
A
TL

-S
O

FT
-P

R
O

C
-2

01
3-

03
7

29
O

ct
ob

er
20

13

 
 
 
 
 
 

Dashboard Task Monitor for managing ATLAS user analysis 
on the Grid 

L Sargsyan1, J Andreeva2, M Jha3, E Karavakis2,  L Kokoszkiewicz4, P Saiz2, J 
Schovancova5, D Tuckett2 on behalf of the ATLAS Collaboration 
1 A I Alikhanyan National Scientific Laboratory, Yerevan, Republic of Armenia 

2 CERN, European Organization for Nuclear Research, Switzerland 

3 Purdue University, United States of America 

4 w3widgets.com, Poland 

5 Brokhaven National Laboratory, Upton, United States of America  

E-mail: Laura.Sargsyan@cern.ch 

Abstract. The organization of the distributed user analysis on the Worldwide LHC Computing 
Grid (WLCG) infrastructure is one of the most challenging tasks among the computing 
activities at the Large Hadron Collider. The Experiment Dashboard offers a solution that not 
only monitors but also manages (kill, resubmit) user tasks and jobs via a web interface. The 
ATLAS Dashboard Task Monitor provides analysis users with a tool that is independent of the 
operating system and Grid environment. This contribution describes the functionality of the 
application and its implementation details, in particular authentication, authorization and audit 
of the management operations. 

1.  Introduction 
The Worldwide LHC Computing Grid (WLCG) [1] infrastructure is set up to process the data from the 
experiments at the Large Hadron Collider located at CERN. ATLAS [2], one of the biggest LHC 
experiments, produces a huge amount of data. Thousands of scientists analyze this data in search of 
new discoveries. More than 350 000 ATLAS analysis jobs are submitted daily on the Grid. This 
number is steadily growing. Reliable and flexible monitoring applications are required to follow the 
job processing. In such an environment users need to be able to monitor their jobs in real-time and to 
kill or to resubmit them if something goes wrong. The Experimental Dashboard [3] monitoring 
framework that was developed for the LHC experiments provides a solution for ATLAS analysis users 
- the Dashboard Analysis Task Monitor. 

The Experimental Dashboard Task Monitor application discussed in this article is a web-based tool 
that enables ATLAS users to track progress of the job processing in detail and to manage them.  
The main focus of this paper is a description of the security model of the application and its 
implementation details. 

Access to the application is granted only to users with a valid Grid certificate. All parameters 
passed to the server side are sanitized and protected against cross-site scripting (XSS) [4] and cross-



 
 
 
 
 
 

site request forgery (CSRF) [5] attacks. The audit information about all kill requests is stored in the 
local log file, CERN Central Security Logging server and Dashboard Central Repository.  

2.  Task Monitoring Architecture 
ATLAS physicists use the PanDA [6] workload management system for job processing. A small 
percentage of ATLAS user jobs are still submitted through GANGA [7] to the gLite WMS [8]. 
Dashboard Analysis Task Monitoring application collects and exposes information that describes the 
progress of the user task processing. It uses Dashboard Data Repository (ORACLE) as a backend. 
Dashboard collectors consume job monitoring information from the PanDA job processing database, 
from jobs submitted through GANGA to WMS or local batch systems, while monitoring information 
is collected from the ActibeMQ Message brokers [9].  

The main components of the Experimental Dashboard framework are information collectors, data 
repository, and services that retrieve and expose monitoring data. The comprehensive description of 
the Experimental Dashboard framework components is provided in [10].  
ATLAS job monitoring architecture is presented in Figure 1.  

 

 

Figure 1. Architecture of the ATLAS Task Monitor application. 
 

All the collected information is exposed to the user via the web User Interface (UI).  

3.  User Interface 

3.1.  Implementation 
The user web interface is implemented using the hBrowse [11] visualization framework. hBrowse is a 
client side framework, which communicates with the server using AJAX requests. Server and client 
side separation allows the client or server side implementation to be changed independently of each 
other.   

hBrowse uses client-side model–view–controller (MVC) architectural pattern (Figure 2). The 
model is a JavaScript object. The controller initializes the model and the view, synchronizes the URL 
#hash with the model and updates the view. The model holds the view state and application data 



 
 
 
 
 
 

(cached data). The view manages UI controls, tables and plots and pushes UI control changes to the 
model.  

 

Figure 2. Client-side MVC components.  

 
The hBrowse framework uses jQuery [12] and many of its plug-ins such as BBQ (Back Button and 
Query Library), Highcharts, DataTables, LiveSearch, etc. 

3.2.  Functionality 
The User Interface provides access to the user’s tasks (collection of jobs based on output container) 
and jobs using a secure web connection (HTTPS) and Grid Certificate. There are two visualization 
modes: View mode and Manage mode. In the View mode a user can view his/her jobs and also jobs of 
other ATLAS colleagues. The Manage mode provides the ability for the task owner to kill:  

• all jobs in a task 
• all jobs in a task running on a given site 
• a specific job or set of jobs 
 

The User Interface can display a list of tasks submitted over a chosen time range ( lastDay, last2Days, 
etc. ) or for a specified time period (From .. To). The task meta information such as the last 
modification time, the input dataset, sites where jobs of this particular task are running, etc. could be 
accessed by clicking on the “+” symbol next to the “Graphically” column. The snapshot of the 
Dashboard Task Monitor UI is presented in Figure 3. 

Users can check the status of the jobs belonging to the chosen task and investigate the reason of 
failures, the resubmission history, etc. Jobs could be filtered by job status and site(s), where jobs of the 
given task are running. A wide variety of graphical plots is available at the task and job level. They 
help users to manage tasks. E.g. user can identify a problematic site using ‘Jobs distributed by site’ 
plot, kill job(s) directly from the UI and then resubmit jobs to another site.  

The User Interface provides also on-the-fly filtering, sorting, sorting column(s) highlighting, 
variable length pagination as well as full bookmarking capability, working “refresh” capability, 
“breadcrumbs” navigation, etc. 
 



 
 
 
 
 
 

 

Figure 3. The User Interface 

 

4.  Security model implementation 

4.1.  Authentication 
Authentication permissions are required for viewing monitoring data (View mode) and for managing 
user tasks (killing) in Manage mode. In View mode a client could view his/her tasks/jobs and also 
tasks/jobs of other ATLAS analysis users. Managing of user jobs is allowed only by the job owner. 
    Access to the application is performed using a secure web connection (HTTPS) and Grid certificate. 
Authentication by X509 Grid certificate is mandatory and performed entirely within the front-end 
server. The certificate-based authentication requires SSL client verification. Optional client 
verification is enabled at a global server level for all HTTPS connections so the method uses these 
results.  

4.2.  Manage mode 
The Manage mode actions are presented in Figure 4. 

4.2.1.  Handling of the session id. If authentication succeeds and Manage mode is chosen, processing 
is allowed to continue with the next step. On this step a session id is generated. Session id information 
is embedded within the form as a hidden field during the client request and submitted with the HTTP 
POST command. An important aspect of managing state within the web application is the “strength” 
of the session id itself. The generation of the session id should fulfil criteria: it should be random, 
unpredictable, and cannot be reproduced. In order to meet these requirements, the application utilises a 
strong method to generate a session id. 

The special collector inserts the session id in the dashboard central repository. The session 
information is time limited. It expires after a specified timeout period. The ORACLE procedure 
revokes the session id when a threshold has been reached. 

 
4.2.2.  Implementation of killing functionality. The “kill” procedure sanitizes all parameters which 

are passed during request to prevent embedding of malicious JavaScript, VBScript, ActiveX, HTML, 



 
 
 
 
 
 

or Flash by an attacker [4]. Performing the appropriate validation provides protection against 
malicious client-side scripts and any cross-site scripting forgery attacks. 

To avoid SQL injection [13] vulnerabilities the application uses prepared statements and bind 
variables. 
 
  4.2.2.1. Authorization. Only the owner of the job should be allowed to kill or to resubmit his/her jobs. 
During this step the procedure gathers information associated with the authenticated user and checks 
the local policy (one can kill only his/her jobs). If the distinguished name (DN) of the requestor and 
task/job owner is identical the access is granted and the “killJobs” request is sent to the PanDA server. 
Otherwise processing terminates with the error message. 

 
 4.2.2.2. Audit. The audit logging data is stored in a log file locally on the server, on the CERN 
Central Security logging, and in the dashboard central repository. Each message contains the 
following information: client IP address, passed parameters, client DN, and PanDA server replay 
message. This data is used by the users support team to review the results, identify and fix the 
problem. 
Monitoring and review of this data, as determined by the criticality of the application, past experience 
with incidents, and general risk assessment is important.  
 

 

Figure 4. Manage mode actions 
 

5.  Conclusions 
The Dashboard Task monitor provides analysis users with the ability to manage and view their tasks 
using web browser regardless of the operating system and Grid environment. It offers a complete and 
detailed view of user tasks, detailed job information with full resubmission history. The application 
has become more interactive, as it supports cancellation. The next steps consist of enabling ability to 
resubmit failed jobs from the UI.  



 
 
 
 
 
 

The kill job functionality was tested by pilot users and CERN security experts. It proved to be 
reliable from a security point of view. 

An attractive, intuitive web interface with a wide selection of graphical plots, and the ability to 
manage jobs from the web UI makes the application more popular among experienced and new 
ATLAS analysis users. 

6.  Acknowledgment 
The authors are thankful to Dario Barberis, Douglas Benjamin, Simone Campana, Andres Pacheco 
Pages for many helpful suggestions and support. We are particularly grateful for web application 
security guidance and vulnerability checks performed by Sebastian Lopienski. 

 

7.  References 
 
[1] J. Shiers, The Worldwide LHC Computing Grid (worldwide LCG), 2006, Proc. of the 
Conference on Computational Physics (CCP06) Computer Physics communications 177, pp 219–223 
doi:10.1016/ j.cpc.2007.02.021 
[2] The ATLAS Collaboration et al, The ATLAS Experiment at the CERN Large Hadron Collider, 
2008, JINST 3 S08003 doi:10.1088/1748-0221/3/08/S08003 
[3] J. Andreeva et al, Experiment Dashboard for monitoring computing activities of the LHC virtual 
organizations, 2010, J. Grid Comput. 8 323-339 doi:10.1007/s10723-010-9148-x 
[4] Cross-Site Scripting. [Online] http://en.wikipedia.org/wiki/Cross-site_scripting 
[5] Cross-site Request Forgery. [Online] http://en.wikipedia.org/wiki/Cross-site_request_forgery 
[6] T. Maeno et al, Overview of ATLAS PanDA Workload Management, 2011 J. Phys.: Conf. Ser. 
331 072024 doi:10.1088/1742-6596/331/7/072024  
[7] J. Elmsheuser et al, Distributed analysis in ATLAS using GANGA, 2010, J. Phys.: Conf. Ser. 219 
072002 doi:10.1088/1742-6596/219/7/072002 
[8] Glite WMS. [Online] http://en.wikipedia.org/wiki/GLite - Workload_management      
[9] Cons L and Paladin M, “The WLCG Messaging Service and its Future”, 2012 J. Phys.: Conf.  
Ser. 396 032084 doi:10.1088/1742-6596/396/3/032084 
[10] J. Andreeva et al, ATLAS job monitoring in the Dashboard Framework, 2012 J. Phys.: Conf. 
Ser. 396 032094 doi:10.1088/1742-6596/396/3/032094 
[11] L. Kokoszkiewicz et al, hBrowse - Generic framework for hierarchical data visualization, in 
proceedings of EGI Community Forum 2012 / EMI Second Technical Conference, 2012, 
PoS(EGICF12-EMITC2)062 
[12] jQuery JavaScript library. [Online]  http://jquery.com/ 
[13] SQL injection. [Online]  http://en.wikipedia.org/wiki/SQL_injection 

 
 

 
 

 
 


