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Barrel hadronic calorimeter of the ATLAS 
detector (-1.7 < η < 1.7)

• long barrel (LB): -1.0 < η < 1.0 
two extended barrels (EB):  1.0 < |η| < 1.7

• 4 x 64 wedges in φ (Δφ=0.1)
• three longitudinal layers, total thickness ~7λ
• pseudo-projective towers for first level trigger 

Sampling calorimeter: steel + plastic 
scintillator

Designed performance requirements

• Jet energy resolution: 
σ(E)/E = 50% / √E(GeV) ⊕ 3% 

• Jet energy linearity: 1-2% up to ~ 4 TeV

• Accurate missing transverse energy 
measurement requires full-coverage 
hadronic calorimeter  

The ATLAS Tile Calorimeter
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2012 pp data-taking
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Main sources of inefficiencies 
for Tile

• timing shift after re-start
• ≥ 4 consecutive modules off, eg. due to
• trips of 200V power supplies
• blockage of read-out-links
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Tile Data Quality (DQ)
High data-quality efficiency (99.6% in 2012) thanks to an effective monitoring system:

• Data Quality Monitoring Framework (DQMF) collects information about the quality of 
the data and performs quality checks 

• problems flagged automatically + warning/error messages:                                            
→ visual inspection by shifter and immediate action during data-taking   

• automatic recovery procedures implemented in the Data Acquisition System (DAQ) and 
Detector Control System (DCS)                                                                                    
→ minimize the need for manual interventions and the reaction time
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Low Voltage Power Supplies (LVPS)
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Problems with the LVPS in the front-end 
electronics during Run1:

• failures of LVPS (full module off)

• frequent trips of LVPS 

Despite this, achieved high DQ efficiency!

• during LHC run automatic recovery procedures 
to power-on the LVPS, configure front-end 
electronics and resume data-taking

• energy interpolated from neighboring module 

Today: upgraded power supplies

• 40 new LVPS installed in 2012: just one trip

• benefit from lower electronic noise

• full production of new LVPS was installed in 2013 
during the shutdown
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Detector Status - end of LHC Run1
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Status at the end of Run1 (Feb. 2013)

• ~ 3% of masked cells 

• 6 modules off with bad LVPS

• energy for masked cells is interpolated 
from neighboring cells

• 4 modules in emergency mode

• HV cannot be adjusted to optimum value

• The EM scale is restored with Cs-137 and 
laser calibration systems

Number of masked cells increases during 
data-taking, mainly due to failures in the LVPS 
(full module off)

Most bad channels are recovered during 
maintenance periods, when front-end 
electronics are accessible

Modules off
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• ~ 3% of masked cells 

• 6 modules off with bad LVPS

• energy for masked cells is interpolated 
from neighboring cells

• 4 modules in emergency mode

• HV cannot be adjusted to optimum value

• The EM scale is restored with Cs-137 and 
laser calibration systems

Most bad channels are recovered during 
maintenance periods, when front-end 
electronics are accessible.

During LS1 (2013-2014): major maintenance 
activities to ensure high performance,  high 
quality and robust operations in Run2.

Modules off



ç√

ç√Maria Fiascaris (U. of Chicago) CALOR2014  07/04/2014

Signal Reconstruction
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Signal properties reconstructed with Optimal 
Filtering from 7 digitized samples spaced by 25 ns:

• extract amplitude (A) and time (τ)

• energy proportional to A

• weights defined by pulse shape and noise 
autocorrelation matrix  

• requires initial knowledge of signal phase

Difference between online and offline 
energy reconstruction:

bias due to phase of the signal can be 
corrected online
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Timing
Synchronization of all 10 000 Tile channels performed with laser calibration, 
cosmic events, single beam events and collision events.
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Electronic Noise

Electronic noise measured in pedestal calibration runs without colliding beams.

Noise affected by the Low Voltage Power Supplies:

• with old LVPS: deviation from single Gaussian due to instabilities in the LVPS

• with new LVPS: lower noise and reduced tails
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Energy response 
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• response uniform in φ
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Single hadron response
In-situ method to probe the calorimeter response using energy 
deposited by isolated charged particles that shower in 
TileCal:

• momentum (p) measured in the inner detector with high accuracy

• measure energy (E) of topological clusters around the track 
extrapolated to the calorimeter

• response is characterized by E/p 
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Conclusions

• The Tile Calorimeter has performed very well during the LHC Run1

• Achieved high data-quality efficiency of 99.6% despite the frequent 
problems with the LVPS  

• 3% of masked cells by the end of Run1 in 2013 (was >5% in 2011)

• Improvements for Run2 are underway: upgraded LVPS and 
consolidations to guarantee robust operations and high performance

• Achieved time synchronization and time resolution below 1ns

• Studied the response with minimum bias data, single hadrons: good 
agreement between data/MC

• More information on calorimeter calibration and simulation/
validation in the talks from Djamel Boumediene and Jana Faltova

18



ç√

ç√Maria Fiascaris (U. of Chicago) CALOR2014  07/04/2014

EXTRA
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Front-end electronics

• PMT signals are shaped and amplified in two gains (relative ratio 1:64)

• analog tower sums provided for the level one trigger

• both gains are sampled at 40 MHz using 10-bit ADCs

• digitized samples stored in pipeline memories

• upon level-1 accept, data from one of the gains are selected, formatted and 
sent to the back-end electronics via optical fibers
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Detector maintenance

Maintenance activities during the LHC 
shutdown (2013-2014):

• replacement of all LVPS with new ones

• fix problems identified by experts in 
physics and calibration data

• consolidations to prevent data loss 
and corruption 

21

Maintenance activities aim to ensure high performance, 
high quality and robust operations during Run2

 Thorough test and data-quality checks are 
performed to certify the consolidations

Current status:

• all new LVPS installed

•> 90% of the detector consolidated

• some modules to be re-opened
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Timing
Synchronization of all 10 000 Tile channels performed with laser calibration, 
cosmic events, single beam events and collision events.
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Pile-up noise
“Pile-up” refers to the effect of additional pp collisions in the same or neighboring bunch crossings

Cell noise depends on both electronic and pile-up noise

➡ Good noise description important for topological clustering algorithms to distinguish between signal 
and noise
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Noise level depends on layer:

• higher pile-up noise in layer A 
(closer to the beam pipe) than in 
layers BC and D

• highest noise in gap/crack cells 
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Response to single muon
EM scale and cell-to-cell uniformity is validated using muons from cosmic data
Response is probed estimating energy loss per unit length of detector material (dE/dx) 

•Good cell-to-cell uniformity within a longitudinal layer
•Differences up to 4% between layers
•Successfully validate propagation of EM scale from testbeam to ATLAS
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Muon signal and noise 
well separated (S/N=29) 
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Jet and Missing ET Performance
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Good performance of jet and missing transverse energy 
resolution


