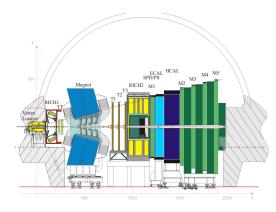
Searches for Higgs and Higgs-like particles at LHCb

Valdir Salustino Guimarães - on behalf of the LHCb Collaboration

イロト イポト イヨト イヨト 二日

1/25


WIN 2013 - September 16 - 23 Natal - Brazil

Presentation of the results from

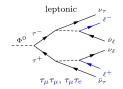
J. High Energy Phys. 05 (2013) 132 and LHCb-CONF-2012-014


- Set limits on $\Phi_0 \rightarrow \tau^+ \tau^-$ production in the **forward** region.
- Model dependent search for Long Lived Particle from higgs like boson decay.

The LHCb detector

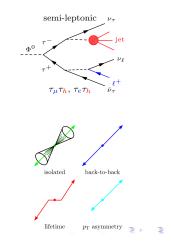
- LHCb experiment is fully instrumented over a unique region of pseudorapidity at LHC.
- Designed for CP violation studies in B decay and rare decays.
- Single arm spectrometer covering the pseudorapidity range of 2 < η < 5, where \sim 27 % of $b\bar{b}$ are in acceptance.

The LHCb detector


- Tracking efficiency > 95 %.
- δp/p ~ 0.4% at 5 GeV to 0.6% at 100 GeV/c².
- IP parameter resolution of 20 μ m for high-pT tracks important for b-tagging.
- 1.0 fb⁻¹ at $\sqrt{s} = 7$ TeV and 2.0 fb⁻¹ at $\sqrt{s} = 8$ TeV.
- Very stable data taking with average pile-up 2.

Limits on $\Phi_0 \rightarrow \tau^+ \tau^-$ production

Dataset

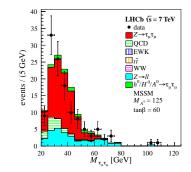

1.0 fb⁻¹ at $\sqrt{s} = 7$ TeV (collected in 2011)

- Data sample used in $Z \rightarrow \tau \tau$ cross-section measurement [JHEP 01 (2013) 111]
- Selected 5 datasets: $\tau_{\mu}\tau_{\mu}$, $\tau_{\mu}\tau_{e}$, $\tau_{e}\tau_{\mu}$, $\tau_{\mu}\tau_{h}$ and $\tau_{e}\tau_{h}$.

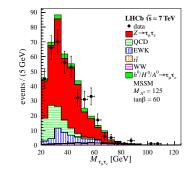
Selection

- *p*_{T1} > 20 GeV *p*_{T2} > 5 GeV, 2.0 < η_{1,2} < 4.5.
- Track displaced from PV, in $\tau_{\mu}\tau_{\mu}$, $\tau_{\mu}\tau_{h}$ and $\tau_{e}\tau_{h}$.
- Δφ > 2.7 and m_{1,2} > 20 GeV.
- Lepton isolation.
- In $\tau_{\mu}\tau_{\mu}$, momentum asymmetry and exclusion of 80 $< m_{\mu\mu} <$ 100 GeV. ($Z \rightarrow \mu\mu$ background).

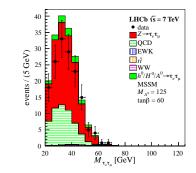
Limits on $\Phi_0 \rightarrow \overline{\tau^+ \tau^-}$ production


Signal and background estimation

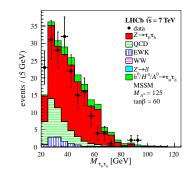
• $\phi_0 \rightarrow \tau \tau$, $Z \rightarrow \tau \tau$, $t\bar{t}$ and WW.


$$N = \mathcal{L} \cdot \sigma \cdot \mathcal{B} \cdot \mathcal{A} \cdot \epsilon$$

- luminosity (\mathcal{L}) from Van der Meer scan and beam-gas imaging.
- cross-sections (σ) and branching fractions (\mathcal{B}), from theory.
- acceptances from simulation.
- efficiencies (ϵ) from data using tag-and-probe methods.
- simulated shape corrected for efficiencies and detector resolution.
- distribution and normalization of QCD events is found from data using same-sign events.
- Electroweak (EWK) is taken from simulation and normalised using data.
- $t\bar{t}$ and WW productions are taken from simulation.
- $Z \rightarrow \ell \ell$ shape and normalization are determined from data.


Z ightarrow au au	79.8 ± 5.6
QCD	11.7 ± 3.4
EWK	0.0 ± 3.5
tŦ	$<0.1\pm0.1$
WW	$<0.1\pm0.1$
$Z ightarrow \ell \ell$	29.8 ± 7.0
Total expected	121.4 ± 10.2
Observed	124
SM Higgs $\times 100$	3.9 ± 0.5

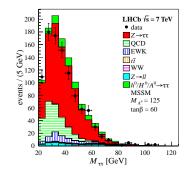
$Z \to \tau \tau$	288.2 ± 26.2		
QCD	72.4 ± 2.2		
EWK	40.3 ± 4.3		
tī	3.6 ± 0.4		
WW	13.3 ± 1.2		
$Z ightarrow \ell \ell$	—		
Total expected	417.9 ± 26.7		
Observed	421		
SM Higgs $\times 100$	11.9 ± 1.6		


Z ightarrow au au QCD	$115.8 \pm 12.7 \\ 54.0 \pm 3.0$		
QCD FWK	0.0 ± 1.3		
tī	1.0 ± 0.1		
WW	1.6 ± 0.2		
$Z ightarrow \ell \ell$	_		
Total expected	172.4 ± 13.1		
Observed	155		
SM Higgs $\times 100$	3.8 ± 0.5		

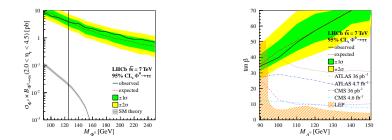

ヘロト ヘ団ト ヘヨト ヘヨト

æ

$Z \to \tau \tau$	146.1 ± 9.7
QCD	41.9 ± 0.5
EWK	10.8 ± 0.5
tī	$<0.1\pm0.1$
WW	0.2 ± 0.1
$Z \to \ell \ell$	0.4 ± 0.1
Total expected	199.3 ± 9.7
Observed	189
SM Higgs $\times 100$	9.7 ± 1.3


Z ightarrow au au	62.1 ± 8.0
QCD	24.5 ± 0.6
EWK	9.3 ± 0.5
tī	0.7 ± 0.4
WW	$<0.1\pm0.1$
$Z ightarrow \ell \ell$	2.0 ± 0.2
Total expected	98.7 ± 8.0
Observed	101
SM Higgs $\times 100$	4.2 ± 0.6

イロト イロト イヨト イヨト


æ

Observed combined result

Results and Limits

Asymptotic limit from profile ratio of extended likelihood using mass shape, upper limit calculated at CLs = 95%

Which set the limits

- $\sigma \times \mathcal{B}_{\phi_0 \rightarrow \tau \tau}$ exclusion in the forward region, 2.0 $\leq \eta \leq$ 4.5
 - 8.6 pb at M_{\u03c600} = 90 GeV

• 0.7 pb at
$$M_{\phi_0} = 250$$
 GeV

۲ MSSM $m_{h_0^{\text{max}}}$ exclusion

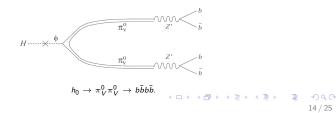
- $\tan \beta = 34$ at $M_{A0} = 90$ GeV $\tan \beta = 70$ at $M_{A0} = 140$ GeV

14 / 25

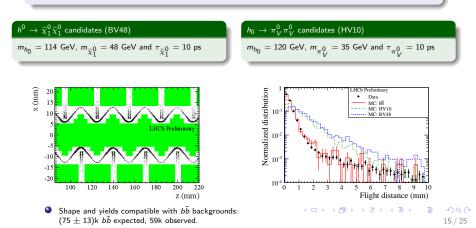
Motivation

Many beyond standard model predicts neutral LLP which is accessible with the early LHC data.

• mSUGRA model with R parity and baryon number violation [arXiv:hep-ph/9709356]:

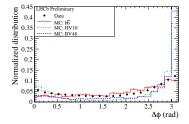

"Six-Quark Decays of the Higgs Boson in Supersymmetry with R-Parity Violation"

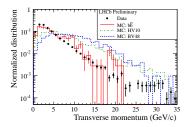
 $h^0 \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow 3 \mathrm{jets} + 3 \mathrm{jets} \longrightarrow \sim 70\%$ decays have a *b*-quark.

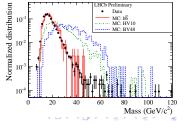

Hidden-Valley model [P.R.L 99 211801] ۰

"SM Higgs may decay into 2 HV particles which decay to $b\bar{b}$ "

In both models selection


- Dataset: 36 pb⁻¹ at \sqrt{s} = 7 TeV (2010 data).
- *m*_{LLP} > 20 GeV.
- LLP are obtained through inclusive vertex reconstruction in the trigger and offline
- $m_{\rm vertex} > 4$ GeV and $N_{tr} \ge 4$
- displaced from the PV, R > 0.4 mm
- Vertex outside matter region (to suppress hadronic interaction in the velo).




Results

No candidates observed in data.

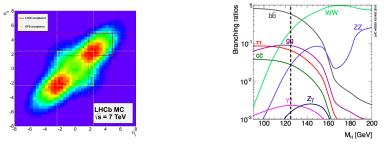
 $\mathsf{Di}\mathsf{-}\mathsf{LLP}$ candidate are formed out of 2 back-to-back single LLP

For BV48 Model

- Overall selection efficiency on BV48: 0.384 \pm 0.017 (stat.) \pm 0.086 (syst) %
- Main systematic uncertainties on the detection efficiency: trigger efficiency (15%) and vertex reconstruction (12%).
- $\sigma_{h_0} \times \mathcal{B}(h_0 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0)$ 95%*C*.*L* upper limit: 32 pb.
- A fast simulation of the analysis chain allow to extend the probed phase space.
- Update of the analysis including jet reconstruction and ~ 80 times more data on-going.

						$m_{h_0} = 114 \text{ GeV}/c^2$
$m_{LLP}[\text{GeV}/c^2]$	30	35	40	48	55	$m_{LLP}[\text{GeV}/c^2]$ 30 35 40 48 55
m _{h0} [GeV/c ²] 100 105	101 100	58 75	44 44	58 39		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
110 114 120 125	132 128 148 179	75 91 93 90	56 47 58 61	34 32 34 41	46 31 29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$$\tau_{IIP} = 10 \text{ ps}$$


$$\sigma_{h_0} \times \mathcal{B}(h_0 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) \text{ at } 95\% C.L \text{ [pb]}$$

 $\sigma_{h_0} \times \mathcal{B}(h_0 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0)$ at 95%*C.L* [pb]

Towards SM $H ightarrow bar{b}$ at LHCb

To see the Higgs at the LHCb is required development of new tools.

- Low luminosity, limited acceptance but excellent spatial resolution of the vertex locator: $H(Z, W) \rightarrow b\bar{b} + \ell$ is the best candidate.
- $\bullet~\sim 5~(11)~\%$ of SM Higgs decays have 2 b-quarks in the LHCb acceptance at 7 TeV (14 TeV) .

• Sensitivity studies on-going at $\sqrt{s} = 7$ TeV and 8 TeV.

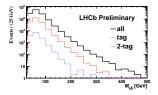
- Triggered development of new tools:
 - Jet reconstruction and calibration.
 - b-jet tagging.

Towards SM $H \rightarrow b\bar{b}$ at LHCb

Measurements in the bb sector have been performed

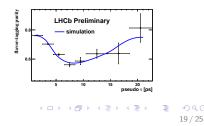
- Measurement of $\sigma_{b\bar{b}}$ with inclusive final states (LHCb-CONF-2013-002)
 - $\sigma_{b\bar{b}} = 7.7 \pm 0.12 \text{ (stat.)} \pm 0.84 \text{ (syst.)} \ \mu \text{b}$ $\sigma_{c\bar{c}} = 104.6 \pm 2.7 \text{ (stat.)} \pm 11.4 \text{ (syst.)} \ \mu \text{b}$

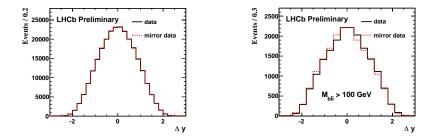
• Measurement of the central forward $b\bar{b}$ asymmetry $A_{FC}^{b\bar{b}}$ (LHCb-CONF-2013-001)


Motivation for A^{bb}FC

- CDF and D0 observe A^{tt}_{FB} 3 to 4 times larger than the SM prediction (\sim 5%).
- ۰ $\sim 2.5\sigma$ discrepancy with SM

•
$$A_{FC}^{b\bar{b}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$
, $\Delta y = |y_b| - |y_{\bar{b}}|$


b and $b\bar{b}$ are tagged by the charge of a hard, displaced muon.

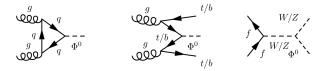

Time integrated total tagging purity (70.7 \pm 0.4) %.

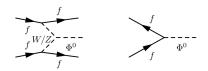
$A_{FC}^{b\bar{b}}$

Dataset $\sim 1 \text{ fb}^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$ Di-jet events $p_{T-1,2} > 15$ GeV $2.0 < \eta < 4.5$ $\Delta \phi > 2.5$ rad jet reconstructed with anti-kT (R = 0.5) and corrected to quark level.

$$A_{FC}^{b\bar{b}} = (0.5 \pm 0.5(\mathrm{stat.}) \pm 0.5(\mathrm{syst.}))\% \qquad \qquad A_{FC}^{b\bar{b}}(M_{b\bar{b}} > 100\mathrm{GeV}) = (4.3 \pm 1.7(\mathrm{stat.}) \pm 2.4(\mathrm{syst.}))\%$$

- Systematic errors from the flavour-tagging purity and detector asymmetry.
- $\sigma_{b\bar{b}} \sim 15 \sim 20$ %, no unfolding \rightarrow Migration to $m_{b\bar{b}} > 100$ GeV dilutes $A_{FC}^{b\bar{b}}$ by few percent.
- Work on-going on data driven method for mass unfolding and improved b-tagging efficiency.
- $\bullet~$ With addition of the 2012 data, a factor \sim 6 more events are expected for $m_{b\bar{b}}>$ 100 GeV .
- Capability of reconstruction di-*b* jets and tagging them with high purity.

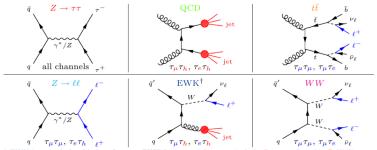

20 / 25


< ロト (母) (ヨ) (ヨ) (ヨ) (ヨ)

- Set limits on neutral Higgs production in the forward region.
- Preliminary searches of long lived exotic particles from Higgs-like boson decay.
- Preliminary measurements of $A^{b\bar{b}}$ compatible with SM.
- Tools have been developed for reconstruction of jets and *b*-tagging them with good efficiency and purity.
- Plans
 - update with full 3 fb⁻¹
 - Evaluate Higgs $ightarrow bar{b}$ associated production potential.
- LHC energy upgrade
 - 13 TeV collisions in 2015 (events more boosted forward + higher σ 's)

Higgs production

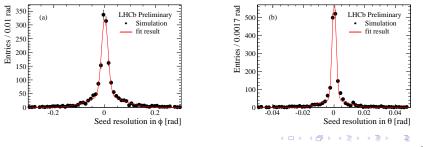
Primary production mechanisms of Higgs bosons at the LHC



< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 22/25

$\phi_0 \to \tau^+ \tau^-$

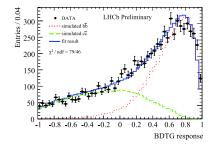
Backgrounds


† EWK is a single hard lepton from an EWK boson and does not include $Z \to \tau \tau, Z \to \ell \ell, t \bar{t}, WW$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q ()
23 / 25

Measurement of $\sigma_{b\bar{b}}$ with inclusive final states

Selection


- 2.6 pb⁻¹ at $\sqrt{s} = 7$ TeV , only events with one PV.
- Partial B hadron reconstruction using 2 or 3 track seed.
- Merging procedure.
- Good approximation of the B hadron direction
- Selection: events with exactly 2 seeds within 2.5 $< \eta <$ 4 and $p_T >$ 5 GeV .

Measurement of $\sigma_{b\bar{b}}$ with inclusive final states

Results

- B seeds efficiency: MC: $(81.6 \pm 0.7)\%$ Data: $(82.5 \pm 3.0)\%$
- Global efficiency for b events 8×10^{-4} , for c events 1.8×10^{-5} .
- Fraction of $b\bar{b}$ and $c\bar{c}$ from template fit of a BDT variable.
- Shape of the BDT cross checked with other side $B \rightarrow D\pi$ and $D \rightarrow \kappa \pi \pi$.

