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Abstract

We propose a method to measure the time-resolved momentum distribution and beam size at the
end of the decelerator in the drive beam complex of the Compact Linear Collider, CLIC.
Conventional diagnostic methods are hampered by the very high beam power and large energy
spread of the drive beam after up to 90% of its Kinetic energy is converted into microwave power.
Our method is based on sweeping the beam in a circular pattern to determine the momentum
distribution and recording the beam size on a screen using optical transition radiation. We present
an algorithm to extract the time-resolved momentum distribution. Furthermore, qualitative
information about the beam size along the pulse train can be extracted from the image left on a
screen by sweeping the beam linearly. We present simulation results that allow us to estimate the
applicability.
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Abstract

We propose a method to measure the time-resolved momenstritbdiion and beam size at the end of the decelerator
in the drive beam complex of the Compact Linear Collider, CLConventional diagnostic methods are hampered by
the very high beam power and large energy spread of the deamlafter up to 90% of its kinetic energy is converted
into microwave power. Our method is based on sweeping the liea circular pattern to determine the momentum
distribution and recording the beam size on a screen usitigabpransition radiation. We present an algorithm to
extract the time-resolved momentum distribution. Furtinane, qualitative information about the beam size along the
pulse train can be extracted from the image left on a screswiegping the beam linearly. We present simulation
results that allow us to estimate the applicability.

1. Introduction

In the CLIC drive beam decelerator, up to 90% of the incomiegrb power will be extracted from the drive
beam [1, 2]. The deceleration leaves the beam with the erdisgybution depicted in Fig. 1, with a high energy
transient at the head of the bunch train, shown in Fig. 1&gching all the way to the initial energy. The majority
of the bunches, in the steady state of the pulse, lose 90%eofahergy. The resulting energy distribution, shown
in Fig. 1(b) has a peak around the minimum energy with a loii@xéending into higher energies . The momentum
distribution in the beam needs to be monitored for an optinsetrup of the decelerator. In the test beam line at the
CLIC test facility, CTF3, the drive beam decelerator is lgegxperimentally studied in small-scale. The analysis of
the beam profile diagnostics in TBL in Refs. [3] and [4] hasvaidhat segmented beam dumps, currently used for
time-resolved spectrometry in TBL, are not suitable for @4C decelerators due to the high beam power. On the
other hand, OTR screens have a good chance of surviving difeiiiensity. We therefore intend to base the time-
resolved measurements of transverse and energy profile @ltHC decelerator on OTR screens. The general layout
envisioned for the diagnostics is to have two scanning kiokagnets sitting in the same place in the beamline; One
kicking in the vertical direction and the other in the hontl direction, similarly to the dilution kickers in the LHC
dump line, which forms the figure “e” of the beam on a screen 8¢ assume that the kickers can be excited in a
cycle corresponding to the 240 ns drive beam duration arfudavitse of the magnetic field that provides a kick from
zero to a few milliradian in the same time range. Furthermareassume that the magnet excitation can be made in
a way that the horizontal kicker is driven by a cosine wavelewhie vertical is driven by a sine wave, thus making it
possible to form a Lissajous figure of the beam on the screermiRg the sweep into a circle allows us to analyze
the momentum distribution along the beam pulse. A linearegwie one direction at a time gives information about
the transverse beam distribution along the pulse.

We will begin with discussing spectrometry for large monuemspread beams. Then, we will turn to the particular
measurement set-up proposed for the post-PETS line. Tereijll first predict what will be seen on the screen for
a given beam distribution in time and momentum when the taraweep is applied. Finally, we will show examples
of the measurement and of the analysis.

2. Spectrometry for beams with large momentum spread

Spectrometry is a common way of measuring the momentum gbote particle beam. Under normal circum-
stances the dispersion function is used to calculate theentum spread in a beam, though strictly speaking, the
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Figure 1: The energy distribution in the decelerated CLIRedbeam, simulated with PLACET [6]. The high energy trans{@ptextends all the
way up to the initial energy of 2.4 GeV and is followed by a 240aong steady-state. The transient contains very few pestmmpare to the rest
of the bunch train and the histogram to the right (b) showsg tivé energy content of the steady-state.

dispersion function is only valid for small momentum spre&dr large spread it leads to a misinterpretation of the
spectrometer measurements, in the worst case to unphysgats, such as negative momenta. In such cases, we
need to consider momentum deviation in a more stringent eramior this purpose, we assume a momentum distri-
butiony(6), that enters a spectrometer magnet, deflecting in thedrmakplane. Here, we use the parametrization
6 = (p— po)/ po for the momentum wherpy is the reference momentum. The distribution is mapped ostween or
equivalent in a spectrometer line at a distabhdeom the deflection center, as in the sketch in Fig. 2.

deflection screen

Figure 2: Sketch of a horizontal deflection onto a screennitefithe variables used in the equations.

A particle with momentund will have a final position on the screefi~ Ly(85) whereg(6) is the deflection angle.
Let Dy = L¢g with the index O referring to the position on the screen thatit by a particle with the reference
momentum. Incidentallypq coincides with the dispersion generated by the dipole, andet

Do

X=1+(5' (1)

When the momentum spread is small, i.e. wherx 1, we can expand the expression in powers ahd obtain the
linear approximatiorX ~ Dg(1 — 6). In our case, however, the assumption is not valid and tpeoapmation can not
be made. Instead, we use Equation (1) to determine the Ipaditnisity on the screen by integrating over all initial
momenta through

W(X) = fw((s) 55 (x - 6) ds @)
wheredsp denotes the Dirac delta function. We start with the intégradvers and use the relation
dp(U— ) f f(u)
op(a(u)) = —_— ! = f(u)op(g(u))dx = 3
(90D = 2. ey (oo(e)d = D iy 3)



whereuy; are the zeros ofi(u). In our caseg(s) = X — Do/(1 + 6) with one zero ab = (Do — X)/X and with
g (60) = X?/Do. The particle distribution on the screen is then given by

Do  (Do—-X
ey
where X is the coordinate on the screen in the plane of deflectionkanid the reference dispersion, e.g. for the
position of the momentum peak.

Normally, we are interested in deducing the moment profdenfthe geometric profile on a spectrometer screen.
To do so we need the inverted transformation. It is calcdlatehe same way and reads

P(X) =

(4)

(5)

w(s) = —2° ‘I’( DO).

d+06)2 \1+56

As an example we look at a Gaussian momentum distributiomsfwidthA,

_ 1 _52/2A2
¥(0) oAt : (6)

Through the operation in Eq. (4) we obtain the particle tistion on the screen

1 Do (Do — X)?
= ———exXpl-— |-
VoA X2 2N2X2

We see from Eq. (7) that the low energy tail becomes more pnaced on the screen as the spréagrows larger.
Figure 3 shows an example wiy = 0.3 m and a Gaussian momentum distribution with rms spreaddéétween
5% and 15%. We note that the asymmetry is hardly visible ferstiallest spread while quite apparent for the largest
spread.

F(X) (7)
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Figure 3: A Gaussian momentum profile becomes asymmetric wheecpedjonto a spectrometer screen. The asymmetry grows withasiog
momentum spread.

If, instead of using Eq. (5) to analyze such a spectrometrilolition, we assume that << 1 and use the
linear approximatiorX ~ Dg(1 — §), we commit an error. In order to illustrate this error we tise profile from
Fig. 3 corresponding to the largest momentum spread 0.15. We apply the inverse transformation, but based on
the assumption that is small. The resulting distribution is presented in Figoddther with the correct Gaussian
distribution. The asymmetry that appeared on the screeslates into a distorted momentum profile where the peak
has shifted 4.1% towards higher momentum. The rms widthrbhesat5% larger than the original while the fwhm
width is 7.5% smaller than the input value.

The situation becomes even more critical if we consider trexgy distribution at the end of a CLIC drive beam
decelerator. The distribution is peaked at 240 MeV but hamg tail that extends all the way up to the maximum
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Figure 4: The extracted momentum distribution compared todfexence distribution, when the extracted profile has be&ulated using the
approximations ~ (Do — X)/Dg instead of the correct relatiah= (Dg — X)/X.

energy of 2.4 GeV. Ifpp = 240 MeV, 6 will reach as high as 10, with the vast majority of the paetcivithin the
steady-state, with < 4. This distribution, projected on a screen widh = 0.3 m, is shown in Fig. 5. Again, we use
the linear approximatioiX = Dg(1 — §) to extract the momentum distribution from the screen artdinlihe profile
shown in Figure 6. As a reference, we show also the input mamedistribution, the presence of which highlights
that the distribution extracted incorrectly is a severésyatted version of the real. The initial momentum disttibo

is recovered if Equation (5) is employed for the analysishefdpectrometer profile.
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Figure 5: The beam distribution at the end of a CLIC drive belrelerator (see Fig. 1(b)) projected on a screen, @ith= 0.3m for Eg =
240 MeV. The sharp edge corresponds to the beam particlesahea experienced maximum deceleration.

Now that we have established the correct way of analyzingtspmeter profiles for large momentum spreads we
turn to discuss a method to obtain time-resolved infornmagibout the beam pulse.

3. Time-resolved spectrometry

In order to establish a way of extracting time-resolved iinfation from the spectrometer measurement we first
look at how a particle distribution transforms when progeconto a screen. We use the variables defined in Fig. 2
and introduce a rotatingfiective magnetic field vector so that a particle with momentuhits the screen at the
coordinates )

_ Lyocos(zr) V- Lo sin(2rr)

X
1+6 ’ 1+6

(8)
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Figure 6: The dashed line is the reference energy distabwtnd the solid line is the distribution extracted from acmeneter measurement in
Fig. 5 using the approximation of linear dispersion.

with 7 = t/T whereT is the period of the magnetic cycle andOr < 1. Note that the magnet sprays the beam on
a sector of a circle on the screen. The cycle timkas to be matched to the bunch train duration in order to avoid
overlap of the tail with the head of the beam.
Let furthery(r, §) be the initial particle density distributed over time andmentum. We ignore for now the
emittance and obtain the transverse particle distribudiothe screel¥(X, Y) by integrating over time and momentum
Lyo Sin(ZTT)

through
WX, Y) = ff¢(ra)5D(x-M)5D(v- o 9)

This is an integral over two dimensions and we use the Ja@tbiminant to transform the integration variables from
(r,6) to (X, Y). Itis defined through

) drds.

| oX/or  9X[ds
det(d) = ‘ oY/or oY/ ‘ (10)
With the Jacobi determinant the integral in Eq. (9) transf®as
1 X lo
Y(XY) = - — — 1- 11
(X Y) f W(r,6) 60 (T o arctar(Y)) 50 (5 + W) deiy 9 (11)
where we use the fact that
X2 4+ Y2 = ( Léo )2 and < = tan(arr) (12)
1+6 X ’
The matrix elements for the determinant are easily derikesligh diterentiation with the result
oxX ¢0 3 X Lgo a
gt = iy on@) = R Y D il v
oY Lo oY Lo Y
=2 — t) = 27X — =- )= ———
o Ty gcos@y =2 3% - @rop on@Y =15
with the resulting determinant
detQ) = —(x2 Y?). (13)
Finally, we express the distribution on the screen purethénspatial variableX andY
Lo 1 Y Lo
YO = 5 o v lp( arctar(x) e 1) . (14)
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This equation relates the momentum distributipnwhich originally was a function of the momentusrand time
along the pulse, to coordinates on the screen and theredsoeides how the image on the screen is related to a given
time dependent momentum distribution along the pulse.

We now turn to extracting the original time dependent momentlistributionys from an image on the screen
produced by the rotating magnetic field. For this we needverirthe procedure discussed in the previous section
and determine the original time-dependent momentum bligtany(z, §) from the distribution on the imag&(X, Y).

The inverse procedure starts similarly with a two-dimenalantegral

) 1 X Lo
(. 8) = f f W(X,Y) 6o (T - arctar(v)) 50 ((5 #1- | dxay. (15)

We now need the Jacobian for the inverse sysiefor which the elements are as follows

or L X B or L Y
X~ e vEE T oy T P veee

6 1Y a6 1 X

X~ 2tX2+Y? Y T 2rxXZAY?
With this JacobianJ, which is the inverse of used in Equation (3), and its determinant

(16)

Loo 1 _(1+6)°
21 0@+ Y97~ 2 (Lo’

we have inverted the procedure and can analyze a measurefhtieatscreen profile through

det(d) = (7)

27 (Lopo)? v Lo cos(2rr) Lo sin(2rr)

18
1+ 06)3 1+ 146 (18)

Y(r.0) =

The momentum information is now encoded in the radial védgiah the screen and the temporal information is in the

angle.
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Figure 7: The CLIC momentum distribution transformed to an imagée post-PETS diagnostic line. We have used 5m andgp = 1 mrad.
The head of the pulse, corresponding to the time0.1 is in the lower right corner.

We have discussed the algorithm to extract the time-redotvementum distribution from the proposed measure-
ment with a rotating beam. Our goal is to perform these measents on the decelerated CLIC drive beam, and
therefore we show it in Fig. 7. The original momentum disttibn shown in Fig. 7(a) is taken from Fig. 1(b), where
we have let the momentum profile be constant along the buach By applying Equation (14) we obtain the corre-
sponding screen image in Fig. 7(b). Before we conclude opdnrmance of the method, we now look at examples
of other distributions in order to evaluate the quality af teconstruction.
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4. Examples

For the evaluation of the performance we have chosen a lgadiigtribution whose momentum along the pulse
varies sinusoidally with amplitudé = 0.1. The assumed rms momentum spréakas the same magnitude. This
momentum distribution, shown in Fig. 8(a), results in theag®a on the screen shown in Fig. 8(b). Here, we have
neglected theféect of finite emittance. The geometric beam size on the sdse@ssumed to be small compared to
the beam size due to the finite momentum spread. In the simulae assume a deflection anglg = 1 mrad and
drift lengthL = 5m. Using the procedure outlined above to extract the mamneudistribution from the image indeed
results in a distribution that is indistinguishable frore tthe shown in Fig. 8(a).
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Figure 8: Reference distribution and screen image. The momespuead is 10% along the pulse while the average momentunatssiwith an
amplitude equal to thed spread.
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Figure 9: Screen image and corresponding extracted momenstmibdiion where noise has been added. The noise is unifatistiybuted around
zero, with a maximum amplitude of 10% of the maximum intensity endhiginal image. Before inverting the image we set the pixelthe edges
of the screen to zero in order to avoid a blow up near the sanigylass approaches -1.

In order to investigate the robustness of the inversion wdeaddom noise to the image in Fig. 8(b). The maximum
noise is set to 10% of the maximum intensity in the originahga and the noise is uniform in shape and centered
around zero. Figure 9(b) shows the image with noise. Befgtia&ing the momentum distribution we select the
region of interest on the screen and let the pixel values eretlges be zero. This is a precaution for avoiding
a strong enhancement of the noise close to the singularity as —1. The singularity can be discarded since it
correspond to particles at rest that will not reach the scr@&@en, by extracting the distribution we obtain Fig. 9(a).
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The shape and position of the snake figure remains intabpwaih the noise perturbs the visual impression of the
distribution, especially in the low-momentum region, hesathe transformation between the momentum distribution
and the image in Equation (14) is nonlinear and the low-mdomarmpart is enhanced due to the denominator 6)°

in Equation (18).

As already mentioned above, a finite emittance will smoothtloel profile on the screen. If the geometric beam
size is negligible compared to the dispersive beam sigze= LyoA on the screen, the system can be inverted and
the initial distribution regained by applying Eq. (18). Hewer, if the beam size on the screen is known the screen
image can be corrected through deconvolution with the géderigeam profile. This, however, requires careful use
of advanced image processing and here we limit the anal/#ie @fect of a finite emittance to a qualitative level. In
Fig. 11 we demonstrate th&ect of a finite emittance by calculating the convolution @ tmiginal screen image from
Fig. 8(b) with the geometric beam profile. The column to tlyhtishows the screen images and the left column the
corresponding distribution extracted from each image ouithiaking the finite emittance into account. The geometric
beam sizer,, in the rows is given by 0.2, 1, and 2 in units of the beam width ttuthe momentum spreac. We
note that qualitative information can be extracted fromabieen even for very large emittances. The general trend
is that the extracted momentum spread increases with siogamittance, while the extracted average momentum
decreases.

In the CLIC decelerator the finite emittance is not expeateidfluence the measurement notably. Although the
emittance is fairly large (150 mm mrad), the momentum spread large that even with a very small dispersion the
geometric beam size will be negligible in comparison. Inrtbgt section we will discuss the beam size measurements,
which can be used also for emittance measurements.

5. Time-resolved beam size measurements

For time-resolved beam size measurements in one plane,ssepiital, we envision to make a linear sweep
in the other, here vertical, direction. Variations in theihontal beam size along the pulse will then show up as
variations of the horizontal width of the image on the scresimere time along the pulse is encoded in the vertical
position. One horizontal slice of the image thus correspddthe horizontal profile of a given temporal slice in
the pulse. A large momentum spread, however, will causécaégmearing out of particles from one temporal slice
across neighboring temporal slices. In this way the largemerdum spread entangles the momentum and beam size
distributions. Note that this smearing out is more complentplain convolution, because the it depends on the
deflection angle and therefore varies along the pulse. ddsté solving this image processing problem, we perform
simulations to investigate to what extent beam size vanatcan be resolved, even in the presence of large momentum
spread.

We demonstrate the beam size measurement with the examplg.iil. A beam pulse with a variation of
the horizontal beam size along the pulse is introduced. Ehiical beam size is assumed to be negligible in Fig. 11
compared to the Gaussian momentum distribution, wherarbepread is increased from zero to 0.15 to investigate
the performance of the method. The vertical smearing of trzbntal distribution of a given temporal slice is only
due to spreading of the momentum distribution, transforambrding to Equation (4) to the image plane. The left
column in Fig. 11 shows the images on the screen and the riaghtno the rms beam size in the horizontal plane
along the pulse, extracted from the image to the left. As tbenamtum spread grows, the oscillations are damped
until almost no variations are visible. For every imageesponding to a given momentum spread, we extract the
standard deviation of the oscillations along the pulse datipin Fig. 12 as a function of momentum spread. The
standard deviation decreases rapidly with increasing mdtme spread and eventually approaches zero. After this
point, the method does not reveal any temporal variatiotiseohorizontal beam size. We conclude that for moderate
momentum spread the method provides some qualitativenveon about the horizontal beam size, but is limited if
the momentum spread becomes too large.

We now turn to a beam with CLIC parameters. Using only thedstestiate part of the energy distribution from the
histogram in Fig. 1(b), means that [0, 4]. As before, we apply a linear sweep in the vertical dimtand illustrate
in Fig. 13 how the momentum profile is extended in the vertilraction of the screen for fierent deflection angles,
corresponding to dierent points in time during the sweep. The later buncheagersnposed with the early bunches,
which highlights the dtficulty of extracting quantitative time information from theage.

8



Y (mm)

-10 -5

=

0.8 0
X (mm)

OH

0.2 0.4 0.6
Time (Arb. Units)

(b) oxy/oo =02

(a) Extracted distribution.

Y (mm)

=

0
X (mm)
(d) O'x,y/U'O =1

0.2 0.4 0.6 0.8
Time (Arb. Units)

OI—‘

(c) Extracted distribution.

Y (mm)

0.8 1 O'—%%Ol -0.005 0 0.005 0.01

X (mm)

0.2

1
0

0.4 0.6
Time (Arb. Units)
(e) Extracted distribution. (f) oxyloo=2
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Turning to the two-dimensional image, we use a Gaussiarncfgadistribution in the horizontal direction and
introduce a modulation of the horizontal beam width. We gaplinear sweep in the vertical direction and obtain a
screen image from which we extract the horizontal beam wattihg the vertical axis. Figure 14 shows the image to
the left and the extracted beam width to the right. The annditof the modulation is damped compared to the input
by a factor 3, on average along the pulse. The vertical smgpahie to the momentum spread also induces a phase
shift of roughly 60 degrees. These numbers remain the saemeifthe amplitude of the modulation is changed.

6. Conclusions

We found that the large momentum spread of the CLIC drive befféen deceleration will lead to distorted images
on a screen in a spectrometer if interpreted within a lireakimodel of the dispersion. We then derived the map that
permits us to extract the correct momentum distributiomftbe screen image.

We went on to use that information to propose a method to eé¢hie time-resolved momentum distribution along
the drive beam pulse from a screen image caused by sweerzep#m in a circular pattern. It turned out that the
momentum distribution can be recovered accurately as Igniipex geometric beam size is smaller than the beam
size due to the finite momentum spread. We expect the methbddome a convenient tuning tool, because the
deceleration and thereby the power production can be gauirtdy making the circle as big as possible and the initial
transient as short as possible. This should facilitate Botpining of the decelerator.

The beam size variation along the pulse can be extractedimalyjualitative way due to the complex smearing
of the transverse profile in horizontal plane into the swegglane, here vertical. We expect, however, that large
variations of the transverse beam sizes along the pulsasibéevand permit tuning of the decelerator and preceding
beam lines.

In this report we have not addressed practical issues suttfeatesign of the kicker magnet or detailed layout
of the diagnostic section. It is probably advisable to hailditional kicker magnets to lead the deflected beam with
its large beam power to the final beam dump in a controlled vdgither did we discuss the deconvolution of the
energy dependence of the emission of optical transitioratiath from the screen which is likely to have a small
effect [4]. Moreover, we expect that deconvoluting the emdtasmearing from the momentum distribution can be
accomplished by advanced image processing. It might algmésible to deconvolute the smearing of the beam size
image due to the large momentum distribution, though thisisiderably more éicult due to the variable smearing
along the pulse. These points need to be addressed to stéitdiusefulness of the proposed diagnostic for the Post
PETS line (POPEL).
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