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Abstract

We propose a method to measure the time-resolved momentum distribution and beam size at the end of the decelerator
in the drive beam complex of the Compact Linear Collider, CLIC. Conventional diagnostic methods are hampered by
the very high beam power and large energy spread of the drive beam after up to 90% of its kinetic energy is converted
into microwave power. Our method is based on sweeping the beam in a circular pattern to determine the momentum
distribution and recording the beam size on a screen using optical transition radiation. We present an algorithm to
extract the time-resolved momentum distribution. Furthermore, qualitative information about the beam size along the
pulse train can be extracted from the image left on a screen bysweeping the beam linearly. We present simulation
results that allow us to estimate the applicability.

1. Introduction

In the CLIC drive beam decelerator, up to 90% of the incoming beam power will be extracted from the drive
beam [1, 2]. The deceleration leaves the beam with the energydistribution depicted in Fig. 1, with a high energy
transient at the head of the bunch train, shown in Fig. 1(a), reaching all the way to the initial energy. The majority
of the bunches, in the steady state of the pulse, lose 90% of their energy. The resulting energy distribution, shown
in Fig. 1(b) has a peak around the minimum energy with a long tail extending into higher energies . The momentum
distribution in the beam needs to be monitored for an optimumset-up of the decelerator. In the test beam line at the
CLIC test facility, CTF3, the drive beam decelerator is being experimentally studied in small-scale. The analysis of
the beam profile diagnostics in TBL in Refs. [3] and [4] has shown that segmented beam dumps, currently used for
time-resolved spectrometry in TBL, are not suitable for theCLIC decelerators due to the high beam power. On the
other hand, OTR screens have a good chance of surviving the high intensity. We therefore intend to base the time-
resolved measurements of transverse and energy profile in the CLIC decelerator on OTR screens. The general layout
envisioned for the diagnostics is to have two scanning kicker magnets sitting in the same place in the beamline; One
kicking in the vertical direction and the other in the horizontal direction, similarly to the dilution kickers in the LHC
dump line, which forms the figure “e” of the beam on a screen [5]. We assume that the kickers can be excited in a
cycle corresponding to the 240 ns drive beam duration and with a rise of the magnetic field that provides a kick from
zero to a few milliradian in the same time range. Furthermore, we assume that the magnet excitation can be made in
a way that the horizontal kicker is driven by a cosine wave while the vertical is driven by a sine wave, thus making it
possible to form a Lissajous figure of the beam on the screen. Forming the sweep into a circle allows us to analyze
the momentum distribution along the beam pulse. A linear sweep in one direction at a time gives information about
the transverse beam distribution along the pulse.

We will begin with discussing spectrometry for large momentum spread beams. Then, we will turn to the particular
measurement set-up proposed for the post-PETS line. There,we will first predict what will be seen on the screen for
a given beam distribution in time and momentum when the circular sweep is applied. Finally, we will show examples
of the measurement and of the analysis.

2. Spectrometry for beams with large momentum spread

Spectrometry is a common way of measuring the momentum content of a particle beam. Under normal circum-
stances the dispersion function is used to calculate the momentum spread in a beam, though strictly speaking, the
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Decelerated CLIC drive beam,
the first 2.5 ns of the 240 ns bunch train

(a) Energy transient
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Decelerated CLIC drive beam,
steady−state

(b) Histogram of the steady-state

Figure 1: The energy distribution in the decelerated CLIC drive beam, simulated with PLACET [6]. The high energy transient(a) extends all the
way up to the initial energy of 2.4 GeV and is followed by a 240 ns long steady-state. The transient contains very few particles compare to the rest
of the bunch train and the histogram to the right (b) shows only the energy content of the steady-state.

dispersion function is only valid for small momentum spread. For large spread it leads to a misinterpretation of the
spectrometer measurements, in the worst case to unphysicalresults, such as negative momenta. In such cases, we
need to consider momentum deviation in a more stringent manner. For this purpose, we assume a momentum distri-
butionψ(δ), that enters a spectrometer magnet, deflecting in the horizontal plane. Here, we use the parametrization
δ = (p− p0)/p0 for the momentum wherep0 is the reference momentum. The distribution is mapped onto ascreen or
equivalent in a spectrometer line at a distanceL from the deflection center, as in the sketch in Fig. 2.

Ψ(X)

X

ψ(δ)
ϕ(δ)

e− L
screendeflection

Figure 2: Sketch of a horizontal deflection onto a screen, defining the variables used in the equations.

A particle with momentumδ will have a final position on the screenX ≈ Lϕ(δ) whereϕ(δ) is the deflection angle.
Let D0 = Lϕ0 with the index 0 referring to the position on the screen that is hit by a particle with the reference
momentum. Incidentally,D0 coincides with the dispersion generated by the dipole, and we get

X =
D0

1+ δ
. (1)

When the momentum spread is small, i.e. whenδ << 1, we can expand the expression in powers ofδ and obtain the
linear approximationX ≈ D0(1− δ). In our case, however, the assumption is not valid and the approximation can not
be made. Instead, we use Equation (1) to determine the particle density on the screen by integrating over all initial
momenta through

Ψ(X) =
∫

ψ(δ) δD

(

X − D0

1+ δ

)

dδ (2)

whereδD denotes the Dirac delta function. We start with the integration overδ and use the relation

δD(g(u)) =
∑

i

δD(u − ui)
|g′(ui)|

=⇒
∫

f (u)δD(g(u))dx =
∑

i

f (ui)
|g′(ui)|

(3)
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whereui are the zeros ofg(u). In our case,g(δ) = X − D0/(1 + δ) with one zero atδ = (D0 − X)/X and with
g′(δ0) = X2/D0. The particle distribution on the screen is then given by

Ψ(X) =
D0

X2
ψ

(D0 − X
X

)

(4)

whereX is the coordinate on the screen in the plane of deflection andD0 is the reference dispersion, e.g. for the
position of the momentum peak.

Normally, we are interested in deducing the moment profile from the geometric profile on a spectrometer screen.
To do so we need the inverted transformation. It is calculated in the same way and reads

ψ(δ) =
D0

(1+ δ)2
Ψ

( D0

1+ δ

)

. (5)

As an example we look at a Gaussian momentum distribution of rms width∆,

ψ(δ) =
1
√

2π∆
e−δ

2/2∆2
. (6)

Through the operation in Eq. (4) we obtain the particle distribution on the screen

Ψ(X) =
1
√

2π∆

D0

X2
exp

(

−
(D0 − X)2

2∆2X2

)

. (7)

We see from Eq. (7) that the low energy tail becomes more pronounced on the screen as the spread∆ grows larger.
Figure 3 shows an example withD0 = 0.3 m and a Gaussian momentum distribution with rms spread varied between
5% and 15%. We note that the asymmetry is hardly visible for the smallest spread while quite apparent for the largest
spread.
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Figure 3: A Gaussian momentum profile becomes asymmetric when projected onto a spectrometer screen. The asymmetry grows with increasing
momentum spread∆.

If, instead of using Eq. (5) to analyze such a spectrometer distribution, we assume thatδ << 1 and use the
linear approximationX ≈ D0(1 − δ), we commit an error. In order to illustrate this error we usethe profile from
Fig. 3 corresponding to the largest momentum spread∆ = 0.15. We apply the inverse transformation, but based on
the assumption thatδ is small. The resulting distribution is presented in Fig. 4 together with the correct Gaussian
distribution. The asymmetry that appeared on the screen translates into a distorted momentum profile where the peak
has shifted 4.1% towards higher momentum. The rms width becomes 45% larger than the original while the fwhm
width is 7.5% smaller than the input value.

The situation becomes even more critical if we consider the energy distribution at the end of a CLIC drive beam
decelerator. The distribution is peaked at 240 MeV but has a long tail that extends all the way up to the maximum

3



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

δ

N
or

m
al

iz
ed

 in
te

ns
ity

 (
A

rb
. U

ni
ts

)
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Figure 4: The extracted momentum distribution compared to the reference distribution, when the extracted profile has been calculated using the
approximationδ ≈ (D0 − X)/D0 instead of the correct relationδ = (D0 − X)/X.

energy of 2.4 GeV. Ifp0 = 240 MeV, δ will reach as high as 10, with the vast majority of the particles within the
steady-state, withδ < 4. This distribution, projected on a screen withD0 = 0.3 m, is shown in Fig. 5. Again, we use
the linear approximationX = D0(1− δ) to extract the momentum distribution from the screen and obtain the profile
shown in Figure 6. As a reference, we show also the input momentum distribution, the presence of which highlights
that the distribution extracted incorrectly is a severely distorted version of the real. The initial momentum distribution
is recovered if Equation (5) is employed for the analysis of the spectrometer profile.
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Figure 5: The beam distribution at the end of a CLIC drive beamdecelerator (see Fig. 1(b)) projected on a screen, withD0 = 0.3 m for E0 =

240 MeV. The sharp edge corresponds to the beam particles that have experienced maximum deceleration.

Now that we have established the correct way of analyzing spectrometer profiles for large momentum spreads we
turn to discuss a method to obtain time-resolved information about the beam pulse.

3. Time-resolved spectrometry

In order to establish a way of extracting time-resolved information from the spectrometer measurement we first
look at how a particle distribution transforms when projected onto a screen. We use the variables defined in Fig. 2
and introduce a rotating effective magnetic field vector so that a particle with momentumδ hits the screen at the
coordinates

X =
Lϕ0 cos(2πτ)

1+ δ
, Y =

Lϕ0 sin(2πτ)
1+ δ

(8)
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Figure 6: The dashed line is the reference energy distribution and the solid line is the distribution extracted from a spectrometer measurement in
Fig. 5 using the approximation of linear dispersion.

with τ = t/T whereT is the period of the magnetic cycle and 0< τ < 1. Note that the magnet sprays the beam on
a sector of a circle on the screen. The cycle timeT has to be matched to the bunch train duration in order to avoid
overlap of the tail with the head of the beam.

Let furtherψ(τ, δ) be the initial particle density distributed over time and momentum. We ignore for now the
emittance and obtain the transverse particle distributionon the screenΨ(X,Y) by integrating over time and momentum
through

Ψ(X,Y) =
∫∫

ψ(τ, δ) δD

(

X − Lϕ0 cos(2πτ)
1+ δ

)

δD

(

Y − Lϕ0 sin(2πτ)
1+ δ

)

dτdδ . (9)

This is an integral over two dimensions and we use the Jacobi determinant to transform the integration variables from
(τ, δ) to (X,Y). It is defined through

det(J) =

∣

∣

∣

∣

∣

∣

∂X/∂τ ∂X/∂δ
∂Y/∂τ ∂Y/∂δ

∣

∣

∣

∣

∣

∣

(10)

With the Jacobi determinant the integral in Eq. (9) transforms as

Ψ(X,Y) =
∫∫

ψ(τ, δ) δD

(

τ − 1
2π

arctan
(X

Y

)

)

δD

(

δ + 1− lϕ0√
X2 + Y2

)

1
|det(J)|

dτdδ (11)

where we use the fact that

X2
+ Y2

=

( Lφ0

1+ δ

)2

and
Y
X
= tan(2πτ) . (12)

The matrix elements for the determinant are easily derived through differentiation with the result

∂X
∂τ
= −2π

Lφ0

1+ δ
sin(2πτ) = −2πY

∂X
∂δ
= −

Lφ0

(1+ δ)2
cos(2πτ) = −

X
1+ δ

∂Y
∂t
= 2π

Lφ0

1+ δ
cos(2πt) = 2πX

∂Y
∂δ
= − Lφ0

(1+ δ)2
sin(2πt) = − Y

1+ δ

with the resulting determinant

det(J) =
2π

1+ δ
(X2
+ Y2) . (13)

Finally, we express the distribution on the screen purely inthe spatial variablesX andY

Ψ(X,Y) =
Lϕ0

2π
1

(X2 + Y2)3/2
ψ

(

1
2π

arctan
(Y

X

)

,
Lϕ0√

X2 + Y2
− 1

)

. (14)
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This equation relates the momentum distributionψ, which originally was a function of the momentumδ and time
along the pulse, to coordinates on the screen and therefore describes how the image on the screen is related to a given
time dependent momentum distribution along the pulse.

We now turn to extracting the original time dependent momentum distributionψ from an image on the screen
produced by the rotating magnetic field. For this we need to invert the procedure discussed in the previous section
and determine the original time-dependent momentum distributionψ(τ, δ) from the distribution on the imageΨ(X,Y).
The inverse procedure starts similarly with a two-dimensional integral

ψ(τ, δ) =
∫∫

Ψ(X,Y) δD

(

τ −
1
2π

arctan
(X

Y

)

)

δD

(

δ + 1−
Lϕ0√

X2 + Y2

)

dXdY . (15)

We now need the Jacobian for the inverse systemJ̃, for which the elements are as follows

∂τ

∂X
= −Lφ0

X

(X2 + Y2)3/2
=

∂τ

∂Y
= −Lφ0

Y

(X2 + Y2)3/2

∂δ

∂X
= −

1
2π

Y
X2 + Y2

−
∂δ

∂Y
=

1
2π

X
X2 + Y2

. (16)

With this JacobianJ̃, which is the inverse ofJ used in Equation (3), and its determinant

det(J̃) =
Lφ0

2π
1

(X2 + Y2)3/2
=

(1+ δ)3

2π (Lφ0)2
(17)

we have inverted the procedure and can analyze a measurementof the screen profile through

ψ(τ, δ) =
2π (Lφ0)2

(1+ δ)3
Ψ

(

Lφ0 cos(2πτ)
1+ δ

,
Lφ0 sin(2πτ)

1+ δ

)

. (18)

The momentum information is now encoded in the radial variable on the screen and the temporal information is in the
angle.

Time (Arb. Units)

δ 
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(b) Screen image

Figure 7: The CLIC momentum distribution transformed to an imagein the post-PETS diagnostic line. We have usedL = 5 m andϕ0 = 1 mrad.
The head of the pulse, corresponding to the timeτ = 0.1 is in the lower right corner.

We have discussed the algorithm to extract the time-resolved momentum distribution from the proposed measure-
ment with a rotating beam. Our goal is to perform these measurements on the decelerated CLIC drive beam, and
therefore we show it in Fig. 7. The original momentum distribution shown in Fig. 7(a) is taken from Fig. 1(b), where
we have let the momentum profile be constant along the bunch train. By applying Equation (14) we obtain the corre-
sponding screen image in Fig. 7(b). Before we conclude on theperformance of the method, we now look at examples
of other distributions in order to evaluate the quality of the reconstruction.
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4. Examples

For the evaluation of the performance we have chosen a particle distribution whose momentum along the pulse
varies sinusoidally with amplitudeδ = 0.1. The assumed rms momentum spread∆ has the same magnitude. This
momentum distribution, shown in Fig. 8(a), results in the image on the screen shown in Fig. 8(b). Here, we have
neglected the effect of finite emittance. The geometric beam size on the screenis assumed to be small compared to
the beam size due to the finite momentum spread. In the simulation we assume a deflection angleϕ0 = 1 mrad and
drift lengthL = 5 m. Using the procedure outlined above to extract the momentum distribution from the image indeed
results in a distribution that is indistinguishable from the one shown in Fig. 8(a).
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Figure 8: Reference distribution and screen image. The momentum spread is 10% along the pulse while the average momentum oscillates with an
amplitude equal to the 1σ spread.
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(b) Screen image with noise

Figure 9: Screen image and corresponding extracted momentum distribution where noise has been added. The noise is uniformlydistributed around
zero, with a maximum amplitude of 10% of the maximum intensity in the original image. Before inverting the image we set the pixels on the edges
of the screen to zero in order to avoid a blow up near the singularity asδ approaches -1.

In order to investigate the robustness of the inversion we add random noise to the image in Fig. 8(b). The maximum
noise is set to 10% of the maximum intensity in the original image and the noise is uniform in shape and centered
around zero. Figure 9(b) shows the image with noise. Before extracting the momentum distribution we select the
region of interest on the screen and let the pixel values on the edges be zero. This is a precaution for avoiding
a strong enhancement of the noise close to the singularity asδ → −1. The singularity can be discarded since it
correspond to particles at rest that will not reach the screen. Then, by extracting the distribution we obtain Fig. 9(a).
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The shape and position of the snake figure remains intact, although the noise perturbs the visual impression of the
distribution, especially in the low-momentum region, because the transformation between the momentum distribution
and the image in Equation (14) is nonlinear and the low-momentum part is enhanced due to the denominator (1+ δ)3

in Equation (18).
As already mentioned above, a finite emittance will smooth out the profile on the screen. If the geometric beam

size is negligible compared to the dispersive beam sizeσ0 = Lϕ0∆ on the screen, the system can be inverted and
the initial distribution regained by applying Eq. (18). However, if the beam size on the screen is known the screen
image can be corrected through deconvolution with the geometric beam profile. This, however, requires careful use
of advanced image processing and here we limit the analysis of the effect of a finite emittance to a qualitative level. In
Fig. 11 we demonstrate the effect of a finite emittance by calculating the convolution of the original screen image from
Fig. 8(b) with the geometric beam profile. The column to the right shows the screen images and the left column the
corresponding distribution extracted from each image without taking the finite emittance into account. The geometric
beam sizeσx,y in the rows is given by 0.2, 1, and 2 in units of the beam width due to the momentum spreadσ0. We
note that qualitative information can be extracted from thescreen even for very large emittances. The general trend
is that the extracted momentum spread increases with increasing emittance, while the extracted average momentum
decreases.

In the CLIC decelerator the finite emittance is not expected to influence the measurement notably. Although the
emittance is fairly large (150 mm mrad), the momentum spreadis so large that even with a very small dispersion the
geometric beam size will be negligible in comparison. In thenext section we will discuss the beam size measurements,
which can be used also for emittance measurements.

5. Time-resolved beam size measurements

For time-resolved beam size measurements in one plane, say horizontal, we envision to make a linear sweep
in the other, here vertical, direction. Variations in the horizontal beam size along the pulse will then show up as
variations of the horizontal width of the image on the screen, where time along the pulse is encoded in the vertical
position. One horizontal slice of the image thus corresponds to the horizontal profile of a given temporal slice in
the pulse. A large momentum spread, however, will cause vertical smearing out of particles from one temporal slice
across neighboring temporal slices. In this way the large momentum spread entangles the momentum and beam size
distributions. Note that this smearing out is more complex than plain convolution, because the it depends on the
deflection angle and therefore varies along the pulse. Instead of solving this image processing problem, we perform
simulations to investigate to what extent beam size variations can be resolved, even in the presence of large momentum
spread.

We demonstrate the beam size measurement with the example inFig. 11. A beam pulse with a variation of
the horizontal beam size along the pulse is introduced. The vertical beam size is assumed to be negligible in Fig. 11
compared to the Gaussian momentum distribution, where the rms spread∆ is increased from zero to 0.15 to investigate
the performance of the method. The vertical smearing of the horizontal distribution of a given temporal slice is only
due to spreading of the momentum distribution, transformedaccording to Equation (4) to the image plane. The left
column in Fig. 11 shows the images on the screen and the right column the rms beam size in the horizontal plane
along the pulse, extracted from the image to the left. As the momentum spread grows, the oscillations are damped
until almost no variations are visible. For every image, corresponding to a given momentum spread, we extract the
standard deviation of the oscillations along the pulse and plot it in Fig. 12 as a function of momentum spread. The
standard deviation decreases rapidly with increasing momentum spread and eventually approaches zero. After this
point, the method does not reveal any temporal variations ofthe horizontal beam size. We conclude that for moderate
momentum spread the method provides some qualitative information about the horizontal beam size, but is limited if
the momentum spread becomes too large.

We now turn to a beam with CLIC parameters. Using only the steady-state part of the energy distribution from the
histogram in Fig. 1(b), means thatδ ∈ [0,4]. As before, we apply a linear sweep in the vertical direction and illustrate
in Fig. 13 how the momentum profile is extended in the verticaldirection of the screen for different deflection angles,
corresponding to different points in time during the sweep. The later bunches are superimposed with the early bunches,
which highlights the difficulty of extracting quantitative time information from theimage.
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(d) σx,y/σ0 = 1
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Figure 10: The extracted momentum distribution (left column) corresponding to each screen image (right column) where the geometric beam size
σx,y increases for every row compared to the dispersive beam sizeσ0 = Lϕ0∆. Note that the first bunch, corresponding toτ = 0.1, is imaged in the
lower right corner of the image in column to the right.
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(c) Screen image for∆ = 0.05.
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(d) Horizontal beam size
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(e) Screen image for∆ = 0.1.
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(f) Horizontal beam size
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(g) Screen image for∆ = 0.15.
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(h) Horizontal beam size

Figure 11: Images of a beam with a variation in horizontal beamwidth along the pulse (left column). The rms horizontal beam width along the
pulse, equivalent to the vertical axis, is displayed in the right column, with the momentum spread increasing for every row.The first bunch is
centered at approximatelyY = 2 mm and the last bunch atY = 8 mm.
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Figure 12: Standard deviation of the variation of the horizontal beam size along the pulse, as a function of the momentum spread∆.
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Figure 13: The CLIC momentum distribution in the vertical plane for selected deflection anglesϕ0 = D0/L. Every angle corresponds to a point in
time during the sweep, where the sweep begins with a small deflection angle and ends with a large angle. The large spread leadsto contamination
from the late bunches of the regions where the early bunches are imaged.
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(a) Screen image for 10% variation.
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(b) Horizontal beam size

Figure 14: Image of a beam with a momentum distribution corresponding to the decelerated CLIC drive beam (a). The extracted rms horizontal
beam width along the pulse (b) is damped by a factor 3 on averagealong the train and has a phase shift of roughly 60 degrees compared to the input
modulation.
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Turning to the two-dimensional image, we use a Gaussian particle distribution in the horizontal direction and
introduce a modulation of the horizontal beam width. We apply a linear sweep in the vertical direction and obtain a
screen image from which we extract the horizontal beam widthalong the vertical axis. Figure 14 shows the image to
the left and the extracted beam width to the right. The amplitude of the modulation is damped compared to the input
by a factor 3, on average along the pulse. The vertical smearing due to the momentum spread also induces a phase
shift of roughly 60 degrees. These numbers remain the same even if the amplitude of the modulation is changed.

6. Conclusions

We found that the large momentum spread of the CLIC drive beamafter deceleration will lead to distorted images
on a screen in a spectrometer if interpreted within a linearized model of the dispersion. We then derived the map that
permits us to extract the correct momentum distribution from the screen image.

We went on to use that information to propose a method to derive the time-resolved momentum distribution along
the drive beam pulse from a screen image caused by sweeping the beam in a circular pattern. It turned out that the
momentum distribution can be recovered accurately as long as the geometric beam size is smaller than the beam
size due to the finite momentum spread. We expect the method tobecome a convenient tuning tool, because the
deceleration and thereby the power production can be optimized by making the circle as big as possible and the initial
transient as short as possible. This should facilitate empiric tuning of the decelerator.

The beam size variation along the pulse can be extracted onlyin a qualitative way due to the complex smearing
of the transverse profile in horizontal plane into the sweeping plane, here vertical. We expect, however, that large
variations of the transverse beam sizes along the pulse are visible and permit tuning of the decelerator and preceding
beam lines.

In this report we have not addressed practical issues such asthe design of the kicker magnet or detailed layout
of the diagnostic section. It is probably advisable to have additional kicker magnets to lead the deflected beam with
its large beam power to the final beam dump in a controlled way.Neither did we discuss the deconvolution of the
energy dependence of the emission of optical transition radiation from the screen which is likely to have a small
effect [4]. Moreover, we expect that deconvoluting the emittance smearing from the momentum distribution can be
accomplished by advanced image processing. It might also bepossible to deconvolute the smearing of the beam size
image due to the large momentum distribution, though this isconsiderably more difficult due to the variable smearing
along the pulse. These points need to be addressed to establish the usefulness of the proposed diagnostic for the Post
PETS line (POPEL).
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