresponding OpenMP implementation, 
while the corresponding Intel Cilk Plus implementation was 6% slower. Eventually we 
also tried the hybrid MPI implementations with 4 MPI processes, but they did not give 
any benefit in performance. 
 

Quad-socket Sandy Bridge-EP system 
The block sizes used in the scalability tests are reported in Table 4. Most of the 
conclusions previously described for the dual-socket system holds also for the quad-
socket system. Therefore, here we report only the differences. 
 

# Threads Block size (# events) 
1, 2 and 4 10,000 
8 
12 
16 and 24 
32 and 64 

5,000 
3,000 
2,000 
1,000 

Table 4 Block dimensions used in the tests on 
the quad-socket system. Note that the 64 

threads case uses SMT. 

 
The scalability results for the OpenMP implementation based on coarse-grained 
parallelism are shown in Figure 5. We found that the OpenMP runtime overhead 
significantly impaired the scalability for a high number of threads. 
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Figure 6 Comparison of several implementations for the dual-socket and quad-socket systems. 
The speed-up values were obtained running the implementations with ful l - loaded systems with 
respect to reference sequential  execution t ime. Socket-aff inity and hybrid MPI paral lel ization 

were used in the tests. 

 
The results of the performance comparison of the different implementations when 
the system was fully loaded, with and without socket-affinity and hybrid MPI 
parallelization, respectively, are shown in Figure 4 and Figure 6. As naively expected, 
the performance degradations for the Intel Cilk Plus and Intel TBB implementations 
were bigger than in the dual-socket case, since the execution spread over four 
sockets. Therefore, it is crucial for this system to use socket-affinity. Moreover, the 
hybrid MPI implementations reduced dramatically the parallel implementation 
runtime overhead due to the lower number of threads involved. Eventually we also 
tried the hybrid MPI implementations with 8 MPI processes, but it did not give any 
benefit in performance. 

Conclusions 
We have described in this report the vectorization and parallelization of the ML fit 
application developed by CERN openlab. We have compared the different 
technologies used from an ease of use and performance perspective. The purpose 
was to study the most productive methods to improve the performance of an existing 
application on contemporary platforms.  
 
First of all we found that for getting good performance it was crucial to organize data 
in vectors aligned in memory and perform the computation on such vectors by means 
of loops that can be vectorized. The vectorization was achieved by using the auto-



 21 

vectorization of the Intel compiler, adding the #pragma ivdep directive before 
each loop, or using the Intel Cilk Plus Array Notation for replacing the loops. We found 
that the latter gives a very clear way to express loop vectorization, although the 
execution of the application was about 2% slower than the version based on 
#pragma ivdep. Overall performance boost was about 2.2x when using AVX vector 
registers with respect to a non-vectorized version of the application. 
 
Concerning the parallelization we found that it is very beneficial to invest effort in 
making the code thread-safe, to achieve the execution of the largest possible parallel 
regions (coarse-grained parallelism). This in turn reduces the overhead of the parallel 
technology runtime, improving scalability for large number of parallel threads. We 
found that other important points needed to achieve better performance were the 
management of the data inside cache memories, affinity of threads into the cores of 
the systems and scheduling of the threads runtime execution. Furthermore, 
specifically for our application it was also important to assure the reproducibility of 
results across different parallel executions and across executions with different 
number of threads. Among the three different implementations based, respectively, 
on OpenMP, Intel Cilk Plus, and Intel TBB, the last one gave the best results in terms 
of performance with the minimum number of changes required to our C++ 
application source code. When comparing the performance on systems with different 
number of sockets and high number of cores, we found that the hybrid MPI 
implementation improved the performance when combined with Intel Cilk Plus and 
Intel TBB parallel implementations, especially by using a number of MPI processes 
equal to the number of sockets. The application scaled very close to the theoretical 
expectation, also when using SMT, reaching a speed-up of about 35x on 32 SMT-
enabled cores.  
 
To conclude, the best implementation in terms of feasibility and performance for our 
ML fit application was the one based on Intel Cilk Plus Array Notation for 
vectorization and hybrid Intel TBB with MPI for parallelization. 
 
  



 22 

References 
COW98 G. Cowan: Statistical Data Analysis, Clarendon Press, Oxford (1998) 

ROF06 W. Verkerke and D. Kirkby: The RooFit Toolkit for Data Modeling, 
proceedings of PHYSTAT05, Imperial College Press (2006) 

JAR11 S. Jarp et al.: How to harness the performance potential of current multi-
core processors, J. Phys.: Conf. Ser. 331 012003 (2011) 

MIN72 F. James: MINUIT - Function Minimization and Error Analysis, CERN 
Program Library Long Writeup D506 (1972). Also see the webpage 
http://seal.web.cern.ch/seal/MathLibs/Minuit2/html/ 

SUM01 P. Kornerup et al.: On the Computation of Correctly-Rounded Sums, IEEE 
Transactions on Computers 61 3 (2012) 

BBR09 B. Aubert et al.: B meson decays to charmless meson pairs containing η 
or η’ mesons, Phys. Rev. D80, 112002 (2009) 

JAR12 S. Jarp et al.: Evaluation of the Intel Sandy Bridge-EP server processor, 
CERN openlab report, CERN-IT-Note-2012-005 (2012) 

 
 


