
C
ER

N
-T

H
ES

IS
-2

01
2-

37
2

16
65

41
7

Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Doctoral thesis

Analysis and proposal of the new architecture of the selected
parts of the software support of the COMPASS experiment

Vladimír Jarý

Supervisor: Doc. Ing. Miroslav Virius, CSc.

Advisor: Ing. Tomáš Liška, PhD.

A thesis submitted to the Faculty of Nuclear Sciences and Physical Engineering, Czech
Technical University in Prague in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (PhD)

in the branch of study Mathematical Engineering
of the study program Applications of Natural Sciences

Prague, August 2012

Statutory declaration

I hereby declare that I have elaborated this disseration with topic Analysis and proposal of
the new architecture of the selected parts of the software support of the COMPASS experiment
independently and used no other aids that those cited. In each individual case, I have clearly
identified the source of the passages that are taken word by word or paraphrased from other
works.

In Prague, 9th August 2012 .
Vladimír Jarý

Název práce:
Analýza a návrh nové architektury vybraných částí softwarového zabezpečení fyzikál-
ního experimentu COMPASS

Abstrakt: Tato práce se zabývá systémem pro sběr dat použitým v rámci fyzikálního exper-
imentu Compass v laboratoři CERN. Nejprve je studován stávající databázový podsystém,
který se během roku 2009 potýkal s problémy způsobenými nárůstem zátěže. Jako první jsou
analyzovány příčiny problémů, poté je představena a implementována nová architektura, která
používá replikaci, zálohování a dohled pro dosažení vysoké dostupnosti a spolehlivosti. Popsány
a otestovány jsou některé pokročilejší databázové technologie včetně dělených tabulek nebo da-
tových úložišť. Poté je vysvětlen proces implementace vzdáleného řízení a dohledu experimentu.
Stávající systém pro sběr dat je částečně založen na dnes již zastaralých technologiích, proto
započal vývoj nové architektury. V práci je představena analýza požadavků a návrh nového
dohledového a řídicího systému pro hardwarovou platformu založenou na FPGA technologii.
Podle návrhu by měl být systém nasazen v heterogenním síťovém prostředí. Návrh definuje
základní role v systému, chování je popsáno pomocí stavových automatů. Dále jsou shrnuty
výsledky prvních testů výkonu a stability. V závěru jsou zmíněny další vývojové kroky zahrnu-
jící portování na cílový hardware.

Klíčová slova: COMPASS, databáze, vysoká dostupnost, vzdálené řízení, sběr dat, úložiště

Title:
Analysis and proposal of the new architecture of the selected parts of the software
support of the COMPASS experiment

Abstract: This work focuses on the data acquisition system of the Compass experiment at
CERN. At first the database current subsystem that suffered from increased load during year
2009 is analysed. The reasons of problems are identified and new architecture that includes
replication, backups, and monitoring for achieving the high availability and reliability is proposed
and implemented. Several advanced database features including partitioned tables or storage
engines are described and tested. Then, the process of implementation of the remote control
and monitoring of the experiment is explained. As the existing data acquisition system is partly
based on a deprecated technologies, development of a new architecture has started. We focus on
requirements analysis and proposal of a control and monitoring software for the new hardware
platform based on the FPGA technology. The software is to be deployed in a heterogenous
network environment. According to the proposal, the system is built on the DIM communication
library. Roles participating in the system are defined in the proposal, the behavior of actors is
described by state machines. First results of performance and stability tests are summarized.
Finally, the planned steps including porting on the target hardware are summarized.

Key words: COMPASS, database, high availability, remote control, data acquisition, storage

Contents

Introduction 6

1 Trigger and data acquisition systems 9
1 The system with a periodic trigger . 11
2 The system with a physics trigger . 11

2 The Data Acquisition System of the Compass Experiment 14
1 The Compass Experiment . 14
2 Trigger and data acquisition systems . 16

2.1 Data acquisition hardware . 16
2.2 Trigger Control System . 18
2.3 Data acquisition software Date . 18

3 Software used during update of the Compass data acquisition system 29
1 Database management systems . 29

1.1 Relational data model . 30
1.2 MySQL database . 32

2 DIM library . 34
2.1 Application Programming Interface . 35

3 Framework Qt . 36
3.1 The object model of the Qt framework . 37

4 New database architecture for the Compass experiment 39
1 Analysis of the original database architecture . 40
2 Proposed update of the database architecture . 42

2.1 Comparison of different versions of the MySQL server 43
2.2 Comparison of storage engines . 47

3 New database architecture for the Compass experiment 56
3.1 Operating system installation and configuration 58
3.2 MySQL installation and configuration . 62
3.3 Database replication . 65
3.4 Configuration of the MySQL Proxy . 69
3.5 Backup and monitoring . 70
3.6 Data migration and verification . 76

4 Maintenance of the new database architecture . 80
4.1 Developing new data acquisition monitoring application 80
4.2 Evaluation of the query execution plan . 82

5 Results of migration and outlook . 86

4

5.1 Design of further improvements of the database architecture 87

5 Remote control room for the Compass experiment 91
1 Analysis and comparison of methods of the remote access 92
2 Proposed design of the layout of the remote control room 93

2.1 Definition of user roles . 93
2.2 Proposed deployment of control and monitoring applications 94

3 Kickstart based unattended installation . 97
3.1 Operating system installation . 98
3.2 Configuration of the operating system . 99

4 Summary . 102

6 Analysis and proposal of the software for new data acquisition architecture 104
1 New data acquisition hardware . 105
2 Requirements analysis . 106

2.1 Evaluation of the DIM library . 107
3 Proposal of the run control and monitoring software 111

3.1 Transport protocol . 116
4 Results and outlook . 117

Conclussion and contribution of the thesis 120

List of Figures 122

List of Tables 123

List of Publications 124

Bibliography 126

Online sources 127

5

Introduction

Look at those inventors and at their resources
yet the stars have not deviated from their courses

look at all those people living quietly
no this isn’t work nor even energy

this is adventure as on the high seas
locking oneself in one’s laboratories
look at all those people living quietly

no this isn’t work it’s poetry
Vítězslav Nezval: Edison1

Today, computer systems play an integral role in the high energy physics experiments; they are
used for simulations, for control and monitoring, and for data analysis. Modern experiments
produce vast amount of data that cannot be processed online, therefore the data acquisition
systems that gather and store data are needed.

Goal of the thesis

The dissertation thesis focuses on the data acquisition system of the Compass experiment at
CERN. Recently, the system has experienced several scalability and performance issues caused
by increases in the data rate. The purpose of the research part of the thesis was to analyze the
existing data acquisition architecture of the COMPASS experiment and to identify the cause of
performance issues.

The Compass is a high energy physics experiment with fixed target situated at the Super
Proton Synchrotron at CERN built for the study of the gluon and quark structure and the
spectroscopy of hadrons using high intensity muon and hadron beams, [1]. The data acquisition
system of the experiment is based on custom frontend electronics and event building network
based on the Gigabit Ethernet. From the software point of view, the data acquisition is powered
by the Date package [3].

We have detected that the most serious problems had been caused by database subsystem,
therefore, in the research part, we have focused on the rational database management systems.
Based on the investigation of the data acquisition system, the following three goals have been
designed:

1. At first, the database subsystem of the experiment needed to be evaluated. The new
system that would handle the increased data rates needed to be proposed, implemented,
and managed. The migration to the new database architecture needed to be transparent
to clients. Additionally, the new database architecture should fulfill the high availability
and high reliability requirements.

1Translated by Ewald Oser

6

Doctoral thesis Vladimír Jarý

2. The data acquisition of the experiment is controlled and monitored from the control room
situated directly in the hall with Compass spectrometer. As a consequence of increased
beam intensity, the radiation approached safety limits in the control room, therefore the
second goal of the thesis was to analyze possible methods of remote access and to implement
the remote control and monitoring for the experiment.

3. Development of a new data acquisition hardware has started, therefore the third goal of
the thesis was to perform requirements analysis and prepare a proposal of the control and
monitoring software for this new hardware architecture.

Additionally, as the thesis describes newly implemented systems such as a database architecture
or remote control room, we have been asked by members of the COMPASS collaboration to
provide technical details about installation and configuration of these systems that should be
used by data acquisition experts. Therefore, several sections of the thesis as indicated bellow
contain these technical information.

Structure of the thesis

The thesis is divided into the following six chapters.
In the first chapter, the trigger and the data acquisition systems are briefly introduced. Two

basic trigger systems (i.e. system with a periodic trigger and system with a physics trigger) are
described. Then several key terms such as the dead time of the system and the trigger efficiency
are explained.

The second chapter of this work focuses on the data acquisition of the Compass experiment.
The experiment is introduced, then in the following section, the existing data acquisition system
is analyzed in detail. At first the hardware of the system is described, then the trigger control
system of the experiment is overviewed. Finally, the various modules of the data acquisition
software Date are presented. The problems of the current system are also analyzed in this
chapter.

The third chapter explains several tools that have been used during upgrade of the data
acquisition system. At first, the rational database management systems are introduced and
the MySQL database software that implements an online database service of the experiment is
presented. Then, the network communication based on the DIM library that we have used during
development of the control and monitoring software is described. Finally, the Qt framework that
has also been used during the development is introduced.

The fourth chapter covers the online database service of the experiment. At first, the original
architecture and its problems is introduced. In the second part of the chapter, the proposal of
the updated architecture is presented. In this section, we also compare different storage engines
used by the MySQL server. Then, the migration process to the new database architecture
is described in more details covering the operating system and database software installation,
configuration, and the data migration and verification. These details should be used by data
acquisition experts of the experiment in case a new database server needs to be added into the
architecture. Then the building blocks of the highly available and reliable database systems
including the database replication, the configuration process of the proxy server, the backup
and monitoring system, are analyzed. Then, we present new database applications that we have
developed and we also enumerate problems with the database that have been solved. Finally,
we propose several possible improvements to the updated database architecture that should be
used to increase reliability and performance of the database architecture.

The fifth chapter analyzes implementation of the remote control and monitoring of the ex-
periment. At first, we compare several possible implementations of remote access. Then, the

7

Vladimír Jarý Doctoral thesis

installation of the remote control room is described. During the installation, we have used the
kickstart technology to achieve unattended installation of multiple workstations. The author
of the thesis has lead a team of undergraduate students that participated in the installation
process. Also, we present the applications that are used by members of the shift crew to control
and to monitor the experiment and the data taking process.

Finally, in the sixth chapter, we introduce the control and monitoring software for the new
data acquisition system. At first, the hardware based on the Field Programmable Gate Array
technology is presented. Then, we analyze requirements on the control and monitoring software
for this hardware platform. Based on these requirements, we propose software architecture. The
proposal has been successfully implemented by undergraduate students supervised by an author
of this thesis. Finally, we summarize the first results of performance and stability tests of the
new software and present the following development steps.

Acknowledgement

The work on this thesis has been supported by the following grants of the Ministry of Education,
Youth, and Sports of the Czech Republic: LA08015, SGS 10/094, and SGS 11/167.

I would like to thank to my supervisor, Mr. Miroslav Virius, and to my supervisor specialist,
Mr. Tomáš Liška for their useful remarks and advice concerning this thesis. My sincere thanks
belongs to Mr. Miroslav Finger who offered me an opportunity to participate in the Compass
experiment at CERN. I also wish to express my gratitude towards Mr. Vladimir Frolov and
Mr. Damien Neyret who kindly introduced me into a data acquisition system of the Compass
experiment.

The work on this thesis would not be possible without continuous support of my family. My
thanks belong especially to my uncle and my grandmother who provided me a home away from
home during my studies. Last but not least, I would like to thank to my parents for their love.
Thank you!

I would like to dedicate this thesis to my grandfather Vladimir who suddenly passed away
in December 2011.

8

Chapter 1

Trigger and data acquisition systems

Today, modern scientific experiments often produce data in previously unseen quantities. Usu-
ally, it is not possible to analyze the data in the real time as they are produced, thus the data
acquisition system is employed to prepare data for an offline analysis. This work focuses on the
role of the data acquisition systems in the high energy physics, however, it can be generalized
to other fields to some extent.

The data acquisition can be divided into several steps as seen on Figure 1.1. In the first step
known as a readout, the analog signal coming from the detector channels is preprocessed and
digitized in frontend electronics. High energy physics experiment typically consists of a large
number of detectors and each of these detectors produces data in multiple channels. The data
acquisition system needs to gather fragments of data from all the detector channels and assemble
full events from these fragments; this step is known as an event building. In the data logging
phase, the full events need to be deposited into a permanent storage where they wait for the
offline analysis.

Besides these data related tasks, the data acquisition system also provides the control and
the configuration facilities. In order to enable the control, the system also needs to support
monitoring. Optionally, the data acquisition system may include tools for partial online analysis,
event filtering, or data preprocession.

The experiments at the Large Hadron Collider particle accelerator at CERN are characterized
by a high collision rates of up to 40MHz. However, only very small fraction of these collisions
can be processed, maximum acceptable rate is in order of O(100)Hz. The limit is imposed by
the computing power and also by a storage capacity. The majority of the collisions corresponds
to physically non interesting events. Thus, the data acquisition system often cooperates with
the trigger system that is used to select physically interesting (or reject non interesting) events
in a high rate environment. The trigger system can be organized into several levels. On the
lowest layer, the system has only few µs to perform the decision, thus only simple algorithm can
be used and this layer is usually implemented in a hardware. On the higher layer, the selection
can be performed by the software and more complex algorithms can be utilized.

For instance, the detectors of the ATLAS experiment at the Large Hadron Collider produce
data in 107 channels at the collision rate of 40MHz. The first level trigger is based on a
hardware; it reduces the rate to 105Hz and the second level trigger to 103Hz. The third level
trigger implemented by the offline computing farm reduces the rate down to 102Hz. On the other
hand, some experiments with a triggerless readout exist or are planned. At these experiments,
the uninteresting events are excluded purely by a high level filtering software.

In the high energy physics, the signal is often hidden in the background, thus some effective
algorithms that can identify the signal are required. Depending on the physics program and

9

Vladimír Jarý Doctoral thesis

the setup of the experiment, the trigger decision can be based on the total energy deposited
in calorimeters, muon or electron tracks, energy losses, and other quantities. The detectors
are divided into multiple trigger regions. Some of these regions can be used for accepting the
signal, the others for rejecting background. The resulting trigger signal is assembled by logical
combination of signals from these subdetectors.

Often, the trigger system can generate the artificial (usually random) trigger signal. The
artificial trigger signal is used for the performance studies of the data acquisition system and
also for the noise measurements and calibration of the detectors. When the trigger system
selects some interesting event, it notifies the data acquisition system that performs the readout
of the detector channels. The trigger system can also be used to distribute event identification
or reference time.

Figure 1.1: Data acquisition system

The system can be characterized by two important parameters: the dead time of the data
acquisition system and the trigger efficiency. The dead time expresses the ratio between the
time when the system is busy and cannot accept new triggers and total time. The dead time
is caused by each processing step that takes a finite time interval to complete. The trigger
efficiency represents the ratio between number of recorded good events and total number of
produced good events. With increasing dead time, the number of rejected triggers increases and
consequently, the efficiency of the trigger system decreases. Later, several common techniques
such as a pipeline processing that are used to reduce the dead time (and improve the trigger
efficiency) will be addressed.

At first, a very simple data acquisition system with the periodic trigger will be briefly de-
scribed. It will be demonstrated that the trigger rate of the system is limited by a time required
to process an event. Then, we will focus on an explanation of a more realistic system with a

10

Doctoral thesis Vladimír Jarý

physics trigger.

1 The system with a periodic trigger

Imagine a small laboratory experiment that is used to measure and record the evolution of
the room temperature in time. According to Figure 1.2, the system consists of a temperature
sensor, an analog to digital (A/D) converter, a processing unit, a timer, a storage device, and
communication links.

Figure 1.2: Data acquisition with periodic trigger

The timer periodically generates interrupts. When the central processing unit receives this
interrupt, it executes the interrupt service routine (interrupt handler) in which the readout and
digitization of the analog data from the sensor is performed. The digitized date are preprocessed
and sent to the storage device. In this setup, the A/D converter corresponds to the frontend
electronics layer.

The A/D converter spends a certain amount of time by converting one sample, the next time
period is spent by the preprocessing and storage of data, thus it takes a finite time T to process
one trigger. Consequently, this implies the upper limit on the trigger rate ν of the system. If
the processing of the trigger takes 1ms, the corresponding trigger rate ν < 1 kHz.

2 The system with a physics trigger

In a physics experiment, the events come asynchronously and unpredictably. The detectors used
in the high energy physics usually produce data in a large number of channels, for instance each
wire in a wire chamber represents one channel, thus the probability that one particular channel
is excited is relatively low and the time interval between two consecutive events is described by
the Poisson probabilistic distribution. At first, a simple system with just one channel will be
analyzed.

Signal from the detector frontend electronics is preamplified and converted to a voltage if
necessary. This signal then serves as an input to the trigger system. In the simplest case, the
trigger system compares the input signal to a threshold value and if the threshold is exceeded,
it sends the start signal to the data acquisition system. Signals in the high energy physics have
large variation in the amplitude, thus the threshold value should not be set too high. On the
other hand, too low threshold would also trigger a noise. Pulse width contributes to the dead
time and must be adapted to the desired trigger rate. The moment when the signal crosses the

11

Vladimír Jarý Doctoral thesis

threshold value depends on the amplitude; larger pulses give shorter response time. This effect
known as a time walk can be eliminated by using the constant fraction discriminator that allows
triggering on a constant fraction of the peak amplitude.

Figure 1.3: Data acquisition with a basic physics trigger

The input signal is split into two discrimination branches. In the first branch, the signal is
compared against (adjustable) threshold in a normal threshold discriminator. The other branch
implements the constant fraction discrimination. The signal is again split: the first copy is
delayed by a delay cable, the second one is attenuated by a factor N . These two copies are
subtracted and the result of subtraction is compared with a (almost) zero threshold. The two
branches are finally merged by the AND gate which starts the data acquisition when the bipolar
signal changes the polarity. The trigger system starts the operation of the A/D converter and
sends the interrupt to the processing unit of the readout module. The readout module receives
the data from the ADC, preprocesses them and sends them to the next processing stage (event
building, data filtering) or to the storage device. The latency of the trigger is compensated by
the delay cable between the frontend electronics and the readout module.

Each processing step that takes a finite time interval to complete contributes to the dead
time of the system. Usually, there are three main sources of the dead time in the data acquisition
systems: a readout dead time, a trigger dead time, and an operational dead time. The readout
dead time represents a time period in which one event is fully read, the trigger dead time
represents sum of trigger logic components processing times, and the operational dead time is
caused by periods when the data acquisition is stopped between the consecutive runs. The
readout module must be equipped with the busy logic that block producing the other triggers
while the system performs the readout.

Figure 1.4: Constant fraction discriminator

Let τ denote readout time per event, ν denote the number of events read per second (DAQ rate),
and νt denote the raw trigger rate. Thus the product ν ·τ represents the fractional time when the
DAQ system is busy and the 1− ν · τ is the live time of the system. From the expression of the

12

Doctoral thesis Vladimír Jarý

DAQ rate in a form ν = (1−ν ·τ) ·νt the limitation on the rate can be deduced: ν = νt
1+τ ·νt < νt,

This means that the DAQ rate is lower than the raw trigger rate and the efficiency ε = 1
1+τ ·νt is

always lower than 100 %.
The events are always lost if the νt > 1

τ . In order to achieve high efficiency ε ∼ 100 %, the
DAQ rate needs to approach the raw trigger rate ν ∼ νt. This requires that the νt · τ � 1 and
the τ � λ where λ is the mean time between events. Suppose that the raw trigger rate is 1 kHz,
i.e. λ = 1ms. To achieve the efficiency of 99%, one needs to guarantee that the processing time
τ < 0.01ms which means to over–design the system by a factor of 100.

There are two main techniques used to reduce the dead time in a high rate environment
with large data flow, namely pipeline processing and parallelism. Pipeline processing is based
on introducing fast memory buffers organized as a queue (FIFO, first in, first out) between
processing stages. The buffers absorb fluctuations off the input rate and provide relatively stable
output rate; this effect is known as a derandomization. Buffers decouple fast frontends from slow
data processing and storage; this minimizes number of fast (and expensive) components. With
buffering, it is possible to approach the 100 % efficiency if the A/D converter can operate at rate
higher � νt and data processing and storage can work at rate comparable to the raw trigger
rate νt.

Since the detectors consist of large number of channels it is natural to digitize, readout, and
preprocess each channel in parallel, independently on other channels. At later stage, the data
coming from different detector channels are assembled together to form the complete event.

Additional improvement can be achieved by implementing a pre–trigger which is a very fast
first stage of the trigger system that signals the minimal activity in the detector. It sends the
start signal to the digitizer units which is later confirmed or rejected by the main trigger. In
this way, the main trigger can operate at later stage (after the digitization) and can be more
complex.

A complex data acquisition system are usually distributed over a large number of nodes:
servers, VME crates, and other equipment. Some of these nodes such as the A/D converters
should be located close to the detectors, on the other hand, other nodes should be placed further
away from the detectors in order to prevent the radiation damage. There are two main types of
interconnection between the nodes: buses and networks.

Buses are relatively simple systems, they consist from fixed number of wires with given
mechanical and electrical properties. The number of wires defines the bus width. Devices share
the bus, thus some kind of arbitration is required to avoid collisions. The number of devices
connected to the bus and the bus length is limited. Moreover, the bus bandwidth is shared
among all the devices, thus the buses have scalability issues. Despite these issues, buses are
often used, mainly for transferring data over shorter distances. The most commonly used types
include VME, PCI, or SCSI buses.

All devices connected to the network are considered to be equal, they communicate directly
with each other by sending messages. The devices follows a set of rules called protocol. In
switched networks, special devices called switches transfer messages. They find the correct path
between sources and destinations and they use buffers to handle the congestion of messages. In
contrast to the buses, the networks scale well. Today, the Ethernet is probably the most used
network technology.

13

Chapter 2

The Data Acquisition System of the
Compass Experiment

This chapter focuses on the existing data acquisition system used by the Compass experiment
at CERN. The scientific program of the Compass experiment is briefly introduced. Then, the
data acquisition system of the experiment is described in more details. At first, the hardware
architecture that is based on the custom electronics for readout and by the network based event
building is presented. Next, the trigger system based on the Time and Trigger Control system
is overviewed. Great attention is dedicated to the description of the Date data acquisition
software. Finally, the performance and stability problems of the system are discussed.

1 The Compass Experiment

The Compass1 is a high energy physics experiment with a fixed target that operates on the Super
Proton Synchrotron (SPS) particle accelerator at laboratory CERN in Geneva, Switzerland, [1].
The scientific program of the experiment was conditionally approved by the CERN in 1997. The
detectors were installed in years 1999–2000, the system was commissioned during the technical
run in 2001 and the physical data taking started in 2002. Today, about 250 scientists, engineers,
and students from 28 institutes and 11 countries collaborate on the COMPASS experiment.

The goal of the experiment is to research the structure and the spectroscopy of hadrons. The
scientific program consists of experiments with high energy muon and hadron beams provided
by the SPS accelerator. The experiments with the muon beam include studies of transverse spin
effects, vector meson production, or ∆G/G measurements. The program with the hadron (pion
and proton) beams explores the spectroscopy of light mesons, pion and kaon polarisability, search
of glueballs, or production of double charm baryons. Currently, the experiment enters its second
phase known as the COMPASS-II. The program of this phase covers research of generalized
parton distributions, Primakoff scattering, or Drell-Yan effect, [2].

The Compass spectrometer operates on the SPS particle accelerator that provides a primary
beam. The accelerator works in 16.8 s long cycles; 12 s of this period is dedicated to the acceler-
ation, the remaining 4.8 s to the extraction of particles. The extraction period is also known as
a spill. A typical SPS spill contains approximately 1.2 × 1013 of protons with a momentum of
400GeV/c. From the primary beam, the secondary muon and hadron beams are extracted. It
is also possible to extract the tertiary low energy electron beam that is used for the calibration

1Compass is an acronym that stands for the Common Muon and Proton Apparatus for Structure and Spec-
troscopy

14

Doctoral thesis Vladimír Jarý

of electromagnetic calorimeters.
The primary beam hits the Beryllium target and the pions are produced. The set of accep-

tance magnets selects pions of momentum around 225GeV/c which are then transferred along
600m long beam line. During the transfer, part of the pions decays into muons and neutrinos.
By absorbing the remaining hadrons and steering the muons by focusing and defocusing magnets,
the secondary muon beam is produced. The radioprotection limits the maximum flux to 2× 108

muons per SPS cycle, the momentum of muons can be adjusted between 60 and 190GeV/c.
The secondary hadron beam is produced by removing the hadron absorbers from the beam line.
For momenta up to 225GeV/c, the same settings for the acceptance magnets is used; different
settings must be loaded for hadron beams with a higher momentum. The radioprotection gives
the limitation on the flux of 108 hadrons per SPS cycle. It is possible to switch between different
beam line configuration remotely, using the computer program (see Chapter 5 of this work).

Figure 2.1: Artistic view of the Compass spectrometer, image taken from [30]

Depending on the physical program and the type of the secondary beam, different production
targets are employed. For the experiments with muon beam, the polarized 6LiD target is used,
for experiments with hadron beam, solid state targets of various thickness and materials are
used. When a beam particles impinge on the target, the secondary particles are produced.
These secondary particles are then registered in a series of detectors that form the Compass
spectrometer.

The Compass spectrometer consists of detectors that are used to identify particles, track
particles, and measure energies of particles. Experiments with muon and hadron beams require
different layout of detectors and target platform, thus the components are mounted on rails
which enables easy manipulation. The detectors are grouped into three main parts: beam
spectrometer that is located upstream (i.e. before) of the polarized target and small and large
angular spectrometers that are situated downstream (i.e. after) of the target.

The main task of the beam spectrometer is to measure the momentum and position of the
beam particles. Additionally, part of the beam spectrometer contributes to the veto signal

15

Vladimír Jarý Doctoral thesis

and separates the beam from the halo. The large angular spectrometer is designed to detect
particles at large angles (±180mrad). The large angular spectrometer consists of tracking detec-
tors (scintillating fibres, drift chambers,...), ring-imaging Cherenkov detector (RICH), hadronic
calorimeter, and muon filter. The small angular spectrometer that follows large angular spec-
trometer detects particles at small angles (±30mrad). The small angular spectrometer includes
tracking detectors situated downstream and upstream of the dipole magnet, electromagnetic and
hadronic calorimeters and muon filter.

2 Trigger and data acquisition systems

The data acquisition system of the Compass experiment is strongly influenced by the cycle of
the SPS particle accelerator. The spill of 4.8 s that is repeated every 12 s gives a duty cycle of
30 %. The DAQ system must use the acceleration part of the cycle to reduce the peak data rate
to one third of the onspill rate. The system can be divided into the following functional layers:

1. frontend electronics
2. concentrator modules
3. readout buffers
4. event builders

2.1 Data acquisition hardware

First layer of the system known as the Frontend electronics (also primary electronics) serves as
an input of data into the data acquisition system. This layer consists of 1400 detector frontend
cards that are used to preamplify and digitize analog data from detectors. In order to reduce
loss of quality of the signal and to reduce cost of cables, the process of digitization is performed
close to the detectors. Each frontend processes data from multiple channels, in total, there is
approximately 250 000 channels. At Compass, four different types of detector frontends are used.
Most tracking detectors are treated by the F1-TDC chip. This chip developed at the University of
Freiburg is designed to be pipelined and thus, it is dead time free. The GASSIPLEX application
specific integrated circuit (ASIC) that processes data from the RICH detector requires a fixed
dead time of 3–5ms. The readout of the GEM and silicon detectors is handled by the APV25
chip that features the analogue pipeline and buffer for 10 events. The calorimeters are processed
by fast integrated analog to digital converters (FIADC) that can digitize up to 3 consecutive
events in 30ms.

The 1 400 frontend cards are connected to 150 concentrator modules that form the following
layer of the system. These modules are used to initialize frontend cards, perform readout and
assembling of data from multiple channels. From the hardware point of view, the modules
are based on the VME buses. Two types of modules are used: CATCH and GeSiCA. The
CATCH2 module is designed to work with calorimeters, RICH detector, and tracking detectors.
The CATCH modules are developed at the University of Freiburg. The GeSiCA3 modules are
designed for the frontends based on the APV25 chip that are characterized by high data rates
and channel density. The concentrator modules receive signals from the Trigger Control System
(TCS). When the trigger signal arrives, the concentrator modules perform a readout of date.
The TCS also distributes metainformation about the event. By appending these information

2COMPASS Accumulate, Transfer and Control Hardware
3GEM and Silicon Control and Acquisition module

16

Doctoral thesis Vladimír Jarý

that include event identification and timestamp to the raw data assembled by a readout module,
the subevents are created.

The files corresponding to the subevents are transferred to following layer using the S-
Link communication interface. S-Link is a high speed, optical link developed for the ATLAS
experiment that is capable of transferring data at speeds up to 160MB/s, [26]. To reduce
number of S-Links, subevents from multiple concentrator modules can be multiplexed on a
single link using the S-Link multiplexer SMUX. Subevents coming from the S–Links are stored
in a PCI cards called spillbuffers. Each spillbuffer is equipped with a 512MB of on board
memory organized as a FIFO. This amount corresponds to data from 2–3 spills. Spillbuffers
are installed in servers called readout buffers. Each readout buffer can contain four spillbuffers.
The spillbuffers make use of the SPS cycle: they are being filled during spills and continuously
unloaded into the main memory of the readout buffers. In this way, the the load is distributed
across the entire SPS cycle which reduces the data rates to one third of the onspill rate.

Figure 2.2: Layers of the data acquisition system according to [1]

The readout buffers send the subevents over the Gigabit Ethernet to the event building servers
that form the last layer of the data acquisition. The main task of an event builder is to receive

17

Vladimír Jarý Doctoral thesis

subevents from all readout buffers and to reorganize data from these subevents into full events
(i.e. event building). During this process, a file with metainformation about the event is created.
After some delay, this metainformation is stored into the Oracle database and the file with event
is send via the Central Data Recording facility into the permanent storage CASTOR4 in the
CERN IT center situated 5 km away from the experimental hall. The remaining CPU power the
event building machines is dedicated to the online filter and partial data analysis.

During the 2004 Run, 19 readout buffers and 13 event builders were used for the data
acquisition. These machines are installed in a server room in the Compass experiment hall and
are connected into the internal Compass network which is accessible from the outside through
the gateway computers. In this way, the data acquisition is protected from the unauthorized
access.

2.2 Trigger Control System

The trigger system selects physically interesting events or vetoes physically non interesting events
in a high rate environment. The resulting trigger signal at the Compass experiment is based on
signals from hodoscopes, energy deposited in calorimeters, and a veto system. Depending on the
scientific program of the experiment, different components are combined to create the trigger
signal. The trigger together with the reference time and trigger identification is distributed to
the concentrator modules by the trigger control system TCS. The TCS also provides the stable
clock to the experiment.

The TCS is based on the Time and Trigger Control (TTC) system that has been developed
for the LHC experiments, however the TCS controller, the TCS server, and the TCS receivers
have been added for the Compass experiment. The TCS controller is the heart of the system; its
purpose is to synchronize data acquisition with the cycle of the SPS, to encode the trigger signal,
to count triggers, to distribute the configuration, and to generate the dead time. The encoded
signal is transmitted over the optical fibre network into the TCS receivers which are plugged
into the backside of slots where concentrator modules are inserted in the VME crates. The TCS
receivers receive and decode the trigger signal and provide it to the concentrator modules. The
TCS server provides a command interface between the control and monitoring software and the
TCS controller hardware.

Two types of the dead time are generated by the TCS controller: minimal time allowed
between two consecutive triggers is generated for detector channels that can not be pipelined
and maximal number of triggers accepted during certain time period is generated for pipelined
channels. During the year 2004, the following configuration was used, [1]:

• 5µs minimal time between consecutive triggers
• 3 triggers within period of 75µs

• 6 triggers within period of 225µs

At the nominal trigger rate 10 kHz, this configuration caused dead time of 5 %.

2.3 Data acquisition software Date

From the software point of view, the data acquisition at the Compass experiment is handled
by the Date5 package, [3]. The package has been developed for the ALICE experiment; several
modification and extensions have been added for the purposes of the Compass experiment. The

4CERN Advanced Storage facility
5Data Acquisition and Test Environment

18

Doctoral thesis Vladimír Jarý

Date provides the data acquisition tasks in a distributed network environment. The DATE
was designed to be very flexible system because the ALICE experiment operates in two modes:
heavy ion collisions and proton–proton collisions. The proton–proton mode is characterized by
a high interaction rates (up to 200 kHz) but relatively small size of events. The selectivity of the
first level trigger must be high in order to cope with the high interaction rate. On the contrary,
the heavy ion mode is characterized by lower interaction rates (upto 10 kHz) and bigger size of
events (several megabytes per event). Thus the selectivity of the first level trigger may be lower
but its complexity must be higher. At ALICE, the data acquisition is distributed over several
hundreds nodes, on the other hand, it can be used at a small laboratory experiments with a
single node for all the tasks. It was proved that the system is able to readout data at speed
40GB/s, to perform event building at speed 2.5GB/s, and to store events into the permanent
storage at speed 1.25GB/s, [3].

Each of these nodes must be powered by the GNU/Linux operating system and support
the TCP/IP stack. Additionally, the DATE software requires to be installed on the Intel x86
compatible hardware architecture.

From the functionality point of the view, the Date package offers the data flow control,
the event building, the load balancing, the information reporting, the run control, the event
sampling, and the interactive configuration. The Date package distinguishes two basic types of
nodes: Local Data Concentrators (LDC) and Global Data Collectors (GDC). In the terminology
used by the Compass experiment, the LDCs correspond to the readout buffers; their purpose is
to gather data from subdetectors. The GDCs correspond to the event builders in the Compass
terminology; they receive the subevents from the LDCs and assemble them into the full events.
For the purpose of the Compass experiment, the functionality of the online filter or the electronic
logbook have been added to the Date package. These facilities will be described in the following
paragraphs.

Moreover, the Date package also defines the file format that is used for storing subevents
and events. The tools for the physical analysis of data need to decode this format, thus a data
decoding library has been developed at the Compass experiment.

Local data concentrators

On each of the local data concentrators, two processes run: the readout and the recorder. The
readout process receives signals from the trigger system, reads the subevents from the frontend
electronics, and stores them into into the memory buffer organized as a FIFO. The recorder
process offloads the subevents from this buffer and moves them to the appropriate recording
device. Depending on the configuration, the recording device can be either a disk file (in the
case of a data acquisition with a single node), or more typically the network socket connected to
the global data collector; in this case each nodes must be connected to the same network that
supports the TCP/IP protocols.

Since the Date package is designed to be portable between different experiments, the reading
of the data from the subdetectors is done by a software module called readList that is linked
to the readout process. Each experiment that wishes to use the Date package for the data
acquisition must develop its own version of the readList module. The module must implement
the following routines: ArmHw, AsynchRead, EventArrived, ReadEvent, and DisArmHw.

• The ArmHw routine initializes the equipment before the start of the run.
• The AsynchRead routine performs the readout of the detectors that produce the data

asynchronously; this routine is called with the main loop of the readout program.

19

Vladimír Jarý Doctoral thesis

• The EventArrived routine is called in the main loop of the readout program to test if the
signal from the trigger system has arrived.

• The ReadEvent routine performs the readout of the subevents produced by the detectors.
This routine is called in the main loop of the readout program when the signal from the
trigger system arrives.

• DisArmHw routine is called when the run stops; its task is to shutdown the equipment.

When the readout process receives the Start Of Run (SOR) signal, it prepares memory buffers
for the subevents, executes the initialization scripts, and calls the ArmHw routine of the read-
List module. If the initialization phase succeeds, the readout process enters its main loop (see
Figure 2.3). In the main loop, the process calls the AsynchRead, the EventArrived, and Read-
Event routines to read the subevents from the frontends. When the subevent is received, the
readout verifies that its header contains all required information and it appends additional fields
to this header (e.g. timestamp). The readout process also increments the counter of processed
subevents that can be used to terminate the current run. The verified subevents are then passed
to the recorder process. The main loop is finished when certain conditions are met. Most typi-
cally, the run ends when the required number of subevents or spills is collected. The run can be
also terminated if some error occurs, e.g. the data do not arrive within a defined time period
after the start of run. During the termination phase, the readout process calls several scripts
and the routine DisArmHw from the readList module.

Figure 2.3: Event loop of the readout process according to [3]

At the Compass experiment, the data from the multiple frontend channels are assembled in
the concentrator modules CATCH and GeSiCA and then sent to the spillbuffer PCI cards that

20

Doctoral thesis Vladimír Jarý

are installed in the readout buffer servers. The readout process prepares the buffer in the main
memory of the readout buffer and offloads the subevents from the spillbuffer memory via the
Direct Memory Access (DMA) transfer to this buffer. The spillbuffer card can store data from
2–3 SPS spills.

Figure 2.4: Data flow between Date processes in the event building network

The recorder process that runs on each LDC records the data produced by the readout process to
a recording device. The process is based on routines from the recordingLib package. Depending
on the value of the recordingDevice run parameter, the device can be a set of local disk files,
a set of named Unix pipes, or a set of global data collectors. At the start up, the recorder
process connects to the memory buffer allocated by the readout process. It writes its own
process identification number (pid) to the shared region of the buffer, thus it can be paused and
resumed by the readout process. Depending on the configuration, the recorder either opens the
local files, or connects to the global data collectors. After the initialization, the recorder process
enter its main loop. In the main loop, the subevents are taken from the buffer and either saved
into the opened local file, or sent to the global data collector over the event building network.
When a subevent is successfully recorded, the recorder process removes it from the buffer to free
the memory. The main loop continues until the End Or Run (EOR) command arrives. However,
it can also be terminated if a requested amount of data is already recorded, there is too many
errors during writing on a disk or sending to the network, or an operator requests the end of
run.

Global data collectors

On each of the global data collectors, the eventBuilder process runs. At the start of the run, the
process allocates memory buffer required to hold the incoming subevents. This memory is divided
into the public and the LDC parts, the LDC part is further divided into segments corresponding
to each LDC. The TCP/IP connection is established between the recorder processes on LDCs
and the eventBuilder processes on GDCs. The eventBuilder process polls this opened connection
for incoming data that are sent by the recorder process on the LDC. The data are stored in the
previously allocated buffer; when the all subevents are received, the eventBuilder reads the
subevent headers to form the complete events. The eventBuilder process can work either in a
direct recording mode, or in an online recording mode. In the direct recording mode, the complete

21

Vladimír Jarý Doctoral thesis

events are temporarily stored on the local disk (and later moved to the permanent storage). In
the online recording mode, the complete events ar moved using the memory mapped scheme to
the following processing stage such as an online filter or a program for an online analysis of data.

The GDCs can be added or removed to or from the system during the taking of the data.
Furthermore, the data taking can continue if a GDC crashes, in the worst case, several events
are lost. On the other hand, with a LDC missing, it would be impossible to reconstruct the full
events, thus if any LDC crashes during the operation, then the run is stopped and marked as
crashed.

Load balancing

During the event building process, all the subevents that correspond to one particular trigger are
transferred from all the readout buffers/LDCs to one selected event builder/GDC. The DATE
package supports the balancing of the load between the GDCs using the Event Distribution
Manager (EDM).

The EDM functionality is implemented by the edm process that is deployed on the dedicated
node edmHost and edmClient with edmAgent processes that are deployed on each of the LDCs.
The task of the edm process is to maintain the list of available GDCs which is also denoted as the
GDC availability mask. When the GDC connects to the data acquisition, it is added to the mask.
When the GDC disconnects from the system, it is removed from the mask by the edm process.
Additionally, the eventBuilder process that runs on the GDCs can send the nearlyEmpty and
the nearlyFull messages to the edm process. If the edm receives the nearlyEmpty message, it
adds the corresponding GDC to the list; if it receives the nearlyFull message, it removes the
corresponding GDC from the list. The availability mask is valid only for certain range of events
identified by the firstEventId and lastEventId variables.

Figure 2.5: Event distribution management in the Date

On each of the LDCs, the edmClient and edmAgent processes run. The edmClient process
communicates with the edm process over the TCP/IP connection. To avoid the dead time, the
edmClient asks for the updated availability masks in advance before the validity of the current
mask expires. When the updated mask is received, the edmClients inserts it into the FIFO in
the shared memory. The edmAgent reads the availability mask from the shared memory, selects
the appropriate destination GDC and inserts identification of this GDC to the subevent header.
The subevent is then passed to the recorder process which sends it to the selected GDC. The

22

Doctoral thesis Vladimír Jarý

selection of the GDC is done independently by all the LDCs using the data driven algorithm;
this algorithm prevents selecting unavailable GDCs.

The EDM functionality is optional, it can be disabled by the operator. This makes sense
for example for the data acquisition with just one GDCs. If multiple GDCs are included in the
system and the EDM is disabled, then the GDCs are selected in a round robin fashion.

Error and information reporting

In order operate the complex distributed system such as a data acquisition, it is essential to
know what happens on each of its nodes. For this purpose, the Date package contains the
logging facility that generates, assembles, stores, and publishes messages about the behavior of
the system.

The logging subsystem consists of a library of functions called infoLogger and several pro-
cesses. The infoLoggerReader process runs as a daemon at each node that can produce log
messages. This process is started automatically when the first process that uses the infoLogger
library is launched. The infoLoggerReader receives the messages generated by the local Date
processes over the named Unix socket and sends them to the infoLoggerServer process.

The infoLoggerServer process is deployed on a dedicated node, thus the communication
between the infoLoggerServer and infoLoggerReader processes is based on the TCP/IP connec-
tions. The infoLoggerServer receives the messages sent by the infoLoggerReader processes and
archives them in the storage. Depending on the configuration of the Date system, the storage
can be implemented by a text file or a table in the MySQL database. Finally, the infoBrowser
is a graphical application used to browse the archived message.

Figure 2.6: Architecture of the Date infoLogger facility

Each message is stored as a line in the text file or a row in the database table. Together with
the text that describes the incident, the message contains additional information that helps to
identify the problem including the timestamp of the incident, the hostname of the node when
the incident occurred, the identification number of the process that generated the message, the
run number, or severity. According to the severity, the messages can be divided into the three
groups: information messages, errors, and fatal errors. Information messages describe the normal
operation of the system, such as a successful start of the data taking. The error messages are
used to describe the abnormal behaviour that does not interrupt the normal operation of the

23

Vladimír Jarý Doctoral thesis

system. Finally, the fatal errors are reserved for incidents that causes crash of the data taking.
The complete overview of the format of the messages can be found in the chapter 14 of the Date
manual, [3].

The infoLogger facility provides several possibilities in which a new message can be generated.
Each process (and also an operator) can call the command line tool log that generates the message
and passes it to the infoLoggerReader process. The infoLogger also contains the library of the
C functions for manipulating the messages. List of available functions is defined in the header
file infoLogger.h. The connection to the infoLoggerReader daemon is established when one of
these functions is used for the first time in a given process and remains opened until the process
exits. The library contains functions to generated information messages, errors, and fatal errors
and to open and create the connection to the infoLoggerReader process. The subset of functions
from this library can be directly called from the scripts in the Tcl language.

Control of the system

The data acquisition system tasks are performed by tens of processes that are deployed on
tens of distributed nodes. These processes need to be launched and initialized before the data
taking can be started. This task is handled by the run control subsystem of the Date package.
Additionally, it enables the operator to configure the system, include new machines into the
system, or run several data acquisition subsystems within the experiment at the same time.

The run control is implemented by several processes. The data acquisition is controlled by
the runControl process that receives the commands issued by a human operator. The human
operator uses the runControlHI (HI = human interface) application to enter the commands.
The runControl guarantees that only one operator can control the system at the same time and
it also rejects the commands that are not compatible with current state of the system (e.g. it
rejects to start the system if it is already running). According to the configuration of system,
the runControl starts the LogicEngine process that is responsible for starting and stopping of
processes that participate in the data acquisition. The LogicEngine sends the commands from
the operator to the rcServer processes that are deployed on the remote hosts.

During the initialization, the runControl process sets the configuration of the data acquisition
system to an empty one and sets the run parameters to their default values. If the Date
configuration is stored in the database, it is loaded and it replaces the empty configuration. In
the same way, if the run parameters are stored in the database, they replace the Date default
values. After the initialization, the runControl enters the DISCONNECTED state in which it
waits for commands from the operator. The CONNECT command loads the configuration with
given name from the database and spawns the appropriate LogicEngine process. If the command
succeeds, the runControl enters into the CONNECTED state. In this state, the operator can
issue the LOCK_PARAMETERS command that causes that the runControl loads the set of
run parameters with given name from the database. In case of success, the runControl moves to
the READY state and the operator can issue the START_PROCESSES command that starts
all the processes required to the data acquisition. When all processes are running, the system
changes its state to the STARTED state. Finally, from this state, the data taking can be started
by sending the START_DATA_TAKING command. During the data taking, the system is in
the RUNNING state until the run is stopped either by reaching the spill limit or it is stopped by
the STOP_DATA_TAKING command which causes the runControl process to return back
to the READY state. The STOP_PROCESSES and ABORT_PROCESSES can be issued
in the STARTED state; purpose of these command is to stop the processes that participate
in the data acquisition and return the runControl into the READY state. In contrast to the
STOP_PROCESSES command, the ABORT_PROCESSES command can kill the processes

24

Doctoral thesis Vladimír Jarý

that do not respond. The UNLOCK_PARAMETERS command resets the run parameters
and moves the runControl back to the CONNECTED state. Finally, the DISCONNECT
command stops the LogicEngine process, resets the data acquisition configuration and switches
the runControl process back to the DISCONNECTED state.

The exchange of commands between the distributed processes is based on the DIM commu-
nication library, [8]. The behaviour of the nodes is described by the finite state machines that
are implemented in the SMI++ framework, [13].

Date configuration

Data acquisition system includes many elements such as detectors, readout buffers, or event
builders. In order to operate the Date based data acquisition, a configuration that describes
these elements and relations between them needs to be prepared. The Date package provides the
dateDb facility that manages creating, modifications, and retrieving the system configuration.
The configuration consists of a static and a dynamic part. The static part defines setup of the
triggers, detectors, or hosts (i.e. the LDCs, the GDCs, and the event distribution manager).
Based on this static part that is valid across runs, an operator can select a different dynamic
configuration before starting a new run. Thus the actual configuration of the system is obtained
by merging the static information with the current dynamic configuration. The static part of
the configuration changes only when some element is replaced or added into the system.

Each element in the system has assigned a role, e.g. a LDC or a GDC, and is identified by its
name and an identification number that is unique within a given role (i.e. there cannot be two
LDCs with the same id). The static part of the configuration is stored in the following essential
databases:

• The roles database defines the elements participating in the data acquisition including
hosts, detectors, or trigger setup.

• The trigger database defines sets of detectors that are involved for the given trigger masks.
• In the detector database, the connection between the frontends and LDCs is defined for

each detectors and subdetectors.
• The memory buffers on each of the nodes that are defined in the roles database are de-

scribed in the banks database.
• The information from the event building control database is used by the eventBuilder

process to prepare the event building strategy.

The static part is completed by the equipment configuration that describes the readout system.
This information is not part of the dateDb package, however.

The dateDb facility supports storing the configuration either in the online MySQL database,
or in the plain text files; the format of these text files is decribed in the Date manual, [3].
DateDb package contains a tool createtables that creates the empty tables that will contain the
static configuration. The MySQL backend is recommended because the relational model reduces
the risk of entering incorrect data. Moreover, for the MySQL backend, the dateDb provides the
editDb application that is used to create and edit the static configuration of the system. The
dynamic configuration can be modified directly from the human interface of the run control
application.

At the Compass experiment, it has been decided to select the MySQL database. Addition-
ally, this database is also used to store the messages generated by the infoLogger facility, the
monitoring data of some detectors, or the information about the state of the beam line. An
electronic logbook has been developed for the Compass experiment; it uses the same online

25

Vladimír Jarý Doctoral thesis

database as a backend for the storage of its entries. More information about Compass database
service can be found in Chapter 4 of this work.

Performance of the system and the online filter

During the first year of the physics data taking (i.e. 2002), the Compass experiment has recorded
260TB of data which corresponds to 5.5·109 events. The system was working at the 5 kHz trigger
rate, thus 25 000 events were recorded during a 4.8 s long spill. The average size of event was
approximately 45 kB, therefore the onspill rate approached a value of 200MB/s. Thanks to the
spillbuffers that distribute the load over the entire SPS cycle of 16.8 s, the sustained data rate
was reduced to the 60MB/s which roughly amounts to the one third of the onspill rate.

Several improvements have been implemented into the data acquisition system before the
start of the data taking in the year 2003. These improvements include the reduction of the
event header (and consequently reduction of the average event size to 35 kB) or more effective
accessing to the disks. These modifications enabled to increase the trigger rate upto 10 kHz.

During the pilot hadron run, the experiment was able to record over 8TB per day, i.e. over
90MB/s. However, during the tests with recording disabled, the system was able to handle data
rate of 192MB/s. This means that the system is limited by connection to the CERN Advanced
Storage facility in the computing center that can only transfer data by speeds upto 128MB/s.

Figure 2.7: Architecture of the online filter Cinderella as proposed in [23]

In order to use the bandwidth of the link to permanent storage, the online filter program called
Cinderella has been develop and integrated into the Date package, [22]. As an additional
benefit, the time required for the analysis of data and also the costs for the data storage are
decreased by using the filter. The online filter can be regarded as a high level, software trigger;
it rejects physically non–interesting events.

The online filter is running on the event building machines; it makes use of the fact that the
event building requires only a fraction of the computing power of the machines. The eventBuilder
process works in the online recording mode (see above); it passes the assembled events to the filter
process. The Cinderella analyses and filters the events; the events that passed the filter are saved
to the local disk array and are sent to the permanent storage after some delay. The Cinderella
process can generate error and information messages that are processed by the infoBrowser

26

Doctoral thesis Vladimír Jarý

facility. Moreover, the filter also writes additional messages into the local log file. The Cinderella
can operate in several modes, e.g. filter active, mark only, or none. In the filter active mode,
the Cinderella normally analyses events and rejects the bad ones. On the contrary, in the mark
only mode, the bad events are only marked. This mode should be used for the testing. In the
none mode, the online filter is disabled and the eventBuilder is working in the direct recording
mode. The human interface of the run control facility has been updated to enable the operators
to switch between the different modes of the filter. Also several information about performance
of the filtering are included into the human interface.

Under the Compass conditions (i.e. the trigger rate of 10 kHz, duty cycle of the SPS of
30%), the software has only 4ms per event to make a decision. Thus the filter can use only part
of the event because the full decoding is not possible within the time limit. However, there is a
plan to deploy the online filter to the dedicated computing farm. This will allow to improve the
decision algorithms and consequently increase a number of rejected events.

Data quality monitoring tools

Quality of the data needs to be continuously monitored during the process of data taking. Bad
quality of data may be a symptom of a problem in a detector or a readout channel. Two
main tools are used at the Compass experiment: MurphyTV and COOOL. MurphyTV is an
application that checks the consistency of event headers. The application displays a list of data
sources; for each source, a number of error is monitored. If the number of errors exceeds certain
limit, operators are notified to fix the problem by reloading the faulty equipment.

The COOOL (Compass Object Oriented Online) is a process that runs on one of the event
builders; it receives part of the events assembled by the eventBuilder process and performs
analysis of these events. The COOOL presents the results of analysis in a form of the histograms
produced by the ROOT framework, [7]. Users can interactively configure which detector planes
should be included or removed from the analysis. By comparing these histograms to the reference
values, it is possible to identify problems such as inactive channels, or noise on some detectors.
The COOOL can export the histograms into the PDF file that can be added into the online
logbook.

Scalability of the current data acquisition system

The number of input channels and the trigger rate increase in time: 260TB of data have been
recorded during the pilot run in 2002, this amount increased to approximately 500TB collected
in the year 2004 and more than 2PB in 2010, [1, 23]. The demands on the data acquisition
system increases, however, the hardware remains mostly unchanged for several years. Before
the start of the data taking in 2006, several new servers were bought. These new servers are
powered by a dual core Intel Xeon processors running on 3.6GHz and are equipped with a 4GB
of the system memory. Unfortunately, part of the readout buffers and computers that host the
concentrator modules are running on the original hardware (i.e. Pentium III processors running
at 866MHz with 1GB of the system memory).

Nowadays, the upgrade of these machines is complicated because the spillbuffer cards are
based on the PCI technology that is deprecated today, thus replacing those readout buffers
would require development of a PCI Express version of the spillbuffer cards. Furthermore, as
the hardware gets older, the failure rate also increases. Replacing the failed components usually
means pausing the data acquisition which contributes to the dead time. Moreover, the number
of a spare parts such as a spillbuffer cards is limited.

27

Vladimír Jarý Doctoral thesis

New database architecture for the Compass experiment

During the last three years, we have been participating in an upgrade of the existing data
acquisition system. At first, we have analysed problems of the database subsystem that had
caused major problems during the 2009 as a result of an introduction of a new monitoring
application and an increased trigger rate. We have proposed and implemented a new database
architecture that is able to handle the increased demands. Our works on the database subsystems
will be thoroughly described in the Chapter 4 of this work.

Remote control room for the Compass experiment

At the end of the data taking in the year 2010, it has been measured that the radiation level in
the COMPASS control room approaches the safety limits. Since the planned studies of the Drell-
Yan process requires a higher intensity beam which would cause excess of the safety limits, it has
been decided to either invest into an additional shielding of the spectrometer, or implement a
remote control and monitoring of the experiment. We have studied the possibility of the remote
control and based on these studies, we have implemented and successfully tested the remote
control room. The remote control room will be discussed in more details in Chapter 5 of this
thesis.

Control and monitoring software for a new data acquisition architecture

In parallel to the above mentioned activities, a development of a brand new data acquisition
system proceeds. The new system is based on a custom hardware that is developed in a Technical
University in Munich. This hardware uses the FPGA technology to control the flow of data
and the event building, [18]. We are working on a software that will control and monitor the
hardware. The system is to be deployed on several distributed nodes; we have defined the roles
participating in the system, used the finite state machines to define a behaviour of the system,
and proposed a custom communication protocol. We have implemented this proposal and tested
its performance and stability. The development of the new system is covered in Chapter 6 of
this work.

28

Chapter 3

Software used during update of the
Compass data acquisition system

This chapter describes several software tools that have been used during the process of update
of various parts of the data acquisition system of the Compass experiment. At first, we have
analyzed problems with the online database system of the experiment and proposed and imple-
mented updated version of this system. The system is based on the MySQL server, therefore
first part of this chapter focuses on the database management systems and MySQL software.
The second part of this chapter presents network programming with the DIM communication li-
brary. We used the library during implementation of the remote control and monitoring software
for the new hardware platform for the data acquisition. During development of this software,
we have also used the Qt framework, thus the last section of this chapter is dedicated to this
framework, especially on the extensions of the object model of the C++ language introduced by
the framework.

1 Database management systems

The Compass experiment uses databases to store information about conditions during data
taking, runs, and events. Database is a collection of information whose systematic structure
enables looking up these information using a computer. Database management system (DBMS)
is a software that is designed to maintain and utilize large collection of data in database [10].
Database systems (DBS) consist of the database (DB) and DBMS.

The DBMS can be viewed as a virtual machine that encapsulates data stored in the database.
Therefore data do not depend on application programs and application programs may access
these data only through special interface such as a query language. Besides the independence
of data on application programs, the DBMS offers other advantages. DBMS is optimized for
efficient storing and retrieving large amount of data. Furthermore, use of DBMS enables enforc-
ing of integrity constraints on data in database. Additionally, the DBMS supports transactions,
concurrent access to data, or crash recovery. Thanks to these features, time required to develop
application programs that require access to large set of data can be significantly reduced when
using a DBMS.

The interface for accessing data provided by the DBMS can be divided into the following
four main parts:

1. Data definition language (DDL) should be used to define logical and physical schema of
the database.

29

Vladimír Jarý Doctoral thesis

2. Data manipulation language (DML) should be used to add, modify, or retrieve database
data.

3. Data control language (DCL) should be used to define access rights to the data stored in
database.

4. Transaction control language (TCL) serves for controlling of the database transactions.

The DBMS also includes a set of high level data description constructs known as a data model.
The model insulates database users from the low level physical storage implementation, it allows
users to the define the data to be managed by the database. Several types of data model exist,
however this work focuses only on the relational data model that was introduced in 1970 at IBM
research laboratory by Edgar Codd.

1.1 Relational data model

The relational data model works with one data description construct known as a relation that
can be regarded as a set of records. Data in the relation model are described by a schema. The
relation schema R defines a name of relation, set of attributes Ai (fields, columns), and domains
(types) of the attributes Di, therefore the schema can be written as R(A1 : D1, . . . , An : Dn) ≡
R(A). Relation is a set of n-tuples ⊂ D1 × . . . × Dn. A relation can be closely related to a
table. The relation schema corresponds to the table header, names of attributes correspond to
the names of columns, attributes correspond to columns, and n-tuples correspond to rows of
the table. However, relation as a set cannot contain duplicitous n-tuples and does not define
ordering of n-tuples. The schema of the relation can be extended by definition of integrity
constraints that the n-tuples must fulfill. Therefore, we define the relational database as (R, I)
where R = (R1, . . . , Rk) is a set of relations and I is a set of integrity constraints. The key of
a relation scheme R(A) is a minimal subset of attributes from A that uniquely identifies each
n-tuple of specific relation R.

The database query over a schema R is an expression which returns an answer in a form
of schema S. The query domain includes all relations with schema R, the range includes all
relations with schema S. Results of the query contain data from database and do not depend
on physical implementation of the storage. Query language is a set of all usable expressions
for construction of database queries. Several types of query languages exist. Relational calculus
is a formal language based on the mathematical logic. Relational algebra is based on a set
of operators for manipulations with relations. Relational algebra and calculus are equivalent in
power. Query language that enables implementation of relational algebra is relationaly complete.
Structured Query Language (SQL) is an example of the relationaly complete language.

Several operations with relations can be defined:

• Selection of relationR according to condition φ is defined asR(φ) = {x|x ∈ R∧φ(x)} where
φ is logical expression in form t1Θt2 or t1Θa and t1, t2 represent attributes, a represents
some constant, and Θ represents relational operator.

• Projection of relation R on set of attributes C ⊂ A is defined as R[C] = {x[C]|x ∈ R}.
• Natural join of relations R(A) and S(B) is a relation T (C) defined as R ∗ S = {x|x[A] ∈
R∧x[B] ∈ S} where C = A∪B and n-tuples in the join are given by equality on attributes
common for both relations R and S. The natural join operation can be generalized into a
general join operation defined as R[t1Θt2]S = {x|x[A] ∈ R∧x[B] ∈ S ∧x · t1Θx · t2}. Θ is
a relational operator Θ ∈ {=, <,>,≤,≥, 6=}, it is possible to construct more complex join
conditions using the logical connectives {∧,∨,¬}.

• It is also possible to rename an attribute, this operation is denoted by the → symbol.

30

Doctoral thesis Vladimír Jarý

• Additionally, set operations are also defined for the relations. The operations include union
∪, intersection ∩, set difference \, and set (Cartesian) product ×.

The relational operations selection, projection, Cartesian product, attribute renaming, union,
and set difference form a minimal set of operation. Other operations can be derived from these
operations.

Figure 3.1: Database management system

The DBMS describes the data in three levels of abstraction: the conceptual schema, the physical
schema, and the external schema. The conceptual (or logical) schema is used to describe data in
terms of the data model. Therefore in the relational data model, the conceptual schema describes
all relations managed by the database. Defining relations that model the real world system is
not a trivial task, the process of designing a conceptual schema is known as a conceptual design.
The conceptual schema shields users from the physical storage of data. This property is known
as a physical data independence. The physical schema describes how the relations defined during
the process of conceptual design are stored on a physical medium such as hard disks. Finally,

31

Vladimír Jarý Doctoral thesis

the external schema allows customization of access to the database data at the level of individual
users. Each database has only one physical and one conceptual schema, however it can have
multiple external schemas. Each external schema consists of a set of views and relations from
the corresponding conceptual schema. Views are similar to relations, but the n-tuples are not
stored in the database but computed by the rules in the definition of the view. The views can
be used to insulate users from changes made into the logical structure of data. This property is
known as a logical data independence.

Several types of users interact with the database management systems including database
implementators, end users, database administrators, and programmers of the database applica-
tions:

• Database implementators build and develop the DBMS itself. Usually, these users are
employees of the database vendors such as IBM or Oracle.

• The end users are usually not computer professionals, they use the DBMS to store and
access their data. Depending on the specific database systems, the end users may be
customers of e-shop, students wishing to enroll to university course, or members of the
shift crew accessing the electronic logbook of the experiment.

• Database application programmers use the tools that the DBMS vendors provide to develop
applications that simplify access to the database data to the end users. The application
programs should access the data through the external schemas.

• The database administrators manage the complex enterprise databases. They design the
conceptual and physical schemas of the database. Additionally, they respond for security
and authorization. Furthermore, they ensure that the database remains highly available
and reliable. In case of the crash, they must restore the data back into the consistent
state. They also modify the structure of the conceptual and physical schema according to
changes in requirements. However, smaller databases are often maintained by the users
who own and use them.

The DBMS can be viewed as a virtual machine that communicates with users through various
user interfaces and client programs. The DBMS processes queries in a query evaluation engine
that parses and optimizes the query and prepares the query execution plan. The plan usually
takes a form of tree of relational operators that serve as building blocks for query evaluation.
Bellow the query evaluation engine, the access and files method lie. In the DBMS, the concept
of file represents a set of records or pages. The buffer manager retrieves pages from the disk
into the buffers in the memory. On the lowest layer, the disk space manager operates. Its task
is to read, write, allocate, and deallocate pages as requested by higher layers.

The DBMS also contains components that implement transactions, crash recovery, and con-
current access. These components include transaction manager, lock manager, and recovery
manager. These components must cooperate with disk space manager, buffer manager, and files
and access methods.

1.2 MySQL database

According to [37], MySQL is the world’s most popular open source relational database manage-
ment system (RDBMS). Development of the MySQL software was sponsored by the Swedish
company MySQL AB, today it is owned by the Oracle Corporation. MySQL supports broad
subset of the ANSI SQL 99 standard of the Structured Query Language. At the Compass ex-
periment, the MySQL is used to store configuration and logs of the Date and also information
about data taking process.

32

Doctoral thesis Vladimír Jarý

The MySQL is available on wide range of platforms including GNU/Linux, MS Windows,
FreeBSD, or Mac OS. The software is written in the C and C++ programming languages.
Client applications can be developed using the provided C/C++ client library. Also, application
programming interfaces for C/C++, Java, Perl, Python, PHP, Ruby, and Tcl languages also
exist. Furthermore, the MyODBC interface provides standardized Open Database Connectivity
connections. Additionally, the software includes embedded library that can be linked to the
applications to create a standalone products. In the client–server mode, the connection between
the server and its clients is most commonly based on the TCP/IP. The TCP/IP connection
can be also encrypted by the Secure Socket Layer (SSL) library to improve the system security.
Additionally, under the GNU/Linux system, clients can connect to the MySQL server through
the Unix domain socket files. Under the Windows operating system, connection based on the
named pipes or shared memory is available.

The software is designed to be fast, it is fully multithreaded system that uses the kernel
threads to utilize multiple processor cores. It is very scalable software, it can be deployed on
laptop or personal computer as well as on the dedicated database server. Using the replication,
it is possible to distribute the load across multiple servers. The replication could also be used
when high availability and reliability is required. Additionally, the highly available and reliable
version of the MySQL suited for distributed computing environment called MySQL Cluster also
exists. Server supports very large tables, it has been reported that some users use the MySQL to
manage over 2 ·105 tables with 5 ·109 records [37]. The server’s error messages has been localized
into many languages including Czech, German, French, Polish, Slovak, or Russian. Server also
supports different character sets for storing data and uses sorting based on the selected character
set and collation. Unicode is also supported.

From the functionality point of view, the MySQL software also supports the following main
features:

• views
• information schema database
• triggers and stored procedures
• caching of queries
• full–text indexing and searching (when using the MyISAM storage engine)
• transactions (when using the InnoDB storage engine)
• hot backups
• storage engines
• replication
• partitioned tables

Support for various storage engines is a feature unique to the MySQL software. When creating
a table, database administrator can select the most suitable storage engine according to require-
ments, e.g. MyISAM engine should be used when high performance is the most important factor
while the InnoDB engine should be used when the transactions are required. The storage engines
are analyzed and compared in Section 4.2.2 of this work. The replication is a software technology
that enables propagating changes made on the master server to the slave server(s). The replica-
tion implementation and application is described in details in Section 4.3.3. Partitioned tables
are divided into several disk partitions according to value of a partitioning function. Under
certain circumstances, the partitioning can be used to optimize queries as the query evaluation
engine browses only partitions that can contain the requested data. This technique known as a
partition pruning is explained in Section 4.5.1. The other mentioned features are described in
details in the MySQL documentation [37].

33

Vladimír Jarý Doctoral thesis

2 DIM library

The last chapter of this work is dedicated to development of the control and monitoring software
for the new data acquisition architecture for the Compass experiment. The new system is
distributed over large number of heterogeneous nodes ranging from microcontrollers powered by
some embedded linux up to workstations powered with MS Windows system. The nodes need
to exchange information messages and commands between each other. The communication
between the nodes should be efficient, transparent, robust, and reliable.

Because of the compatibility with the Date package, we have decided to build the control
and monitoring software on the DIM communication library. The DIM (Distributed Information
Management System) has been designed for use with the trigger and data acquisition system of
the DELPHI experiment at CERN; it provides asynchronous, one to many communication in a
heterogeneous network environment, [8]. The communication is asynchronous, therefore clients
do not have to poll the server regularly to verify whether some information has changed, the
server notifies clients when the value changes. Additionally, the communication is one to many,
this means that the server can broadcast the information about change of some monitored value
to all subscribed clients. The library also provides transparency, both for coding time and run
time. The coding time transparency means that the framework hides the differences between
supported platforms (e.g. Little Endian and Big Endian byte ordering, number representation,
size of data types, or data alignment) from the programmer, therefore the code is portable
without changes between the platforms. The run time transparency means that the library
allows processes to communicate without knowledge of the platform on which they are deployed.
Also, processes should be allowed to freely move between the nodes. Furthermore, the library
offers the reliable and robust communication: if a communication between client and server is
interrupted, the affected client tries to reestablish the communication. Also, crash of a single
nodes should not influence the rest of the system.

Figure 3.2: Subscription to the DIM service; full lines represent exchange of data between
publisher and subscriber, dashed lines represent communication with DIM Name Server.

The DIM library is based on the TCP/IP standards, it extends the client–server paradigm with
a concept of the DIM name server DNS. The DNS keeps a list of services available in the system.

34

Doctoral thesis Vladimír Jarý

When a server (or a publisher in the DIM terminology) wishes to publish some service, it must
pass the description of the service to the name server. The description of the service contains
the format of message and unique service name. The name server registers this information with
the address of the publisher. When a client (or a subscriber in the DIM terminology) wishes
to subscribe to a particular service, it must pass its unique name to the name server. The
name server looks up the requested service and returns address of the corresponding publisher
to the subscriber. Then, the subscriber uses the address to connect to the publisher. The
communication with the name server is transparently handled by the library. As the services are
identified by the name, there is no need to manually specify IP address or hostname of the server
in the client code. On each node that uses the DIM library, the DIM_DNS_NODE environmental
variable should be set to contain address of the name server. Otherwise, one needs to specify
this address manually in code.

The DIM library distinguishes four types of messages. The Timed services are updated at
regular intervals. Using the Monitored services, the subscribers are notified by the publisher
when the monitored quantity changes. The Only Once service should be used when a subscriber
wishes to receive non recurring information. Finally, subscribers can also send Commands to
the publishers.

2.1 Application Programming Interface

The DIM library is implemented in the C programming language because of the portability.
However, it also provides interfaces to the C++, Java (through the Java Native Interface calls),
FORTRAN, and Python languages. The library is available on a wide variety of platforms
including GNU/Linux, MS Windows, Solaris, or Darwin and also on real time systems such as
LynxOS or VxWorks.

During the implementation of the control and monitoring software, we have compared Java
and C++ version of the library, the results are summarized in the last chapter of this work.
Based on the test results, we have decided to use the C++ interface that can be divided into
three parts: server classes, client classes, and utility classes. The server classes include:

• The DimServer class represents DIM publishers. It provides mainly static method that
should be used to start the publisher and to set exit and error handlers.

• The DimService class corresponds to Only Once, Monitored, and Timed services.
The class contains several constructors that should be used to describe the service and
register it under the name server and various methods that should be used to update
the service data. One can also use this class to set time stamps and quality flags of the
messages.

• The DimCommand class implements the DIM Commands. Constructors of this class enable
to describe and register the DIM commands to a list of available services managed by
the name server. Additionally, the class contains methods that enable accessing command
data sent by subscribers.

The client part of the interface of the library contains two important classes: DimClient and
DimInfo. The DimClient class implements several static methods related to the DIM sub-
scribers. Most importantly, this class enables sending DIM commands to the subscribers. The
class can also be used to set the error and exit handlers. The DimInfo class serves for subscrip-
tion and reception of the service data. The class contains several methods that should be called
to access the service data and also the information handler that is called back when the service
data changes on the publisher. The handler is a virtual method, therefore user must subclass
the DimClient in order to define behavior of the handler.

35

Vladimír Jarý Doctoral thesis

Finally, the utility part of the library consists of several support classes. The DimBrowser
class provides service discovery, it can be used by processes to get a list of subscribers, publishers,
and services known by the name server. The DimErrorHandler implements handling of DIM
related errors to both subscribers and publishers. The class contains only one virtual function
that is called back when an error is detected. The error code, the error message, and the severity
is passed to the method. The DimExitHandler implements exit handling for the DIM servers,
the class contains one virtual method that is called back when the server is requested to exit.
This may happen under several circumstances: when the Exit command is received either from
some subscriber or the name server, the address of the name server is not defined, the name
server refuses the connection, or some service provided by the server is already provided by some
other server.

The complete description of the library can be found in the online documentation, [31]. In
the last chapter of this work, the source codes of example DIM publisher and DIM subscriber is
analyzed in more details.

3 Framework Qt

The Qt framework is the most commonly known as a multiplatform library of the C++ classes
that represent the graphical widgets that are used to design graphical user interfaces (GUI).
These classes include primitive widgets such push buttons, text labels, or check boxes, as well
as more complex widgets such as main application windows, tool bars, text editors, graphical
canvases, or menu systems. However, the framework also provides classes for other areas fre-
quently used during programming of graphical applications including networking, multithread-
ing, databases, 2D and 3D graphics, state machines, or XML. The framework also contains
container classes similar to the classes from the standard template library of the C++ language
such as lists, vectors, or maps. Additionally, the Qt framework introduces introspection, signal
and slot mechanism, or guarded pointers into the object model of the C++ language. In addition
to the classes, the Qt installation also contains several support tools:

• The Qt Designer is a graphical application that serves for designing of the layout of
application windows and forms. The layout is stored in a custom ui (ui = user interface)
files that use format based on XML.

• The uic (user interface compiler) tool translates the ui files created by the Qt Designer
into the C++ headers and source files that implement the designed layout.

• The moc (meta object compiler) is a preprocessor that implements the signal and slot
mechanism.

• The qmake tool manages the Qt projects and generates Makefile files with rules required
to build the project. Normally, the moc and uic tools need to be called on source codes
and ui files to generate the C++ source codes that can be compiled by standard compilers
such as gcc (GNU C Compiler).

• Qt Creator is an integrated development environment (IDE). It supports project manager,
distributed version control systems, code completion, syntax highlighting, code profiling,
or debugging.

• Qt Assistant is an interactive documentation browser.

The Qt is designed to be portable between the major platforms. Besides the MS Windows and
GNU/Linux with X window system, the Qt applications are also supported on the Mac OS,
Solaris, or various *BSD systems. According to the motto “Write once, compile everywhere”,

36

Doctoral thesis Vladimír Jarý

the Qt applications need to be recompiled when a change of platform is required; i.e. it provides
source code compatibility between supported platforms.

3.1 The object model of the Qt framework

The object model of the Qt framework includes introspection (self knowledge), signal and slot
mechanisms, properties, or object trees. The model is build on three elements: the QObject class,
the Q_OBJECT macro, and the moc preprocessor. Each class that wishes to use the signal and
slot mechanism must be derived from the QObject base class and must contain the Q_OBJECT
macro in the private section of its declaration. During building of the application, the moc
preprocessor replaces the Q_OBJECT macro with a code that implements signals and slots. The
resulting code generated by the moc tool can be compiled by any C++ compiler. Normally, user
does not have to call the moc manually as the qmake project manager prepares corresponding
build rules stored in the Makefile file.

Signal and slot mechanism

During development of the application with graphical interface, different parts of the application
often need to exchange messages, e.g. a canvas needs to be notified when user clicks some push
button. For this purpose, the Qt introduces the signal and slot mechanism; each subclass of the
QObject class can contain slots and can emit signals.

Slots are very similar to common member functions, they can be called directly or as a
reaction when the connected signal is emitted. The slots are introduced by the slots keyword
in the class declaration. Like member functions, the slots can be divided into three groups
according to access rights:

1. Public slots can be called from everywhere.
2. Protected slots can be called from the class in which they are declared and its descendants.
3. Private slots can be called only from the class in which they are declared.

Signal are introduced by the signals keyword in the class declaration. Signals cannot return
any value, therefore they must be declared as void. Signals are emitted by the emit keyword.
When signal is emitted, the execution of current method is interrupted until all slots connected
to the signal are executed. One signal can be connected to multiple slots, also one slot can be
triggered by multiple signals. Signal can also be connected to another signal.

Connection between signal and slot is established using the static method connect of the
QObject class:

QObject::connect(sender, SIGNAL(signal), receiver, SLOT(slot));

The sender and the receiver parameters are pointers to the sender and receiver of the signal.
The signal and slot parameters are function signatures without names of parameters. Signal
and slot must use the same list of parameters. Signal and slot mechanism is type safe, bad con-
nection does not cause crash of the application; only warning is printed on the standard output.
Signals do not know anything about slots that are called when it is emitted. Furthermore, the
slots do not know if it is called directly or as a reaction on some emitted signal. Thus, signals
and slot are loosely coupled which enables creation of independent software components.

37

Vladimír Jarý Doctoral thesis

Introspection

Introspection or self knowledge enables retrieving information about classes at run time. In
the Qt framework, the introspection is based on the base QObject class. The class contains
several methods and properties that can be used to access metainformation about type. The
method className returns the name of the class as a character array. Method isA tests if the
current instance is an instance of given class. Similarly, the inherits method tests is the current
instance is descendant of given class.

Furthermore, each object in Qt is associated with a meta object. Pointer to this meta object
is returned by the metaObject method of the QObject class. The meta object provides addi-
tional information about signals (methods numSignals, signalNames), slots (methods numSlots,
slotNames), and properties (methods numProperties, propertyNames) of given class. Complete
list of methods can be found in the reference documentation [39].

When constructing an instance of some Qt class, it is possible to pass a pointer to owner
of the instance to the constructor. Therefore, the instances are organized into a tree in a
memory according to the ownership. When instance is destroyed, the Qt automatically and
recursively destroys all owned instances. The tree of ownership can be printed by calling the
dumpObjectTree method.

The implementation of introspection is independent on compiler thanks to the meta object
compiler preprocessor.

Properties

In addition to signals and slots, the classes in Qt can also contain properties. Properties are data
fields that are associated with read and possibly write methods. Therefore, properties extends
the concept of encapsulation of the information stored in the data field. List of properties of
given class can be accessed through the meta object system (see above). Properties are also
displayed in the Object Inspector in the Qt Designer tool. Properties are registered by the
Q_PROPERTY makro:

Q_PROPERTY(type Property READ getProperty WRITE setProperty)

Parameter type represents data type of the property, parameter Property represents the name
of the property, and parameters getProperty and setProperty that follow the READ and WRITE
keywords represent the read and write access methods. Both methods must be public member
methods of the class. The read method must return the type type and must take no parameters.
The write method does not return any value (i.e. type void) and takes one parameter of the
type type. Often, the write method is also specified as a slot, it can also emit signal that notifies
about change of value of the property. The QObject class contains property and setProperty
methods that can be used to access value of given property.

38

Chapter 4

New database architecture for the
Compass experiment

Some information about the conditions of the spectrometer and about the events are needed
to be quickly retrieved during the data acquisition and data analysis. For this purpose, the
Compass experiment uses the relational database management systems (RDBMS). In these
systems, the data and also relations between the data are stored in the tables; the RDBMS
provides a query language for the retrieval of data.

The Compass experiment uses two types of the database systems: offline and online. During
the event building process, the catalog files with metainformation about events are prepared by
extracting data from the event headers. The files with events are send to the permanent storage
facility using the Central Data Recording (CDR) facility, the catalog files are inserted into the
offline database. The offline database is distributed over nine machines powered by the Oracle
system. These servers are installed in the CERN IT center which is located approximately 5 km
away from the Compass experimental hall and are managed by the CERN IT division. The
information stored in the offline databases is used during the offline physics analysis by the data
reconstruction and analysis software.

This chapter focuses on the online database subsystem of the Compass data acquisition.
This subsystem is powered by several MySQL servers that are installed in the server room of the
Compass experiment which is situated directly in the experimental hall. The online database
is used to manage the metainformation about the conditions of the data acquisition system, the
beam line, and the spectrometer, taken directly (online) during the data taking. During the data
taking in the year 2009, the online database service experienced serious performance problems
that caused several crashes of the data taking process. Before the start of the data taking in
the year 2010, we have analyzed the causes of these problems, proposed and implemented more
robust and reliable database architecture.

The rational database management systems are briefly introduced in the previous chapter.
In the first part of this chapter, the existing online database service (as in 2009) and its per-
formance problems are analyzed. In the following part, we present our proposal of an updated
database architecture. With some modifications, the proposal has been approved by a technical
coordinator of the experiment. The process of migration to the proposed architecture is de-
scribed in more details; the new architecture features database replication, connection through
a proxy server, regular backups, and monitoring to achieve a high availability and reliability of
the database service. We have analyzed the most frequently used tables and added additional
indexes to these tables in order to optimize query execution times and consequently to reduce
the load of the system. Moreover, we have studied and compared the different storage engines of

39

Vladimír Jarý Doctoral thesis

the MySQL server. Furthermore, we have developed a new database application called daqmon
that is used for monitoring of a performance of the nodes that participate in the data acquisition
system. Finally, the performance of the database service during the data taking in the year 2010
is summarized and several possible improvements to the systems including load balancing and
partitioned tables are discussed.

Part of this chapter contains technical information about installation and configuration of the
database servers. These information were requested by the COMPASS data acquisition experts
and supervisor of this thesis and should serve as a manual for future database administrators of
the experiment.

1 Analysis of the original database architecture

In Chapter 2, it has been shown that the dateDb facility of the Date package can use either
a text file, or a MySQL database software for storing data. At the Compass experiment, the
MySQL database has been selected as a backend for storing the data. The Date package
uses this database for storing the configuration of the data acquisition system and the debug
messages. However, additional applications have been developed for the needs of the Compass
experiment: the database also manages information about conditions of the spectrometer, the
beam line, or the target; it also servers as a storage for the data of the electronic logbook.
The data is being inserted into the database directly during the data taking, thus we call this
subsystem an online database.

Up to the year 2010, the database service was powered by two physical servers called pccodb01
and pccodb02. These servers were configured to operate in a master–master replication mode. In
this mode, the server pccodb01 was acting as a replication master of the slave server pccodb02. At
the same time, the server pccodb02 was acting as a replication master of the slave server pccodb01.
This configuration guaranteed that both server were kept synchronized because each change of
one server is replicated into the other server. However, the client applications connected to the
database service through a virtual address pccodb00 which normally pointed to the pccodb01
server which was running on more powerful hardware configuration. On the pccodb02 server,
backups were regularly created. The backup process locked the tables for writing, thus replication
was temporarily suspended. Since the clients were connected to the pccodb01 server, the normal
operation was not affected by the backup process. A watchdog process was monitoring the
physical servers; if it detected a crash of the pccodb01 server, it rewrote the virtual address to
point to the pccodb02 server; this allowed the pccodb01 server to recover without interrupting
the data taking. After the recovery, the server synchronized itself using the replication and the
virtual address could be reset. Each physical server was managing approximately twenty logical
databases. The most important logical databases are enumerated in the following list:

• The DATE database contains the static configuration of the data acquisition system de-
fined in the dateDb facility as defined in Chapter 2 or Date manual, [3].

• The DATE_log database contains the messages table used by the infoBrowser facility
of the Date package to store the debug messages generated by various processes that
participate in the data acquisition. The content of this database can be browsed by the
infoBrowser application that is used by members of the shift crew to monitor the behavior
of the system.

• The beamdb database holds the tables beam_profile and SPSinformation with information
about the beam line provided by the SPS control room. Additionally, monitoring informa-
tion about the electromagnetic calorimeters (table ECAL_mon) or the online filter process

40

Doctoral thesis Vladimír Jarý

(table FilterInfo) are stored in this database.
• The content of the electronic logbook is handled by the runlb database which contains a

table with messages inserted by the shift members and also tables with metainformation
about the data taking which are filled automatically by the Date processes. These ta-
bles include information about conditions in the experimental hall, runs, SPS spills, or
configuration of the trigger system.

• The database mysql contains system information about users and user privileges.

In order to reduce the size of the above described databases (with the exceptions of the runlb
and the mysql databases) and to chronologically separate data, every a few years new databases
with the same name but different suffix are created, e.g. the DATE2006 database contains the
Date configuration that was used in the year 2006, the DATE2009_log stores debug messages
generated in the year 2009, etc. In a similar fashion, new messages table in a DATE_log database
is automatically created every day.

Multiple clients connect to the database service; some clients are only retrieving records,
while the others are also inserting or modifying records. For safety reasons, users accounts have
been created for these clients. For example, a cinderella account is used by the online filter,
a dcs account is used by the Detector Control System, or a daq account is used by the DATE
processes. Additionally, some tables are accessible for reading by an anonymous account.

Figure 4.1: Original database architecture of the Compass experiment

Several additional processes were installed on the physical server pccodb01. These services in-
cluded web server Apache that was used to host some web application used by a shift crew, the
infoLoggerServer of the Date infoLogger facility, or a monitoring system Ganglia.

During the data taking in the year 2009, the load of the database service has increased as a
consequence of increased trigger rate and newly added monitoring applications. The increased
load caused several crashes of the main server pccodb01 ; consequently the virtual address was
remapped to the backup server pccodb02. Because the backup server was running on a weaker
hardware than the main server, it crashed soon after the crash of the main server. To recover
from the crash, the database service needed to be restarted. During the restart, the data taking
was paused which increased the dead time and caused loss of the beam time. As it was expected

41

Vladimír Jarý Doctoral thesis

that the trigger rate would increase even more in the year 2010, it was decided to modify the
database architecture in order to prevent the future instabilities.

2 Proposed update of the database architecture

We were asked to investigate the database subsystem during the winter shutdown of the experi-
ment, a few weeks before a start of data taking in the year 2010. It was not possible to identify
the exact cause of the instabilities as we had not been able to inspect the system under the real
conditions and additionally, the logging had been partially disabled. We have concluded that
the database service had been powered by a weak servers that could not withstand the increased
load. The hardware configuration of the original machines is summarized in Table 4.1; especially
the amount of the installed Random Access Memory (RAM) seemed to be a critically low for the
database servers. Operating system Scientific Linux CERN and the MySQL database software
that were powering the servers were installed in an outdated versions, too. Furthermore, the
operating system was installed in only 32-bit version that does not allow addressing of more
than 4GB of RAM.

Figure 4.2: Proposed database architecture for the Compass experiment

The migration to the new architecture needed to be transparent to the client applications, thus
the main requirement on the new architecture was to keep the compatibility with the original
system. Effectively, this forced us to keep the MySQL software. We have proposed an updated
version of the database service that is based on the following two key demands:

1. distribute the logical databases on more physical servers
2. use more powerful hardware and more recent version of the software

We have proposed to reduce the load of the physical servers by separating the two largest logical
databases (i.e. DATE_log and beamdb) on two pairs of physical servers; one pair of servers

42

Doctoral thesis Vladimír Jarý

would handle the DATE_log database, the other would handle the beamdb database. The
remaining smaller database would be approximately evenly distributed among these two pairs
of servers. In order to achieve the high availability and reliability of the service, the servers in
pairs would be synchronized by a master–master replication. The fifth server would be used for
additional tasks, mainly as a proxy server. The clients would connect to the proxy server through
the virtual address pccodb00 ; according to the requested logical database, the proxy software
would forward the queries to the corresponding pair of database servers. Since the same virtual
address would be used, it would not be necessary to reconfigure client connection parameters. A
monitoring system would be also installed on this fifth server. Its main task would be watching
the state of the physical servers; if a problem would be detected, the monitoring system would
try to reconfigure the proxy server to forward the traffic to the remaining servers and it would
inform an operator via an SMS or e-mail about the incident. The HTTP server Apache and
the infoLoggerServer process that were originally deployed on the pccodb01 server would be also
moved to the proxy server.

Old server New server
Processor 2 cores at 3GHz (Xeon) 8 cores at 2.5GHz (Xeon)
Memory 3GB 16GB
OS 32b SLC 4.7 64b SLC 5.4
Kernel 2.6.9 2.6.18
Database MySQL 4.1.22 MySQL 5.1.45

Table 4.1: Configuration of database servers

2.1 Comparison of different versions of the MySQL server

According to the above described proposal, we have requested five new physical servers. The
configuration of new servers is summarized in Table 4.1. While the original server was powered
by one dual core Intel Xeon processor, the new servers are powered by two quad core Xeon
processors. The amount of the system memory increased from 4GB to 16GB. For the data
storage, several SATA disks in a RAID-5 configuration are used; approximately 4.5TB of disk
space is available in total. In order to fully utilize the 16GB of the main memory, we have
decided to install 64b version of operating system. Since the technical support of the version 4
of the Scientific Linux CERN (SLC) that was installed on the original lasted only until December
2010, a more recent version 5 of the SLC has been selected for installation on new servers. More
recent version of operating system contains security and performance enhancements and also
features a more recent linux kernel that has better support for hardware.

On the old database servers, the MySQL software was installed in version 4; however, a more
recent version 5 already existed. Several new features were implemented together with security
and performance fixes in this newer version of the software. We designed a test that should
compare performance of several common database operations in the old and the new versions of
the MySQL software and SLC operating system.

Design of the test

While waiting for a delivery of new servers, we have evaluated the performance of these two
different versions of the MySQL server software. Since we could not reinstall the old servers
and the new server were not delivered, we performed the tests in the virtual machine. As a

43

Vladimír Jarý Doctoral thesis

virtualization software, the qemu processor emulator with the Kernel Virtual Machine KVM
acceleration has been used. The host has been powered by the Intel Core2 Duo T9660 (two
cores running on 2.8GHz) with the 64b version of the Arch Linux distribution with linux kernel
2.6.32. Using the qemu-img tool, two harddisk images of 4GB have been prepared; the 64b SLC
4 has been installed on the first image named slc4.qcow, the 64b SLC 5 has been installed on
the second image named slc5.qcow. The qemu emulator has been launched with the following
arguments:

qemu-kvm -cpu pc -machine x86 -smp 1 -m 1024\\
-hda slc4.qcow -cdrom /dev/cdrom\\
-net nic -net user

The guest uses one physical processor of the host machine running at 2.8GHz. By using the
m parameter, it is possible to specify amount of RAM that is assigned to the guest system
(1GB in this case). The image slc4.qcow acts as an IDE hard disk, the guest system uses the
optical drive of the host system. The net parameters instruct the qemu to emulate the e1000
PCI network card with a network stack that bridges to the host’s network. The user mode
networking acts as a firewall and does not allow any incoming connections; only TCP and UDP
protocols are supported.

During the installation of the operating system, the packages with the MySQL database
and the PHP scripting language have been installed from the official repositories. The MySQL
software has been available in the version of 4.1.22 for the SLC 4 and in the version 5.0.77 for
SLC 5 system. Using the Create Database statement, a testing database called test has been
created. The database contains a single table test_tbl, therefore we do no present the entity-
relation diagram, The table test_tbl has been inserted into the test database with the structure
shown in Listing 1.

Listing 1 Structure of the test table
CREATE TABLE test_tbl(

id bigint(20) NOT NULL AUTO_INCREMENT,
param varchar(25),
val bigint(20),
tag varchar(25),
x float,
y float,
z float,
t float,
PRIMARY KEY(id)

) ENGINE=MyISAM;

The table is stored in the MyISAM engine which is a default storage engine in MySQL 4. The
integer column id is used as a primary key of the table. We have assumed that there are only
30 000 different possible values for the column param, 10 000 different values for the column tag,
and columns x, y, z, and t are random values from the interval [0, 200]. We have prepared a script
in the PHP language that fills the table with a random records that fulfill these requirements:

#!/usr/bin/php
<?php

44

Doctoral thesis Vladimír Jarý

require ’functions.php’;
require ’config.php’;
srand(make_seed());
mysql_connect($host, $user, $pass) or die(mysql_error());
mysql_select_db($db) or die(mysql_error());
//code continues bellow...

The PHP scripts are normally interpreted on the web server. However, we have used the com-
mand line interface to interpret the script; the first line of the script defines a path to the
interpreter. Then, the file functions.php that contains definitions of some custom functions for
generating random strings is included. The PHP function srand initializes the built in generator
of pseudorandom numbers. The custom function make_seed generates the seed from the current
system time. The more recent versions of the PHP should initialize the pseudorandom generator
automatically. Then, the script tries to connect to the database by calling the mysql_connect
function and to use database by calling mysql_select_db function. The database name and
connection parameters are defined in the config.php file. If these functions fail, a error message
is printed and execution of the script is terminated.

After the connection to the database, two arrays of random strings are generated: first array
with 30 000 items serves for filling the param column, second array with 10 000 items for filling
the tag column. The random string are generated in the custom getRandomString function
defined in the functions.php file, the code is based on example from [24]:

Listing 2 Function that generates random string of given length
function getRandomString($length){

$result = "";
for($i=0; $i<$length; $i++){

$x = mt_rand(0,61);
if($x < 10){

$result .= chr($x+48);
}else if($x < 36){

$result .= chr($x+55);
}else{

$result .= chr($x+61);
}

}
return $result;

}

The function takes one parameter that defines the requested length of the random string. The
generated string consists of the three types of characters: digits, capital letters of English alpha-
bet, and small letters of the English alphabet. In the for cycle, the string is built a letter by
letter by using the operator “.” which returns the concatenation of its right and left arguments
and mt_rand and chr functions. The mt_rand function returns a pseudorandom integer from
the given interval; the function is based on the Mersenne–Twister generator, [21]. The generated
integer is used as an ASCII code of a next character of the string. The ASCII code is trans-
formed into a corresponding character by calling the chr function. The interval of codes [48, 57]
corresponds to digits (0, . . . , 9), the interval [65, 90] to capital letters (A, . . . , Z), and interval
[97, 122] to small letters of English alphabet.

45

Vladimír Jarý Doctoral thesis

In the remaining part of the script, random records are generated and inserted into the table
in the for cycle:

for($i=0; $i < $count; $i++)
{

$x = (float)mt_rand(0, 20000)/100;
...
$query = "INSERT INTO test_tbl
VALUES(’’,’$param’,’$val’,’$tag’,’$x’,’$y’,’$z’,’$t’)";

mysql_query($query) or die(mysql_error());
}

The mt_rand function returns an integer from the given interval. The value is divided by 100 and
explicitly converted to a float in order to get a pseudorandom rational number from the interval
[0, 200] which is required for the x, y, z, and t columns. The remaining numerical columns are
generated in a similar fashion. The values of the param and tag string fields are selected from the
previously generated arrays. The random values are then substituted into the Insert query and
the query is sent to the database using the mysql_query function (the value of the id column is
not substituted as at the column is defined as an Auto_Increment. If the insertion fails, an
error message is printed and execution of the script is terminated.

We have used the script to fill the test table with one million of random records; we have
measured and compared the time required to execute the script on both SLC 4 and SLC 5
installations. On this table, two tests have been performed. At first, we have measured time
needed to write all the records from the table into a disk file. We have used a mysql_dump
client program to dump the table data. Then we have measured time required to execute the
following query:

Listing 3 Test query
SELECT param, val, tag, sum(x) as S1, sum(y) as S2, sum(z) as S3,

sum(t) as S4 FROM test_tbl
GROUP BY param, val ORDER BY NULL;

Note that at this phase we have not created any indexes on this table. Examination of the
query by the Explain statement reveals that temporary tables are created during evaluation
of this query. By adding proper indexes it would be possible to remove the need to create the
temporary table and consequently to significantly optimize the query execution time. However,
the Explain statement and query optimization techniques are covered in the following sections
of this chapter. Finally, we have deleted the content of the table using the Delete From
statement and repeated the test case for the table with 2 and 4 million of rows.

Results of the test

The results of the tests are summarized in Table 4.2. The results demonstrate that our assump-
tion that using a combination of more recent version of the Scientific Linux CERN distribution
and MySQL server would increase the performance of the database service has been correct.
For the larger tables, the time required to fill the table improved by approximately 29%, time
required to evaluate the given query improved by 20%, and time required to dump the table
data improved by 15%.

46

Doctoral thesis Vladimír Jarý

It can be seen that the times required to fill and dump the table scale approximately linearly
with the size of the table which is not case of the time required to evaluate the query. This effect
is caused by the temporary tables that are created during the query evaluation. For smaller
tables, the corresponding temporary table fits in a memory buffer. If the size of the temporary
table exceeds the size of the memory buffer, the temporary table is created on the disk which
cause the delay and observed non–linearity.

Test Insert Select Dump
Size SLC 4 SLC 5 SLC 4 SLC 5 SLC 4 SLC 5
1 000 000 123 96 37 36 9 7
2 000 000 251 196 117 102 21 13
4 000 000 493 386 346 289 41 36
SLC 4: MySQL 4.1.22, PHP 4.3.9, Linux 2.6.9
SLC 5: MySQL 5.0.77, PHP 5.1.6, Linux 2.6.18
Hardware: Qemu single core CPU at 2.8GHz, 1GB RAM

Table 4.2: Comparison of different versions of the MySQL server, times are in seconds

Besides the performance improvements, several new features have been implemented in the re-
lease 5.0 of the MySQL software. The new features include an implementation of the information
schema database that contains metadata about databases on server, instance manager that can
be used to start or stop the server, or a new fixed point arithmetic library. MySQL 5.0 has
also added a limited support for triggers and stored routines. Additionally, new storage engines
Archive and Federated have been included and performance of the InnoDB storage engine
has increased in the MySQL 5.0. Furthermore, additional features such as partitioned tables,
event scheduler, row based replication, or tables with server logs have been added in the subse-
quent 5.1 release of the MySQL server. Since the changes between version might cause issues
with compatibility, it has been required to verify the integrity of data on new servers after the
migration.

2.2 Comparison of storage engines

After comparing of different releases of the MySQL database, we have evaluated various storage
engine supported by the MySQL server software. Storage engines are modular, they can be dy-
namically loaded into the running server by calling the Install Plugin statement and removed
from the server by the Deinstall Plugin statement. List of currently supported engines can
be displayed by calling the Show engines statement. The storage engine of the table can be
specified directly as part of the Create Table statement. For example, the following statement

CREATE TABLE test(id INT NOT NULL) ENGINE=MEMORY;

will create the table test in the Memory storage engine. If no engine is specified, the table is
created in the default engine. In one logical database, different tables can be stored in different
storage engines. It is possible to modify an engine of the existing table by the Alter Table
statement, for example:

ALTER TABLE test ENGINE=MyISAM;

statement will convert the test table into the MyISAM engine. If the desired storage engine is
not supported by the server, a warning will be issued and the table will be converted into the
default storage engine.

47

Vladimír Jarý Doctoral thesis

The storage engine architecture shields the client applications and Application Programming
Interface (API) from the low level implementation details of the storage. Different engines
serve different purposes, some are targeted for a highly available system, some for a transaction
processing, some for an archiving. However, set of routines and interfaces common to all the
storage engines is defined; this minimizes a need of changes in the client code required by the
change of the underlying storage engine.

The storage engines can be divided into two groups: transaction and non–transaction en-
gines. The transaction safe tables (i.e. tables created in a storage engine that supports trans-
actions) are much safer than the non–transaction safe tables. In case of a server crash, it is
possible to restore data from the transaction safe tables either by an automatic recovery, or
from the transaction logs. If an update fails, all changes to the transaction safe tables are
reverted; changes can also be reverted by a Rollback statement. Additionally, more SQL
statements can be combined and accepted together by the Commit statement. On the other
hand, a transaction processing imposes a performance overhead, thus the non–transaction safe
tables are usually much faster and also the storage requirements are lower. The InnoDB engine
is the most commonly used transaction storage engine, while the MyISAM is the most common
non–transaction storage engine.

Besides the support for the transactions, the storage engines differ in more details. For
example, some engines can compress data, the others support foreign key integrity constraint.
Also, different engines provide different support for the table indexing. Some engines can lock
a single row, while other engines can only lock the entire table. Most of the engines stores
the table data into a disk files, however some engines can store data into a memory heap, or
into the cluster. Some engines support caching of indexes and queries. All these aspects needs
to be considered when choosing an appropriate storage engine that will be used for a specific
applications.

Types of the storage engines

In the following paragraphs, MyISAM, InnoDB, Archive, Blackhole, Csv, Exampled, Federated,
and Memory storage engines are described. More detailed information about these specific
storage engines can be found in the documentation, [37].

MyISAM engine

The MyISAM is a default storage engine as of the version 5.1 of the MySQL server. The engine
does not support transactions and foreign keys, on the other hand, it supports replication, B–
tree and full–text search indexes, query and index caching, data compression, and concurrent
inserts. The data values are stored with the low byte first, while the numeric values are stored
with the high byte first. The table is portable between platforms provided that the target system
supports two’s complement signed integers and IEEE format for floating point. MyISAM table
can contain up to 232 rows; the limit can be increased to (232)2 if the server is compiled with
support for large tables (i.e the --with-big-tables flag needs to be passed to the configure
script during installation). A table can contain store up to 256TB of data. A table created in
the MyISAM engine is stored in three disk files: a file with the FRM extension contains the
structure of the table, a file with MYD extension contains the table data, and a file with the
MYI extension contains table index.

A table in the MyISAM engine can be stored either in a static (fixed length), or in a dynamic
format. The static format is used when the table does not contain any columns with a variable
length (i.e. columns of the types Varchar, Varbinary, Blob, and Text). Since each row has

48

Doctoral thesis Vladimír Jarý

the same length, it is very simple to calculate the position of the requested row. For the same
reason, tables in this format are easily recoverable in case of a server crash. Furthermore, tables
in static format are less prone to the fragmentation. On the other hand, disk requirements are
higher. Rows in the dynamic format have different lengths; the length is stored in a header that
is added to each row. The header also contains information about empty strings and zero values
stored in the row. A row can become fragmented if it is extended during an update, thus a
defragmentation may be necessary. Since each row uses only as much space as it is required, the
dynamic format is more storage space efficient than the static format. Additionally, by using
the myisampack tool, it is possible to compress the MyISAM tables in both static and dynamic
format. After the compression, the table is in a read only mode, however it can still be dropped
and emptied. A packed table can be uncompressed using the myisamchk tool. This tools can
be also used to repair and optimize the MyISAM tables.

InnoDB engine

The InnoDB is storage engine that supports the transactions that fulfill the atomicity, con-
sistency, isolation, and durability requirements (ACID). The atomicity guarantees that in an
atomic transaction (that consists of several operations) either all operations are executed, or
none operation is executed. The consistency requirement means that each transaction brings a
database from a valid state into another valid state. The isolation requirement defines that a
change performed by one operation is visible to another concurrent operations. The durability
guarantees that when a transaction is committed, it remains committed regardless of crashes,
power failures, or other errors.

The InnoDB storage engine supports query and index caching, foreign key referential in-
tegrity, data compression, replication, B–tree indexes. On the other hand, hash and full–text
search indexes are not supported by the engine. In contrast to the MyISAM tables that support
locking on the table level, the InnoDB engine supports locking on the row level. An InnoDB
table can store up to 64TB of data. In contrast to the MyISAM engine that creates separate
files for all tables, the InnoDB uses a concept of the tablespaces that contain data and indexes
for multiple tables. Together with a tablespace file, a file with transaction log is created. It is
possible to distribute a tablespace and a log on different disks to improve the performance. The
data and log files are binary compatible between the major platform that have the same floating
point format. A table in the InnoDB engine can store rows in either compact, or redundant
format. The format can be selected when creating a table; if none is specified, the compact
format is used. The tables with rows in the compact format are smaller by approximately 20%,
however some operations on these tables might be slower.

Archive engine

The Archive storage engine is used for storage of large amount of data. The engine does not
support transactions, indexes, and modifications of rows. The Insert and Select operations
are available, however the Delete and Update operation are not permitted by this engine.
New rows are inserted into a compression buffer that is flushed when necessary (e.g. when the
Select is called upon the table). The engine uses the lossless compression based on the zlib
library. During a Select statement, a full table scan is performed, the rows are uncompressed
on demand. Each table in the Archive engine is stored in a multiple files: a file with the FRM
extensions holds the table structure, while the table with the ARZ extension contains the table
data. The size of the data file is limited only by the available disk space.

49

Vladimír Jarý Doctoral thesis

Blackhole engine

The Blackhole storage engine accepts inserted rows but does not store them. However, if the
replication is enabled, the statements are written to the binary log and replicated to the slave
servers. The engine is aware of transactions, only committed transactions are written into the
binary log. The engine supports all types of indexes, the Select statement on the table always
returns an empty set. On the disk, each Blackhole table is represented by a single FRM file
that contains the table structure. Due to the fact that all operation on the Blackhole table
have no effect, it is possible to use the tables in the Blackhole engine for finding performance
bottlenecks and evaluation of the overhead caused by the binary logging.

Csv engine

The Csv engine stores table data to the text files in the Comma Separated Values format (the
CSV extension). This file can be viewed and edited by any spreadsheet application such as
MS Excel or Openoffice Calc. The table structure is saved in the FRM file, while the CSM file
contains state of the table and number of rows. The Check statement verifies the integrity of
the table (number of columns, matching separators, . . .). If the check fails, the table is marked
as crashed and must be repaired by the Repair statement. However, all rows beyond the first
corrupted row are lost.

Example engine

The Example storage engine does nothing. The engine is a stub that can be used as a starting
point when implementing a new custom storage engine. A table in the engine is represented by
a single FRM file that contains the table structure. No data can be inserted into a table in the
Example engine, all selects return an empty set. Indexes are also not supported.

Federated engine

The Federated engine enables accessing data from a table on a remote MySQL server without
a need of using cluster technology or replication. At first, the table needs to be created on the
remote server. The remote table consists of the FRM file with the table structure and a file with
table data; the remote table is stored in normal engine such as a MyISAM or an InnoDB. Then
a table with the same structure in the Federated engine is created on the local server. During
creation of the local server, a connection string to the remote server needs to be passed to the
Create table statement. The engine supports the Insert, Update, Delete, Truncate,
and Select statements; the queries that would select, insert, update, or delete rows on the
local table are send for execution to the remote server where the corresponding operation is
performed on the remote table and the corresponding result is returned to the local server. The
Alter Table statement is not supported, in fact, the Drop Table is the only supported data
definition language statement. When using the Drop Table statement, only the local table is
removed, the remote table is unaffected. A table in the Federated engine does not support
indexes since they are handled by the remote tables. Engine does not support transactions, the
replication is supported on the other hand.

Memory engine

The tables created in the Memory engine store its data in the random access memory (RAM) of
the server; table structure is stored on the disk in the FRM file. Since the content of the RAM is

50

Doctoral thesis Vladimír Jarý

lost during every restart or crash of the system, this engine is mainly used for temporary tables
and applications that deal with non critical data such as session management on web servers.
The maximal size of the memory table is defined by the max_heap_table_size system variable.
The memory for the rows is being allocated in small blocks. When deleting individual rows,
the memory is not released. However, new rows can reuse the memory because rows use have
fixed length. The memory is released in three situations: either table is dropped, or all rows are
deleted, or the table is rebuilt by the Alter Table statement.

The replication is possible with this engines, however the slaves are not aware that the table
on master is truncated in case of restart which causes desynchronisation. Engine supports hash
and B–tree indexes, it does not transactions. The MySQL server uses temporary memory tables
internally during evaluation of some queries. However, an internal table can be swapped to
the disk, if its size exceeds the size defined by the max_heap_table_size system variable. The
Memory tables created by users are never swapped to the disk.

Design of the test

Under normal data taking conditions many processes frequently insert new records into the
online database, therefore we have tested how many rows can different engines store per second.
Additionally, we wanted to verify whether some storage engine is capable of storing rows at rate
of 1MHz. In the first test, we have measured time required to insert 10 million rows into a test
table with one integer column. The test has been performed on the dual core processor Intel
Core2 Due T9660 running on 2.8GHz supported by 4GB of the system memory. A 64b operating
system based on the linux kernel in version 2.6.35 with multiprocessor support enabled has been
installed on the SATA disk. As a database software, a binary distribution of the MySQL 5.1.50
has been used.

To utilize both cores of the CPU, we have prepared a multithreaded client application based
on the C application programming interface provided by the client library of the MySQL; one
thread fills the test table with all the integers from the interval [0; 5 000 000), the second thread
covers the interval [5 000 000, 10 000 000).

The code of the client application will be briefly commented; at first the fork function is
called to create a child process:

pid_t pid = 0;
pid = fork();

The variable pid (pid = process identification number) is used to distinguish a parent and a
child threads; in the parent thread, the variable remains 0, in a child thread, it has a non zero
value. In the parent thread, a current timestamp which will be used to calculate the elapsed
time is taken. After that, both threads attempt to connect to the MySQL server:

MYSQL *conn = mysql_init(NULL);

if (conn == NULL){
printf("Error %u: %s\n", mysql_errno(conn), mysql_error(conn));
return 1;

}
if (mysql_real_connect(conn, "localhost", "root", "pass", "test",

0, NULL, 0) == NULL)
{ /* error handling */}

51

Vladimír Jarý Doctoral thesis

At first, a MYSQL* handle that will be used for communication with the database is initialized
in the mysql_conn function. If the initialization fails, the function returns the NULL value; in
this case an error is printed on the standard output and application is terminated. The handle
together with a server address, user name, password, and working database is passed to the
mysql_real_connection function that tries to establish a connection to the database server. If
the connection fails, the function returns the NULL value and the application is terminated. On
the other hand, if the connection is successfully established, the threads can fill the table with
data:

int i;
char query[256];

if(pid == 0){ /* parent thread */
for(i = 0; i < 5000000; i++){

sprintf(query,"INSERT INTO speedtest VALUES(%d)", i);
mysql_query(conn, query);

} else { /* code for the child thread */

The pid variable is used to decide if a parent or child code should be executed. Then, the query
is prepared. The mysql_query function uses the MYSQL* handle to execute the provided query.
When the table is filled, the connection to the database is closed by calling the mysql_close
function. Finally, in the parent thread, an elapsed time is calculated and printed on the standard
output.

Engine Data directory on disk Data directory in memory
Archive 13.9 s 14.2 s
Blackhole 8.7 s 8.8 s
CSV 32.2 s 19.3 s
InnoDB 33.0 s 39.7 s
Memory 9.3 s 9.2 s
MyISAM 13.7 s 12.3 s

Table 4.3: The speed of the INSERT operation on different storage engines

Results of the test

At first, a performance of the MyISAM storage engine has been evaluated. It has taken 288.8 s
(which corresponds to a rate of approximately 35 kHz) to fill the table. Since this result has
not corresponded to our expectations, we have analyzed the behaviour of the server. Using
the iotop utility [25] we have discovered that the disk usage was minimal during the test.
Furthermore, MySQL server consumed 4 times more CPU power than the client application. We
have concluded that the bad performance had been caused by overhead associated with inserting
of rows into the table. We have added support for bulk inserts into the client application; in the
bulk mode, one query can insert multiple rows which reduces the overhead significantly. Indeed,
by storing 25 rows per query, we have been able to reduce a time required to fill the table to
14 s (approximately 650 kHz); the server process has been writing to disk at average speed of
5MB/s during the test. After the test, the table was dropped from the database using the Drop

52

Doctoral thesis Vladimír Jarý

statement and the test was repeated for Archive, Blackhole, CSV, InnoDB, and Memory
storage engines.

We have also tried to move the directory used by the MySQL server to store databases from
the disk partition with the ext3 file system to the virtual RAM drive with the tmpfs file system.
At first, the RAM drive has been created by launching the mount application on the root console
with the following arguments:

mount -t tmpfs tmpfs -o size 1024m /mnt/ramdisk

The command will use 1GB of the RAM to create the ramdisk and will mount it under the
/mnt/ramdisk directory. Then, we have assigned this address to the variable datadir that
defines the directory that is used by the MySQL server to store database. Note, that change of
the datadir variable requires restart of the server.

The results of these tests are summarized in Table 4.3. The best performance has been
achieved with the Blackhole engine which is not surprising as this engine discards data in-
stead of storing them. For the same reason, the engine cannot be used for the needs of the
data acquisition. The second fastest engine in the test, the Memory engine is also not suitable
candidate for deployment on the Compass experiment because it stores data only temporarily.
The Archive engine also cannot be used because it does not support indexing and modifica-
tions of already inserted data. However, old databases with data from previous years could
be converted into this engine to save disk space. We rejected the Csv engine as it does not
support indexing. Thus only MyISAM as an example of transaction engine and InnoDB as an
example of non-transaction engine remained our candidates after this first series of tests. The
MyISAM has been approximately three times faster than the InnoDB engine, on the other hand
the InnoDB engine supports fully ACID compliant transactions. We have performed additional
tests to select the most suitable engine for the needs of the Compass online database. From
Table 4.3, one can also see that only CSV and MyISAM engines can benefit from moving the
database directory to the RAM disk.

Language Speed [s] Ratio Comments
C 41.2 1.00 uses MySQL client library, gcc 4.5.1
Pascal 42.2 1.02 Free Pascal 2.4.0
PHP 45.9 1.11 PHP 5.3.3 (interpreted on command line)
C++ 46.3 1.12 uses Qt framework 4.6.3
Java 59.4 1.44 JDBC MySQL driver, java version 1.6.0/OpenJDK
Python 87.3 2.12 Python 2.6.5
Perl 503.4 12.22 uses Perl DBI, Perl 5.12.1

Table 4.4: The comparison results of the selected programming languages

In connection to the above described test, we have been asked to verify whether the MySQL
server is capable of inserting rows at the rate of 1MHz. The results in Table 4.3 show that the
speed is feasible with the Memory, Archive, and MyISAM engines provided that a buffering is
implemented on the client side and clients can insert rows in a bulk mode. By using the MySQL
server in an embedded mode, additional performance improvement would be possible. In the
embedded mode, MySQL server runs as a part of client application. This greatly increases the
performance as there is no overhead caused by a network communication between the client
and the server. Also, the management of the embedded application is simpler compared to the

53

Vladimír Jarý Doctoral thesis

client/server application. On the other hand, the embedded server is available only from the C
and C++ language as the embedded library is written in the C/C++ languages.

Libraries that provide a connection to the MySQL server have been developed for many
programming languages thanks to the popularity of the MySQL software. Some of these libraries
are provided directly by the MySQL developers, other are provided by third parties. We have
compared a speed of the insert operation of the C, C++, Java, Pascal, PHP, Perl, and Python
client libraries. Using these libraries, we have developed single threaded applications that insert
10 million rows (in a bulk mode, 10 rows insert per each query) into a table in the Memory
engine. The test results are summarized in Table 4.4. As expected, with the exception of
the PHP language, the interpreted languages were the slowest in the test. The C application
was fastest in the test, perhaps because the client library is developed directly by the MySQL
developers. However, the comparable speed was also achieved by the Pascal, PHP, and C++
applications. On the other hand, the Perl application was more than 12 times slower than the
C application. The performance drop may be explained by the fact that the Perl language
is targeted to the processing of text in contrast to the other general purpose languages that
participated in the test.

Comparison of the MyISAM and InnoDB storage engines

For the further comparison of the performance of the MyISAM and InnoDB engines, we have
used the table test_tbl whose structure is described in Listing 1. This time, we have created
the table in the MySQL 5.1.46 installed on the above described physical hardware. We have
measured the time required to execute the query from Listing 3 for different numbers of rows in
the table. We have already demonstrated that without indexing the table, the temporary table
needs to be created and sorted during evaluation of the query. For smaller numbers of rows the
time required to process the query scales linearly with number of rows (see Figure 4.3). Starting
from approximately 5 million rows, the temporary table does not fit into a memory and must be
converted to disk table which significantly reduces the speed of the query execution. The query
on table with more than 10 million rows consumes also the swap memory and the client is killed
by the out of memory mechanism (oom-killer) of the operating system.
We have used the information provided by the Explain statement to propose an index (or
indexes) that would remove the need to create the temporary table during the query evaluation.
Unfortunately, such an index would be based on data from all the columns that are included in
the query. The key length would exceed 1000B which is the maximal length supported by the
MyISAM engine. Thus, we have tried the following changes to the structure of the table:

• At first, we have tried to include only prefixes of the column values into the index. Unfor-
tunately, this index could not be used.

• We have tried to replace the Float columns to the Decimal data types, however, the
performance remained the same.

• According to the documentation [37], the overhead associated with the Varchar type
exceeds the overhead of the Char type, thus we have replaced the Varchar(255) columns
by Char(255) type in the table structure. However, since the table contains strings with
random length, replacing the variable length strings by the fixed length strings five times
increased the size of the table. Consequently, the query execution time increased from 6
to 9 minutes for 2 500 000 rows.

• We have also tried a feature implemented in the new version of the MySQL server software:
partitioned tables. We have divided a table into 300 partitions according to a hash of the

54

Doctoral thesis Vladimír Jarý

Figure 4.3: Query evaluation time

primary key id. Partitioning did not improve the behaviour, probably because all partitions
were stored on the same disk.

• We have reduced a length of the Varchar columns in order to be able to create the key.
On this modified table, the proper indexing reduced the query evaluation time five times.
By reducing the length of the Varchar columns from 255 to 25 characters, the size of the
table with 5 million rows decreased from 1.5GB to 400MB. The time required to process
the query decreased from 935 s to 385 s. By adding an index to the modified table, it was
possible to increase the query evaluation speed five times. On the other hand, indexing
the table increased a time required to fill the table and greatly increased the disk space
required to hold the table.

We have achieved the best improvement by reducing an amount of data that needs to be stored
into the database table. Reducing the amount of data is also recommended by the MySQL
manual [37].

Operation MyISAM InnoDB
Filling of the table 373 s 1945 s
Query without index 906 s 2042 s
Indexing N/A 10740 s
Query with index N/A 25 s

Table 4.5: Comparison of performance of basic operation on the test table with 5 million rows
in MyISAM and InnoDB storage engines. Creating index on the MyISAM was not possible due
to the limitation on the key length.

After the evaluation of the MyISAM storage engine, we have used the ALTER TABLE state-
ment to convert the table into the InnoDB engine. This engine does not limit a length of the

55

Vladimír Jarý Doctoral thesis

key, thus it was possible to create index based on data from all columns of the table. Although
the query execution on the table without an appropriate index was twice slower on the table in
InnoDB engine than on the table in the MyISAM engine, the indexing reduced the time by two
orders.

The test results are summarized in Table 4.5. Although, it is possible to create index on the
InnoDB engine, the operation is very slow. Additionally, the overhead caused by the transaction
handling negatively influences the speed of the insert operation. On the other hand, the query
on the indexed table is executed almost 40 times faster than on non indexed MyISAM table.
To sum it up, the InnoDB should be used either in the applications that require transactions,
or when the speed of selects is more important then speed of inserts. On the contrary, the
MyISAM storage engine should be preferred in the database systems that are characterized by
high frequency of insert operations and the transactions are not required. Since the database
service of the Compass experiment consists of multiple clients that are frequently inserting new
rows into multiple tables and occasional lost of some rows is not critical, we have decided to use
the MyISAM storage engine for the new database architecture. However, the table with historical
data could be converted into the Archive storage to save disk space. Furthermore, these tests
have confirmed our assumption that the amount of the system memory is very important for
the database servers. Thus, the new database servers are equipped with 16GB of RAM in
contrast to 3GB RAM on the original pccodb01 server and 2GB on the original pccodb02 server,
cf. Table 4.1.

3 New database architecture for the Compass experiment

The proposed new database architecture has been presented and approved by the Compass
collaboration at the Frontend electronics meeting, [11]. Unfortunately, only three new servers
have been delivered, thus the proposal had to be updated. Consequently, the implemented
database architecture merges some features of the existing (as in 2009) architecture with some
features of the original proposal.
In the implemented architecture, two physical servers called pccodb11 and pccodb12 are used to
power the database service. As in the original architecture, these servers are kept synchronized
by the means of the master–master replication. One physical server is also replicated into the
CERN computing center which can be regarded as a form of a geographical backup. The third
physical server called pccodb10 is used mainly as a proxy server: it receives the requests from
the clients and dispatches them to the database servers. Furthermore, this server also manages
additional services such as a HTTP server that were originally deployed on the pccodb01 server.
A new monitoring tool Nagios has been installed on the pccodb10 server; it watches the state of
the physical servers and in the case a problem is detected on one of these servers, it automatically
tries to reprogram the behaviour of the proxy software to reroute the traffic to the remaining
server and it also notifies an operator about the incident. A regular database backup has been
scheduled on one of the physical servers. Continuous monitoring, replication, and backups should
guarantee the required high availability and reliability of the database service. To guarantee that
the migration to new architecture is transparent to the clients, we have used the same virtual
address pccodb00. In the new architecture, it always points to the proxy server pccodb10 which
decides where to redirect the requests issued by clients.

In the spring 2010 when the migration was performed, all servers participating in the data
acquisition at COMPASS were powered by the Scientific Linux CERN in version 4. However,
given the fact that the official support of the SLC 4 would end in December 2010 and the test
results described in previous section of this work, we have decided to install SLC in version

56

Doctoral thesis Vladimír Jarý

5 on the new servers. For the same reason, we have upgraded the MySQL database software
from version 4.1.22 that had been used on the old server to version 5.1.45 which was the most
recent stable version when the migration started. However, many changes were incorporated in
the new versions of MySQL and some of these changes could affect the compatibility. Thus, as
an important part of the migration process, we needed to carefully verify that the data were
transferred unchanged to the new servers. As a proxy software, we have decided to install the
MySQL Proxy. For the web server, we have used the Apache software with enabled server
side scripting based on the PHP language. Finally, the Nagios package has been selected as a
monitoring software.

Figure 4.4: Implemented database architecture

The process of a migration to the proposed database architecture is a complicated; it can be
divided into several steps that will be discussed in more details in following paragraphs of this
chapter:

1. Installation of the operating system on the new servers and connecting them to the Com-
pass internal network.

2. Installation and configuration of the MySQL software on the new pccodb11 and pccodb12
servers including performance tuning, logging, and establishing the master–master repli-
cation between pccodb11 and pccodb12 servers.

3. Backup of the data and configuration on the old database servers, export of table structure
and table data from the old servers.

4. Import of the users, user privileges, table structure, and table data to the new servers.
5. Verification of the compatibility between the old and the new servers.
6. Installation and configuration of the MySQL Proxy, Nagios, and Apache software on the

pccodb10 server,
7. Disconnecting the old servers, connecting the new database architecture by reprogramming

the virtual address to point on the proxy server.
8. Continuous monitoring and maintenance of the new database architecture.

57

Vladimír Jarý Doctoral thesis

The following two subsections contain technical details concerning installation and configu-
ration of the operating system and database software and should serve as a manual for future
administrators of the Compass database.

3.1 Operating system installation and configuration

The new servers have been delivered without an operating system installed, thus as a first
step during implementation of the new database architecture, we needed to install the system
on these servers. As already discussed, we have decided to install the 64–bit version of the
Scientific Linux CERN 5 (SLC 5). The system is based on the Scientific Linux distribution
that is being developed by joint effort of the CERN and Fermi National Accelerator Laboratory
(Fermilab), [34]. In turn, the Scientific Linux is basically a Red Hat Enterprise Linux (RHEL)
distribution recompiled from the source codes. The aim of the Scientfic Linux is to have a
common system compatible with RHEL and usable for various experiments. A SLC contains
modifications and packages that enables integration of the system into the CERN networking
infrastructure including the distributed file system AFS. Additionally, a custom repositories with
a CERN software and libraries are available during the SLC installation. However, the SLC still
remains compatible with RHEL.

As an RHEL derivative, the SLC uses the RPM packages with the yum package manager.
The system installation can be started from several types of media: hard disks, optical disk,
or network. As for the system installer, the Anaconda program is included. As Anaconda is
written in the C language, it is available for a wide range of hardware platforms. The program
offers a text–mode as well as a graphical installation; it also provides an automated installation
through the kickstart configuration files. This method will be described in the following chapter
as we have used it during an installation of the new run control machines in a remote control
room of the experiment.

As the new server are not equipped with an optical drive, we have decided to start the
installation from the USB flash disk and to perform the network installation. In order to start
the system from the flash drive, the flash disk needs to made bootable and formatted. To make
a disk bootable, one needs to copy boot instructions in a machine code into the master boot
record (MBR) of the disk. During the start up of the computer, the primary loader called Basic
input/output system (BIOS) loads these instructions into the memory and instructs the processor
to execute them. Since the MBR is stored in first 512 bytes of the disk, the instructions are
very limited; typically a secondary boot loader is copied from the medium into the memory and
executed. As a secondary loader, we have used the syslinux which is designed to load the linux
kernel from various types of media: flash disks, optical disks, network. The syslinux installation
is distributed together with a pre–prepared binary image of the MBR in the mbr.bin file. To
install this image into the first 512 bytes of the disks, one can employ the dd tools which is one
of the core utilies of the GNU/Linux operating system. Suppose that the flash disk is recognized
as a /dev/sdX device by the linux kernel (the corresponding device node can is printed into a
kernel log when the flash disk is inserted into a USB drive), then:

dd if=mbr.bin of=/dev/sdX

command issued with the root privileges copies the image (the if parameter) onto the device
(the of parameter). The dd tool serves for low level copying and conversion of raw data; its
usage is documented in the corresponding manual page (man dd).

After the preparation of the MBR of the flash disk, a primary partition needed to be created
by the fdisk program, formatted to the FAT 16 file system using the mkdosfs program. Finally,
the syslinux boot loader could be installed on the formatted partition:

58

Doctoral thesis Vladimír Jarý

fdisk /dev/sdX
mkdosfs /dev/sdX1
syslinux /dev/sdx

At this stage. the flash drive is prepared and it is possible to transfer data from installation
image to it. From the SLC website, we have downloaded a minimal bootable image called
boot.iso. Purpose of this image is to launch a network installation. During the process of
network installation, all selected software packages are download from a network repository
using an HTTP or an FTP protocol. Since the packages in a repository are being regularly
updated, a network installation leads to fully updated system (in contrast to an installation
from the DVD image).

In order to copy content of the ISO image to the flash drive, it is necessary to use the mkdir
tool to create empty directories called mount points and the mount tool to add (“mount”) both
medias into the directory tree:

mkdir /tmp/usb
mkdir /tmp/iso
mount -t vfat /dev/sdX1 /tmp/usb
mount -o loop boot.iso /tmp/iso

Then, the directory structure contained within the ISO image can be recursively copied to the
flash disk using the cp command.

cp -r /tmp/iso /mnt/usb

As the boot.iso image is intended to be burnt on an empty CD-ROM, a small modification of
the directory structure needed to be created in order to successfully boot from the flash disk.
The CD-ROM contains the secondary boot loader binary stored under the isolinux folder
whereas flash drive expects the boot loader binary in its root directory. Additionally, boot
loader configuration for CD-ROM is saved in the isolinux.cfg file while flash disk requires the
syslinux.cfg configuration file. Both issues can be easily resolved using the mv command that
serves for moving and renaming of files and directories:

cd /mnt/iso
mv isolinux/* .
mv isolinux.cfg syslinux.cfg

Installation process should be started after the system reboot provided that the bootable flash
drive is inserted in a USB port and the primary boot loader BIOS is configured to boot from
removable media. The primary loader loads and executes the secondary loader syslinux which
in turn prepares a computer for start of the installation program Anaconda that guides user
through the installation process step by step. At first, we have tried running the installation
in a graphical mode; unfortunately, the installation process was aborted due to a software bug.
Thus, we had to restart the installation process, this time in a text mode. The text mode is
based on the ncurses library that uses semigraphical characters to draw interactive dialogs on
screen.

In the first step, user selects system language and the preferred keyboard layout that should
be used during installation process. Then, it is required to configure network interface and enter
location of the package repository. The installation program detects wide range of network cards,
it can use a static configuration, as well as a dynamic configuration based on the Dynamic Host

59

Vladimír Jarý Doctoral thesis

Configuration Protocol (DHCP). Additionaly, the Anaconda supports both version 4 and 6 of
the Internet Protocol (IPv4, IPv6). The program supports various protocols for downloading
data, we have decided to use the File Transfer Protocol FTP. When the network configuration is
completed, an image of second stage is downloaded from the specified repository and installation
continues by definition of a hard drive partitioning.

Each of the new servers is equipped by several hard disks with a capacity of 1TB that are
configured as RAID 5 arrays. The RAID (redundant array of independent/inexpensive disks)
technology combines multiple disks into a single logical unit. The aim of the technology is
to increase a performance and reliability of the storage by distributing data across multiple
physical disks and by introducing the redundancy. The technology distinguishes several levels.
RAID 5 requires at least three disks. Data is stripped between these disks and also the parity
data is distributed between all these disks. The RAID 5 is able to work, although in degraded
performance, if one of the member disks fails because the data can be reconstructed using the
parity data from remaining disks. When a faulty disk is replaced, the system automatically
rebuilds the array. The technology may be implemented on both hardware and software levels.

Partition Mount point File system Capacity
sda1 /boot ext3 100MB
sda2 /tmp ext3 42GB
sda3 / ext3 8GB
sdb1 N/A swap 32GB
sdb2 /var ext3 32GB
sdb3 /data ext3 4.2TB

Table 4.6: Defined partitions

Since the new servers contain a hardware RAID controller, the installer program Anaconda sees
the disk array as two disks with capacities of 50GB (recognized as a /dev/sda device) and 5TB
(the /dev/sdb device). However, Anaconda also supports creating of software RAID arrays. In
Unix and Unix–like systems, it is a good practice to install a system on several disk partitions.
Separating data of the operating system from the data produced and managed by user processes
simplifies system maintenance including backups and reinstallation of the system. Although
installer program can automatically partition hard disks, we have defined a custom partitioning
scheme that is summarized in Table 4.6. The /boot partition contains the linux kernel and a
configuration files of the boot loader. We have decided to create a separate partition for the
/tmp directory. By convention, this directory is used for storage of temporary data. Filling
the temporary directory by some faulty process would cause a crash of the operating system.
By moving the temporary directory on a dedicated partition this danger is eliminated. For
the same reason, we have created a separate partition for the /var directory which serves as a
storage for data (logs, web pages) produced by various process. Additionally, we have created
a partition for the /data directory to store the database tables and logs. We have decided to
format these partition using the Linux Extended (ext3) file system which supports journaling
and is considered to be stable. Finally, a dedicated swap partion has been created; its size has
been set as a double of the amount of the RAM.

When the defined partitions are created, the installation process continues with a configu-
ration of the boot loader. As a derivative of the RHEL distribution, the SLC uses the Grand
Unified Boot loader (grub). Anaconda automatically configures the loader to boot the SLC, user
can specify where to install it. We have decided to install the boot loader into the Master Boot

60

Doctoral thesis Vladimír Jarý

Record of the hard disk. In the following steps of the installation, the network interface needs
to be configured: at first, user decides if support for the IPv4 and IPv4 should be enabled, then
the IP address and adresses of DHCP servers are defined, and finally a hostname of the machine
is chosen. Then, user selects a timezone in which the machine is located. Before the start of
the installation of packages, user must enter the root password. For a compatibility with the
old database servers, we have kept the password unchanged. Finally, it is possible to define a
purpose of the machine; this information is used to select groups of packages that should be in-
stalled. We have selected a predefined profile called Server ; additional packages can be installed
after the system installation using the yum tool. The selected packages are download from the
network repository and unpacked into the directory tree. After this step, the machine needs to
be restarted in order to complete the installation process.

Post–install tasks

After the restart of the machine, system needs to be configured. Installation program Anaconda
helps user with setting up of the firewall iptables, Security Enhanced linux (SElinux), or time
zone. Because database servers are part of the Compass internal network, we have decided
to disable SELinux. The ntsysv utility has been used to disable unnecessary service to reduce
system load. We have decided to disable the Bluetooth service, the printing service cups, or
the daemon for sending mails which are not required on the database server. Additionally, we
have disabled automatic system update which is normally executed at each boot of the system
as the automatic update would contribute to the dead time of the data acquisition system. On
the other hand, we have enabled several other services such as a system scheduler cron, system
logger syslog, network file system nfs, or SSH server sshd. Scientific Linux CERN boots into the
runlevel 5 after the installation. Runlevel 5 represents multiuser environment with X–Window
server. MySQL server does not need X–server, therefore the default runlevel has been changed to
level 3 (i.e. full multiuser mode). To change the default runlevel, one has to edit a configuration
file called inittab and change line containing initdefault to

id:3:initdefault:

Then, it has been necessary to install packages for building software from the source codes:
GNU C compiler GCC, standard C library, and build tools. Scientific Linux CERN comes with
package management tool called yum. Yum can install, update, and remove package, moreover
it handles package dependencies and downloads packages directly from the repository. To install
package (or packages), simply issue the install command, for example:

yum install gcc gcc-c++ glibc glibc-common autoconf automake

The yum tool can be also used to remove (the remove command), find (the search command),
and query (the info command) packages. Yum is an advanced tool, it can manage package repos-
itories, it checks the dependencies of the packages. Furthermore, using the update command,
yum is also able to update the entire system.

Then, a configuration file /etc/hosts.allow needed to be edited in order to enable network
connection to the MySQL server. This file contains a list of machines that are allowed to access
local network services. To enable all computers from the CERN network to access the database
server, one needs to put the following line into hosts.allow file:

mysqld: .cern.ch

61

Vladimír Jarý Doctoral thesis

Multiple values can be appended to one line, one can also specify the hosts by IP addresses.
To increase security, we have only allowed connections from the both database servers pccodb11
and pccodb12, from the proxy server pccodb10, from the computers from the COMPASS internal
network, and from one computer from the CERN computing center that acts as an additional
replication slave.

Finally, several steps needed to be performed in order to include the new servers into a data
acquisition network. At first, we needed to create a special user account daq that is used for the
common tasks. As with a root account, we have kept the password for this account unchanged
for the compatability reason. Then, a shared network directory provided by the file server
pccofs01 needed to be connected into the /online mount point. In the original architecture, the
infoLoggerServer process of the Date package had been installed on one of the database servers.
Unfortunately, this process failed to start under 64–bit operating system. After a discussion with
a data acquisition expert, we installed the infoLoggerServer on one of the event building servers
as they were powered by 32–bit system.

At this stage, the installation and configuration of the system is finished and the system is
prepared for MySQL installation. Complete installation log can be found in the install.log
file in root’s home directory (i.e. /root).

3.2 MySQL installation and configuration

The official repository for the SLC 5 distribution offers an RPM package with a prebuilt MySQL
software in version 5.0. To benefit from the new features of the version 5.1 of the MySQL, that
include support for the table partitioning, the installation had to be based on building the source
codes. The compilation from the source codes requires more effort and time then installing a
binary package. On the other hand, it is often possible to increase the performance and stability
of the software by disabling unneeded features. Additional performance improvement can be
achieved by instructing a compiler process to produce binaries optimized for given hardware
architecture.

In April 2010 when the installation was performed, MySQL 5.1.45 was the latest stable
release. The source codes are distributed in a form of tar archives compressed by the gzip
program that can be downloaded from an official MySQL website1. This package contains source
codes of not only the MySQL server but also of the various client applications. Additionally,
documentation and tools required to configure the installation are included in the package.
Several steps needs to be taken before a compilation of the source codes can be started. At first,
a special user account and group called mysql has to be created. This account will be used by
both server and client parts of the database. A new group can be created using the groupadd
tool; the useradd tool creates a new user account:

groupadd mysql
useradd -g mysql mysql

Note, that the mysql user is immediately added into the mysql group. These commands must
be executed with root privileges. Preparation continues by decompressing of the source archive,
suppose that it is downloaded into the tmp directory:

cd /tmp
tar xzvf mysql-5.1.45.tar.gz && cd mysql-5.1.45

1http://www.mysql.com/downloads/mysql

62

Doctoral thesis Vladimír Jarý

It is advisable to define and export several environment variables, namely CHOST, CFLAGS,
and CXXFLAGS in order to help the compiler to produce executable files optimized for given
processor architecture (Intel Xeon in this case). By using a correct compiler options, it is possible
to achieve performance increase of up to 30%, [37].

CHOST="x86_64-pc-linux-gnu"
export CHOST
CFLAGS="-fPIC -march=nocona -O2 -pipe -fno-strict-aliasing"
export CFLAGS
CXXFLAGS="${CFLAGS}
export CXXFLAGS

The CHOST environment variable defines a system architecture, in this particular case a 64–bit
system based on the linux kernel. Then, the parameters that should be passed to the C (the
CFLAGS variable) and C++ compilers (the CXXFLAGS variable) are defined and exported.
The parameter march passed to the compiler defines a type of processor (Nocona is a code
name of processor architecture that contains the Intel Xeon). The fPIC (Position Independent
Code) flag is required for building shared libraries, the pipe flag instructs the compiler to use Unix
pipes instead of temporary files for the inter process communication which significantly increases
the speed of the build process. The fno-strict-aliasing flag is used to prevent a compiler from
producing unwanted optimizations that could generate invalid code. The gcc compiler supports
several levels of optimizations that can be enabled by the O flag. We have used the second level
O2 that enables almost all optimizations with exceptions of loop unrolling, function inlining,
and register renaming. The second level increases time required to complete the compilation,
however it also produces faster code. More information can about compiler flags can be looked
up in the manual [41].

Listing 4 Configuration of the build process of the MySQL software
./configure --with-readline \

--with-ssl \
--without-debug \
--enable-shared \
--enable-assembler \
--sysconfdir=/etc/mysql \
--localstatedir=/var/lib/mysql \
--datadir=/data/mysql \
--with-unix-socket-path=/var/lib/mysql/mysql.sock \
--with-mysqld-user="mysql" \
--with-extra-charsets=complex \
--with-embedded-server \
--with-big-tables \
--enable-local-infile \
--enable-thread-safe-client \
--with-named-thread-libs="-lpthread" \
--with-plugins=partition,innobase,innodb_plugin

The source package of the MySQL includes the configure script that searches the system for
various components that are required to build the source codes (e.g. compiler, linker) and also

63

Vladimír Jarý Doctoral thesis

run the MySQL software. If the script detects any problems, it generates a corresponding error
message. In case of success, it prepares the Makefile file which contains instructions needed
to build the MySQL server and client applications. By passing additional parameters to the
configure script, it is possible to enable (or disable) optional features or change various default
variables such as the installation directory. The parameters that have been passed to the script
are shown in Listing 4.

Because the server will be used in the production environment, support for debugging has
been disabled by the without-debug flag in order to increase performance. On the other hand,
support for multithreaded client has been enabled. We have enabled plugins that support
InnoDB storage engine and partitioned tables. Additionally, we have enabled support for very
large tables (up to 1.844 × 1019 rows), secured communication based on the SSL library, more
characters sets, and embedded server. We have moved a location of the configuration files into
the /etc/mysql directory. The table data and replication logs will be stored on a separate
partition in /data/mysql directory (see above). Server will be running under the mysql user
account which was created in previous steps. Remaining parameters are described in the official
MySQL documentation [37].

If the configure script finishes without errors, it is possible to build and install MySQL server
and clients applications by entering the following commands:

make
make install

At this moment, the installation is finished, however some further actions are required before
the the server can be started. Directories for database data, logs, and configuration must be
created and owner of these directories must be set to the mysql account.

mkdir /etc/mysql
mkdir /var/lib/mysql
chown mysql.mysql /var/lib/mysql
mkdir /data/mysql
chown mysql.mysql /data/mysql

Then, global configuration file for the server and for various client applications (my.cnf) must
be provided. Source archive with MySQL distribution contains several templates. Since very
high load of the database servers is expected, the template my_huge.cnf has been used. At first,
this template is copied into configuration directory /etc/mysql:

cp support_files/my_huge.cnf /etc/mysql/my.cnf

We have modified several predefined values in order to improve the performance. The con-
figuration file is divided into several sections. In the [server] section, variables that modify a
behaviour of the MySQL server are defined. We have removed the skip-networking option to
enable communication over the TCP/IP. With this option, the communication between client
and server is based on local Unix sockets which is much faster than the TCP/IP communication,
however clients must be running on the same machine as the server. Then, we have used the
datadir variable to define a directly that should be used for storing database data. Since we have
decided to use the MyISAM storage engine, we have added the skip-innodb option that prevents
the InnoDB from loading at start of the server. To improve a performance of the MyISAM
engine, we have included the skip-external-locking option. With this option, the server does not
lock files with MyISAM. When using this option, one must guarantee that the MySQL server is

64

Doctoral thesis Vladimír Jarý

the only process that is modifying these files. To enable concurrency support, we have config-
ured the thread_concurrency to double of the processor cores. By setting the max_connections
variable, we have defined a maximal number of clients that can be connected to the server at
one time. We have also used the long_query_time and log_slow_queries variables to enable
logging of the slow queries. Knowledge of the slow queries is very important for detecting of the
incorrectly indexed tables. The server section of the configuration file also serves for setting up
of the replication which is described in Section 3.3 of this chapter.

The behaviour of the SQL shell mysql can be altered in the [mysql] section of the configu-
ration file. Here, we have added the no-auto-rehash option that disables completion of column,
table, and database names which makes the mysql client to start faster. If required, the name
completion can be enabled by typing the Rehash command on the SQL console. Additionally,
we have provided a port option that defines to which port should the client connect. For the
security reasons, we have removed the password parameter, thus each user (with the exception
of the anonymous user) connecting to the database must enter the password.

In the [mysqldump] section, the behaviour of the database backup tool mysqldump is defined.
We have added the quick flag that forces the program to retrieve rows for a table from the
server a row at a time which speeds up dumping of large tables. Additionally, we have increase
a maximal size of the packet that can be received from the server to 16MB by adding the
max_allowed_packet variable.

When the global configuration is defined, it is possible to initialize system databaze mysql
that contains information about database users and user privileges. To create it, type

mysql_install_db --user="mysql"

Finally, MySQL server can be launched:

mysqld_safe --user="mysql"

After a first start of the server, one should immediately set the password for MySQL adminis-
trator account which is called root. This can be achieved by the utility mysqladmin:

mysqladmin -u root password <password>
mysqladmin -u root -h pccodb0X.cern.ch password <password>

To simplify starting and stopping of the server, we have registered the mysqld process as a known
system service. To do so, we have extracted the start up script from the binary RPM package
of the MySQL 5.0.77. Then, we have copied the script into the /etc/init.d directory and used
the chkconfig utility to add the mysqld to list of services that should be started when system
enters runlevels 3 (full multiuser mode) and 5 (multiuser mode with X Window system). The
initialization script can also be used to manually start, stop, or restart the MySQL server:

/etc/init.d/mysqld {start|stop|restart}

3.3 Database replication

The database replication is a mechanism in which changes made to databases on a master server
are propagated into databases on slave servers. In MySQL, the replication is implemented by
several processes that are writing and reading log files containing changes made to the database
tables. The replication is an asynchronous process, the slave servers do not have to be connected
to the master server permanently.

65

Vladimír Jarý Doctoral thesis

At the Compass experiment, the physical database servers pccodb11 and pcodb12 are syn-
chronized by the master–master replication. Furthermore, the server pccodb11 is replicated to
server compass02 that is located in the CERN IT center. This topology serves the following
purposes:

1. high availability ; the database service is powered by two physical servers that are syn-
chronized by the master–master replication. If one of the servers crashes, the service is
still available. When the recovery of a crashed server is completed, it uses the replication
synchronize itself.

2. backups; during regular backups, the database tables need to be locked. Thus the backup
is executed on one of the servers; the replication is temporarily paused on this server.
When the backup is finished, tables are unlocked and replication resumed. The process is
transparent to clients, they communicate with the other server that is unaffected by the
backup process and table locking.

3. data distribution to long distances; one physical server is also replicated into the CERN
computing center. From there, it is replicated into other database servers that are running
at home institutes of the members of the Compass collaboration. This configuration is
known as a chain replication and can be regarded as a form of a geographical backup.

4. load balancing and scalability ; with help of the MySQL Proxy software, it is possible to use
the replication to implement load balancing. The proxy software would forward all queries
that modify data to one server, the queries that only retrieve data would be distributed
between slaves. By adding more slaves, it would be possible increase a performance of the
database service, if needed.

On the master server, a binary log is created provided that the log-bin option is set in the
configuration file my.cnf. All events that modify table data or structure are written into this
log together with a timestamp of modification. The replication is based on three processes, one
works on the master server, the remaining two on the slave server. On the master server, the
Binlog dump thread is running; its purpose is to read the contents of the binary log and send
the updates from this log to the slave server. On the slave server, the I/O thread connects to
its master server, receives the updates of the binary log, and writes them into the relay log.
Finally, the slave SQL thread reads the modifications stored in this relay log and executes them.
The master server creates a separate Binlog dump thread for each slave that participates in the
replication. Each of these slaves has its own I/O and SQL threads. To see whether these threads
are running, one can use the Show Processlist statement on the SQL console.

The MySQL supports three formats of replication: statement based replication SBR, row
based replication RBR, and mixed–format logging. In version 5.1.45 of the MySQL software,
that has been installed on the new server, the SBR is the default format. In this format,
the entire SQL statements that modify table data or table structure are replicated. The main
advantage of this format lies in the fact that less data is written into the binary log: if an update
or a delete affects multiple rows, only this one statement is logged. Since the log contains all
the statements that modify data, it can be used as an incremental backup. On the other hand,
this format cannot replicate all types of statements that modify the data, especially the non–
deterministic behaviour cannot be replicated. The RBR is the safest replication format, it
can replicate all types of the modifications. In contrast to the SBR format that replicates the
statements, the RBR format replicates the results of the statements, i.e. the changed rows.
Unfortunately, the RBR requires more disk space and additionally, the executed statements
cannot be reconstructed from the binary log. The mixed format combines the advantages of the

66

Doctoral thesis Vladimír Jarý

SBR and RBR formats. By default, the SBR format is used, only when an unsafe update is
executed, the format is switched to the RBR.

Configuration of the master–master replication

In the new database architecture, we have configured the servers to use the master–master
configuration. In this configuration, the server pccodb11 acts as a replication master of a slave
server pccodb12. At the same time, the server pccodb11 acts as a replication slave of a master
server pccodb12. The configuration of the master–master replication can be divided into several
steps. In the first step, we have configured the pccodb11 server as a replication master by adding
multiple parameters into the server configuration file /etc/mysql/my.cnf:

server-id = 1
log-bin=/data/mysql/mysql-pccodb11-bin
expire-logs-days = 10
max_binlog_size = 1024M
binlog-ignore-db=DATE2006_log
#other databases to ignore
binlog-do-db=DATE2009_log
#other databases to include into binary log

Each server in the replication environment must be identified by its unique id that is defined by
the server-id variable. Then, the binary logging is enabled by defining the value of the log-bin
variable; it specifies the path to the binary log. The log should be kept for 10 days and after each
1GB of updates, new log file should be created. Finally, using a combination of binlog-do-db
and binlog-ignore-db parameters, we specify which databases should be included and excluded
into the binary logging. Here, we have disabled logging of the changes into the DATE2006_log
database as it contains historical data which do not change anymore. Note that MySQL also
supports a replication of a single table. The server must be restarted in order to start the binary
logging. Then, it is possible to create a special database user account that will be used only for
the replication by the Binlog Dump thread:

GRANT REPLICATION SLAVE ON *.*
TO ’replicationdb’@’<IP address of pccodb12>’
IDENTIFIED BY ’<password>’;

The state of the master can be displayed by entering the Show Master Status command
(see Listing 5). One should use the output of the command to note down the values of the File
and Position parameters that are necessary during configuration of the replication slave. The
output also shows which databases are included or excluded into or from the binary logging.

Listing 5 Status of the replication master
SHOW MASTER STATUS;
+---------------------------+-----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------------------+-----------+--------------+------------------+
| mysql-pccodb11-bin.000004 | 544465063 | DATE2006_log | DATE2009_log |
+---------------------------+-----------+--------------+------------------+

67

Vladimír Jarý Doctoral thesis

In the second step, the server pccodb12 is configured as a replication slave of a replication
master pccodb11. Again, several parameters needs to be added into the server configuration file
/etc/mysql/my.cnf:

server-id=2
master-host=<IP address of the pccodb11 server>
master-port=3306
master-user=replicationdb
master-password=<password for the replicationdb user>
replicate-ignore-db=DATE2006_log
#other databases to ignore
replication-do-db=DATE2006_log
#other databases to replicate
log-slave-updates

We have assigned the unique value 2 to the server-id of the pccodb12 server. Then, we have
entered several parameters (IP address, port, user name, and password) that are needed by
the slave I/O thread to establish a communication with the master’s Binlog Dump thread. The
combination of the replicate-do-db and replicate-ignore-db variables defines databases that should
and should not be replicated from the master server. Finally, we have enabled the log-slave-
updates option that forces to include the replicated statements to the binary log on the slave
server. This is required when building the chain replication topology. Then, it is possible to
connect the slave I/O thread to the Binlog Dump thread on the master by entering the Change
Master statement on the SQL console:

CHANGE MASTER TO
MASTER_HOST=’IP address of pccodb11’,
MASTER_PORT=3306,
MASTER_USER=’replicationdb’,
MASTER_PASSWORD=’<password for the replicationdb user>’
MASTER_LOG_FILE=’mysql-pccodb11-bin.000004’,
MASTER_LOG_POS=’544465063’;

Note, that the values for the Master_Log_File and Master_Log_Pos parameters cor-
respond to the value of the File and the Position parameters from the Show Master Status
statement (see above). The slave can be started by the Start Slave command. The slave cre-
ates and update the master info log that contains the connection parameters and position in the
binary log. To verify that slave has started correctly, one can use the Show Slave Status state-
ment that generates report of the slave status. One should check that the Slave_IO_Running
and Slave_SQL_Running parameters contain the value Yes and the Slave_IO_State is Waiting
for master to send event.

At this stage, the pccodb11 server works as a master and the pccodb12 server works as a
slave. To complete the master–master configuration, the above described procedure needs to be
repeated while changing roles of the pccodb11 and the pccodb12 servers.

There is a potential threat connected with the multi–master replication and tables that
contain an automatically incremented integer column (Auto_Increment). If new rows are
inserted into those tables at the same time, the servers may become desynchronised. To elim-
inate this issue, a small modification of the server configuration file is required. One needs
to add the auto_increment_increment parameter and set it to N where N is the number of

68

Doctoral thesis Vladimír Jarý

hosts that participate in the multi–master replication (i.e. two in this case). Additionally, the
auto_increment_offset option must be added into the configuration file and set to different
values from the set 1, 2, . . . , N on all servers.

3.4 Configuration of the MySQL Proxy

MySQL Proxy is a software that analyzes and modifies the communication between the MySQL
client applications and the MySQL server. In the default configuration, the proxy only redirects
queries issued by clients to the backend database server and it returns the unchanged results to
the clients. The behaviour of the proxy software can be programmed by the scripts in the Lua
language. Then, the proxy can modify (e.g. correct mistakes in statements) or filter queries (e.g.
remove the unoptimized queries). Also, the rows can be added, removed, or modified in a result
set produced by the MySQL server. The package with the MySQL Proxy installation contains
several example Lua scripts. Additionally, the MySQL Proxy supports changing the backend
server within a running connection since version 0.6. This feature can be used to implement
a slave aware load balancing. In this mode, the proxy forwards all queries that modify table
structure or data (e.g. Insert, Update, Delete, Alter, Drop, Create statements) to the
replication master. The queries that only retrieve results (i.e. Select statement) are distributed
between the replication slaves. This system is scalable, more slaves can be added in case a higher
performance of the database service is needed.

We have used a MySQL Proxy software to implement a fail–over feature. In this configu-
ration, the proxy forwards all communication to one physical server, normally pccodb11. If a
watchdog process (Nagios in our case, see the following section) detects a failure of this server,
it instructs the proxy to change the backend to the remaining pccodb12 server. We have down-
loaded the binary package with the MySQL Proxy and extracted it into the file system on the
pccodb10 server. Then, we have used the Bash language to create a start script for the proxy.
The script takes one parameter that specifies the backend server. If the value of the parameter
equals 1, the proxy forwards the traffic to the pccodb11 server, if the value of the parameter
equals 2, then the proxy forwards the traffic to the pccodb12 server. Any different value of
parameters causes that the script finishes without starting the proxy. Suppose, that the proxy
is installed in the ROOT_DIR, then the following parameters are required to configure proxy to
forward all traffic to the pccodb11 server:

ROOT_DIR=/usr/local/mysql-proxy
LUA_PATH="$ROOT_DIR/share/doc/mysql-proxy/?.lua" \

$ROOT_DIR/bin/mysql-proxy \
--proxy-address=$ADDRESS:$PORT\
--daemon \
--proxy-backend-addresses=$MASTER1:$PORT

The ADDRESS and PORT variables contain a hostname and a port number under which should
be the proxy available. The MASTER1 variable hold the IP address of the pccodb11 server that
should be set as a backend server. The proxy should be started as a Unix daemon.

The installation package contains the ro-balance.lua script that should be passed to the
MySQL Proxy, if the slave–aware load balancing is needed. Additionally, the proxy should be
started with the proxy-read-only-backend-addresses parameter:

LUA_PATH="$ROOT_DIR/share/doc/mysql-proxy/?.lua" \
$ROOT_DIR/bin/mysql-proxy \

69

Vladimír Jarý Doctoral thesis

--proxy-address=$ADDRESS:$PORT\
--daemon \
--proxy-backend-addresses=$MASTER:$PORT #\
--proxy-read-only-backend-addresses=$SLAVE1:$PORT \
--proxy-read-only-backend-addresses=$SLAVE2:$PORT \
--proxy-lua-script=$ROOT_DIR/share/doc/mysql-proxy/ro-balance.lua

The Proxy forwards the queries that modify data to the server specified by theMASTER variable
and the queries that only retrieve results forwards to replication slaves specified by the SLAVE1,
SLAVE2 parameters.

3.5 Backup and monitoring

Together with the MySQL master–master replication, the regular backups and the continuous
monitoring are the vital components that contribute to the high availability and the high relia-
bility of the database service. The backup is based on custom script that are regularly executed
by the system scheduler cron, the monitoring is based on the Nagios system.

Database backups

There are three types of backups at the new database architecture: daily, hourly, and incremen-
tal. The daily and hourly backups are implemented by a shell script that uses the mysqldump
tool to backup table data and are regularly executed by the system scheduler cron on both
database servers pccodb11 and pccodb12. However, as the mysqldump tool locks the table, the
script is terminated on the server that acts as a backend for the MySQL Proxy. We have created
a simple script getmaster that is deployed on the proxy server pccodb10 and returns the address
of a current backend server. The daily backup creates a full dump of all databases with the ex-
ception of the DATE_log database. This database contains software log that are not critically
important, thus only structure of tables in this database is backed up to save time. To reduce
time required to load the backup back into the server, the dumps are created with a –disable-
keys option that adds the Alter Table Disable Keys statement before the dumped data
and the Alter Table Enable Keys at the end of the dumped data. The database dumps are
compressed by the gzip program to save disk space. Additionally, the old compressed backups
are deleted after several days. The hourly backup is implemented in a similar fashion. However,
the beamdb database is not backed up at all on hourly basis. As the beamdb is the largest logical
database, the hourly backup is created much faster than the daily backup. During the backup
process, the database replication is temporarily paused. When the backup is completed, the
replication is resumed and the server resynchronizes itself with the backend server.

Since all the SQL statements that modify data are written into the binary log during the
database replication, the binary log can be regarded as an audit tool and also as an incremental
backup. The contents of the binary log can be browsed using the mysqlbinlog utility (as the relay
logs on the slave servers have the same format as the binary logs, they can also be inspected
using this utility). The mysqlbinlog tool converts the binary log into a plain text that can be
afterwards imported back into the database:

mysqlbinlog binlog.000001 > /tmp/backup.sql
mysqlbinlog binlog.000002 >> /tmp/backup.sql
mysql -u root -p < /tmp/backup.sql

70

Doctoral thesis Vladimír Jarý

Furthermore, it is possible to remove problematic statements (such as an accidental Delete or
Drop statements) from the dump before importing it into the server. The mysqlbinlog program
support the –start-datetime parameter that forces the program to start reading the log from the
given timestamp. Thus, in case of accident, it is possible to recover almost all data by merging
information from the daily, hourly, and incremental backups.

The databases are also replicated to the server located in the CERN computing center and
consequently, this server is replicated into several computing centers of the Compass member’s
home institutes. The chain replication thus serves as a geographical backup. Should any severe
accident occur in the Compass experiment hall, the database contents can still be recovered
from the remote servers.

Monitoring system

The computers participating in the data acquisition system of the Compass experiment are
continuously monitored by the Ganglia system. Ganglia measures the available resources such
as a disk space or CPU usage and displays the state of machines in a graphical form that
is easily comprehensible by members of the shift crew. However, we have decided to use the
Nagios monitoring system to watch over the database system. The Nagios also monitors available
resources on the remote host and presents the results in a graphical web interface. In contrast to
Ganglia,a Nagios can monitor the state of the remote services. Furthermore, the Nagios system
is able to perform a predefined action in case an accident is detected. Nagios can also notify a
system operator by an e-mail or a text message.

Nagios is very flexible system, it is possible to extend it by the plugins. A Nagios plugin is
a small application or a script that monitors a state of some service or resource. Nagios plugin
should return an integer value with the following meaning:

1. STATE_OK is returned if the service is working as expected,
2. STATE_WARNING means that the state of the service should be investigated,
3. STATE_CRITICAL should be returned if the service behaves abnormally or does not run

at all,
4. STATE_UNKNOWN indicates that the plugin is not able to verify the state of the service.

The Nagios plugin can also print several lines describing the state of the service or the resource
on the standard output. The Nagios system periodically executes the plugins and displays these
messages in a graphical web interface. Additionally, if the state of some service changes (typically
from the STATE_OK to the STATE_CRITICAL), Nagios notifies the operator and executes
the predefined action (typically restarts the crashed service).

Several most commonly used plugins are distributed by the Nagios developers in the nagios-
plugins package. Many other plugins can be download from the Nagios Exchange website, [38].
Finally, one can use almost any programming language to develop a custom plugin. We have
decided to use the default plugins to monitor CPU usage, free space on disk partitions, state
of network interface, and state of the system scheduler cron on the database servers. From the
Nagios Exchange, we have downloaded plugins that monitor state of the MySQL server and
state of the database replication. We have also developed a custom plugin in a Bash language
that monitors a temperature of the CPU cores.

The custom plugin called check_cpu_temperature uses the sensors utility that reads and
prints information provided by various hardware sensors. The database servers are equipped by
two quad core Intel Xeon processors. In order to access the temperature sensor, the coretemp
kernel module is required to be installed and loaded. The module can be installed from the

71

Vladimír Jarý Doctoral thesis

RPM package provided by the Exta Packages for Enterprise Linux package repository, [32].
The sensors prints several lines of text, the lines that correspond to the temperature of a CPU
core have the following format:

Core $C: +$T °C (high = +100 °C)

The $C variable is replaced by the core number, the $T variable is replaced by the measured
temperature. The cores are numbered from 0 to 7, the script uses the for cycle to process
information of all cores:

MAX=0
for i in ‘seq 0 $CORES‘
do

temp=‘/usr/bin/sensors | grep "Core $i" |
cut -d "+" -f 2 |
tr -cd ’[[:digit:],[.],[,]]’‘

REPORT=$REPORT" Core $i: "$temp"C"
if [$temp -gt $MAX] ;
then

let MAX=$temp;
fi

done

The $CORES variable contains number of process cores. Using the seq tool, a set of numbers
{0, 1, . . . , $CORES} is generated. In each iteration, a temperature for the corresponding CPU
core is extracted from the output of the sensors tool with a set of tools that are chained together
by the pipe | operator. At first in $i-th iteration, the regular expression parser grep is used
to select the line that contains the “Core \$i string“. Then, this line is passed to the cut
program that selects second column of the output divided by the + separator, i.e. it produces
the ”$T °C (high =” string that is passed to the tr program which transforms or removes
characters from the given string. In this example, the tr returns only digits. This means that
the whole chain of programs extracts the value of the temperature of the $i-th processor core.
The value is appended to the $REPORT variable that will be printed on the standard output
and later displayed in the web interface of the Nagios. In the Bash language, the square brackets
are used for tests, the gt operator tests if the left argument is greater than its right argument.
Thus, when the cycle processes all cores, the variable $MAX contains a temperature of the
warmest core.

When the cycle is completed, the script uses the $MAX variable to decide which value should
be returned. Variables $warn and $crit contain a threshold values for signaling a warning and
a critical state. We have set the warning threshold to 80 ◦C and the critical threshold to 90 ◦C.
At around 100 ◦C the server should be automatically halted to prevent a damage from the
overheating. We have observed that under the normal conditions, the core temperatures remain
around 45 ◦C.

if [$MAX -lt $crit]; then
if [$MAX -ge $warn]; then

echo "WARNING - Max temperature is high ($MAX C)"
echo $REPORT
exit $STATE_WARNING;

fi
fi

72

Doctoral thesis Vladimír Jarý

Two nested tests are evaluated to decide whether a measured maximal temperature is lesser
than the critical threshold (the lt operator) and at the same time, it is greater or equal than
the warning threshold (the ge operator). If both conditions are fulfilled, the script prints a
warning message with a highest temperature and list of core temperatures. Nagios displays
this text in a web interface. The script exits with STATE_WARNING return value. The code
for signaling the STATE_CRITICAL and STATE_OK is similar to this block. If the $MAX
variable equals zero, the sensors were not able to detect the core temperature. In this case, the
STATE_UNKNOWN code is returned.

Since the Nagios package has not been in official repositories of the Scientific Linux CERN
distribution, we have installed the Nagios by the source codes compilation. We have decided to
install Nagios and Nagios plugins on the proxy server pccodb10, on the database servers pccodb11
and pccodb12 we have installed only plugins. Since Nagios displays the state of the system using
the dynamic web pages created in the PHP language, a web server needs to be configured before
the Nagios installation. Binary package for the Apache web server and PHP language have
been available in the SLC repository, we have installed them using the yum tool. For the safety
reasons, it is recommended to create a dedicated Unix user account and group that will be used
to execute Nagios commands and plugins:

useradd -m nagios
passwd nagios
groupadd nagcmd
usermod -a -G nagcmd nagios
usermod -a -G nagcmd apache

At first, the nagios account is created, then a password for this account is set. Then a new
group nagcmd is added into the system and nagios and apache user accounts are added into
the new group using the usermod tool that modifies user accounts. When the accounts are
prepared, it is possible to decompress the source package with Nagios sources. The configure
script detects all required components and configures the build process. If the configuration
succeeds, the Nagios can be built from source codes by using the make all tool. After the
compilation, it is possible to use the make install command to install Nagios binaries, make
install-init to install the initialization script, make install-config to install default configuration
files, and make install-commandmode to configure directory for external commands. Then, it
is necessary to enter name and e-mail of the operator into the contacts.cfg configuration file.
Then, the configuration file for the web interface needs to be installed into the Apache conf.d
directory by entering the make install-webconf command. Also, the user account for the web
interface of the Nagios needs to be created:

htpasswd -c /usr/local/nagios/etc/htpasswd.users nagiosadmin

In the next step, the Nagios plugins must be installed. The plugins are distributed in a source
package that can be compiled and installed by a traditional configure, make, and make install
procedure. The plugins must be installed on all machines that are required to be monitored by
Nagios. Finally, it is possible to use the chkconfig utility to register Nagios as a known service
and add it to a list of service that should be automatically started after a boot of the operating
system.

After the installation, it is necessary to configure which machines and which services and
resources should Nagios monitor. The Nagios configuration is split into several files. The general
configuration of the system including path to the other configuration files or logging and debug

73

Vladimír Jarý Doctoral thesis

options is stored in the nagios.cfg file. The configuration file contacts.cfg has already been
edited during the installation. Then, for each monitored host, two configuration files should be
provided: hostname.cfg and hostnameservice.cfg (hostname should be replaced by actual
hostname of the machine). The hostname.cfg file contains IP address, hostname, role, and
description of the host. In Listings 6, the configuration of the pccodb11 server is written.

Listing 6 Nagios configuration: definition of host
define host{

use pccodb
host_name pccodb11
alias COMPASS DB server 1
address #ip address of the server

}

The configuration file hostnameservices.cfg for the pccodb10 and pccodb12 servers is similar.
The file defines a list of services and resources that should monitored on the corresponding
host. Each service in this file can be characterized by several parameters: its name, description,
category, check command and parameters of the check command, check interval, or retry interval.
In Listing 7, the service that checks the availability of the MySQL server software is described.

Listing 7 Nagios configuration: definition of service
define service{

use generic-service
host_name pccodb11
service_description MySQL server
max_check_attempts 3
check_interval 2
retry_interval 1
check_command check_nrpe!check_mysql
notification_options w,c,r
event_handler restart-proxy1

}

The service should be checked on the pccodb11 server. The description of the service will be
used in the web interface of Nagios. The service should be checked every 2 minutes. In case
a problem with the service is detected, the service should be rechecked every minute. After
three problems in a row, the event_handler should be executed. The restart-proxy1 handler
changes the backend server of the MySQL Proxy to the pccodb12 server. The w, c, r values of
the notification_options parameter specify that the operator should be notified each time the
server enters a warning state (w), a critical state (c), or recovers back into an ok state (r).

The check commands and event handlers are defined in the commands.cfg file. Each com-
mand or handler is characterized by its name and its command line. Listing 8 describes the
check_proxy command that verifies the state of the MySQL proxy process:

Since the MySQL Proxy runs at the same host pccodb10 as the Nagios, the corresponding
Nagios plugin check_procs can be executed locally on pccodb10. The check_procs plugin checks
how many processes with the name specified in the C argument are running. The value 1 : of
the c argument means that the plugin should return a critical status if less than 1 process with

74

Doctoral thesis Vladimír Jarý

the name mysql-proxy is running; i.e. when the mysql-proxy is not running at all on the pccodb10
server.

Listing 8 Nagios configuration: definition of command
define command{

command_name check_proxy
command_line $USER1$/check_procs -C mysql-proxy -c 1:

}

Nagios can also monitor services and resources on the remote hosts, e.g. on pccodb11 and
pccodb12. If the service listens on some port, the Nagios can try to communicate to this service
(e.g. http server). However some services (e.g. cron) and most resources cannot be checked by
this direct approach. For this reason, Nagios provides two means of indirect communication.
First method is based on the check_by_ssh plugin which connects to the remote server using
the secure shell (ssh), executes the required check plugin locally, and returns the status to the
Nagios. However, this method requires that the Secure Shell Server is installed, configured, and
running on all remote hosts. Furthermore, if many services are monitored on many remote host,
this method can burden the CPU.

Figure 4.5: Monitoring remote resources and services using the Nagios Remote Plugin Executor.
Rectangles represent Nagios processes, elipses represent monitored services and resources.

The second method of the indirect checks is based on the Nagios Remote Plugin Executor
(NRPE). The NRPE is an agent that is installed on the remote hosts. It listens on the TCP port
5666. Nagios uses the check_nrpe plugin to send check command to NRPE, NRPE executes it
and returns the corresponding status of the requested service.

We have installed the NRPE on the pccodb11 and pccodb12 servers by building the source
package. Note that the NRPE requires that Nagios plugins are already installed on the given
host. Again, we have used the configure script to prepare the compilation process and make all
to start the compilation. Then, we have installed the nrpe agent by entering the make install-
daemon command and configuration file by entering the make install-daemon-config command.
To enable a network communication, we have registered the nrpe as a service under the Extended
Internet Daemon (xinetd) server by entering make install-xinetd command. Then, we needed
to insert the information about the nrpe into the /etc/services file:

nrpe 5666/tcp #NRPE

This means that the xinetd server passes all request on the TCP port 5666 to the nrpe agent.
Finally, for the security reasons, we have entered the IP address of the proxy server (i.e. pccodb10)

75

Vladimír Jarý Doctoral thesis

to the variable only_from in the configuration file /etc/xinet.d/nrpe, thus the nrpe agent can
receive commands only from this machine. To start the nrpe agent, one needs to restart the
xinetd server.

In the above example, the definition of the service that monitors state of the MySQL server
has been described. According to this example, the check command uses the nrpe agent. How-
ever, the check_nrpe plugin must be installed on the monitoring host pccodb10. The source
package is available, it can be installed by the usual configure, make, make install-plugin se-
quence of commands. Then, the check_nrpe command needs to be defined in the commands.cfg
file according to Listing 9.

Listing 9 Nagios configuration: definition of check_nrpe command
define command{

command_name check_nrpe
command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$

}

In the command line, the host address and additional arguments are passed to the check_nrpe
plugin. Nagios retrieves the host address from the host configuration file (e.g. pccodb11.cfg),
the arguments are defined in the service definition after the exclamation mark: in this case, the
plugin takes only one parameter with value check_mysql that specifies which command should
executed by the nrpe agent on the remote host. This command must be defined in the nrpe.cfg
configuration file on the remote hosts pccodb11 and pccodb12. The command definition should
contain a Nagios plugin that should be executed and optional arguments that should be passed
to this plugin.

command[check_mysql] =
/usr/local/nagios/libexec/check_mysql -u nrpe -p nrpe

The check_mysql plugin tries to connect to the MySQL server on the localhost with user name
nrpe and password nrpe. Then it executes the Show Status statement that prints several
variables that describe a current state of the server. The check_mysql plugin extracts part of
this information such as uptime of the server, number of queries, or number of active connection
and prints it on the standard output. The NRPE returns this information to the Nagios process
that displays it on the web interface.

The Nagios web interface can be accessed on the Compass internal web server under the
address http://pccodb00/nagios Although a shift crew still uses the Ganglia monitoring sys-
tem, the Nagios has already identified several problems of the MySQL replication. Thanks to
the reporting capability, the problems have been quickly resolved and the data acquisition has
not been affected.

3.6 Data migration and verification

After completing the configuration of the MySQL and MySQL Proxy on new database servers,
it was possible to transfer database structure and data from the old to the new servers. Many
changes have been implemented in the new version of the MySQL since the version 4.0.77. Ad-
ditionally, 32–bit version of the operating system had been installed on the old servers, while we
have installed 64–bit operating system on the new servers. Some of these changes could poten-
tially affect the backward compatibility, thus it was essential to verify that the data remained
unchanged on the new servers. To prevent the clients from modifications of the data, we had to

76

Doctoral thesis Vladimír Jarý

temporarily disable the virtual address pccodb00. The process has been thoroughly planned and
tested in order to reduce the downtime of the database service, yet it took almost 12 hours to
complete the process.

At first, we have used the mysqldump tool to create backup of the all databases on the old
pccodb02 server. A database dump created by the mysqldump tool is a text file that contains
SQL statements Create Database and Create Table that create empty databases and
tables followed by the Insert statements that populates the tables with data. When importing
the dump file into the database server, these instructions are used to reconstruct the structure
and the data. We have used the mysqldump tool with several parameters:

• The --quick (-q) option makes the mysqldump to receive table rows from server a row at
time. This parameter should be used especially when dumping of large tables.

• The --extended-insert (-e) parameter instructs the mysqldump tool to generate Insert
statements that should include multiple values. The bulk insert reduces overhead and size
of the dumped files and therefore increases the speed of insertion of the dump into the new
servers.

• The --skip-dump-date option disables dumping of a current timestamp into the dump files.
We have used this option because the dumps of the same tables created at different times
are different which would affect the verification process. For the same reason, we have also
used the --skip-comments parameter that disables dumping additional metainformation
about the system into the dump files.

We have found out that several tables that contained large VarchChar or BLOB columns
could not be properly dumped. To solve the issue, we had to set the max_allowed_packet
variable that affects the maximal size of a packet that can be received to 16MB. Although, the
mysqldump can create a dump of the entire database, we have decided to create a dumps on
the table level to simplify the process of data verification. For the same reason, we have used
the --no-data and --no-create-info parameters to distribute a table structure and table data of
each table into two files. The dump files have been copied over network using the scp tool to
the pccodb11 server. Then, we have used the mysql client application to import the dumps into
new database server:

mysql -u root -p -h localhost < table.frm.sql
mysql -u root -p -h localhost < table.data.sql

We have redirected the standard input from the keyboard to the dump files using the redirection
operator <. At first, table structure is created, then the table is populated with data. Note that
the pccodb12 server resynchronizes itself thanks to the database replication. After importing
all tables, a data verification had to be performed. However, several databases should not
be compared: the information_schema is a database containing metainformation about other
databases managed by the server, this database has been implemented in version 5 of the MySQL
server, thus it does not exists in the old servers. The mysql database is a system database with
information about users and privileges, its format changed between versions 4 and 5 of the
MySQL server. Finally, the phpmyadmin database stores data of the web database management
tool called phpMyAdmin; since we have installed newer version of the tool on the new server,
the format of the database has changed as well. We have created and compared four dumps of
each database table:

• dump from the new server created by 64–bit mysql client in version 5.1.45

77

Vladimír Jarý Doctoral thesis

• dump from the new server created by 32–bit mysql client in version 4.1.22
• dump from the old server created by 64–bit mysql client in version 5.1.45
• dump from the old server created by 32–bit mysql client in version 4.1.22

This time, we have used the mysql client application to execute the Select * From statement
that prints all rows from the given table on the standard output; we have redirected the stan-
dard output to the disk file using the redirection operator >. The output produced by the mysql
client does not contain the Insert statement, thus it is more compact than output produced by
the mysqldump tool. Still the output of the largest database tables (e.g. table ECAL_MON
with monitoring data of the electromagnetic calorimeter, table messages with debug messages
generated by the Date software) contained several gigabytes of data, therefore a fast file com-
parison method had to be employed. As a first step, we have decided to compare the dumps
with a md5sum tool which calculates a 128 b message digest (a hash) of a given file or message
using the MD5 algorithm, [29]. It is clear that the MD5 is not an injective function; however
probability of a hash collision (i.e. a case when two different messages produce the same hash) is
vanishingly small and can be neglected. Some databases contain several hundreds of tables (e.g.
DATE_log), thus we needed to automate the process of creating table dumps and calculating
the hashes. The MySQL server creates a separate directory for each logical database and stores
all tables from given logical database into the corresponding directory. Furthermore, each My-
ISAM table is represented by several files in this directory: FRM file contains table structure,
MYD file contains table data, and MYI file contains table index. We have used this knowledge
to develop a shell script that iterates over all files in a given database directory and for each
FRM files, it creates a dump and calculates the check sum.

#!/bin/bash
HOST="$1"
DB="$2"
DUMP="/tmp/dump.txt"
LOGFILE="/tmp/report-$DB.log"
DATADIR=/data/mysql

This script takes two parameters: address of database server and name of logical database.
In the Bash language, the value of the n–th parameter is stored in a special variable $n The
variable $0 contains the name of the script. At first, the value of the command line parameters
is assigned to the HOST and the DB variables. The DUMP variable contains a path to the
dump file, the LOGFILE contains path to the file with md5 checksums. Finally, the DATADIR
variable holds a location of the data directory of the MySQL server.

touch $LOGFILE
WD=‘pwd‘
cd $DATADIR/$DB

The touch tool updates the access and modification times of given file to the current time. If
the given file does not exist, it is created by the tool. The pwd utility prints current working
directory. Since the pwd is enclosed in the quotes operators ‘, its output is assigned to the
WD variable instead of being printed on the standard output. Then, the working directory is
changed to the corresponding database directory using the cd tool.

for X in *.MYD

78

Doctoral thesis Vladimír Jarý

do
TABLE=‘basename $X .MYD‘
echo "[‘date‘] $DB.$TABLE" >> $LOGFILE
sh /tmp/select.sh $HOST $DB $TABLE
LOCALMD5=‘md5sum $DUMP | cut -f 1 -d " "‘
echo $LOCALMD5 >> $LOGFILE
rm -f $DUMP

done
cd $WD

The Bash language supports iterating over files in a directory. In this particular example, only
files with MYD extension that correspond to the database tables are processed. The file name
of the currently processed file is assigned to the X variable. The basename utility is used to
strip directory prefix and given suffix (usually file extension) from the given file name, thus the
TABLE variable holds the actual name of the database table. The echo utility displays a line of
text on the standard output. The line contains current timestamp produced by the date utility,
the database name, and the table name. This line is appended to the end of the log file thanks to
the another redirection operator >> (the > also redirects a standard output, however it rewrites
the destination file). Then, a custom script select.sh is executed; it connects to the server
HOST and selects all rows from table TABLE in database DB and writes them into the file
DUMP. Finally, the md5 checksum of the dumped file is calculated. The md5sum tool prints
the checksum and the file name on the standard output. We have used the | operator to redirect
the standard output of the md5sum process to the standard input of the cut process that prints
select parts of given lines. In this example, the line is divided into several fields delimited by
the space character (the d parameter) and first field (the f parameter) is selected. The md5
checksum is appended to the log file and the dump file is removed by the rm tool. Then, the
cycle is repeated for the following MYD files. After processing all tables, the script returns to
the original working directory.

The | operator can be substituted by the subsequent calls of the other redirection operators
> and <. Suppose a and b processes. Then the a | b call that forwards standard output of the
process a to the standard input of the process b can be replaced by the following calls:

a > /tmp/file
b < /tmp/file

At first, the output of the process a is redirected into a temporary file using the > operator.
Then, the content of the temporary file is redirected to the standard input of the process b using
the < operator. However, since the | operator transfers data between processes using a memory
FIFO instead of creating a temporary files, it is a much faster method. Furthermore, the b
process does not have to wait until the process a finishes when the | operator is used.

Using the MD5 checksums, we have verified that a majority of tables was imported correctly
into a new database servers. Only several tables produced different checksums from the old and
the new server. Unfortunately, the md5sum can only decide whether two files are the same. To
identify the exact lines in which the dump files differ, we needed a more sophisticated tool. We
have decided to use a diff tool that compares given files line by line. Unfortunately, this tool
requires more resources (time, memory, and CPU power) to process the files than the md5sum
does. This tool has shown that the dumps differed in the lines containing decimal numbers.

We have found out that the definition of the data type Decimal(M, N) has been changed
between versions 4.1.22 and 5.1.45. This type represents a subset of rational numbers; the

79

Vladimír Jarý Doctoral thesis

parameter M defines the maximal number of significant digits, the parameter N defines the
number of digits that follow the decimal point. Originally, in the older versions of the MySQL
server, the type had been represented as a character string and each digit as well as a sign had
been stored as a character. For positive decimal numbers, the plus sign could be replaced by
an additional digit which extended a range for positive number by one order. For example, the
type Decimal(4,2) had represented all decimal numbers from the interval I1 = [−99.99, 999.99]
stored with a precision to hundredths. However, the definition changed in version 5.0.3 of the
server to comply with the SQL standard, [33], which dictates that the Decimal(M, N) type
defines a subset of rational numbers with up to M −N digits before the decimal point and up
to N digits following the decimal point. Thus, the type Decimal(4, 2) covers rational numbers
from the interval I2 = [−99.99, 99.99] stored with a precision to hundredths. It can be clearly
seen that the interval I2 is a sub–interval of the I1, therefore the Decimal(M, N) can contain
more values in the older versions of the MySQL server that did not follow the SQL standard.

During the migration, the values from the interval I1 \ I2 were truncated which breached the
integrity of the tables with Decimal columns. We have used the Drop Table statement to
remove the affected tables from the database on new servers. Then, we have manually modified
the files with the dumped structure of the tables, we have extended a range of the Decimal
columns. We have created the modified tables and populated them with the data from the dump
files. Finally, we have created and compared dumps of the affected tables again. This time, the
method based on the md5sum tool has proved that the migration had succeeded.

4 Maintenance of the new database architecture

After the importing and verification of data in the new server, it was possible to connect the
client applications to the new database service. Several minor problems appeared, we have
investigated and resolved them. Then, we have been using the Nagios tools and MySQL logs to
monitor the performance and stability of the database service. As part of the maintenance, we
have collaborated in development of a new database application that visualizes the load of the
various components of the data acquisition system and we have also use the Explain statement
to evaluate and improve the execution plans of the most frequent queries.

Starting of the operation of the new database architecture

In order to connect the client applications to the new database service, we needed to set the
pccodb11 server as a backend server of the MySQL Proxy, start the MySQL proxy, and finally
reconfigure the pccodb00 virtual address to point to the proxy server pccodb10. To set the virtual
address, we have used the ip tool that serves for manipulations of routing, tunnels, and network
devices. The tool supports the addr command that sets up the IP address on the network device:

ip addr add vvv.xxx.yyy.zzz/16 dev eth0

The add parameter of the addr command adds a new IP address for the given device, eth0 which
corresponds to the ethernet card in this case. We have appended this command to the rc.local
initialization script on the pccodb10 server, thus the virtual address is automatically configured
every time the server starts.

4.1 Developing new data acquisition monitoring application

With a collaboration with the data acquisition experts, we have developed a new application
that monitors the load of various components of the data acquisition system ranging from the

80

Doctoral thesis Vladimír Jarý

frontend electronics to the triggers and event builders. We have been asked to propose a database
that would be used to store the measured data. The data would be gathered and inserted into
the database by the Cinderella process that implements the online filter functionality. The
frontend that displays the data would be implemented as a graphical tool based on the ROOT
framework by the COMPASS DAQ experts. The ROOT is a framework that focuses on data
analysis, data storage, and data visualization, [7]. ROOT is based on the C++ language, it
also contains the C++ interpreter called Cint. Additionally, the Detector Control System of the
experiment gradually incorporates the tools that visualize these monitoring data.

Figure 4.6: Schema of the daqmon database

We have proposed a structure of the daqmon database using the MySQL Workbench graphical
tool. According to the proposal, the database consists of the following tables:

1. tbl_run table contains start time, stop time, and number of spills for each run.
2. tbl_spill table stores numbers of events registered for each spill.
3. tbl_gdc table holds a total size of events processed by the event builders at given time

stamps.

81

Vladimír Jarý Doctoral thesis

4. tbl_trigger table stores statistics about occurrence of given trigger masks and spills over
time represented by the run number, spill number, and time stamp.

5. tbl_equipment table contains statistics about usage of different subdetectors over time
represented by the run number, spill number, and time stamp.

6. tbl_error table contains information about errors including error type, time stamp, or
facility.

By mixing data from different tables, it possible to retrieve information about devices that
produced the most of data, compare load of the event builders, or detect sources of hardware
problems.

The proposed database structure has been approved after some discussion and the database
daqmon has been installed on the database servers and included into the replication. A dedicated
user account daqmon has been created and configured for accessing the database. Furthermore,
the cinderella user account has been given grants to insert, update, and select rows from the
tables in the daqmon database. During testing of the new database, the replication has been
interrupted. The problem was caused by the online filter process that was inserting data into
two databases, daqmon and beamdb, at the same time. To save time, the process did not use
the Use statement to change the currently active database. It is possible to insert data into a
table in an inactive database provided that the Insert statement contains both database and
table names. Unfortunately, the replication requires that all records are inserted into table in
the active database. Therefore, the online filter has been corrected to always switch the active
database to solve the problem.

After approximately one month in the operation of the daqmon database, a data acquisition
expert has requested a change in the structure and data of the tbl_trigger table. A new column
for storage of the inverted trigger mask should be added into the table structure, furthermore
existing trigger masks should be renumbered. We have used the mysqldump tool to extract
all data from the tbl_trigger table. We have employed the --fields-terminated-by and --tab
parameters to produce CSV file with table data. We have prepared a Perl script that processes
this CSV file line by line recalculating the trigger mask according to requested rules and adding
the inverted mask and stores the modified rows into another file. Then, the table is dropped
from the database, recreated with altered structure, and populated with the modified rows.

4.2 Evaluation of the query execution plan

During configuration of the MySQL servers, we have enabled logging of the slow queries. Under
the term of slow query, we understand a query that is being evaluated longer than a certain
time limit defined by the variable long_query_time. Slow queries are appended into a text file
specified by the variable log_slow_queries. Knowledge of slow queries is very important as they
can degrade the performance or even overload the database server.

Execution times of queries can be improved by adding appropriate indexes to the tables. The
MySQL software supports the Explain statement that evaluates execution plan of the given
SQL query. The Explain tool shows which index (if any) is used during the query evaluation,
how many rows are searched, if a temporary file is created, or if an additional pass is required
to sort the result. This information should be used for designing correct table indexes. The
Explain tool displays the results as a table with the following columns:

• The id column contains a sequential number of the Select statement within the examined
query.

82

Doctoral thesis Vladimír Jarý

• The select_type column informs about a type of the Select statement, e.g. the Simple
correspond to simple queries that do not use subqueries or unions, the Subquery type
corresponds to a first Select in a subquery, or the Primary type corresponds to the
outermost Select statement in the query.

• The table column identifies the table that is being searched.
• The type column explains how the tables are joined. In the worst case, if this column

contains the All value, it means that a full table scan is performed for each combination
of rows from the previous table. On the other hand, in the best case, this column contains
the const value and at most one matching row is found in the table and read at the start
of the query.

• The possible_keys column lists the indexes that can be used by the MySQL to find the
requested rows in the table. If the column contains the Null value, no index can be used.

• The key and key_length columns contain information about the key and its length that
MySQL uses for retrieving the requested rows. From the key length, one can deduce a
number of parts of multicolumn index that are actually used.

• The ref column explains which columns are compared to the index (listed in the key
column) during retrieval of rows from the table.

• The rows column contains estimated number of rows that needs to be examined during
query execution.

• The Extra column provides additional information about the way in which the query is
evaluated. For example, the Using temporary value in this column means that a temporary
table must be created to contain the query result, the Using filesort means that additional
pass is required to return the sorted result, or the Impossible WHERE means that the
Where clause of the Select statement is always false and thus, it cannot return any
rows. The Extra column can contain multiple values.

Additional columns are shown if the Extended keyword is used with the Explain statement.
The Partitions keywords should be used when examining queries over the partitioned tables.
Complete description of the output including all possible Select types and all possible values
in the Extra column can be looked up in the MySQL documentation, [37]. The usage of the
Explain statement will be described on the daqmon database.

During development of the daqmon database, we have used the Explain tool to propose
indexes for tables. We will demonstrate the usage of the Explain tool on the table tbl_trigger
that contains information about occurrences of trigger masks in time. The structure of the
tbl_trigger table is shown in Listing 10.
Suppose that the monitoring application built on the daqmon database should display the trigger
mask, the timestamp, and the average size of all the records with given run number (e.g. 85626)
ordered by the time. The corresponding rows can be retrieved from the table using the SQL
statement from 11.
The output of the Explain command is summarized in the table 4.7.

id select_type table type key rows Extra
1 Simple tbl_trigger ALL NULL 1127528 Using where; Using filesort

Table 4.7: The result of the Explain command on an non–optimized table

The result of the Explain statement revealed several problems: the type All means that all
the 1127528 rows in the table must be searched, none key/index can be used. Moreover, an

83

Vladimír Jarý Doctoral thesis

Listing 10 Structure of the table tbl_trigger
CREATE TABLE IF NOT EXISTS ‘daqmon‘.‘tbl_trigger‘(
‘runnb‘ MEDIUMINT NOT NULL COMMENT ’Run number’ ,
‘spillnb‘ SMALLINT NOT NULL COMMENT ’Spill number’ ,
‘mask‘ TINYINT NOT NULL COMMENT ’Trigger mask’ ,
‘time‘ TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

COMMENT ’Timestamp’,
‘avgsize‘ FLOAT NULL

COMMENT ’Avg. event size for the mask in spill’ ,
‘stddevsize‘ FLOAT NULL COMMENT ’Standard deviation

of the event size for the mask in spill’ ,
‘eventcnt‘INT NULL

COMMENT ’Number of times the mask appeared in spill’,
PRIMARY KEY(‘mask‘, ‘runnb‘, ‘spillnb‘),
INDEX idx_time_mask(‘time‘, ‘mask‘)) ENGINE = MyISAM;

Listing 11 Test query on the tbl_trigger table
SELECT mask, time, avgsize FROM tbl_trigger WHERE runnb=85626

ORDER BY time;

additional pass is required to sort the result. The type Simple of the query means that nor
union nor subqueries are used during evaluation of the query. The primary key of the table
(mask, runnb, spillnb) cannot be used because the runnb is not its prefix. If the columns in the
primary key are reorganized into the following order (runnb, spillnb, mask), the primary key
could be used to retrieve the desired rows. This assumption can be confirmed by the Explain
command (see table 4.8). This time, only 2383 records are searched, though the file sorting is
still performed.

id select_type table type key rows Extra
1 Simple tbl_trigger ref idx_runnb_spillnb_mask 2383 Using where;

Using filesort

Table 4.8: The result of the Explain command on the table with the optimized index

Under certain circumstances, it is possible to satisfy the Order By clause using the index, thus
eliminating the need of the file sorting. According to the documentation [37], this is valid for
the queries with the following structure:

SELECT * FROM table WHERE keypart1=constant ORDER BY keypart1;

Unfortunately, the examined query does not have this structure because the key that retrieves
the rows (Primary Key) is different from the key that is used in the Order By clause (the
idx_time_mask).

The runnb in the Where clause can be replaced by the time interval between the start and
the end of the run. The information about the start and the end of the run is stored in the table
tbl_run described in Listing 12.

84

Doctoral thesis Vladimír Jarý

Listing 12 Structure of the tbl_run table
CREATE TABLE IF NOT EXISTS ‘daqmon‘.‘tbl_run‘ (
‘runnb‘ MEDIUMINT UNSIGNED NOT NULL COMMENT ’Run number’,
‘spills‘ SMALLINT DEFAULT NULL COMMENT ’Number of spills in run’,
‘starttime‘ TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

COMMENT ’Time when run started’,
‘endtime‘ TIMESTAMP NULL DEFAULT NULL

COMMENT ’Time when run ended’,
PRIMARY KEY (‘runnb‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

Listing 13 Query on the tbl_run table
SELECT starttime FROM tbl_run WHERE runnb=X;

The start time of the run X is returned with the query from Listing 13.
In a similar fashion, one can also obtain the time when the given run ended. The runnb is the
Primary Key of the table, therefore at most one record with the given run number can exist
in the table. This means that only one record needs to be searched to return the start/end time
of the given run. By substituting the run number with the corresponding time interval in the
original query, we get the following query:

Listing 14 Optimized test query on the tbl_trigger table
SELECT mask, time, avgsize
FROM tbl_trigger
WHERE time>=(SELECT starttime from tbl_run WHERE runnb=85626)

AND time<=(SELECT endtime from tbl_run WHERE runnb=85626)
ORDER BY TIME;

.

The results of the Explain (see table 4.9) statement confirm that both subqueries are indeed
searching only 1 row in the tbl_run table as was expected. Additionally, the file sort is not
needed anymore and the query is executed faster. However, the speed improvement is not very
significant in this particular case. The result of the query contains approximately 2 000 rows and
the file sort can be done in the memory buffer so it is reasonably fast. In case the size of memory
buffer is exceeded, a temporary table must be created and sorted on the disk and the file sorting
is slow. The maximal size of the memory buffer is controlled by the variable sort_buffer_size.
To sum it up, the file sorting should be avoided, if possible.
We have been also asked to analyze the most frequently used queries over the ecal_mon table.
The queries are regularly issued by the Detector Control System every 15 minutes. The ecal_mon
table in the beamdb database contains information about state of blocks that form the Compass
electromagnetic calorimeter. With over one billion rows, it is the largest table in the database,
therefore proper indexing of the table is essential for the smooth operation of the database
service. Using the Explain tool, we have verified that the table indexes are correctly used
during evaluation of the queries. Additionally, the Explain tool contained the Select tables
optimized away value in the Extra column for several queries. This means that the query
contains some aggregate function such as Min or Max that can be resolved using the table

85

Vladimír Jarý Doctoral thesis

id select_type table type key rows Extra
1 Simple tbl_trigger range idx_time_mask 1932 Using where;
2 Subquery tbl_run const Primary 1
3 Subquery tbl_run const Primary 1

Table 4.9: The result of the Explain command on the modified query

index, therefore no rows are browsed and only one row is returned.

5 Results of migration and outlook

The original database architecture was powered by two physical servers that were mirrored by
the replication. As a result of the combination of high load and insufficient hardware, the
service suffered from performance problem that lead to several crashes. We have proposed
a new database architecture based on a newer hardware as well as on more recent version of
software. Additionally, the new database architecture includes a proxy server that also serves for
monitoring. The continuous monitoring, the regular backups, and database replication should
contribute to high availability and reliability of the service.

The process of migration to the new database architecture has been successfully completed
in May 2010, just before start of the data taking. During June 2010, several problems with
locking of the ecal_mon table appeared. After decreasing a number of inserts into the table,
the problem disappeared. The only forced shutdown of the database service was caused by
an unexpected power cut in the Compass experiment hall. After this shutdown, the uptime
exceeded 5 months (from July till winter shutdown in December).

The most serious problem appeared in May 2012, just a few hours before end of the winter
shutdown and start of the data taking period. The database server pccodb11 has crashed, prob-
ably as a result of hardware failure. After restart of the crashed server pccodb11, the replication
slave on the pccodb12 server stopped working. The exactly same problem appeared also on the
compass02 server in the CERN computing center. We have used the Show Slave Status
statement to investigate the problem and found that the slave I/O thread that is responsible for
receiving events from the binary log on the master server and storing them into the relay log
is in the Not running state. Furthermore, the Last_IO_Error variable contained the Got fatal
error 1236 from master when reading data from binary log: ’Client requested master to start
replication from impossible position’ message.

Thus, the master server failed to write all events into its binary log before the crash and
after the restart, the slave I/O thread tried to receive these unwritten messages. After start of
the mysqld process on the pccodb11 server, a new file with binary log has been created. We have
used the Change Master statement to try to force the slave process on the pccodb11 server
to skip the unwritten events by reading from the new log. After restarting the slave process, it
crashed again, this time with the SQL thread that is responsible for reading the events from the
relay log and executing them in the Not running state and with error message set to ’Duplicate
entry for key PRIMARY’. This error could probably be repaired by stopping slave, setting up
the variable Sql_Slave_Skip_Counter to number of bad events, and restarting the slaves.

However, to ensure the full synchronization, the replication process had to be started over.
At first, the pccodb10 server has been manually shut down to prevent Nagios and database clients
from interfering with recovery process. Then, on both server, the replication slaves have been
stopped using the Stop Slave statement. Then the mysqld processes have been turned off on

86

Doctoral thesis Vladimír Jarý

both servers. With servers not running, it has been possible to resynchronize data directories
of both servers. After the operation, both servers have been started again. Using the Show
Master Status, the current binary logs and positions in these logs have been detected. Then,
the Change Master statement has been used to inform the slave processes about the current
binary logs. Finally, after start of the slave processes, the proxy server pccodb10 has been turned
on and the database service recovered.

Immediately after the recovery of the crashed server, the database service could be restarted.
Unfortunately, as the replication process was stopped, the redundancy of database service was
lost. Therefore, the servers needed to be resynchronized quickly to prevent loss of data in case
the pccodb11 server crashed again.

During the data taking period (i.e. approximately from beginning of June to end of Novem-
ber), the size of the directory with the database data increased from 114GB to 194GB, the
beamdb and DATE_log databases contain approximately 80 % of the data. The ecal_mon table
is with more than one billion records the largest table from all the databases. Consequently,
time required to complete a daily backup increased from approximately 20 minutes in June to
more than one hour in November. Even though the backup is created on a slave server and
does not influence the master server, we have decided to create a new databases beamdb2011,
DATE2011_log, and DATE2011 for data from the data taking in the year 2011. To save disk
space, the old databases could be converted into the Archive storage engine that does not
allow modifications but it compresses data.

During the year 2010, we have also created several new databases and tables. The daqmon
database that serves as a backend for application that monitors performance of the various
components of the data acquisition system is described in a dedicated section. Additionally,
we have also created the hcal_mon table in the beamdb database. The table has the same
structure as the ecal_mon table, it stores information about state of the hadronic calorimeter.
The information can be visualized in the Detector Control System.

5.1 Design of further improvements of the database architecture

We have developed the new database architecture with scalability in mind. Although the per-
formance seems to be sufficient, it is relatively easy to increase it.

First method of increasing the performance is based on the MySQL Proxy software. Cur-
rently, the proxy redirects all queries to one backend database server (usually the pccodb11).
However, by adding more replication slaves and enabling the load balancing mode of the proxy
as described in Section 3.4, it would be possible to easily scale the system performance. Alterna-
tively, the MySQL Load Balancer could be used for the same purpose. MySQL Load Balancer
is an application based on the MySQL Proxy that also provides read only load balancing over
a number of MySQL servers [36]. The load balancer consists of two components: proxy and
monitor. The proxy component handles the client connections and query distribution. The
queries that modify data are sent to the master backend server, queries that only retrieve data
are distributed between the slave backend servers. The monitor component periodically verifies
the state of the backend servers. The MySQL Load Balancer uses the information about state
of servers to update a list of available replication slaves. If a monitor detects that some slave
lags behind the master or a replication process is crashed on some slave, then the affected slave
is temporarily removed from the list of available backends. When the lag behind the master
decreases or when the replication process is recovered, then the slave is returned into the list.

We have shown that crash of one server does not severely affect availability of the database
service. Unfortunately, in case a replication is broken as a result of damaged binary log, the
servers need to be resynchronized which can cause several hours of downtime of the service. To

87

Vladimír Jarý Doctoral thesis

prevent this problem, more slaves should be added into the architecture and the master–master
topology should be replaced by master–multiple slaves topology. If the master would experience
crash, one slave would become a new master, the former master would resynchronized with the
second slave which would be temporarily unavailable. However, the database service could still
be available with the new master. This topology could be combined with the load balancing.

Figure 4.7: Improved database architecture

Furthermore, in an unstable development version 5.6 of the MySQL software, several improve-
ments of the replication technology have been implemented, [27]. At first, the Global Transac-
tions Identifiers (GTID) are introduced into the replication. These identifiers simplify tracking
of progress of replication between the master and the slave servers. Also, two new utilities have
been developed: the mysqlfailover utility continuously monitors the replication topology and in
the case it detects a failure of the replication master, it promotes the most updated slave to the
master role. The utility uses the GTIDs, it also ensures that no transaction is lost during fail
over process. Database administrators can also use the other utility mysqlrpadmin to disconnect
the master server for maintenance purposes; the utility ensures that the most updated slave is
promoted to the master. The utility also provides a slave discovery and replication monitoring.

Partitioned tables

The other performance optimization method is based on using some new features of the MySQL
server, especially the partitioning. Partitioning enables distribution of parts of a single table into
multiple files; i.e. parts of the table are saved as separate tables. Partitioned tables have been
introduced in version 5.1 of the MySQL server. MySQL supports the horizontal partitioning,
i.e. the the table is distributed into partitions by rows (in the vertical partitioning, the table is
distributed into partitions by columns).

During the compilation of the source codes of the MySQL software (see Section 3.2), we have

88

Doctoral thesis Vladimír Jarý

passed the --with-partitions option to the configure script to enable the partitioned tables. The
support for partitioning is available as a plugin for the MySQL server. To verify if the plugin is
active, one can use the Show Plugins statement.

Division of rows into the appropriate partitions is based on the value of the partitioning
function. Several types of partitioning exist in the MySQL software. Depending on the type,
the partitioning function takes as a parameter either a column value, function of one or more
column values, or set of column values. Also, the partitioning function is based on the selected
type of partitioning; it can be a hashing function, matching against set of values or ranges, or
modulus. The partitioning function returns a partition number into which the row should be
inserted; the function must be nonrandom and nonconstant. The following types are available:

• In the Range partitioning, the user defines a division of possible values of some table
column into several continuos, non overlapping intervals. The partitioning function takes
as a parameter a value of the given column and according to this value, it inserts the row
into the corresponding partition.

• The List partitioning works in a similar fashion as a Range partitioning. Instead of di-
viding the possible column values into intervals, the database administrator defines several
distinct sets that cover all expected values of given column. The partitioning function takes
a value in given column and according to this value, it inserts the row into the matching
partition.

• If the Hash partitioning is selected, the database administrator only defines desired num-
ber of partitions and a column of the integer data type. The hashing function that takes
a value of the given column (or a value of nonrandom nonconstant function acting on the
column value) as its parameter and acts as a partitioning function ensures that the rows
are evenly distributed into the partitions.

• In the Key partitioning, the internal hashing function that operates on the supplied list of
one or more column. If none column is supplied, the hashing is performed on the primary
key of the table.

The MySQL server also supports the composite partitioning (subpartitioning), i.e. a table
partition can be also divided into subpartitions.

Configuration employees1 employees2
Core2 Duo CPU T9600 @ 2.80GHz 0.92 s 0.26 s
QEmu 32.64 s 13.48 s

Table 4.10: Partition pruning in MySQL 5.1.42

By properly designing a division into partitions, it is possible to dramatically improve some
queries. The idea is simple, during the query evaluation only the partitions that can contain the
matching rows are browsed; this technique is known as a partition pruning. To verify whether
a partition pruning is used during the query evaluation, one can use the Explain statement
with the Partitions keyword. To test the partition pruning, we have created a simple table
employees2 with the following structure:

CREATE TABLE employees1 (
id INT NOT NULL,
salary int(11) NOT NULL

);

89

Vladimír Jarý Doctoral thesis

CREATE TABLE employees2 (
id INT NOT NULL,
salary int(11) NOT NULL

) PARTITION BY RANGE (salary)(
PARTITION p0 VALUES LESS THAN (25000),
PARTITION p1 VALUES LESS THAN (50000),
PARTITION p2 VALUES LESS THAN (75000),
PARTITION p3 VALUES LESS THAN MAXVALUE

);

we have divided it into four partition according to a value in the salary column. Note that by
using the Maxvalue keyword, the partition p3 contains all employees with the salary higher
than 75 000. The table employee1 has been created with the same structure, however it has
not been partitioned. We have prepared a Perl script that fills these tables with 10 million
rows, then we have measured time required to calculate number of employees with salary from
the interval [26 000, 49 000]. The test have been performed in the qemu virtual system and the
hardware described in Section 2.2. The test results are summarized in Table 4.10. On the
physical hardware, the execution of query is almost four times faster on the partitioned table.
This is caused by the fact that only the partition p1 that contains approximately 1/4 of rows is
searched whereas all 10 million rows must be browsed in the nonpartioned table.

The range partitioning could be used for the messages table in the DATE_log database.
The table contains debug and information messages produced by the Date software package.
Very often, the data acquisition experts need to know the behaviour of the system in a certain
time period. Thus it would be possible to define range partitioning based on the values from
the timestamp column. In fact, this behaviour is emulated by a special cron job; the job creates
a new table for messages every day and puts older message into archive tables.

As the support for partitioning has been introduced in MySQL 5.1, we have decided not to use
it yet. However, in newer versions of MySQL server (5.5. 5.6) improvements of the partitioning
have been implemented. Additionally, the support for delayed replication have been added into
the newer versions and finally, optimization for multicore systems have been added.

The proposed improvements need to be discussed with Compass data acquisition experts
during the next frontend electronics meeting. If the proposal is approved and new servers are
provided, it can be implemented during the planned technical stop of the CERN accelerators in
2013.

90

Chapter 5

Remote control room for the Compass
experiment

In the first chapter of this work, it has been explained that the data acquisition system should
also provide monitoring and control facilities. At larger experiments in the high energy physics,
additional systems are required for control and monitoring of detectors, voltage systems, gas
systems, and other equipment. The Compass experiment is operated from several workstations
located in a control room situated directly in the experimental hall. From a software point of
view, the control and monitoring at Compass is mainly based on the Date package and the
Detector Control System.

One very important advantage arises from the location of the control room. As it is situated
directly in the hall with spectrometer, it is possible to regularly perform safety checks of the gas
system and server room. Also, members of the shift crew can easily control access of experts into
a restricted area with the spectrometer. On the other hand, the detector and data acquisition
experts often need to travel to the control room to analyze and solve problems in their domain.
As the hall is situated in forest, approximately 500m away from the centre of the French part
of the CERN campus, it is inconvenient to get on foot to the night shift. Luckily, a shift special
shuttle has recently started to ply to the experimental hall. Moreover, it is not possible for
members of the shift crew to have a warm meal during the shift. The environment is not very
ergonomic, as the hall is very noisy and enclosed in the concrete shielding, thus the control
room is lit by cold, artificial lightning. Finally, at the end of the data taking in December 2010,
the radioprotection team detected that the level of radiation in the control room approaches
the safety limits. A higher intensity of the beam is required for future scientific programs of
the Compass experiment, therefore in order to protect the personnel, it has been decided to
implement a remote control room by a technical coordinator.

Technical coordinator has ordered new workstations and LCD panels that should be deployed
in the new control room. The new control room would be installed in the computer room on the
ground floor of the office building used by the Compass collaboration situated in the French
part of the CERN laboratory, approximately 500m away from the Compass spectrometer. The
network outlets in this room have been connected into the Compass internal network by the
CERN IT division. The new control room should provide the same functionality as the old one.
The regular checks of the server room and various gas mixing systems should be replaced by
the IP cameras. However, it is still to be decided which systems should be monitored by these
cameras.

In first section of this chapter, several possible methods of implementation of the remote
access are analyzed and compared. In the following section, the proposed design of the remote

91

Vladimír Jarý Doctoral thesis

control room is presented and applications used by the shift crew are introduced. Finally, the
preparations for the unattended installation of the new workstations in the remote control room
are explained in details. This section should serve as a manual for data acquisition experts of
the Compass experiment in case a new workstation needs to be included into the control room.

The author of the thesis has supervised a team of undergraduate students who participated
in installation and configuration of workstations in the remote control room, the results are
summarized in [5].

1 Analysis and comparison of methods of the remote access

Before starting of installation of the operating system on the new machines, we needed to propose
a method that should be used for implementation of the remote control and monitoring facility.
We have proposed, analyzed, and compared two methods.

The first method would be based on sharing of the remote desktop via the Virtual Network
Computing (VNC) system. The VNC client sends mouse and keyboard events over the network
to the VNC server that is running on the host that shares its screen. The server accepts the
events and returns the client screen updates. VNC is a multiplatform system, the clients can
run on different operating system than the server, e.g. it is possible to control the remote linux
desktop from the VNC client running on MS Windows system. The VNC would be used to
provide a remote access from computers in the new control room to the desktops of computers
in the original control room, i.e. the VNC clients would be installed on new machines in the
remote control room, the VNC server would be installed on machines in the original control
room in the experimental hall. Therefore, only one package with the server software would have
to be installed on old servers and de facto default options could be used during the installation
of the SLC operating system. This would greatly reduced the time required to set up the remote
control room and we have considered it as one of the most important advantages of the desktop
sharing method. Additionally, if a connection between VNC client and server is broken, the
operation of control and monitoring software running on the VNC server is not affected and
client can reconnect to the the server when the connection is recovered. On the other hand,
as the VNC gives a full access to the remote desktop and the remote desktop is still accessible
locally, a conflict between remote and local user could happen. We consider the danger of
conflicts to be the most serious disadvantage of this method. Furthermore, if a remote machine
would experience a crash, a manual intervention in the original control room would be required
to restore the affected machine back into an operational state. Moreover, the remote framebuffer
protocol that is used in communication between VNC server and clients is pixel based, therefore
it is very demanding as far as network bandwidth is concerned. However, this disadvantage could
be eliminated by using some other technology for desktop sharing that is based on exchange of
graphics primitives instead of pixels such as a Remote Desktop Protocol RDP. Unfortunately, the
RDP is a proprietary software and server part exists only for MS Windows operating system.
Finally, a potential problem could occur if a member of the shift crew would accidentally close
the window with the VNC client. Although starting of the VNC client is not very difficult, we
must keep in mind that not all shift members are skilled computer users.

As the network outlets in the new control room have been connected into the Compass
internal network, a second option of implementation of the remote control and monitoring could
be used. This method would be based on integration of the new machines into the Compass
network and installation the control and monitoring software on these machines. Clearly, this
method would require more time to install and configure the machines. On the other hand, the
new remote control room would be an equal clone of the old remote control room, both systems

92

Doctoral thesis Vladimír Jarý

could be used in parallel to monitor the system (however, at most one user could actually control
the system at one time); the user management is already implemented in control and monitoring
software. If a machine in the original control room crashes, the operation can still continue from
the new remote control room. As no additional software would be installed, this method should
not cause any difficulties for members of the shift crew.

We have discussed these two methods with a technical coordinator of the experiment and a
data acquisition experts. We have agreed that the advantages of the second method compensate
the main disadvantage of the more complex installation and configuration process as it should
be performed only once. In theory, this method could be used to implement the remote control
and monitoring from almost any computer (e.g. workstations situated at home institutes of the
Compass members) provided that it is connected into the Compass network. However, only
remote monitoring should be performed from outside of the CERN. If a remote control of the
experiment and data acquisition would be allowed, the detector experts could lose motivation
to visit CERN and no one would be available for repairs of broken components.

2 Proposed design of the layout of the remote control room

Eight new workstations have been ordered for use in the remote control room. Before start of
installation of these workstations, we needed to define users that should participate in the control
and monitoring process and define deployment of the control and monitoring applications on
the new workstations.

2.1 Definition of user roles

As a result of analysis of the existing control room of the Compass experiment, we have proposed
several types of users of the designed remote control room: a shift assistant, a shift leader, a data
acquisition expert, and a detector expert. A shift assistant and a shift leader form a shift crew
that must be constantly physically present in the control room during the data taking period.
The user privileges are summarized on Figure 5.1 and bellow:

• A shift assistant should use various components of the software package Date to monitor
the data taking process and the Detector Control System to monitor the state of detectors.
In the original control room, a shift assistant also regularly performed a safety visit of the
gas barracks. In the remote control room, this safety visit is replaced by the IP cameras
installed in these barracks. A shift assistant should report detected incidents to a shift
leader and log the incidents into the electronic logbook.

• A shift leader should use the the human interface of the dateControl process (see bellow) to
start and stop the data taking process. Together with a shift assistant, a shift leader should
continuously monitor state of the system. A shift leader should be able to repair minor
or documented problems with both data acquisition system and detectors. More serious
or undocumented problems should be reported to a corresponding expert and entered into
the electronic logbook. Finally, a shift leader should allow an access to the restricted zone
of the experiment, if asked by the run coordinator.

• Data acquisition experts can modify configuration of the trigger and the data acquisition
systems. They also repair serious problems with these systems.

• Detector experts can modify configuration of the detectors that form the Compass spec-
trometer. They also repair serious problems with the detectors.

93

Vladimír Jarý Doctoral thesis

During proposal of the control and monitoring software for the new data acquisition architecture
we have extended this use case by adding a visitor and an administrator roles (see Chapter 6 of
this work).

2.2 Proposed deployment of control and monitoring applications

After definition of user roles, we needed to propose a deployment of the control and monitoring
applications on the workstations in the remote control room. The proposed deployment diagram
is shown in Figure 5.2 and the corresponding applications are introduced in this section.

The application that are used in the control room can be divided into two categories: appli-
cations that control and monitor process of the data acquisition and applications that control
and monitor detectors, beam line, and other hardware equipment. The first group is mainly rep-
resented by various subsystems of the Date package, while the second group includes Detector
Control System, or CERN TV.

Figure 5.1: Users of the remote control room

The Date is a software package designed to perform data acquisition tasks in network environ-
ment. The package is described in Section 2.2.3, this part focuses on the Date components that
are used by members of the shift crew to control and monitor the data acquisition.

The dateControlHI is a graphical application that provides the control functionality. It
allows operators to start, stop, and configure the data taking process. It is possible to include
and exclude event builders and readout buffers into the system and also configure detectors
handled by the readout buffers. During the data taking, the application also displays additional
windows containing status of spillbuffer PCI cards, logic engine, or status of the trigger control
system. The application is also interfaced into the logbook system, it can be used to manage
information about shifts and to add comments. Multiple instances of the application can be
present in the system, however only one at most can actually control the system at the same
time, the other instances may be used for monitoring. According to Table 5.1, the application
should be deployed on the pccorc31 workstation. One larger 24“ and one smaller 22” panels

94

Doctoral thesis Vladimír Jarý

should be connected to this workstation.
The infoBrowser works as a graphical frontend over the DATE_log database that contains

debug and information messages produced by the Date processes. An operator can interactively
filter messages that should be displayed. The application can work in an online mode when it
shows messages as they are stored in the database.

Figure 5.2: Deployment diagram of the remote control room

The infoBrowser should run on the same workstation as the MurphyTV application that mon-
itors frontend electronics of detectors. During the data taking, MurphyTV reads and verifies
event headers and displays errors related to quality of data such missing or damaged headers or
inconsistent event numbers in the events. The shift crew should use the information provided
by the MurphyTV to identify a source of problem and to try to correct it by reloading the
corresponding module with frontend electronics.

On the third panel connected to the same workstation, the trigger rates display should be
deployed. It is a web application that plots the current rates of various triggers (and vetoes)
that form the resulting trigger signal. The application runs on the web server on the pccodb10
server, it should be accessed through virtual address pccodb00. The information about trigger
rates are now also integrated into the Detector Control System that can generate alarm in the
case some trigger rate differs from its nominal value.

MurphyTV, infoBrowser, and trigger rates display should be always running on pccorc35
workstation. As these applications provide vital information about health of the data acquisition
system, each of them should occupy entire LCD panel. The panels should be mounted on wall
in order to be visible from the entire control room.

The COOOL (Compass Object Oriented Online) is an application that uses remaining CPU
power of an event builder to perform analysis of part of data. The results of analysis are displayed
in the graphical frontend that runs on the run control machine in form of the Root histogram.
During the shift, the COOOL histograms should be regularly compared with nominal values
(that are superimposed into the plots) to discover potential problems such as high noise or dead
channels. If a problem is detected, the shift crew should try to reload the corresponding frontend
electronics, put a comment into the logbook, and notify the detector expert. Typically, faulty
detector channels produce errors both in MurphyTV and in the COOOL histograms. If the

95

Vladimír Jarý Doctoral thesis

channels contribute to the trigger signal, the corresponding trigger rate may also deviate from
the nominal value. According to our proposal, the COOOL should be always running on large
24“ panel connected to the pccorc34 workstation. Smaller 22” panel is also connected to the
same workstation, it should be used for web browser with an electronic logbook.

The electronic logbook is an application developed and integrated into the Date system
at the Compass experiment. Members of the shift crew should use the logbook to track all
nonstandard events such problems and interventions that occurred during the shift. The logbook
also contains summary information about runs. The information include start and stop time
of the run, settings of the trigger control system, status of the spectrometer magnets, status
of the beam line, or list of detectors included during the run. These parameters are inserted
into the logbook automatically by the Date processes. The contents of the logbook can be
browsed in a web application built in the PHP language. The content of logbook is stored
in the runlb database handled by the online database service pccodb00 (see Chapter 4). The
database is also replicated to the compass02 server that is located outside of the Compass
internal network. Therefore, it the logbook is accessible even by experts that are not physically
present at experiment.

The slow control of the spectrometer, voltage and gas systems is provided by the Detector
Control System (DCS). The system can be divided into three layers. The hardware devices
controlled by the DCS are represented by the device layer. The frontend layer consists of
software drivers for the hardware elements and provides communication protocols between the
devices and the supervisory layer. The supervisory layer is based on a commercial package PVSS-
II ; it provides graphical interface for monitoring of the hardware elements. This layer can also
produce visual and acoustic alarms in the case some of the monitored channels deviates from the
expected behaviour (e.g. a voltage system trips). Additionally, the layer can also visualize time
development of the monitored parameters, thus it is possible to observe slow changes of variables.
Supervisory layer of the DCS should be deployed on the pccorc36 workstation equipped with a
single 24“ LCD panel.

Cesar is an application used to control and monitor state of the spectrometer magnets and
the beam line. Cesar can also be used to control access to the experimental zone during the data
taking period. Cesar is built on the Netbeans platform, it should be installed on the pccorc37
workstation.

Information provided by the accelerator control room are provided as a TV channel SPS
Page 1 broadcast by a CERN short circuit TV. The channel displays cycle of the SPS accelerator,
beam intensity, beam symmetry, or number of particles delivered to the Compass target. The
SPS operators can also used the channel to display short messages about planned works and
unexpected problems on the accelerator. The TV program also generates acoustic signal during
extraction phase of the SPS cycle. The information are also available in form of the web page
or live stream, thus it is possible to replace a television with a web browser or media player
running on one of the run control machines.

A workstation with two LCD panels should be dedicated to displaying the live video recorded
by the Internet Protocol cameras. These cameras should replace a need of regular safety checks
of gas systems and server room with readout buffers and event builders. The software delivered
with the cameras requires the Windows operating system, thus we have decided to installed
Windows Vista on the pccorc33 workstation. The software enables rotation and zooming of the
cameras. However, the exact location of the cameras is still to be decided.

We have also decided to installed Windows Vista on the pccorc38 workstation that is con-
nected into the general purpose network. This workstation should be used by members of the
shift crew for generic tasks such as sending e–mails or finding information on the Internet.

96

Doctoral thesis Vladimír Jarý

3 Kickstart based unattended installation

Eight new HP COMPAQ 8100 Elite workstations have been delivered together with sixteen LCD
panels and several dedicated PCI Express graphics cards. The new machines had no operating
system preinstalled. The roles that we have assigned to the new workstations are summarized
on deployment diagram in Figure 5.2; we have decided to install 32–bit version of Scientific
Linux CERN 5 on 6 of those workstations and Windows Vista on remaining two machines.
Six workstations should be connected into the Compass internal network, one general purpose
computer should be connected into a General Purpose Network (GPN), i.e. Internet. The last
machine should work as a gateway, it should contain two network interfaces, one connected into
the Compass network, the other into GPN. The purpose of various control and monitoring
applications is described in more details in the following section of this chapter.

Before operating system installation, we needed to register the new machines into the central
LanDB database. This database contains all device that are connected to the CERN network.
Owner of the device must enter hostname, hardware address of the network card, manufacturer,
model name, and serial number of the device, type and version of the operating system, location,
and other relevant information including short description of purpose of the device. After filling
these information into a web form, the LanDB system assigns the IP address, address of the
default gateway, name servers, and time servers that should be associated with the registered
device.

As we needed to install the SLC system on multiple machines, we have decided to use the
unattended installation. The Anaconda installer program included in the SLC system supports
such type of installation based on the kickstart method. The method is based on the plain
text “kickstart” file that contains installation instructions and parameters. At the start of the
installation process, the kickstart file is passed to the Anaconda program which parses it and
performs the installation according to the stored instructions without user interaction. As an
additional benefit, the kickstart can be reused later, after the initial installation. This can be
useful in the case that the machine crashes and needs to be quickly reinstalled into the original
state.

Several ways of preparing the kickstart file are available. As the kickstart is a plain text file
with relatively simple syntax described in the Red Hat Enterprise Linux Installation manual [40],
it is possible to create it manually from a scratch. This is probably the most time consuming
and the most difficult method. It is preferable to edit some example kickstart file. To create a
sample kickstart file that could be used as a starting point for further modification, it is possible
to install the system normally using the interactive installation because the Anaconda creates
the kickstart file that describes the installations steps requested by user; the resulting kickstart
file is stored in the /root directory. To edit it, one can use any text editor. However, graphical
tool called Kickstart Configurator also exists.

To simplify a deployment of multiple similar machines (such as run control computers), the
concept of the kickstart templates is created. Templates are used to represent a group of similar
computers. Therefore a template file contains parameters and options that are common to all
machines in the given group. The options in which the machines differ (typically network con-
figuration) are represented by variables that are substituted by corresponding values when the
actual kickstart files are generated from the template. Template method is very flexible as it
support the include keyword. Thus it is possible to split a template into several subtemplates.
A subtemplate can be used for more than one group of computers, e.g. run control computers
and gateway computers may use the same subtemplate with information about disk partition-
ing. Furthermore, the kickstart installation method is integrated into the CERN Automated

97

Vladimír Jarý Doctoral thesis

Installation Management Systems (AIMS) facility.
To use the AIMS facility, one needs to create a corresponding master template file (and

possibly also several subtemplates) for a group of computers that need to be installed. Then list
of computers within a group must be provided in a text file; each line of this text file contains
a hostname of the machine and name of the master template, e.g. the line

pccorc32 RC.tmpl

denotes that the kickstart file for the computer pccorc32 should be created from the template
stored in the RC.tmpl file. Then, the corresponding kickstart files for all computers in the group
are generated by the update-kickstart utility that acts as a frontend of the template system. The
tool queries the LanDB with the hostname of the machine to retrieve the connection parameters,
it parses the template file(s) and replaces the variables with the corresponding values retrieved
from the LanDB and finally, it produces the kickstart file.

Then, the kickstart4host script may be used to generate the installation media. The script
calls the aims2client utility that takes the kickstart file and prepares the network based instal-
lation. By using the kopts parameter of the aims2client utility, it is possible to specify options
that should be passed to the linux kernel during the installation. We have used this possibility to
force installation in the 1024x768 resolution by adding the vga=0x317 option as the installation
process would freeze with the default resolution. By passing the name option, one can specify
which version of operating system should be used. We have decided to install 32–bit version of
SLC 5.7 that corresponds to the name slc57_i386.

The kickstart files and update-kickstart and kickstart4host utilities are stored on the dis-
tributed file system afs. For the security reason, only authorized users can edit the kickstart
files and templates. Additionally, the utilities can be started only from the gateway computers
pccogw0x.

3.1 Operating system installation

To start the installation, one needs to enable booting from network in the configuration utility of
the Basic Input Output System (BIOS). Then, after the restart, linux kernel is booted over the
network using the Preboot Execution Environment PXE. The kernel initializes the hardware and
prepares the installation program Anaconda. The kickstart file published by the AIMS facility
is retrieved and passed to the Anaconda. Anaconda performs the installation according to the
instruction. After the installation, the machine is unregistered from the PXE thus after the next
restart, system starts normally from the local hard drive.

The content of the kickstart file for the pccorc31 machine that should be used for running
the control application of the data acquisition system Date will be described. Kickstart files for
other linux machines are similar as they are generated from the same template. The kickstart
file can be divided into several sections. In the first section, the parameters of the installation
process are defined. At first, language and keyboard layout is set to English, then the network
interface is configured according to parameters retrieved from the LanDB. Then, the following
line in the kickstart file

nfs --server linuxsoft --dir /cern/slc57/i386

defines that the RPM packages should be downloaded from the directory that corresponds to
32–bit SLC on the network file server http://linuxsoft.cern.ch. In the second part of the
kickstart file, the partitioning schema of the hard disk is designed:

98

Doctoral thesis Vladimír Jarý

clearpart --all --drives=sda
part /boot --size 512 --ondisk sda
part swap --size 2048 --ondisk sda --fstype swap
part / --size 8192 --ondisk sda --fstype ext3 --grow

At first, all existing partitions are cleared on the primary hard drive (/dev/sda), then three new
partitions are created. The first new partition is designed to contain the /boot directory, i.e.
boot loader, linux kernel, and image of initial ram drive. Second partition should be used as
a swap space. Finally, the last partition should serve as the root (/) of the directory tree. We
have decided to format the partition using the journaling file system linux extended (ext3). The
parameter grow specify that the partition should use the all remaining space of the hard disk.

After the hard disk partitioning, the time zone is set. The system is configured to au-
tomatically start the X window system after boot with the KDE set as the default desktop
environment:

xconfig --defaultdesktop=kde --startxonboot

Note that some machines such as event builders or readout buffers do not need graphic desktop
environment, thus is to possible to use the skipx option to do not install the X window system.
Then, the password for the user root is defined. For security reasons, the password is encrypted.
Also, the shadow file is enabled. This configuration file stores password of system users in
encrypted form. On the other hand, we have decided to disable firewall as the machine should
work in the internal network and should not be exposed directly to the Internet. In the next
step, the boot loader is installed:

bootloader --append="selinux=0" --location mbr

We have decided to install it into the Master Boot Record of the hard disk. We have used the
append parameter to enter additional options that should be passed by the boot loader to the
linux kernel. The option selinux=0 disables the functionality of the Security Enhanced linux.
In the following section of the kickstart file, list of RPM packages that should be installed is
defined. It is possible to enter a single packages as well as whole package group, the name of the
package group is prefixed by the @ character, e.g. the @kde-desktop group contains all packages
that provide the graphical desktop environment KDE. Although the KDE should be used as a
default desktop environment (see above), we have also installed the GNOME environment as it
might be preferred by some shift members. We have also selected to install other package groups
that contain packages that could be used during shifts such as a web browsers, text editors, or
publishing tools. Additionally, several development libraries such as Tk toolkit or MySQL client
libraries required by the Date package have been selected for installation. To the beginning of
the package list, we have added the resolvedeps option that should guarantee that Anaconda
installs selected packages together with all dependency packages.

3.2 Configuration of the operating system

After the installation of packages, the system is rebooted and Anaconda executes commands that
are included in the postinstallation section of the kickstart file. At first, address of the gateway
is appended to the system configuration file /etc/sysconfig/network. Then, the system time
is synchronized with the time server over the Network Time Protocol NTP. In the following step,
the group daq, user accounts daq and objsrvvy that should be used by members of shift crew
and Date processes are created. Contents of several directories is retrieved from the repository

99

Vladimír Jarý Doctoral thesis

on the Compass file server pccofs01. These directories contain preprepared configuration files
such as a list of repositories for the yum package manager. From these repositories, several
additional packages including CERN libraries, GNU scientific library, MySQL driver for the
Perl and TCL language, Ganglia monitoring system, or plotting program gnuplot are installed.
The ownership of the synchronized directories is set to the root user using the chmod tool. The
online directory is created in the root / directory, network file system is mounted under this
directory, and corresponding entry is appended into the /etc/fstab configuration file:

echo "pccofs00:/online /online nfs intr,hard" >> /etc/fstab

The /etc/fstab file contains static information about various file system and mount points.
Each file system is represented by a single line the file that consists of up to 6 columns. In the
first column, the block device or network file system as in this case that should be mounted is
specified. In the second column, the address of mount point is defined. The file system used
on the mounted device is described in the third column. The fourth column contains options
associated with the corresponding file system. The intr option allows signals to interrupt the
operation in case a major timeout appears; if the hard option is used, then the “server not
responding” message is printed on console in case a major timeout appears, additionally the
timed out operation should be retried indefinitely. Complete list of option can be looked up in
the manual page (cf. man 5 nfs). The fifth and six columns contain information for the dump
and fsck tools. If these column are not present, the tools assume that the file system does not
need to be dumped (by the dump tool) or checked (by the fsck tool).

In the last part of the kickstart file, the script that should be executed after the first boot
of the system is prepared and stored in the /etc/rc.d/init.d/ directory. At first, the script
sets up the environment variable HOST with hostname of the machine. Then, the public ssh
keys of the machine are copied to the shared network file system and in turn, ssh keys of the
other machines in the Compass internal network are retrieved from the network file system.
Additionally, the memtest86+ binary file is copied from the network to the /boot directory and
corresponding menu entry is added to the configuration of the Grub loader. In the next step,
the updatedb program creates a database for the locate program that is used for fast finding of
files by names. As the updatedb scans the entire directory tree, it takes several minutes to build
the database. When the database is completed, several symbolic links are created in the root
directory / to simplify accessing directories with the Date installation and CERN libraries.

In the following step, the script uses the chkconfig tool to enable or disable starting of
several system services. The ntp service that serves for time synchronization and the gmond
service that sends monitoring data to the Ganglia system are enabled. On the other hand, the
yum-autoupdate service that automatically updates RPM packages, the afs service that provides
connection to the distributed afs file system, the bluetooth service, the iptables service, and other
service are disabled. Then, the system is configured to use the printer located in the control
room and the printing service cups is enabled. Then, the script removes itself in order not be
executed after the next boot and finally, it reboots the system.

Last line of the kickstart file contains instruction to remove the machine from the PXE, thus
the installation process does not start over after the following start of the system.

Configuration of the X window server

After the operating system installation, multiple LCD panels needed to be connected to some
of the machines. Namely, the pccorc35 machine designed to display infoBrowser, MurphyTv,
and trigger rates (see Table 5.1) should use three panels. We have installed two dedicated

100

Doctoral thesis Vladimír Jarý

Ati Radeon 5450 graphic cards into the PCI Express slots of the machine. The graphical tool
used to configure display failed to work with more than one graphics card. Therefore, we have
decided to install proprietary graphic driver and edit the configuration file of the X window server
xorg.conf manually. The configuration file consists of sections that correspond to monitors,
screens, graphic cards, and other devices including keyboard and mouse that are used as a
building blocks of the multiple display configuration. At first, the Server layout is defined:

Section "ServerLayout"
Identifier "Multihead layout"
Screen 0 "Screen0" 0 0
Screen "Screen1" LeftOf "Screen0"
Screen "Screen2" LeftOf "Screen1"
InputDevice "Keyboard0" "CoreKeyboard"
InputDevice "Mouse0" "CorePointer"

EndSection

The layout consists of three screens arranged horizontally from right to left and one keyboard
and a mouse. In this particular case, one screen corresponds to one physical monitor. Each
screen is represented by its own section in the configuration file:

Section "Screen"
Identifier "Screen0"
Device "Device0"
Monitor "Monitor0"
DefaultDepth 24
SubSection "Display"

Viewport 0 0
Depth 24
Modes "1920x1200"

EndSubSection
EndSection

To each screen, a device (i.e. graphic card) and a monitor is assigned. The screen should use
the 1920x1200 resolution with 24–bit color depth. The section for screens Screen1 and Screen2
as defined in the ServerLayout section is similar. The graphics card is described in the Device
section:

Section "Device"
Identifier "Device0"
Driver "fglrx"
BusID "PCI:32:0:0"
Screen 0

EndSection

The device should be handled by the proprietary fglrx driver. The BusID option defines the
address of the PCI Express bus on which the card is connected. The corresponding address
can be found in output of the lscpci utility. The output of the card should be displayed on
the screen 0. Graphic card can have multiple connectors, the other connector of this card is
defined as device Device1 and displayed on the screen 1. The second graphics card is connected
to address PCI:1:0:0. Only one connector of this card is used, it is defined as Device2 and
displayed on screen 2. The LCD panels are defined in the Monitor section:

101

Vladimír Jarý Doctoral thesis

Section "Monitor"
Identifier "Monitor0"
Option "VendorName" "ATI Proprietary Driver"
Option "ModelName" "Generic Autodetecting Monitor"
Option "DPMS" "true"
HorizSync 30-80
VertRefresh 50-100

EndSection

The monitor section has been automatically configured by the graphical utility provided with
the proprietary drivers. Again, section for the Monitor1 and Monitor2 are similar. We have
also enabled Composite extension of the X server. The extension provides a buffer than can be
used by applications for off–screen rendering of windows. The composite manager merges the
windows into an image that represents the entire screen and renders it on the physical display.

Section "Extensions"
Option "Composite" "Enable"

EndSection

Additionally, we have set the AIGLX (Accelerated Indirect GL X) option on to enable GL
accelerated effects on the desktop.

Section "ServerFlags"
Option "AIGLX" "on"

EndSection

It is also possible to configure X window system to span one screen over multiple physical
monitors (i.e. it is possible to drag window from one monitor to the other) instead of defining
a separate screens for each monitor.

Finally, the xorg.conf file can also contain sections dedicated to configuration of various
input devices such as keyboards, mice, or touch pads. The following section describes a keyboard:

Section "InputDevice"
Identifier "Keyboard0"
Driver "kbd"
Option "XkbModel" "pc105"
Option "XkbLayout" "us"

EndSection

The keyboard is handled by the standard kbd driver. The device is recognized as a generic
keyboard with 105 keys. However, the XkbLayout is the most interesting option as it can be
used to define multiple keyboard layouts; however it this particular case, only the English layout
is defined.

4 Summary

We have been asked to implement a remote control room for the Compass experiment. We
have evaluated possible scenarios and decided to integrate the new run control machines into the
Compass network. We have defined users of the remote control room and proposed deployment

102

Doctoral thesis Vladimír Jarý

of the control and monitoring applications of the new workstations. Then we have prepared
kickstart files that have been used to install and configure these workstations according to
the proposal. The purpose of the installed workstation is summarized in Table 5.1. We have
successfully started the data taking from the remote control room. Thus, from functionality
point of view, the control room can be put into an operation. However, air conditioning of the
room still needs to be installed. By implementing remote control and monitoring, substantial
amount of money that would otherwise have to be invested into the additional shielding of the
spectrometer has been saved.

Workstation System Purpose Network
pccorc31 SLC 5 dateControl Compass
pccorc32 SLC 5 general purpose Compass and GPN
pccorc33 Windows 7 IP cameras Compass
pccorc34 SLC 5 COOOL, logbook Compass
pccorc35 SLC 5 infoBrowser, MurphyTv, Compass

trigger rates display
pccorc36 SLC 5 Detector Control System Compass
pccorc37 SLC 5 Cesar Compass
pccorc38 Windows 7 Internet access GPN

Table 5.1: Workstations in a remote control room

Although, the remote control and monitoring of the experiment is in principle possible from any
device that can connect to the Compass network, we do not recommend remote control from
outside of the CERN because without experts on site, no one would be able to fix hardware
problems of the detectors.

Because official support of the SLC 4 ended in December 2010, we also used the kickstart
files to perform the migration of the majority of servers participating in the data acquisition
on version 5 of the Scientific Linux CERN during the winter shutdown in 2010. In cooperation
with data acquisition experts, we prepared several kickstart templates for different roles such as
event builders, readout buffers, or file servers.

103

Chapter 6

Analysis and proposal of the software
for new data acquisition architecture

The current data acquisition system of the Compass experiment can be divided into several
layers. The frontend electronics perform readout and digitization of the detector channels. The
data coming from multiple channels are gathered by the concentrator modules CATCH and
GeSiCA. Then, the data produced during the beam extraction are buffered in the spillbuffers
which are PCI cards equipped in the readout buffer servers. Readout buffers are connected to
the event building servers through the Gigabit Ethernet. This architecture is described in more
details in Section 2.1 and in [23].

The system is in operation since the technical run 2001 that was followed by the first physics
run in 2002. During the operation, several new detectors and detector channels have been
added into the system. Also, the beam intensity and trigger rates increased. Consequently,
total amount of recorded data increased from 260TB in 2002 up to approximately 2PB in
2010. To compensate the higher data rates, the hardware of event builders and readout buffers
was exchanged several times; Table 6.1 summarizes evolution of hardware of the readout buffers,
similar evolution of the hardware can be also seen for event building machines.

Year Number of new ROBs Processor RAM
2002 16 2× Intel Pentium III 866MHz/1 266MHz 1GB
2004 19 2× Intel Pentium III 1 000MHz 1GB
2006 10 2× Intel Pentium 4 Xeon 3 600MHz 4GB

Table 6.1: Evolution of the hardware configuration of the readout buffers according to [1, 23]

Adding new hardware requires not only money but also manpower needed to install, configure,
and test new servers. Since the older hardware is still used, several generations of servers coexist
in the data acquisition. Consequently, some effort is also needed to distribute the load of servers
according to their age and performance. Unfortunately, the spillbuffer cards are based on the
PCI bus that is today considered as deprecated, therefore simple upgrade of hardware is not
option for the nearest future.

Two upgrade scenarios are being considered. The first scenario proposes to develop the PCI
Express version of the spillbuffer cards. This scenario would require replacement of readout
buffers with new servers equipped with the PCI Express bus. On the other hand, with the
exception of the kernel module for the spillbuffer card, no software development would be in-
volved. According to the second upgrade scenario, the readout buffers and event builders should

104

Doctoral thesis Vladimír Jarý

be replaced with a custom made cards based on the FPGA technology. This would decrease
number of components and increase reliability of the system. As an additional benefit, the ex-
isting readout buffers and event builders could be reused as an online filter farm. On the other
hand, this scenario would involve development of the new control and monitoring software for
this new hardware architecture. This hardware architecture is being developed at the Technical
University in Munich, the software for this architecture is being developed in Czech Technical
University in Prague.
This chapter focuses on software development for the new data acquisition architecture. At first,
the hardware part of the architecture is briefly introduced. Then, the results of the requirements
analysis are summarized. The proposal of the control and monitoring software that fulfills these
requirements is described in the following section. The author of this thesis has supervised two
undergraduate students who implemented the proposal, [4, 19]. Finally, the performance of this
implemented version of the proposed system is evaluated.

1 New data acquisition hardware

The main idea of the upgrade is to replace the readout and event building network with a custom
made hardware based on the Field Programmable Gate Array technology, [18]. The first layers
of the data acquisition system, i.e. the frontend electronics and concentrator modules, would
remain unchanged. However, data from the concentrator modules would be transferred into the
first layer of the FPGA cards instead of into the spillbuffers. The FPGA cards would be used
in two layers. First layer would perform multiplexing of data from multiple sources and transfer
the multiplexed data to the second layer of cards that would perform the event building. Only
change of configuration would be needed to change the functionality of a card; there would be
no need to modify the firmware.

The card is equipped with 4GB of the RAM, 16 serial links that provide bandwidth of
3.25GB/s. Also, a MICO32 softcore processor is included on the cards. This processor would
be used to power the application that would communicate with the monitoring and run control
software. The card is designed as a module for the ATCA carrier card. Each ATCA card can
hold four FPGA modules. The first prototype of the FPGA card was developed in summer
2011, the carrier card is in development as in spring 2012. The complete functionality would
be implemented in eight carrier cards. Six cards would perform data multiplexing to effectively
utilize the serial links, the remaining two cards would perform the event building. The complete
events would be sent to the online farm.

Three independent layers of data transmission channels participate in the new data acquisi-
tion architecture:

1. The time control system (TCS) serves for the time synchronization of various components
of the system. It distributes absolute time, trigger, and event identification over the optical
fiber network.

2. Event building network is based on the FPGA modules, each module acts as an unblocking
switch.

3. The flow control network is based on the Ethernet. This network provides information
about status and health of the various components of the system as well as about quality
of the data. This network is also used by the control software for sending commands
and configuration requests to the hardware. The control software communicates with an
embedded application that is powered by the softcore processor on the FPGA card.

105

Vladimír Jarý Doctoral thesis

A new software for monitoring status of the various components and for controlling the operation
of the system would be required, the following chapter analyses requirements that the software
should fulfill.

2 Requirements analysis

At first, the functionality of the software needed to be defined. The existing system uses the
Date package that performs all data acquisition tasks ranging from event building to run control.
In the new architecture, the functionality provided by readout, recorder, and eventBuilder Date
processes (eee Section 2.2.3) is implemented directly in the FPGA cards. Therefore, the software
for the new data acquisition system should focus especially on functionality connected to control
and monitoring including configuration of hardware and information reporting. Additionally, the
software should also include a user friendly interface that would be used by members of the shift
crew to operate the system, e.g. to start or stop data taking process. The data acquisition expert
should use this interface to configure the hardware and to store the configuration into a database.
The software should pass the commands issued by the operators to the hardware. In turn, the
software should also collect information about health of the hardware including buffer usage,
free memory, or data rates. These information should be used to implement the load balancing
and also presented in a graphical form easily comprehensible by shift members. Besides the
health of the hardware, the software should also monitor the quality and integrity of data, e.g.
to verify the event headers or calculate check sums of data. Furthermore, the software should
also collect message generated by all its subsystems and stores them into a database. Some
graphical frontend working over this database should also be developed to simplify browsing of
the stored messages.

The majority of the above mentioned functionality is already supported by the Date package,
therefore we have evaluated a possibility of using the package on the new data acquisition
architecture, [14]. We have decided not to use the Date software for the new system because
of the following reasons:

• DATE software requires to be installed on the linux operating system running on the
x86–compatible hardware. However, in the new architecture, part of the software pro-
cesses should be deployed on the embedded linux running on the MICO32 softcore pro-
cessor. Therefore, a considerable effort would be required to port the corresponding Date
processes on the different hardware platform.

• Date is a very flexible system, it can be used by full scale experiments with hundreds of
nodes as well as by small laboratory experiments with single processing node. The package
can work in the collider mode as well as in the fix target mode. As a result, Date is very
complex system. We prefer to use much simpler software for the new data acquisition
architecture.

• By developing a custom software, a potential dependency on the third party software would
be diminished.

• During several years in operation at Compass experiment, several undocumented mod-
ifications have been implemented into the system, therefore starting with a new system
would be a good opportunity to complete the documentation and knowledge base about
the system.

On the other hand, it is essential that the new software uses the same data format as defined by
the Date. This is probably the most important requirement on the new software, it guarantees

106

Doctoral thesis Vladimír Jarý

that the events assembled by the new system remain in the format compatible with software for
reconstruction and physical analysis. The Date architecture should also be used as a source of
inspiration during development. Additionally, several Date processes could possibly be reused
with small modifications, e.g. the Coool program that performs analysis of part of data could
be deployed on the online farm. Additionally, the MurphyTV application that monitors quality
of the data could be reused as the event format remains unchanged. Also, the electronic logbook
should be integrated into the new system.

The software should be distributed on several distributed nodes, the connection is to be based
on the Ethernet technology. We have discussed the possibility of using several communication
libraries and decided to use the Distributed Information Management (DIM) software package
that is already used in the frontend layer of the Detector Control System of the experiment.
Therefore, usage of the library should simplify integration of the new monitoring subsystem into
the DCS.

In previous chapter, the installation of the remote control room has been described. The new
software should be able to control and monitor the data acquisition hardware from this remote
location. Additionally, the software should handle multiple user roles, e.g. shift members should
be able to start and stop data taking, while the experts should have the full control over the
software. Also, multiple users should be able to use the monitoring facilities simultaneously, while
only one user at most should control the system in each time. Furthermore, the application
providing the user interface should support multiple platforms including GNU/Linux with X
window server and MS Windows.

On the other hand, the data acquisition system does not have to be controlled in the real
time. This simplifies the software development because there is no need to use any special real
time library, nor real time operating system.

2.1 Evaluation of the DIM library

The monitoring software should be able to update status information about hardware at rate
of at least 100Hz. Therefore, we needed to verify if a system built on the DIM communication
package is capable of exchanging messages at this frequency. Additionally, we needed to compare
performance of the C++ and Java interfaces of the library.

Definition of the test

For this purposes we have proposed a simple test case scenario. In this scenario, a publisher
publish one monitored information service and one command service. The subscriber subscribes
to this monitored service and sends a command to the publisher. When publisher receives this
command, it updates value of the monitored service which triggers subscriber to get the update
information. When subscriber receives the updated information, it sends another command and
the cycle is repeated. The time required to complete one million of iterations is measured for
C++ and Java versions of the test case. We have repeated the tests for different sizes of message
provided by the monitored service, therefore the results should be also used to define the optimal
size of message with information about health of hardware.

At first, the source code of the C++ version of the publisher will be analyzed. In the main
function, the new command service is created and the DIM server is started:
By calling the start static method of the DimServer class, the DIM server is registered at the
DIM Name Server DNS and started. The parameter of the method defines a unique name of
the server. The server is handled in the separated thread, thus the main thread can enter the

107

Vladimír Jarý Doctoral thesis

Listing 15 Main function of a sample DIM server
int main(int argc, char **args){

Command cmnd;
DimServer::start("BENCH");
while(true)

pause();
}

infinite loop in which it does nothing. The Command class extends the DimCommand class of the
DIM library. In the following listing, the code of constructor of the Command class is displayed:

Listing 16 Custom DIM command
Command(): DimCommand("BENCHSRV/CMD", "I"){

p = new packet;
for(int i = 0; i < SIZE; i++)

p->buffer[i] = 0;
service = new DimService("BENCHSRV/SRV", "I", p, sizeof(packet));

}

At first, the constructor of the ancestor (i.e. the DimCommand class) is called, it takes two
parameters. First parameter defines a name of the DIM command that is passed to the DNS;
the other parameter describes format of the command. The letter I denotes that the command is
represented as an integer value. Then, the constructor creates new information service. Several
versions of the DimService constructor exist, this version takes four parameter: name of the
service, format of the service, pointer to memory location that stores the service data, and size
of the service data. The service format is used during exchange of information between different
platforms, it defines contents of the service data in the following form: T:N[;T:N]*[;T]. The T
character defines type of item, e.g. I is used for the integers, C for characters, F for floats. N
defines number of items of given type. Complete description of the format can be looked up in
the DIM manual, [31]. In this particular case, an integer array defined as

typedef struct packet{
int buffer[SIZE];

} PACKET;

is used as a data structure that holds the service data. The array is initialized to contain zeros
in all items. The first item should be used as a counter of exchanged messages. The Command
class contains method commandHandler overloaded from the base class:

Listing 17 Custom command handler
void commandHandler(){

int cmd = getInt();
p->buffer[0]++;
if(cmd == 0) p->buffer[0] = 0;
service->updateService();

}

108

Doctoral thesis Vladimír Jarý

The method is called whenever a new DIM command is received from any DIM subscriber.
Several methods that can receive the command value are available. In this particular case, the
getInt method is used to receive the integer value of the command. As defined in the proposal
of the test case scenario, the content of the information service is updated and the update is
announced by calling the updateService method. If a subscriber sent a command with value
0, the counter of iteration is reset back to zero. This completes description of the publisher.

In the main function of the subscriber application, the DIM client is created. Again, the
client code is handled in the separated thread, thus the main thread enter infinite loop in which
it does nothing:

Listing 18 Main function of the DIM client
int main(int argc, char **args){

Client client;
while(1) {

pause();
}
return 0;

}

The Client extends the DimClient class of the DIM library that implements several static meth-
ods related to the DIM clients/subscribers such as sending DIM commands. In the constructor
of the Client class, a data structure for storing the service data is prepared and several variables
that should track progress of the test are initialized:

Listing 19 Constructor of the DIM client
Client(): info("BENCHSRV/SRV", -1, this) {

start = true;
p = new packet;
progress = 0;

}

Also the instance of the DimInfo class is constructed; this class implements subscription and
reception of the DIM service. The Client class contains the infoHandler method overloaded
from the DimClient class:
The method is called when the client subscribes to the service and then each time the pub-
lisher calls the corresponding updateService method (see above). The getInfo method of
the DimClient class can be used inside the handler to return a pointer to the instance of the
DimInfo class that provides information about currently handled service. The DimClient can
handle multiple services at the same time, the getInfo method makes it possible to distinguish
these services. The DimInfo class provides the getData method that returns a void pointer
(void*) to the service data. Then, the value of the start logical variable is used to determine if
the handler has been called for the first time, If this is the case, then the command 0 is sent to
the publisher. This command forces the publisher to reset the counter of iterations back to zero
(see above). Also, the current timestamp is assigned to the starttime variable. If the handler
has not been called for the first time, the command 2 is sent to the publisher which triggers the
publisher to update the information service BENCHSRV/SRV.

Finally, if the value of the first item of the integer array reaches 1 000 000, the current time
stamp is taken again, elapsed time, number of exchanged messages per second, and transfer speed

109

Vladimír Jarý Doctoral thesis

Listing 20 Service reception using the infoHandler method
void infoHandler(){

DimInfo *curr = getInfo();
if(curr == &info) {
p = (packet*)curr->getData();
if(start) {

start = false;
DimClient::sendCommand("BENCHSRV/COMMAND", 0);
starttime = time(0);
i = 0;

} else {
DimClient::sendCommand("BENCHSRV/COMMAND", 2);

}

is calculated and printed on the standard output. The the subscriber program is terminated
using the exit function defined in the unistd.h header.

Results of the test

The test has been evaluated on the local 100-MBit/s network, it has been repeated for sizes of
the service data ranging from 4B till 256 kB. The publisher has been deployed on a workstation
powered by quad core processor Intel Core Quad running at 2.5GHz, the subscriber has been
deployed on a laptop powered by dual core processor Intel Core 2 Duo running at 2.8GHz. Both
machines have been equipped with 4GB of RAM. For smaller sizes of messages, the system has
been able to exchange approximately 3 500 messages per second. With increasing message size,
the network utilization is also increases and approaches the limit of 12 500 kBit/s given by the
hardware. The results seem to be in good accordance with a similar benchmark performed by
C. Gaspar, [31].

Message size Data flow Msg per seconds Message size Data flow Msg per second
4B 14 kB/s 3 700 2 kB 3 899 kB/s 1 900
8B 29 kB/s 3 700 4 kB 7 246 kB/s 1 800
16B 58 kB/s 3 700 8 kB 7 407 kB/s 900
32B 116 kB/s 3 700 16 kB 8 840 kB/s 600
64B 233 kB/s 3 700 32 kB 10 390 kB/s 300
128B 456 kB/s 3 700 64 kB 10 667 kB/s 170
256B 923 kB/s 3 700 128 kB 11 035 kB/s 90
512B 1 582 kB/s 3 200 256 kB 11 179 kB/s 40
1 kB 3 690 kB/s 3 700

Table 6.2: Performance of the C++ interface of the DIM library

Java version uses the native C code through the Java Native Interfaces (JNI) calls. As can
be seen from the Figure, the performance hit caused by JNI calls is about 20 % for smaller
messages; for larger messages, the performance hit can be neglected. Unfortunately, the Java
interface of the library is not complete, therefore we have decided to use the C++ version for
development. The requested number of messages exchanged per seconds should be feasible with

110

Doctoral thesis Vladimír Jarý

the DIM library.

3 Proposal of the run control and monitoring software

We have used the results of the analysis of requirements summarized in the previous section to
design a proposal of the run control and monitoring software. According to the proposal, the
software consists of the following types of main processes: DIM name server, master, slaves, user
interfaces, message logger, message browser, and database server.

The software should be deployed on approximately 30 distributed nodes of various types:
FPGA cards, online computers, database servers, or even laptops and personal computers. All
these nodes should be connected into the same network, the communication should be based
on the DIM library. The library uses the name server DNS that serves for connecting clients/-
subscribers to servers/publishers. The DNS process should be deployed on the x86–compatible
server.

Figure 6.1: Software architecture of the new data acquisition system. Solid lines represent
exchange of commands and data, dashed lines represent communication with DNS, dotted lines
represent communication with database.

The slave processes should provide communication with the hardware. The slaves should be
deployed on all kind of nodes including both types of FPGA cards (i.e. data multiplexors and
event builders) and also on computers in the online farm. Slaves should work as DIM servers.
On one hand, they should receive the commands and use these commands to configure and

111

Vladimír Jarý Doctoral thesis

control the corresponding hardware, e.g. to start or stop operation of the FPGA cards. On the
other hand, the slaves should also collect information about status and health of the underlying
hardware and publish these information as the DIM services. These information should depend
on type of the underlying hardware and should include load of processor, free amount of memory,
or usage of network interfaces. As the slave should be deployed on various hardware architecture,
it should be implemented in the C language for the portability reasons. However, tests of the
DIM library under the embedded linux that should be running on softcore processors on the
FPGA cards still needs to be performed and evaluated.

The master process should work as a mediator between the human operators and slave
processes. At the same time, the master should act as a DIM client and a DIM server. As a DIM
client, the master should collect information about the health of the hardware by subscribing to
the corresponding DIM services of the slave processes. Additionally, the master should distribute
configuration information and commands to the slave processes. On the other hand, as a DIM
server, the master process should receive commands issued by the applications with user interface
and forward them to the slave processes. It should also publish report about state of other nodes
based on the information obtained from the slaves.

Figure 6.2: Use case diagram for the new data acquisition system

The master process should be deployed on the standard, x86–compatible server powered by the
Scientific Linux CERN operating system, therefore, it is possible to use some higher level library
or framework during implementation. The master should also access the online database. For
compatibility with existing data acquisition system, we have decided to use the MySQL database
software. The database should contain information about nodes, configuration of the system,
users of the system, or software logs. The master process should use the DIM services to
distribute data from database to the other processes participating in the system. Therefore,
only the master process requires the database access and there is no need to use database client
libraries on the embedded linux.

Additionally, the responsibilities of the master process should also include user management.

112

Doctoral thesis Vladimír Jarý

The master should receive commands issued from applications that provide user interface and
should guarantee that at most one user can take the control over the system at the same time.
However, multiple users should be able to monitor the behaviour of the system simultaneously.
Multiple types of user accounts should be defined:

• The visitor account should be used for monitoring of the system as it can only view the
status of the various hardware and software components of the data acquisition system
and also of the detectors.

• The operator account should be used by members of the shift crew during the normal
operation. This account can start or stop data taking, submit comments into the electronic
logbook, and inspect configuration of the data acquisition system and of the detectors.
Operators also inherit privileges of the visitor account, i.e. they can monitor the system.

• Accounts in the data acquisition expert group should be used to modify configuration of
the data acquisition system.

• Accounts in the detector expert group should be used to modify configuration of the de-
tectors.

• Finally, the administrator account should be used for modification of information about
users and user privileges.

The information about users and user privileges should be also stored in the online configuration
database. The master process should use information from this database to handle authenti-
cation and authorization of users. The operator account should be permitted to login to the
system only from the workstations located in the control room. On the other hand, the visitor
account should be allowed to login from any location to enable experts to monitor the system
even from their home institutes.

Figure 6.3: State machine diagram of the master process (preliminary version)

The control and monitoring software is a complex system. We have decided to simplify the
development process by describing the behavior of the system with the finite state machines.
The finite state machine that describes the state of the master process (and state of the whole
data acquisition system in turn) should include at least the following states:

• The system should be started in the Idle state. This state should enable modifications of

113

Vladimír Jarý Doctoral thesis

the system configurations such as adding or removing nodes. In this state, the connection
to the slave processes is not established.

• In the Armed state, all the processes participating in the control and the monitoring
software are started and the connection to the slave processes is being established.

• The system in the Ready state is prepared for starting of the operation, all processes are
launched and communication with slave processes is established. The master processes pe-
riodically receives information about health of the system provided by the slave processes.

• In the Testing state, the trigger control system controller is working, the data are being
taken but marked as Test. The errors in data consistency are tolerated in this state. It is
possible to add or remove detector channels into the system in this state.

• In the Running state, the data are being taken and marked as Good. However, errors
related to data consistency are not allowed in this state.

• The system enters the Error state in case some problem in hardware or software is detected.
The recovery strategy still needs to be discussed, the software should contain some kind
of automatic recovery feature.

The final design of the finite state machine should probably also contain some transitional states
such as Starting slaves or Stopping slaves.

Also the behaviour of the slave processes should be defined by the state machine that consists
of similar states:

• The slave process should be started in the Idle state in which it does not publish any
information.

• In the Ready state, the slave processes regularly update information about status of the
underlying hardware and waits for the commands sent by the master process.

• In the Testing state, the data are being taken and marked as Test. The slave processes
watch quality of data and tolerate errors related to the data quality.

• In the Running state, the data are being taken and marked as Good. However, if a slave
process detects problems with quality of data, it does not tolerate it.

• The slave process enters the Error state when a serious problem with hardware, software,
or data quality is detected.

The state of the master process should depend on states of the slave process in the following way:
the master process can enter the Ready, Test, or Running state only if all the slave processes
enter the same state. On the other hand, if any slave process enters the Error state, then the
master process (and the entire system in turn) and all other slave processes enter the Error state
too.
Several software libraries or frameworks provide implementation of the finite state machines.
The State Machine Interface (SMI++) is a framework developed for the Delphi experiment
at CERN, [13]. The framework consists of the State Manager Language that describes the real
world object by the state machines and the State manager that controls the states of these state
machines. Communication between the State manager and state machines is based on the DIM
services. Additionally, the support for the state machines has been introduced in the version 4.6
of the Qt framework. The framework contains classes that correspond to state machines, states
and final state, and state transitions, [39].

The master process and all slave processes also communicate with theMessage logger process.
This process collects software messages generated by other processes, buffers them, and stores
them in the online database. The messages should inserted in the database table be with

114

Doctoral thesis Vladimír Jarý

Figure 6.4: State machine diagram of the slave process (preliminary version)

information about severity, sender, run number, spill number, event number, and timestamp.
The Message logger should be deployed on x86–compatible server powered by the SLC operating
system. Obviously, this process requires the database access. A library that provides other
nodes access to the Message logger should be provided, preferably in the C language for the
portability reasons. The Message logger should replace the infoLogger facility provided by the
Date package. The Message logger should be compatible with the format of the messages table
in the DATE_log database defined by the Date package.

The contents of the table with messages stored by the Message logger process should be
viewed by the Message browser process. The process should provide a graphical interface that
should allow users to interactively filter the messages by the timestamp, severity, or sender. The
browser should also display message online, as soon as they are stored in the corresponding table.
The application should implement the Model–View–Controller design pattern [9] with database
table being the model, list view in the graphical user interface being the view, and set of filters
being the controller. The Message browser should replace the functionality of the InfoBrowser
application of the Date package. The Message browser should not depend on the DIM library,
therefore it could be deployed on any machine that has access to the online database. Multiple
instances of the Message browser should work simultaneously in the system.
According to the proposal, the user interface of the control and monitoring software should be
implemented as a stand alone application. The user interface should act as a DIM client. It
should send DIM commands to the master process which would process these commands and
delegate them to the hardware via the slave processes. On the other hand, the user interface
should subscribe to the services published by the master that provide summary information
about health of the hardware. Multiple user interfaces should be allowed to monitor the system
simultaneously, however the master process should guarantee that at most one user interface
controls the system at the same time. The application providing the user interface should be
used routinely on the workstations in the control room powered by the SLC operating system
during shifts. However, detector and data acquisition experts should be allowed to use the
application from their laptops, at least for monitoring purposes. Therefore, the application
should support also MS Windows platform. The user interface should be modular, i.e. users
should be able to customize the layout to their needs by showing or hiding various components
such as a trigger rate display, run control panel, or configuration panel. The application should

115

Vladimír Jarý Doctoral thesis

Figure 6.5: Proposal of the graphical user interface

also reflect privilege of the currently logged user, e.g. the visitors should have access only to
the monitoring components, while the run control panel should be displayed to operators and
configuration panels to the corresponding data acquisition and detector experts.

We have decided to develop the graphical user interface in the Qt framework. The framework
is known mainly as a rich library of graphical widget ranging from simple buttons or check boxes
to complex tables or graphical canvases. Additionally, the framework also contains classes for
network programming, memory management, database access, multithreading, or finite state
machines. Furthermore, the framework extends the object model of the C++ language with
introspection and signal and slot mechanism. The graphical editor of user interfaces Qt designer
and complete Integrated Development Environment QtCreator are also included in the frame-
work. The framework supports all the major platforms including GNU/Linux with X window
system, MS Windows, and Mac OS. The framework should be used to develop the user interface,
Message logger, Message browser, and master process. Only the slave process that should be
deployed on the embedded linux powered by the softcore processor cannot be implemented in
the Qt framework as it does not support this platform. Additionally, the transport protocol
used for communication between nodes should not depend on the Qt framework.

3.1 Transport protocol

The communication between nodes that participate in the control and monitoring software is
based on exchange of messages between DIM publishers and DIM subscribers. In cooperation
with data acquisition experts, we have defined a custom communication protocol that is described
by the format of message. Each message consists of a header, a body, and a trailer. The message
trailer should contain total size of the message, version of the communication protocol, unique
identifiers of sender and receiver, message number, and timestamp. The size of the header
should be 32 Bytes. The payload of message should contain useful data such as information
about health of hardware. The size of payload must be a multiple of 4 Bytes, it can also be
empty. The trailer should consists of message number, check sum of the message and some
reserved bytes. The size of the trailer should be 16 Bytes. Format of the message is completely

116

Doctoral thesis Vladimír Jarý

described in Table 6.3.

Format of the message
Header
1. Data size 4 bytes Total size of the message in 32b words

= header size+payload size+trailer size
2. Version 4 bytes Version of the protocol
3. Sender ID 4 bytes Unique ID of the message’s sender
4. Message number 4 bytes Number of the message
5. Receiver ID 4 bytes Unique ID of the message’s receiver
6. Message ID 4 bytes ID of the message

7.-8. Time 8 bytes Time stamp
Payload
9. Body (0-N) × 4 bytes Body of the message (can be empty)
Trailer
10. Reserved 4 bytes 0x00000000
11. Reserved 4 bytes 0x00000000
12. Message number 4 bytes Number of the message

(the same as in the header)
13. Check sum 4 bytes Check sum of the message

Table 6.3: Message format

As this protocol should be used by all applications participating in the system, it should be
implemented as a function library that should be linked to these applications. As this library
should also be used by slave processes running on embedded linux, it should be developed in the
C language for portability reasons. The library should contain functions that allow construction
and parsing of the messages. Additionally, the library should support a data type that describes
character array with known size and that should be used for manipulation with messages. The
functions that allows appending another character array or character to existing character array,
return prefix, center, or suffix of the character array, clears the array, or returns the size of the
array should be also implemented in the library. The data type should provide the similar
functionality as the QByteArray class of the Qt framework [39] that cannot be used because of
the portability reasons.

4 Results and outlook

The proposal of the control and monitoring system introduced in the previous section has been
finalized during summer 2011. Especially, the definition of the finite state machines that describe
behavior of the master and the slave processes has been completed. During autumn 2011, the
first minimal version of the software that fulfills the requirements given by the proposal has been
implemented. Implementation details can be found in works [4, 19]. The current status of the
software development has been presented to the Compass member on the collaboration meeting
in November 2011, [6].

The first series of performance and stability tests of the software have been carried out
during winter shutdown of the experiments on workstations in the new control room and on
event building machines: message logger, application with the graphical user interface, and the
database server have been deployed in the control room, DNS, master process, and slave processes

117

Vladimír Jarý Doctoral thesis

have been deployed on event builders. All machines included in the tests have been connected
to the Compass internal network by Gigabit Ethernet that provides theoretical bandwidth of
up to 128MB/s.

The purpose of these tests has been to evaluate stability and performance of the software.
During the tests, performance have been compared for different number of slaves and different
sizes of the message payload (see Table 6.3). We have proved, that for messages larger than
1 kB, the system is able to almost fully saturate the network. The theoretical bandwidth cannot
be reached because of the overhead of the TCP/IP that includes headers of packets and over-
head caused by components of the network. For this size, the system is capable of exchanging
approximately 90 000 messages each second. This is promising result as it is required that the
system updates information about status of the hardware each 10ms. For smaller messages, the
performance drop seems to be caused mainly by communication with the DNS.

 0

 20

 40

 60

 80

 100

 120

 100 1000 10000 100000 1e+06

T
ra

n
s
fe

r
s
p
e
e
d
 [
M

B
/s

]

Message size [Bytes]

Speed results

Transfer speed
Hardware limit

Figure 6.6: Test results: Transfer speed

In the second series of tests, we have studied the stability of software in time. In this test
scenario, the master has been exchanging messages with up to 10 slaves over period of 20 hours.
The results show that the transfer speed remained constant, additionally, no memory leaks were
detected during the test. The observed spikes in the graph still need to be investigated, we
suppose that they are caused by synchronization of the system time with time server over the
network time protocol NTP.

Currently, the functionality of the slave process is being extended to support monitoring
of the health and status of HGeSiCA modules. HGeSiCA is a VME card that gathers data
from four frontend cards into a subevent. It receives information about event identification
from the trigger control system and adds it to the subevent. The task of the slave process is

118

Doctoral thesis Vladimír Jarý

 0

 5000

 10000

 15000

 20000

 0 1
0
0
0
0

 2
0
0
0
0

 3
0
0
0
0

 4
0
0
0
0

 5
0
0
0
0

 6
0
0
0
0

 7
0
0
0
0

 8
0
0
0
0

M
e
s
s
a
g
e
s
 e

x
c
h
a
n

g
e
d
 p

e
r

s
e

c
o
n

d

Elapsed time [s]

System stability

Figure 6.7: Test results: stability of the system

to continuously read contents of the status registers of the HGeSiCA module. These registers
include information about last processed event, amount of processed data, configuration of the
module (i.e. active ports), and also error mask.

The final version of the firmware for the FPGA cards is under development in spring 2012.
When the firmware is prepared, the slave processes will need to be ported on the embedded linux
powered by the softcore processor. The slave processes will need to access data about status of
the cards and will need to send commands and configuration information to these cards. The
first tests with the FPGA cards are scheduled for autumn 2012. The goal is to have the system
fully functional in the year 2013. The shutdown of all particle accelerator at CERN is expected
for the year 2013, therefore the year should be used for testing of the hardware and the software
parts of the system. If the tests are successful, the system will be deployed at the Compass
experiment starting from the year 2014.

119

Conclussion and contribution of the
thesis

The aim of this thesis was to analyze selected parts of the software support of the Compass
experiment at CERN and to propose new architecture of these parts. We have decided to focus
on the data acquisition system of the experiment. In Chapter 2, the existing data acquisition
system has been analyzed. The existing system is based on custom electronics that perform
detector readout and network of servers that perform event building. From the software point
of view, the data acquisition tasks are powered by the Date package.

The Chapter 4 focused on the MySQL database that is used by the Date package to store
configuration information and logs. Also, the information about conditions of the spectrometer
and the beam line during the data taking process are stored in the database. During the year
2009, the database service experienced several crashes related to the increased load. We have
analyzed the database architecture and concluded that the performance problems had been
caused by combination of outdated hardware and software. We have evaluated performance
of newer version of the MySQL software and compared it to older version. We have proposed
and implemented new database architecture. The new architecture is powered by two physical
servers that are synchronized by the master–master replication. Third server is used as a proxy
server. The system is continuously monitored by the Nagios system, database is regularly backed
up. The implemented database architecture is able to handle increased load. However, in order
to increase availability and simplify a crash recovery, we recommend to increase the redundancy
by adding more physical servers. This could also be used to implement load balancing.

The radioprotection limits might be exceeded in the control room in the planned scientific
programs as a result of increased beam intensity. Therefore, we have been asked to implement
the remote control room for the Compass experiment. In Chapter 5, we have discussed several
possible implementations of the remote access. Then, we have described the kickstart method
that has been used to install the system on the workstations in the new control room. We have
successfully configured the Date to work from the remote control room, consequently we have
saved considerable amount of money that would otherwise have to be invested into additional
shielding of the spectrometer. The remote control room is now prepared for deployment. Al-
though the method described in Chapter 5 can be used to configure any computer connected to
the Compass network for remote access, we recommend to use only remote monitoring. The
remote control should be performed only from the control room for the safety reasons.

Finally, Chapter 6 is dedicated to development of a control and monitoring software for the
new data acquisition architecture. The hardware part of the architecture is being developed at
the Technical University in Munich; it is based on the custom FPGA cards that should replace
event building network that is based on deprecated hardware. At first, we have analyzed the
requirements posed on the software. Based on these requirements, we have prepared and pre-
sented proposal of the new control and monitoring software. The software is to be deployed

120

Doctoral thesis Vladimír Jarý

on heterogeneous, distributed nodes. We have decided to build the software on the DIM com-
munication library. The proposal defines roles that should be implemented in the architecture,
behavior of the actors is described by the state machines. The implementation of the proposal
is described in master’s degree thesis [4, 19]. The software architecture has been tested during
winter shutdown of the experiment, we have confirmed that the software meets the expected
performance requirements and runs stably. In the following steps, the software needs to be
ported on the FPGA hardware. It is expected to have fully functional system prepared for the
testing under the real conditions in 2013. If these test are successful, the new architecture will
be deployed for data taking starting from the year 2014.

As part of the thesis, the author has acted as a supervisor specialist of undergraduate students
who implemented the proposed control and monitoring software for the new data acquisition
architecture of the Compass experiment. The students have successfully defended their master’s
degree thesis in June 2012, [4, 19].

121

List of Figures

1.1 Data acquisition system . 10
1.2 Data acquisition with periodic trigger . 11
1.3 Data acquisition with a basic physics trigger . 12
1.4 Constant fraction discriminator . 12

2.1 Artistic view of the Compass spectrometer . 15
2.2 Layers of the data acquisition system . 17
2.3 Event loop of the readout module . 20
2.4 Data flow between Date processes in the event building network 21
2.5 Event distribution management in the Date . 22
2.6 Architecture of the Date infoLogger facility . 23
2.7 Architecture of the online filter . 26

3.1 Database management system . 31
3.2 Subscription to the DIM service . 34

4.1 Original database architecture of the Compass experiment 41
4.2 Proposed database architecture for the Compass experiment 42
4.3 Query evaluation time . 55
4.4 Implemented database architecture . 57
4.5 Monitoring remote resources and services using the Nagios Remote Plugin Executor 75
4.6 Schema of the daqmon database . 81
4.7 Improved database architecture . 88

5.1 Users of the remote control room . 94
5.2 Deployment diagram of the remote control room 95

6.1 Software architecture of the new data acquisition system 111
6.2 Use case diagram for the new data acquisition system 112
6.3 State machine diagram of the master process . 113
6.4 State machine diagram of the slave process . 115
6.5 Proposal of the graphical user interface . 116
6.6 Test results: Transfer speed . 118

122

Doctoral thesis Vladimír Jarý

6.7 Test results: stability of the system . 119

List of Tables

4.1 Configuration of database servers . 43
4.2 Results of comparison of different versions of the MySQL server 47
4.3 The speed of the INSERT operation on different storage engines 52
4.4 The comparison results of the selected programming languages 53
4.5 Comparison of MyISAM and InnoDB storage engines 55
4.6 Defined partitions . 60
4.7 The result of the Explain command on an non–optimized table 83
4.8 The result of the Explain command on the table with the optimized index . . . 84
4.9 The result of the Explain command on the modified query 86
4.10 Partition pruning in MySQL 5.1.42 . 89

5.1 Workstations in a remote control room . 103

6.1 Evolution of the hardware configuration of the readout buffers 104
6.2 Performance of the C++ interface of the DIM library 110
6.3 Message format . 117

123

List of Publications

Papers

1. C. Adolph, V. Jarý, et al. (the COMPASS collaboration): COMPASS-II proposal, CERN-
SPSC-2010-014; SPSC-P-340 (May 2010)

2. C. Adolph, V. Jarý, et al. (the COMPASS collaboration): Exclusive ρ0 muoproduc-
tion on transversely polarised protons and deuterons, accepted in Nuclear Physics B,
arXiv:1207.4301

3. C. Adolph, V. Jarý, et al. (the COMPASS collaboration): Experimental investigation of
transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries, submitted
to Physics Letters B, arXiv:1205.5121.

4. C. Adolph, V. Jarý, et al. (the COMPASS collaboration): Experimental investigation of
transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries, submitted
to Physics Letters B, arXiv:1205.5122.

5. C. Adolph, V. Jarý, et al. (the COMPASS collaboration): Measurement of the Cross
Section for High-pT Hadron Production in Scattering of 160 GeV/c Muons off Nucleons,
submitted to Physics Review Letters, arXiv:1207.2022.

6. M. Bodlak, V. Jary, I. Konorov, A. Mann, J. Novy, S. Paul, M. Virius: Developing control
and monitoring software for data acquisition system, submitted to the Acta Polytechnica.

7. M. Bodlák, V. Jarý, I. Konorov, A. Mann, J. Nový, S. Paul, M. Virius: Software Devel-
opment for the COMPASS Experiment, In: 38th Software Development, Ostrava: VŠB –
Technická univerzita Ostrava, 2012; ISBN 978-80-248-2669-1. pp. 10–17.

8. M. Bodlák, V. Jarý, T. Liška, F. Marek, J. Nový, M. Plajner: Remote Control Room
For COMPASS Experiment, In: 37th Software Development, Ostrava: VŠB – Technická
univerzita Ostrava, 2011, ISBN 978-80-248-2425-3. pp. 1–9.

9. L. Fleková, V. Jarý, T. Liška: Mass Data Processing Optimization on High Energy Physics
Experiments, In: 4th International Conference on Advanced Computer Theory and Engi-
neering, Dubai, 2010, ISBN 978-07-918-5993-3.

10. L. Fleková, V. Jarý, T. Liška, M. Virius: Proposal and results of COMPASS database
upgrade, In: Stochastic and Physical Monitoring Systems, Děčín, 2010, ISBN 978-80-01-
04641-8. pp. 45–50.

11. L. Fleková, V. Jarý, T. Liška, M. Virius: Využití databází v rámci fyzikálního experimentu
COMPASS, In: 36th Softwaru Development, Ostrava: VŠB – Technická univerzita Os-
trava, 2010, ISBN 978-80-248-2225-9. pp. 68–75.

12. V. Jarý: COMPASS Database Upgrade, In: Doktorandské dny 2010, Praha: ČVUT, 2010,
ISBN 978-80-01-04664-9. pp. 95–104.

13. V. Jarý: Detector simulation with Geant4, In: Doktorandské dny 2009, Praha: ČVUT,
2009, ISBN 978-80-01-04436-0. pp. 71–80.

124

Doctoral thesis Vladimír Jarý

14. V. Jarý: Towards a New Data Acquisition Software for the COMPASS Experiment, In:
Doktorandské dny 2011, Praha: ČVUT, 2011, ISBN 978-80-01-04907-5. pp. 95–104.

15. V. Jarý, T. Liška, M. Virius: Developing a New DAQ Software For the COMPASS Ex-
periment, In: 37th Software Development, Ostrava: VŠB – Technická univerzita Ostrava,
2011, ISBN 978-80-248-2425-3. pp. 35–41.

Conference talks

1. M. Bodlák, V. Jarý, J. Nový: Nový řídicí a dohledový systém pro experiment COMPASS,
In: Installfest 2012, Prague 2012.

2. M. Bodlák, V. Jarý, J. Nový: Software for the new COMPASS data acquisition system, In:
COMPASS collaboration meeting, Geneva 2011.

3. G. Deferne, V. Jarý, et al. (the OSQAR collaboration): The OSQAR Experiments at
CERN to probe the QED & Astroparticle Physics, In: Advanced Studies Institute, Sym-
metries and Spin, Prague 2010

4. L. Fleková, V. Jarý, T. Liška: New COMPASS database architecture, In: COMPASS
Frontend Electronics meeting, December 2010, Geneva.

5. L. Fleková, V. Jarý, T. Liška: Proposal on the COMPASS database upgrade, In: COMPASS
Frontend Electronics meeting, March 2010, Geneva.

6. L. Fleková, V. Jarý, T. Liška, M. Virius: Report on COMPASS database upgrade, In:
Advanced Studies Institute, Symmetries and Spin, Prague 2010.

7. V. Jarý: Databáze ve fyzice vysokých energií, In: Installfest 2011, Prague 2011.
8. V. Jarý: DATE evaluation, In: COMPASS Frontend Electronics meeting, April 2011,

Geneva.
9. V. Jarý: Development of New DAQ System For the COMPASS and PANDA experiments,

In: Workshop Devoted to 100th Anniversary of the discovery of low temperature super-
conductivity, Pec pod Sněžkou 2011.

10. V. Jarý: Highly available and reliable database for the COMPASS experiment, In: Ad-
vanced Studies Institute, Symmetries and Spin, Prague 2012.

11. V. Jarý: New DAQ System For the COMPASS Experiment, In: Advanced Studies Insti-
tute, Symmetries and Spin, Prague 2011.

12. V. Jarý: Software for the new COMPASS DAQ, In: COMPASS Frontend Electronics
meeting, November 2011, Geneva.

125

Bibliography

[1] P. Abbon et al. (the COMPASS collaboration): The COMPASS experiment at CERN. In:
Nucl. Instrum. Methods Phys. Res., A 577, 3 (2007) pp. 455–518

[2] Ch. Adolph, . . . , V. Jarý et al. (the COMPASS collaboration): COMPASS-II proposal.
CERN-SPSC-2010-014; SPSC-P-340 (May 2010)

[3] T. Anticic et al. (the ALICE collaboration): ALICE DAQ and ECS User’s Guide. CERN,
ALICE internal note, ALICE-INT-2005-015, 2005.

[4] M. Bodlák: COMPASS DAQ – Database architecture and support utilities. Prague, Czech
Technical University in Prague, June 2012

[5] M. Bodlák, V. Jarý, T. Liška, F. Marek, J. Nový, M. Plajner: Remote Control Room
For COMPASS Experiment. In: 37th Software Development, Ostrava: VŠB – Technická
univerzita Ostrava, 2011, ISBN 978-80-248-2425-3. pp. 1–9.

[6] M. Bodlák, V. Jarý, J. Nový: Software for the new Compass data acquisition system. In:
COMPASS collaboration meeting, Geneva, Switzerland, 18 November 2011
Also available at: http://wwwcompass.cern.ch/compass/collaboration/2011/co_1111/

[7] R. Brun, F. Rademakers: ROOT - An Object Oriented Data Analysis Framework. In: Pro-
ceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A
389 (1997) pp. 81–86.

[8] P. Charpentier, M. Dönszelmann, C. Gaspar: DIM, a Portable, Light Weight Package for
Information Publishing, Data Transfer and Inter-process Communication. In International
Conference on Computing in High Energy and Nuclear Physics 2000, Padova, Italy 1-11
February 2000

[9] E. Gamma: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional Computing Series, 1995, ISBN 0201633612

[10] J. Gehrke, R. Ramakrishnan: Database Management Systems, Third Edition. McGraw-Hill,
August 2002, ISBN 978-00-724-6563-1

[11] L. Fleková, V. Jarý, T. Liška: Proposal on the COMPASS database upgrade. In: COMPASS
Frontend Electronics Meeting, Geneva, Switzerland, 26 March 2010

[12] L. Fleková, V. Jarý, T. Liška, M. Virius: Využití databází v rámci fyzikálního experimentu
COMPASS. In: Konference Tvorba softwaru 2010, Ostrava: VŠB - Technická univerzita
Ostrava, 2010, ISBN 978-80-248-2225-9 pp. 68–75.

126

Doctoral thesis Vladimír Jarý

[13] B. Franek, C. Gaspar. SMI++ Object Oriented Framework for Designing and Implementing
Distributed Control Systems. In 10th IEEE Real-Time Conference 1997, Baunne, France,
22-26 September 1997

[14] V. Jarý. DATE evaluation. In: COMPASS DAQ meeting, Geneva, Switzerland, 29 March
2011

[15] V. Jarý: Live distributions. Prague: Czech Technical University in Prague, June 2008.
Master’s Degree project

[16] V. Jarý, T. Liška, M. Virius. Developing a New DAQ Software For the COMPASS Experi-
ment. In: 37th Software Development, Ostrava: VŠB – Technickǎ univerzita Ostrava, 2011,
ISBN 978-80-248-2425-3. pp. 35–41.

[17] A. Král, T. Liška, M. Virius: Experiment COMPASS a počítače. In Československý časopis
pro fyziku 5. Prague, Czech Republic, 05/2005. pp. 472.

[18] A. Mann, F. Goslich, I. Konorov, S. Paul. An AdvancedTCA Based Data Concentrator
and Event Building Architecture. In 17th IEEE-NPSS Real-Time Conference 2010, Lisboa,
Portugal, 24–28 May 2010

[19] J. Nový: COMPASS DAQ – Basic Control System. Prague, Czech Technical University in
Prague, June 2012

[20] I. Konorov: private communication. September 2010.

[21] M. Matsumoto, T. Nishimura: Mersenne twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. 1998. ACM Transactions on Modeling and Com-
puter Simulation 8 (1): 3–30

[22] T. Nagel: Cinderella: an Online Filter for the COMPASS Experiment. München: Technis-
che universität München, January 2009.

[23] L. Schmitt et al.: The DAQ of the COMPASS experiment. In: 13th IEEE-NPSS Real Time
Conference 2003, Montreal, Canada, 18–23 May 2003, pp. 439–444

Online sources

[24] M. Achour et al.: PHP Manual [online]. June 2012.
Available at: http://php.net/manual/en/index.php

[25] G. Chazarain: iotop homepage [online]. June 2012.
Available at: http://guichaz.free.fr/iotop/

[26] E. van der Bij, Stefan Haas: CERN S-LINK homepage [online]. June 2012.
Available at: http://hsi.web.cern.ch/hsi/s-link/

[27] M. Keep: MySQL 5.6 Replication - Enabling the Next Generation of Web & Cloud Services
Available at:
http://dev.mysql.com/tech-resources/articles/mysql-5.6-replication.html

[28] A. Lentz: MySQL Storage Engine Architecture [online]. 2010. Available at:
http://dev.mysql.com/tech-resources/articles/storage-engine/part_1.html

127

Vladimír Jarý Doctoral thesis

[29] R. Rivest: The MD5 Message–Digest Algorithm [Internet RFC 1321]. April 1992.
Available at: http://tools.ietf.org/html/rfc1321

[30] COMPASS web page [online]. June 2012.
Available at: http://wwwcompass.cern.ch

[31] Distributed Information Management System: User Manual [online]. June 2012.
Available at: http://dim.web.cern.ch/dim/dim_user.html

[32] Extra Packages for Enterprise Linux [online]. June 2012.
Available at: http://fedoraproject.org/wiki/EPEL

[33] ISO/IEC 9075-1:2011 Database languages – SQL [online]. June 2012.
Available at: http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_
ics.htm?csnumber=53681

[34] Linuxsoft: Software repository and installation service [online]. December 2011.
Available at: http://linuxsoft.cern.ch/

[35] MySQL Master–Master Replication [online]. 2010.
Available at:
http://www.howtoforge.com/mysql_master_master_replication

[36] MySQL Load Balancer Guide [online]. 2010.
Available at: http://downloads.mysql.com/docs/mysql-load-balancer-en.a4.pdf

[37] MySQL 5.1 Reference Manual [online]. June 2012.
Available at: http://dev.mysql.com/doc/refman/5.1/en/

[38] Nagios Exchange [online]. June 2012.
Available at: http://exchange.nagios.org/

[39] Trolltech Inc.: Qt reference documentation [online]. May 2012.
Available at: http://docs.trolltech.com

[40] Redhat Hat Enterprise Linux 5 Installation Guide
Available at: http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/

[41] Using the GNU Compiler Collection [online]. 2012.
Available at: http://gcc.gnu.org/onlinedocs/

128

