Bytes/sec

Storage Architecture

Architecture consideration:

A long term historical file accessing information is needed because
ATLAS jobs often repeats the access to a same set of files within
days.

A central SSD storage box is much easier to setup and manage
than distributing the SSDs to machines along with the HDDs

We cache at whole file level. Subfile level caching technology using
Xrootd is still under development

R
N
Batch nodes
Xrootd on
ATLAS Jobs HDDs
ATLAS Jobs Xrootd on
SSDs
Other Jobs
Workflow

manager
(Panda)
Database

Monitoring
info
Mollector

<— Jobs input data, Jobs will try SSDs first, then HDDs if needed
SSD stage-in data from HDD based on caching algorithm

<« SSD and HDD boxes send Xrootd monitoring info to collector

<— Fetching a list of input data files of the upcoming Panda jobs

ATLAS jobs read from SSDs first, then HDDs if needed.

The caching algorithms will use Xrootd monitoring information
and a list of input data files of the upcoming Panda jobs.

SSD box Specification: Dual Intel Xeon E5620 2.4Ghz, 24GB
memory, 2x 10Gbps NICs, LS| SAS 9200-8e HBA 6Gbps (non-RAID),

12x OCZ Talos 2C series MLC (total ~11TB), RHEL6 and Xrootd. We
use non-RAID HBA and RHELG6 order to pass TRIM to SSDs

1. Caching Algorithm using File Accessing
Frequency Info

Using the Xrootd monitoring info, the algorithm build a table
(below) with 10 periods. Each cell is the number times the file is
accessed in that period. A period is 12 hours. Period 1 is the most
recent period and we right shift the table every 12 hours.

_ Periodl |Period2 |.. ___|Period10_
File 1 4 2 0
1 3 1

File N 2 0 7

Right shift every 12 hours

atlssdOl.slac.stanford.edu Network last 6_months

From week 25 to 39, the
SSD cache is a net data
sink, not an effective cache

_|1 Algorithm # 1| | ===
=y _T___ﬁh_

Iy i

eel Weel Weel We Wee Wee Wee Wee Weel Week 45
H In [l out

o The blue line in the plot represent data delivered by the SSDs.
o The green line is represent data staged in by the SSDs.
o We can not consistently use the SSD arrays as an effective cache.

Impact on Analysis Jobs

Files access latency on SSDs is very short. One goal of this studying is
to learn if SSDs will speed up data intensive analysis jobs.

We choose two subsets of ATLAS jobs on identical hardware. By
manipulating the firewall rules on Group A, we let jobs running on
Group A to skip the SSDs and go directly to HDDs, while jobs on
Group B will try SSD first.

We expect that over a long period, ATLAS jobs will be evenly
distributed to these two machine groups if SSDs and HDDs give the
same performance. We can not compare at individual user jobs
level because each batch job run multiple user jobs. But we can
compare the total CPU time and wall clock time contribution of
these two groups in a given period.

2013/09/04 to 10/07 CPU hours Wall hours CPU/Wall
Group A (SSDs skipped) 25776.9 34143.3 0.75
Group B 28508.6 35258.7 0.81

The above table show that Group B, which do not skip SSDs,
contributed more CPU time, and used the CPU more efficiently
during the 33-day period.

Using Solid State Disk

Array as a Cache for LHC
ATLAS Data Analysis

Wei Yang Andrew B. Hanushevsky Richard P. Mount
SLAC National Accelerator Laboratory, USA

Caching Algorithms &
Cache Performance

Three caching algorithms:

1. Make caching decision based on file accessing frequency

2. Make caching decision based on bytes read from files

3. Make caching decision based on bytes read from files and list of input
files of upcoming Panda jobs

The SSDs are MLC, with limited rewrite cycles. Caching algorithms will not
rewrite more than 2% of the total SSDs space per hour.

Cache performance during a 45-day period in
May and June, 2013

GB read from all disks

l

14000 - Read from SSDs and HDDs
= Read from SSDs
== Stage-in to SSDs

GBytes

12000

10000

8000

6000

4000

I L L B O A B R B
\\\@
NN

2000

[

P
Pra

© Jun-05:17

C— —
Algorithm # 2 Algorithm # 3

o Y-axis is GBytes/hour

o Each binis one hour

o The two NICs on the SSD box can deliver up to 2.5GB/s (9000GB/hour)
When this limit is reach, it may actually slow down the analysis jobs

o Algorithm 3 stages-in fewer data than Algorithm 2.
There is a stage-in cap of 2% of total SSDs per hour

GB read from all disks

5000

GBytes

4000

T T | T T 1 |

3000

J |

. il % |
2000 _i:; _ _’_ y

- / i

- i; ! !
1000)

- 1.;7' | I

—"L | "_lJ-; 7 --r, [= / i

Sep-11:17 Sep-13:17 Sep-14:17

Sept 13-15 is a periods when SSD cache hitting rate is very high, as shown
in the plot. During the period, we expect input data for jobs running on
group B will mostly coming from SSDs, while jobs running on Group A will
exclusively read from HDDs.

2013/09/13 to 09/15 CPU hours Wall hours CPU/Wall
Group A (SSDs skipper) 49.5 240.2 0.21
Group B 59.8 166.3 0.36

Xrootd Monitoring Info

An example record of the monitoring info:

unique_id=xrd-1381343744000000
file_Ifn=/atlas/.../NTUP_SUSY.01271227. 000009.root.1

file_size=1041320520
start time=1381343564
end_time=1381343744

read_single_average=0.000000

\
_— we choose not to collect
read_vector_average=0.000000

;/.\;rite_average=0.000000
read bytes at close=24768903

write_bytes_at_close=0
client_host=134.79.128.10
server_host=atlxrd001

SSD and HDDs servers will send monitoring info to an UCSD
Collector, which build file accessing records like the above. The
records are available in real time. We save the info as TTree to
ROOT files. The caching algorithms use these records to
determine which files should be cached in the SSDs.

Other Consideration:

For sequential file copying, SSDs have very little advantage over
HDDs. Caching algorithms filter out those records

2. Caching Algorithm using read byte info

= Every hour the algorithm builds a table (below) from the last 5
days’ monitoring data, sorts by the right most column.

= Filter out files that haven’t been read frequently enough (e.g. less
than 5 times during the last 5 days), or are already in SSDs.

" The algorithm then triggers the stage-in up to 2% of the total SSD
storage.

- Number of reads in 5 days | Average bytes read/file size

File A 7 0.73
File B 17 0.20
File X 5 0.01 v

3. Caching Algorithm using read byte Info
and Jobs Info

= Every hour the algorithm builds the blue cells of the following
table using the algorithm above.

= Every 20 minutes the algorithm inserts two green columns
according to the upcoming Panda jobs.

= For files that do not have records in the last 5 days’ monitoring
data, the algorithm assumes that 10% will be read each time.

Number |Average # of read Total read/file
of reads |bytesread/ |by size by upcoming
in 5 days |file size upcoming |jobs
jobs
File A 7 0.73 0 0
File B 17 0.20 2 0.4
File C 0 0.1 (assume) 5 0.5
File X 5 0.01 3 0.03

Conclusions and Issues

The SSD cache at ATLAS Tier 2 at SLAC demonstrated that
it can help caching data, and thus reduce the load on
HDDs. It can further speed up user analysis jobs due low
file seek time and high sustained 10 per second.

Due to the nature of of Panda based user analysis jobs
running at Tier 2, it is difficult to achieve high cache hit
rate all the time. The setup we have is at R&D stage. The
operational complexity makes it vulnerable to mistakes.
Some of the software is not of production quality and
requires constant manual checking.

