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Run-I of the Large Hadron Collider (LHC) comprises three data-taking periods within the years 2010 — 2012. Due to the ver : : - ATLAS Data
successful ramp—%,lp of the instantaneous luminogity, the trigger algorit}?rfs had to be constan}tfly adapted and improved in orde}; Design of the ATLAS trigger system TDAQ DQSlgn Tigger nfo
to keep the rates within the given limits. In particular the calorimeter-based triggers had to cope with an increasing level of PA
background activity from the increasing number of concurrent events (in-time pile-up). The great performance of the ATLAS
trigger under these challenging conditions was a key element in the discovery of new physics such as the Higgs boson in 2012.
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Performance of the EX'* Trigger

Performance of the Jet Trigger

The E;Fniss trigger 1S deSigHEd to select collision events with non—interacting particles. Being a global sum over the full calorime- ]et triggers scan for collimated energy deposits in the calorimeters arising from the hadronization of high_energy quarks or
ter, this trigger 1S very Susceptible to pile—up effects, leading to Strong non-linearities in the low-threshold rates as function of gluons. These jets are the most common final-state Object produced at the LHC with a large production cross-section. The
luminosity, and pOSil’lg a Challenge for this type of trigger. Note that muon information is available at both L2 and EF, but was Originall entirely Rol-based design of the ]et trigger has been upgraded and refined in several Steps both at 1.2 and EFE

not included in the EM computation in active 2011 triggers, and in 2012 only in one combined chain at EF level.
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Efficiency of L2FS and L2PS 6-jet triggers in
The tau trigger selects hadronic decays of tau leptons, which are identified as col- - Position resolution for LI, [1.5, and L2 jet Bificiency of different 6-jet triggers in events with events with at least six offline jets jets with
limated energy deposits in the calorimeters accompanied by one or a low number R e R triggers. L15 is comparable to L2 and at least 6 offline jets with Et > 30GeV. L1.5 Er > 30 GeV. L2PS allows for a more efficient
of matching charged tracks. In the HLT taus are selected based on cuts on track 8 s + e E significantly improves on L1. recovers efficiency lacking at L1 in multijet events. rejection by exploiting the full calorimeter
and cluster shape variables, optimized separately for one- or multi-prong taus. s o D= =y - granularity at cell level.
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° 2011, showing the achieved reduction of rates.
triggers can move to tighter selections system, to be processed later during (between) fills 8 e24vhi mediuml OR 60 medium1.

e multi-variate algorithms may be more widely used e Data Scouting: write out events with only trigger objects “vh” refers to the modified L1 seed. robustness against pile-up at all levels.

electrons with Er > 25GeV, demonstrating




