Storage Architecture

Architecture consideration:

SLAC ATLAS Tier 2 runs varied ATLAS analysis jobs via the Grid. Some
of them are repeated analysis on the same input data, often within
days. So we need long term historical file-accessing info in order to
analysis the accessing pattern.

A central SSD storage box is much easier to setup and manage than
distributing the SSDs among machines along with HDDs

We cache files at whole file level. Subfile level caching technology
using Xrootd is still under development

ATLAS jobs ‘k:\‘~\\~\\\~\‘

SSD box:

Xrootd on
HDDs

non-ATLAS jobs

Xrootd & SSDs

Batch nodes

monitoring
info
collector

SSD box Specification:

Dual Intel Xeon E5620 2.4Ghz

24GB memory

2x 10Gbps NICs

LSI SAS 9200-8e HBA 6Gbps (non-RAID)

Workflow
mgr (Panda)
Job DB

12x OCZ Talos 2C series, MLC ~11TB € Jobs input data, Jobs will try SSDs first, then HDDs if needed
RHEL6 and Xrootd SSD stage-in data from HDD based on caching algorithm

We use non-RAID HBA and RHEL6 order - SSD and HDD boxes send Xrootd monitoring info to collector
to pass TRIM to SSDs € Fetching a list of input data files of the upcoming Panda jobs

Both SSD and HDD storage systems run Xrootd. ATLAS jobs will read
SSDs first, and will read from HDDs if and only if data is not available on
SSDs

The monitoring collector host will use Xrootd monitoring information
and a list of input data files of the upcoming Panda jobs (from Panda
DB) to determine which files will be stage-in from HDDs to SSDs.

To free up space, SSD box will purge old files based on last recent
access time stamp.

1. Caching Algorithm using File
Accessing Frequency Info

Using the Xrootd monitoring info, we built a table below. We record the
number times each file is accessed in each period in the table. A period is
12 housr long. Period 1 is the most recent period and we right shift the
table every 12 hours.

| |periodl |Period2 |.. | Period10
4 2 0

File 1
1 3 1
File N 2 0 7

Right shift every 12 hours >

atlssd0l.slac.stanford.edu Network last 6_months

.
190 M

180 M

... 6-month plot as of =
160 M 2012'11'12

150 M

140 M

| File Access Freq. Alg.
=n Net data sink, not B
w» cache

100 M

90 M

Bytes/sec

80 M

@ Sept 1, 201 -

60 M

S50 M __\—L_

40 M

30M

20 M
10M

Week 23 Week 25 Week 27 Week 29 Week 31 Week 33 Week 35 Week 37 Week 39 Week 41 Week 43 Week 45

EIn W out

o The blue line in the plot represent data delivered by the SSDs.
o The green line is represent data staged in by the SSDs.

o We can not consistently use the SSD arrays as an effective cache.

Impact on Analysis Jobs

Since SSDs don’t move mechanical heads in order to read data, the file
seek latency is much shorter. One goal of this studying is to learn whether
these SSDs in front of the HDDs will speed up or slow down analysis jobs.

From all 4600 batch slots available to ATLAS jobs during the period of
studying, we chose two subsets of them. Each group has 216 slots (on 18
machines). All of them are on identical hardware. By manipulating the
firewall rules on Group A, we let jobs running on Group A to skip the SSDs
and go directly to HDDs, while jobs on Group B will try SSD first, just like
all other ATLAS jobs.

With this setting, we expect that over a long period all jobs, ATLAS and
non-ATLAS, will be evenly distributed to these two groups of slots if SSDs
and HDDs give the same performance. Since each ATLAS batch jobs will
sequentially run as many user analysis tasks as possible, until it reaches
certain time limit, we will compare the total CPU time and wall clock time
contribution of these two groups in a given period.

2013/09/04 to CPU hours Wallclock CPU/Wall
2013/10/07 hours clock
Group A (skip SSDs) 25776.9 34143.3 0.75
Group B 28508.6 35258.7 0.81

The above table show that Group B, which do not skip SSDs, contributed
more CPU time, and used the CPU more efficiently during the above 33
days.

Using Solid State Disk Array as a
Cache for LHC ATLAS Data
Analysis

Wei Yang Andrew B. Hanushevsky Richard P. Mount
SLAC National Accelerator Laboratory, USA

Abstract

User data analysis in high energy physics presents a challenge to spinning-disk
based storage systems. The analysis is data intense, yet reads are small, sparse
and cover a large volume of data files. It is also unpredictable due to users'
response to storage performance. We describe here a system with an array of
Solid State Disk as a non-conventional, standalone file level cache in front of the
spinning disk storage to help improve the performance of LHC ATLAS user
analysis at SLAC. The system uses a long period of data access records to make
caching decisions. It can also use information from other sources such as a work-
flow management system. We evaluate the performance of the system both in
terms of caching and its impact on user analysis jobs. The system currently uses
Xrootd technology, but the technique can be applied to any storage system.

Caching Algorithms &
Cache Performance

We used three caching algorithms during this studying:

1. Make caching decision based on file accessing frequency

2. Make caching decision based on bytes read from files

3. Make caching decision based on bytes read from files and list of input files of upcoming
Panda jobs

The OCZ Talos 2C series we used in this studying are MLC SSDs. They have limited rewrite

cycles. In the above algorithms we make sure that no more than 2% of the total SSDs space
will be rewritten in a one hour period.

GB read from all disks

— Read from SSDs and HDDs
— Read from SSDs
— Stage-in to SSDs

Algorithm # 3

14000

GBytes

12000

Algorithm # 2

J
% U

‘J’M
,ﬁ iy
i
A : 1 ! / .
{ SHIR T8 E I ,Jl gﬂ; A AAANXAAAAAAAF AT ‘l e, TR T

May-08:17 May-15:1 May-22:17 May-29:17 Jun-05:17 un-12:17

10000

8000

6000

4000

2000 I

Cache performance during a 45-day period in May and
June, 2013

o Y-axis is GBytes/hour
o Each bin is one hour
o The two NICs on the SSD box can deliver up to 2.5GB/s (9000GB/hour)
When this limit is reach, it may actually slow down the analysis jobs
o Algorithm 3 stages-in fewer data than Algorithm 2.
There is a stage-in cap of 2% of total SSDs per hour

Sept 13-15 is a periods when SSD caching hit rate is very high, as shown in the plot below.
During the period, we expect input data for jobs running on group B will mostly coming from
SSDs, while jobs running on Group A will exclusively read from HDDs.

GB read from all disks

ﬁ 5000 —
@ [SSD cache hit rate is high
© L during 2013-09-13 to 09-15
4000 —
3000 _—h J 1
- It :
2000 —) " f
B il L@ ;
B W 17
- . /7 3 ;— H !
1000 — | |
Sep-11:17 Sep-12:17 Sep-13:17 Sep-14:17 Sep-15:17 Sep-16:17 Sep-17:17
2013/09/13 to CPU hours Wallclock CPU/Wall
2013/09/15 hours clock
Group A (skip SSDs) 49.5 240.2 0.21
Group B 59.8 166.3 0.36

Xrootd Monitoring Info

An example record of the monitoring info:

unique_id=xrd-1381343744000000
file_Ifn=/atlas/xrootd/atlasdatadisk/rucio/mc12_8TeV/ea/1la/NTUP_SUSY.
01271227. 000009.root.1

file_size=1041320520

start_time=1381343564

end _time=1381343744

read_single_average=0.000000 —
— These info can be collected but we don’t
read_vector_average=0.000000

write_average=0.000000
read_bytes at close=24768903
write_bytes_at_close=0
client_host=134.79.128.10
server_host=atlxrd001

All storage servers (SSD and HDDs servers) will send monitoring info to an UCSD
Collector (developed by the CMS AAA project). The collector will assemble the info
and build a record like the above for each access of a file. The collector can send out

the assembled info via UDP packet or HTTP text for real time consumption. We save
the info as TTree to ROOT files.

A process will periodically look at these ROOT files. By combining these access pattern
with the list of input data files of the upcoming jobs it gets from Panda DB, this
process determines which files should be cached in the SSDs, and will then ask the SSD
box to stage-in the files from HDDs

Other Consideration:

The monitor collector receives file access info from both ATLAS production jobs and
user analysis jobs, as well as jobs submitted by local users. All ATLAS production jobs,
and some user analysis jobs, copy their input files to scratch space on batch node,
while other user analysis jobs read directly from the storage. For sequential file
copying, SSDs have very little advantage over HDDs. Unless otherwise specified, plots
in the article have those sequential file copying access filtered out.

2. Caching Algorithm using read byte info

Every hour the algorithm builds a table (below) using all file records in the last 5 days’
monitoring data, sorts the (right most) column according to average percentage the
file is read. It then builds a list by filtering out those files that haven’t been read
frequently enough (for example, less than 5 times during the last 5 days), or are
already in SSDs. The algorithm then triggers the stage-in up to 2% of the total SSD
storage.

Number of Average
reads in 5 days | bytes read/
file size
File A 3 0.73
File B 17 0.20
File X 4 0.01

3. Caching Algorithm using read byte Info
and Jobs Info

Every hour the algorithm builds the blue cells of the following table using the
algorithm above. Every 20 minutes the algorithm inserts two green columns according
to the upcoming Panda jobs. For files that do not have records in the last 5 days’
monitoring data, the algorithm assumes that 10% will be read each time. It then
decides which files are worth to be cached, and stage them into SSDs.

Number of Average bytes | # of read by Total read/file size
reads in 5 days | read/file size upcoming jobs | by upcoming jobs
3 0 0

File A 0.73
FileB 17 0.20 2 0.4
FileC O 0.1 (assume) 5 0.5

FileX 4 0.01 3 0.03 ‘

Conclusions and Issues

The SSD cache at ATLAS Tier 2 at SLAC demonstrated that it can help caching
data, and thus reduce the load on HDDs. It can further speed up user analysis
jobs due low file seek time and high sustained 10 per second.

Due to the nature of of Panda based user analysis jobs running at Tier 2, it is
difficult to archive high cache hit rate all the time. The setup we have is at
R&D stage. The operational complexity makes it vulnerable to mistakes. Some
of the software is not of production quality and requires constant manual
checking.

