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Abstract—The Tile Barrel Calorimeter (TileCal) is the cen-
tral section of the hadronic calorimeter of ATLAS at LHC.
It comprises more than 10,000 readout channels. The energy
deposited in each channel is read out and the analog pulse is
conditioned by a shaper circuit. The signal energy is estimated
by reconstructing the amplitude of the digitized pulse sampled
every 25 ns. This work presents the performance of an alternative
algorithm for TileCal energy reconstruction, namely the TileCal
Matched Filter (MF). The performance of the MF method is
compared to the currently implemented algorithm (OF2) using
collision data acquired in 2010 during LHC operation period.
The results showed that the MF presents smaller error estimation
(variance) than the OF2 method. In addition to that, the methods
showed to be highly correlated with each other for high SNR
signals. Preliminary results using special ATLAS collision data
taken later in 2012, for which LHC operated at 25 ns bunch
spacing and ATLAS observed an increase of the pile-up effect,
are also provided.

I. INTRODUCTION

ATLAS (A Toroidal LHC ApparatuS) [1] is one of the
four main experiments at the LHC and one of two

general purpose detectors designed for precision Standard
Model measurements and to search for physics beyond the
Standard Model. It is composed of six different subsystems:
The Inner Detector, the Solenoidal Magnet that surrounds the
inner detector, the Electromagnetic and Hadronic calorimeters,
the Toroid Magnets and the Muon Spectrometer, as illustrated
in Figure 1.

Fig. 1. The ATLAS detector and its subsystems.
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Fig. 2. Schematic diagram showing the mechanical assembly and the optical
readout of the Tile Calorimeter, corresponding to a φ wedge.

The ATLAS Tile Calorimeter (TileCal) [2] is the main
hadronic calorimeter of the ATLAS detector. The aim of
TileCal is to perform precise measurements of hadrons, jets,
taus and to contribute to the reconstruction of the missing
transverse energy as well as to provide input signals to ATLAS
online trigger [3]. It consists of three cylinders, one long barrel
(LB) splitted into two readout partitions, LBA and LBC (LBs),
and two extended barrels (EBs), EBA and EBC, covering the
most central region |η| < 1.7 of ATLAS.

TileCal is a sampling device that uses iron plates as ab-
sorber and plastic scintillating tiles as the active material. The
particles produced in the interaction point travel through the
calorimeter and the light produced in the scintillating tiles is
proportional to the energy deposited by the particles. The light
is transmitted by wavelength shifting fibers and read out by
photomultiplier tubes (PMTs), which generate analog pulses.
Figure 2 shows the structure and the signal collection system
of one of the 256 φ wedges of TileCal.

Each of TileCal central and extended barrel modules are
divided, respectively, into 23 and 16 cells with double readout,
resulting in almost 10,000 channels. Furthermore, each barrel
is divided into 64 modules in azimuth, φ, giving a granularity
of ∆φ of 0.1. Each module is further radially segmented in
three layers of readout cells with a granularity of ∆η of 0.1
for the first two layers and ∆η of 0.2 for the third one. The
cells belonging to each ∆η slice are summed up to form the
so called Trigger Towers and this compact information is sent



to the Level One Calorimeter trigger. The cell segmentation
is shown in Figure 3 for a half of a LB module and an EB
module.

Fig. 3. Schematic view of TileCal cell segmentation for a LB and an EB
modules.

The fast pulse generated in the PMT is conditioned by a
shaper circuit [4], which provides a 50 ns Full Width at Half
Maximum (FWHM) pulse whose the amplitude is proportional
to the deposited energy. Therefore, the TileCal pulse shape can
be considered almost invariant from channel to channel [5]
and the energy deposited by the particle at a given cell can
be retrieved by the corrected estimation of the TileCal pulse
amplitude.

In order to cover the entire energy range (220 MeV to
1.3 TeV), the shaped pulse is amplified by two operational
amplifiers with a gain ratio of 64. The analog signals are
converted into digital samples with a 40 MHz sampling clock
at the digitizer board. A window of seven samples (150 ns)
covers the entire pulse and is readout at every event. The
TileCal analog signal as well as its parameters can be seen
in Figure 4. The seven samples are represented by the dots
spaced 25 ns from each other.

Fig. 4. TileCal reference pulse shape.

The pedestal is defined as the baseline of the signal and
the amplitude A is the height of the signal measured from the
pedestal. The signal phase is defined as the distance between
the pulse peak and the expected time, which is tuned to
match the fourth sample. The seven samples from each TileCal
channel are transmitted through optical fibers up to the readout
drivers (RODs).

II. TILECAL ENERGY RECONSTRUCTION

The baseline algorithm for energy reconstruction in ATLAS
calorimeter systems is the so called Optimal Filter (OF) [6].
It is a variance minimization technique that makes use of the
knowledge of the pulse shape taken from the shaping circuit
to estimate the pulse amplitude [7]. Since the background of
ATLAS calorimeters comprises only electronic noise, which is
often modeled by a Gaussian distribution, the OF is extensively
employed in such experiments [8].

The OF version implemented in TileCal is called OF2 [9]
and it is the currently used algorithm to estimate the signal
amplitude and to reconstruct the energy at the ROD level
during detector operation. It makes use of a weighted linear
combination of the signal samples to obtain the amplitude of
the pulse, according to Equation (1).

ÂOF =
∑N−1

k=0
aksk (1)

The weights ak are obtained from the channel pulse shape
and the noise covariance matrix. The procedure aims at
minimizing the variance of the amplitude distribution. Thus,
they are optimal for deterministic signals corrupted by Gaus-
sian noise. The correct weights are computed by minimizing
the effect of the noise in all amplitude, phase and pedestal
reconstructions [9].

In order to compute the OF2 weights ak, the TileCal signal
is modeled as a first order approximation:

sk = Agk −Aτg′k + nk + ped k = 0, 1, 2, ..., N − 1 (2)

where sk represents the received digital sample k and N is
the total number of samples available, which is currently 7
for TileCal. The amplitude A is the parameter to be estimated
while nk is the background noise. The parameters gk and g′k
are the TileCal reference pulse shape and its derivative (linear
approximation for the pulse phase), respectively, while the
parameter τ is the signal phase. The variable ped corresponds
to the signal pedestal and is a constant value added to the
analog signal just before its analog-to-digital conversion.

For a linear and unbiased estimator, it is required that the
expectation value of Â to be A, therefore Equation (3) can be
derived.

E[ÂOF ] =
∑N−1

k=0
(Aakgk −Aτakg′k + akped) (3)

Since the mean noise value will be zero (E[nk] = 0), the
following constraints are deduced in order to be pedestal and
phase independent: ∑N−1

k=0
akgk = 1 (4)

∑N−1

k=0
akg
′
k = 0 (5)

∑N−1

k=0
ak = 0 (6)

The estimator variance is given by,



var(ÂOF ) =
∑N−1

k=0

∑N−1

j=0
akajCkj = aT Ca (7)

where C corresponds to the noise covariance matrix and a is
the vector of weights.

Hence, to find the OF2 weights, Equation (7) is minimized
subject to the constraints expressed by Equations (4), (5) and
(6) using Lagrange multipliers [6].

III. THE TILECAL MATCHED FILTER METHOD

The OF2 method is a constrained minimum variance esti-
mator. Besides that, it builds its detection threshold based on
the amplitude estimates in order to select signals of interest.
Unlike OF2 method, MF starts from the detection point of
view to come up with its coefficients.

A. Signal detection

Due to the high segmentation of the TileCal (around 10,000
channels), not all channels in every event will have relevant
information to process. Consequently, a signal detection algo-
rithm against noise can be developed. The detection problem
can be described as an hypothesis testing on the received
signal:

H0 : rk = nk k = 0, 1, 2, ..., N − 1
H1 : rk = gk + nk k = 0, 1, 2, ..., N − 1

(8)

where H0 represents the null-signal hypothesis while H1

corresponds to the full-signal hypothesis. By considering r
a given outcome at the receiver end, based on the Neyman-
Pearson Lemma, the relationship that maximizes the detection
efficiency is given by the likelihood ratio test [10], [11] shown
by Equation (9).

Λ(r) =
L(H1|r)

L(H0|r)

H1

≷
H0

γ (9)

The terms L(H1|r) and L(H0|r) are the likelihood functions
for the null-signal hypothesis H0 and full-signal hypothesis H1

given the data r was received. The parameter γ is a detection
threshold. The idea is to decide in favor of hypothesis H1 if
the likelihood ratio of the received signal is greater than the
detection threshold, and otherwise in favor of H0. In such a
way, the likelihood ratio maximizes the detection probability
and minimizes the detection error probability.

The likelihood functions are usually unknown for the ma-
jority of the real detection problems. Therefore, the detection
algorithm should estimate L(H1|r) and L(H0|r) from a set
of known data. In a multi-variate detection problem, if the
variables can be modeled for both H0 and H1 hypotheses,
the likelihood ratio test can be computed. However, a pre-
processing step (typically, a whitening filter) is often needed
in order to make noise samples statistically independent from
each other.

In the case where the noise is Gaussian and the signal vector
g is deterministic, the estimation of the covariance matrix C
is enough to characterize the signals. Thus, the multivariate
Gaussian function is used to model both the null-signal and

full-signal likelihood functions. As a result, the likelihood
functions L(H1|r) and L(H0|r) are defined by Equations (10)
and (11), respectively.

L(H1|r) =
1√

(2π)N |C|
exp (−1

2
(r− g)T C−1(r− g)) (10)

L(H0|r) =
1√

(2π)N |C|
exp (−1

2
rT C−1r) (11)

Thus, the likelihood ratio test becomes:

Λ(r) =
exp (− (r−g)T C−1(r−g)

2 )

exp (− rT C−1r
2 )

H1

≷
H0

γ (12)

As can be seen the only condition that is needed to decide
in favor of one of the hypotheses is given by the following:

rT C−1g
H1

≷
H0

γ′ (13)

where C−1g are the MF weights.
This result is known as the Matched Filter for signal

detection corrupted by zero-mean Gaussian noise. For white
Gaussian noise, the covariance matrix C is diagonal and can be
suppressed. As a result, the MF weights is the reference signal
g itself. For the case where the Gaussian noise is correlated, the
inverse of the covariance matrix has a pre-whitening function
and the elements of the vector C−1g become the MF weights.

In TileCal, the shaper circuit output in the readout electron-
ics provides a fixed and stable analog pulse and the energy
is recovered from its amplitude. By taking the advantage
of such pulse feature, the TileCal detection problem can
be approximated as deterministic, which simplifies the MF
implementation.

The acquired TileCal signal could be described by the
components shown in Equation (14), where sk is the received
signal, ped is the baseline offset, nk is the electronic noise,
A is the amplitude and gk is the TileCal reference pulse at a
given time k.

sk = ped+ nk +Agk (14)

Before the MF operation, the ped value is subtracted from
the received sample sk (periodically runs are taken in order to
measure this quantity). Moreover, for filter design, the phase
τ is considered zero (or fluctuates slightly) and the pulse
peak is always centered at the fourth sample. As a result, the
MF operation y between the incoming signal s and the MF
coefficients is shown in Equation (15).

y = (s− ped)T C−1g (15)

It is worth mentioning that y is a single value and no longer
corresponds to Λ(r) from Equation (9). This is due to the fact
that Λ(r) is absorbed by γ′ during the MF simplification, as
expressed in Equation (13).



B. Amplitude estimation

The output from the detection operation shown in Equa-
tion (15) can be used to select signals with relevant information
through the application of a simple threshold. However, it
does not directly recover the input pulse amplitude, which
is of interest as it guides to the final signal reconstruction.
But Equation (15) can be restated as Equation (16) and the
received signal amplitude can be computed by solving it for
the variable A.

y = (n +Ag)T C−1g (16)

This procedure leads to the expression shown by Equa-
tion (17), which is the estimation of the input pulse amplitude.

ÂMF =
(s− ped)T C−1g

gT C−1g
(17)

Equation (17) shows an interesting property of the Matched
Filter detector: the MF output can also be used as an amplitude
estimator for TileCal. The numerator (s − ped)T C−1g is
the usual MF operation, and the denominator gT C−1g is a
constant that normalizes the MF operation in order to recover
the signal amplitude in ADC counts unit.

IV. RESULTS

Both MF and OF2 are currently designed (and implemented)
for white Gaussian noise, therefore they perform close to their
optimum operation when no Out-Of-Time (OOT) signal, or
pile-up, is present and the background comprises only the
electronic noise. This scenario is also called low luminosity
condition as only one or a few interactions per Bunch-Crossing
(BC) are expected. Figure 5 illustrates the current filter weights
for a given TileCal channel.
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Fig. 5. OF2 weights (from minimization of Equation (7)) compared to MF
weights (Equation (17)).

In the complementary scenario of high luminosity condition,
the number of interactions per BC is higher and pile-up is
observed. Under this scenario, the background contains the

contribution of the usual electronic noise (Gaussian) as well
as the pile-up (non-Gaussian). As a result, the background is
no longer Gaussian and the methods decrease in performance
by showing larger variance and higher bias.

In order to evaluate the performance of the MF and OF2
estimators, both low and high luminosities data acquired
during LHC operation are used.

A. Performance on low luminosity data

Figure 6 shows the channel energy distribution recon-
structed by the MF and OF2 algorithms using 2010 pp
collision data at

√
s = 7 TeV, 150 ns bunch spacing (dT) and

peak average number of interactions per crossing (< µ >)
of 3.31. Under these conditions the reconstruction is not
affected by pile-up and the methods operate close to their
optimum efficiency. However, OF2 shows a wider spread when
compared to the MF around the noise region (±200 MeV).
This spread can be seen as the estimation error (variance) of
the methods. As energy increases we see a better agreement
between methods, however, the absolute error remains the
same, as it can be seen in Figure 7 where the correlation
between the methods is shown.
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Fig. 6. Channel energy spectra for both OF2 and MF for low luminosity
data.

B. Performance on high luminosity data

Similarly to the low luminosity data analysis, Figure 8
shows the channel energy distribution reconstructed by the
MF and the OF2 algorithms using 2012 pp collision data at√
s = 8 TeV, 25 ns bunch spacing (dT) and peak average

number of interactions per crossing (< µ >) of 11.3. Under
such conditions, it can be seen the increase of the spread of
the distribution obtained with both MF and OF2 with respect
to the 2010 with 150 ns bunch spacing results. This increase



Fig. 7. Channel energy correlation between OF2 and MF for low luminosity
data.
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Fig. 8. Channel energy spectra for both OF2 and MF for high luminosity
data.

is due to the presence of pile-up since the methods are not
optimized for such conditions.

Concerning the linearity of the MF method, Figure 9 shows
the correlation of channel energy. The contribution of OOT
signals in the different BC are disentangled in this comparison.
The OF2 systematically reconstructs smaller energies than the
MF in the presence of OOT signals.

Due to the strong constraint of baseline immunity imposed
by OF2 that forces the sum of the weights to be equal to zero
(see Equation (6)), some of the OF2 weights have negative
values (see Figure 5). As a result, in the presence of OOT
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data.

signals at ±3 BC or ±2 BC, OF2 introduces negative bias to
the final energy estimate while for an OOT signal at ±1 BC,
it introduces positive bias.

The MF estimator does not have the baseline immunity
constraint, and its weights are all positive values. Therefore, in
the presence of OOT signals it will always introduce positive
bias. However, since the weights associated to the ±3 BC and
±2 BC are smaller than the OF2 ones, the bias introduced
by the OOT signals are smaller for MF than for OF2. On the
other hand, MF introduces larger positive bias with respect to
OF2 for OOT signals located at ±1 BC.

Both OF2 and MF can still make use of the noise covariance
matrix in order to reduce the bias introduced by the pile-
up. Yet, they will not be optimal as the background for high
luminosity is not Gaussian.

It is worth mentioning that the MF method uses the like-
lihood ratio test to compute its weights. Therefore, it can be
redesigned if the correct description of the pile-up is provided.
However, the use of a non-Gaussian function is likely to lead
to a non-linear estimator, which can be difficult to implement.

V. CONCLUSIONS

In this work, the TileCal Matched Filter algorithm for
energy reconstruction was presented. The current performance
of both the MF and OF2 was evaluated using collision data
acquired during LHC operation. For low luminosity condi-
tions, the MF showed smaller estimation error and is highly
correlated with OF2 for high SNR signals. In other hand,
both methods decrease in performance as the LHC luminosity
increases. This can be explained by the bias introduced in the
estimators since they are not optimized for such conditions.
Moreover, the presence of OOT signals leads to a non-
Gaussian background, therefore, an increase in variance is also
expected.



In order to deal with the pile-up, the usage of the covariance
matrix to compute the filter weights are under evaluation, since
the current implementation assumes that the background is
uncorrelated between samples and Gaussian distributed. This
approach can reduce the effect of the pile-up, however, it still
will not use the correct description of the noise. Moreover,
both the signal baseline and the covariance matrix changes
according to the level of pile-up, which can make the online
implementation difficult.

A deconvolution based approach has also been considered.
It assumes the incoming signal as a linear mixture of OOT
signals and it finds a transformation that recovers each one
of the OOT signal amplitudes. The main advantage of this
technique is the fact that the background comprises only the
electronic noise regardless the luminosity.
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