EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

%;ﬁi\@%i CERN-EP/85-36

18 March 1985

ELASTIC SCATTERING AND TOTAL CROSS-SECTION AT VERY HIGH ENERGIES

Rino Castaldi1) and Giulio Sanguinetti1)

INFN, Sezione di Pisa, Italy

To be published in

annual Review of Nuclear and Particle Science

1) Visitors at CERN, Geneva, Switzerland



CONTENTS

1. INTRODUCTION

2. REVIEW OF THE EXPERIMENTAL DATA: A GENERAL OUTLOOK OF THE FIELD
2.1 Elastic Scattering
2.1.1 THE REGION OF COULOMB-NUCLEAR INTERFERENCE
(0.001 < -t < 0.01 GeV’)
2.1.2 THE DIFFRACTION PEAK REGION (0.01 < -t < 0.5 GeVZ)

2.1.3 THE LARGE-t REGION (-t > 0.5 GeV’)

2.2 Total Cross-Section

3. INTERPRETATION OF HADRON SCATTERING AT HIGH ENERGY

3.1 Notations and Kinematics of Scattering Processes

3.2 Unitarity and the Optical Theorem

3.3 Impact Parameter Representation

3.4 Overlap Function Analysis of pp Scattering at the ISR

3.5 The Geometrical Scaling Hypothesis Confronted with the

SPS Collider Data

4. THE VERY HIGH ENERGY LIMIT
4.1 Asymptotic Theorems
4.1.1 FROISSART-MARTIN BOUND
4.1.2 POMERANCHUK THEOREM
4.1.3 CORNILLE-MARTIN THEOREM
4.1.4 MacDOWELL-MARTIN BOUND

4.1.5 AUBERSON-KINOSHITA-MARTIN THEOREM

iii

13

19

29

29

30

KN

39

42

42

42

45

46

48

49



iv

5.

4.2 Scaling as an Asvmptotic Property: Comparison with
= Dat

4.3 Factorizing Eikonal Models

CONCLUSIONS

50

52

54




1. INTRODUCTION

The unexpected rise of the proton-proton total cross-section (1, 2)
discovered many years ago, at the beginning of the operation of the

CERN Intersecting Storage Rings (ISR), has excited renewed interest in
the asymptotic behaviour of hadron interactions. An old common prejudice
expects that at very high energies the mechanisms that control hadron
scattering become simpler and can be interpreted in terms of a few basic
principles, more general than any specific model. Indeed, while at low
energy hadron cross-sections show a pattern rich in bumps and structures,
at higher energies their behaviour appears to be smooth, suggesting that
the laws of strong interactions become simpler and merely follow from
general assumptions independent of the details of particle dynamics. Such
a high-energy limit appears however to be approached very slowly, and a
large span in energy is certainly required in order to speculate upon
this subject.

The successful cooling technique (3) of antiproton beams at CERN has
recently allowed the acceleration of proton and antiproton bunches
simultaneously circulating in opposite directions in the Super Proton
synchrotron (SPS). Hadron-hadron collisions could so be produced at a
centre-of-mass energy one order of magnitude higher than previously
available, thus opening a new wide range of energies to experimentation.
This technique also made it possible to replace one of the twc proton
beams in the ISR by a beam of antiprotons, allowing a direct precise
comparison, by the same detectors, of pp and pp processes at the same
energies.

The aim of this review is to summarize the recent progress in the
tield of elastic scattering and total cross-section in this new energy

domain. In Section 2 a survey of the experimental situation is outlined.



The most significant data are presented with some emphasis on the inter-
pretation, without going into specific details or technicalities. This
section is therefore intended to give a self-contained outlook of the
field, having in mind also the non-specialized reader. In Section 3
hadron scattering at high energy is described in an impact parameter
picture, which provides a mecdel-independent intuitive geometrical rep-
resentation. The diffractive character of elastic scattering, seen as the
shadow of inelastic absorption, is presented as a consequence of
unitarity in the s-channel. Spins are neglected throughout this review,
inasmuch as the asymptotic behaviour in the very high-energy limit is the
main concern here. In Section 4 some relevant theorems are recalled on
the limiting behaviour of hadron-scattering amplitudes at infinite energy.
There is also a brief discussion on how asymptotically rising total cross-
sections imply scaling properties in the elastic differential cross-
sections. A quick survey of eikonal models is presented and their pre-
dictions are compared with ISR and SPS Collider data.

We apologize that space does not allow us to cover comprehensively
this wide subject. In particular, we have preferred to discuss the gen-
eral aspects of this field rather than to enter into the details of the
many current phenomenological models that will not be considered in
this article. Furthermore, we have not tried to give exhaustive refer-
ences and we apologize to those authors whose contributions have not
been mentioned. Many excellent reviews on hadron scattering at high
energies can be found in the literature. A sample of the most recent
ones 1s listed in Reference (4) for the convenience of the interested

reader.




2. REVIEW OF THE EXPERIMENTAL DATA: A GENERAL OUTLQOK OF THE FIELD

2.1 Elastic Scattering

At very high energy, hadron elastic scattering is believed to be well
described by a single scalar, mainly imaginary, amplitude and one

usually assumes that, as energy increases, spin tends to play a negli-
gible role (see Section 2.2). The interaction becomes mostly absorptive,
dominated by the many open inelastic channels. Elastic scattering is then
essentially the shadow of the inelastic cross-section. Therefore the
elastic amplitude has a mainly diffractive character, in close analogy
with the diffraction of a plane wave in classical optics, and its depend-
ence on the momentum transfer t is the Fourier transform of the spatial
distribution of the hadronic matter inside the interacting particle. In
the simple case of an absorbing disc of radius R and uniform greyness

E < 1, to the inelastic crosgss-section o, = wRZE corresponds an elastic

inel
hadronic diffraction pattern which is a steep function of tR?. Its in-

tegral o is bigger for larger ¥ up to a maximum value o in

el el - %inel

the limit of a completely black disc (E = 1).

The elastic differential cross-section do/dt measured for pp scat-
tering at the ISR (5) is shown in Fiqure 1 as a function of the four-
momentum transfer t, at five values of the total c.m. energy /s. A
salient feature of these distributions is the presence of a pronounced
narrow peak around the forward direction, which decreases almost exponen-
tially in t by more than six orders of magnitude, down to -t = 1.4 GeV* .
In a geometrical picture, as we shall see in Section 3.4, such a smooth
diffraction pattern over so wide a t-interval indicates that the trans-
verse distribution of matter inside the proton is nearly Gaussian. At
larger values of |t|, a prominent structure is observed, consisting of

a sharp minimum followed by a secondary maximum and by a subsequent
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Figure 1., Differential cross-section for pp elastic scéttering at the five

ISR energies {from Reference (5)].



exponential fall-off by three more orders of magnitude with a much lower
slope. As energy increases, the slope of the forward peak becomes steeper
and the dip moves towards smaller values of [%]. Following the optical
analogy, this shrinkage of the diffraction peak indicates an expansion
of the interaction radius. A closer look at the diffraction peak reveals
a slight variation of slope presumably localized around -t = 0.13 Gevz.
In the very forward direction (-t < 10~3 GeVZ) the elastic differential
cross-section is dominated by the almost real Coulomb amplitude, which
is well understood theoretically and can easily be calculated. In the It
region between 10" ana 1072 GeV® the Coulomb and the nuclear amplitude
are of the same order of magnitude and may give rise to a non-negligible
interference effect, if the hadronic amplitude is not purely imaginary.
The measurement of the interference term allows the determination of the
phase of the nuclear amplitude F in the forward direction, which is
usually expressed as the ratio of the real to the imaginary part of the

amplitude at t = 0: g(s) = [Re F(s,t)/Im F{S,t)]t=o.

2.1.1 THE REGION OF COULOMB-NUCLEAR INTERFERENCE (0.001 ¢ -t < 0.01 GeVz)

In this t-region the elastic differential cross-section is determined by
both the nuclear and the Coulomb amplitude: do/dt = [fN + fC exp [iw{t)]!2:
where the upper sign is used for pp and the lower sign for pp scattering.
The nuclear amplitude fN can be parametrized in terms of the total cross-
section %ot and of the slope B of the forward elastic peak, by means of

the optical theorem (see Section 3.2), as fN = (1/4/a)(1 + Q)Utot exp (Bt/2),
disregarding spin effects and assuming that the real and imaginary parts

have the same exponential t-dependence in this region. The Coulomb

amplitude fC represents the well-known Rutherford scattering and is

expressed by fC = -2fnuGz(t)/It|, where a is the fine structure constant



and G{t) is the proton electromagnetic form factor. The small phase factor
p{t) arises from the simultaneous presence of both hadronic and electro-
magnetic exchanges in the same diagram (6) and has opposite sign in the pp
and the pp channels. The relative importance of the interference term

is maximum when the nuclear and the Coulomb amplitudes are comparable (at

-t = 8wajo Its contribution to the cross-section in a first approxi-

tot}'
mation is = ~{+)(p + w)uototlltl and can easily be distinguished from the
steeper 1/t2 dependence of the Coulomb term and from the relatively flat
nuclear contribution. If the factor (g + 9) is positive the interference
is destructive for pp and constructive for pp scattering.

A sizeable destructive interference, which becomes more and more pro-
nounced as energy increases, is indeed observed in the ISR pp data (7)

shown in Figure 2. This is the experimental evidence that p, which was

observed to go through zero at Fermilab energies (8), increases towards
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Figure 2. (a) Differential cross-section for pp elastic scattering in the
Coulomb region at /s = 53 GeV (the p = O curve is shown for comparison);

(b) destructive interference observed at four ISR energies; R is defined

as (do/dt measured)/(do/dt for ¢ = 0) - 1. Data from Reference (7).
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higher and higher positive values over the whole ISR energy range. Data
on the pp elastic differential cross-section in this t-region have also
become available recently at the ISR (9). In this case a constructive
interference is observed, which indicates a rising positive value of ¢
in this energy range for Ep scattering too. A summary of ISR data on ¢
for both pp and pp scattering is shown in Figure 3, together with lower
energy data.

The real part of the elastic amplitude is related to the imaginary part
via dispersion relations. On the other hand, the imaginary part at £t = 0
is related to the total cross-section by the optical theorem. As a con-
sequence, it is possible to write the parameter ¢ at a given energy as
an integral of the total cross-section over energy. Such an integral
relation can be approximated by a local expression which relates g to

the derivative of Ot ot with respect to energy (10, 11):

e(s) = (w/20 /d 1n s . 1.

tot) %ot



Equation 1 is not really adequate to compute the values of p as a func-
tion of energy in a quantitative way but has the merit of describing the

qualitative connection between p and o at asymptotic energies in a

tot
transparent way. In particular, it allows one to understand easily the
result, rigorously proved in Reference (12), that a rising total cross-
section implies a positive value of p. For instance, in the case of an

asymptotic behaviour which saturates the Froissart bound (ot - 1nf 5),

ot
¢ goes to zero from positive values as w#/ln s.

2.1.2 THE DIFFRACTION PE2K REGION (0.01 ¢ -t ¢ 0.5 GeVzl Recent data on

pp elastic scattering at the ISR are compared in Figure 4 with pp data
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taken at the same energies by the same experiment {13a). It is remark-
able how the shape of the pp distribution, which is notably steeper at
lower energies, becomes similar to that of pp distribution in the ISR
energy range. The energy dependence of the slope o¢f the elastic dif-
ferential cross-section for pp and pp scattering, shown in Figure 5,
indicates a shrinkage of the diffraction peak at a rate of at least

In s (14). It appears evident from there that, as energy increases,
the antiproton and the proton tend to behave exactly in the same way.
Such a behaviour is indeed expected at asymptotic energies, since the
Cornille-Martin theorem (see Section 4.1.3) states that the elastic dif-
ferential cross-sections of particle and antiparticle in the region of
the diffraction peak tend to be the same for s + «.

From Figure 5 one can also notice that the value of the slope B is
different at different values of t. As a matter of fact, the forward
elastic peak deviates from a pure exponential in t, and rather than a
constant slope B one should introduce a local slope B(t) =
{d/dt) 1In (de/dt). A sleope which continuously decreases with increasing
't| is observed up to Fermilab energies, where the elastic diffraction
peak is reasonably well described by an exponential with the addition of

a small quadratic term (15), of the kind exp (Bt + Ctz). On the other
2

hand, ISR data exhibit a rather sudden break localized around -t = 0.13 GeV" .

A similar feature is observed in the pp elastic differential cross-
section measured at the SPS Collider at /s = 546 GeV. As illustrated in
Figure 6, in the region 0.03 < -t < 0.15 GeV® the data show no hint of
curvature and are well fitted by a single exponential (16) of slope B =
15.2 £ 0.2 Ge‘f2 with no need for a quadratic term. A significant quad-
ratic dependence cah cnly be obtained from fits over a t-region that ex-
tends up to at least 0.3 GeVz. However, such a parametrization appears

to be inadequate to represent the data in the t-range from 0.03 to
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exponential fit was performed.

0.5 GeVZ. On the other hand, a single exponential also fits the data in
the region 0.2 ¢ -t < 0.7 GeV’: it is remarkable that in such a wide
t-interval the slope appears to remain constant (16-19), with a value of

13.4 + 0.3 Gev™?

. The phenomenon of a fast slope variation by about two
units in a small t-interval between 0.1 and 0.2 Gev2 1s represented in
Figure 7 [from Reference (20)], where the local slope of the diffraction
peak is shown in various t-intervals, at /s= 53 and 546 GeV. Independently
of this double-slope structure, the anti-shrinkage observed in pp elastic
scattering at lower energy turns now into a shrinkage similar to that of
the pp diffraction peak. As discussed in Section 3.4, in a geometrical
picture the slope of the diffraction peak is proportional to the square

of the mean interaction radius: the shrinkage of the diffraction peak

therefore reflects an increase of the dimension of the nucleon.
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2.1.3 THE LARGE-t REGION (-t > 0.5 GeV’) The main feature of the pp
elastic differential cross-section in this t-range is the progressive
development, up to ISR energies, of a sharp dip around -t = 1.4 Gevz,

as illustrated in Figure 8a. In the ISR energy range the position of the
dip is observed to move towards smaller |t[ values, while the height of
the secondary maximum grows, as already shown in Figure 7. It is natural
to relate this behaviour to the rising total cross-section observed in
the same energy interval. Indeed the diffraction pattern has to shrink,
if the increase of %ot is at least partially due to an expansion of

the proton radius. The geometrical scaling hypothesis actually assumes
that the increase of %ot is only due to the increase of the interaction
radius R, while the nucleon opacity remains constant. This implies a
scaling property in the elastic differential cross-section as a func-

tion of the variable T = ¢ which indeed seems to be reasonably

%ot
verified by the ISR data (21) as shown in Figure 8b. However it can be
noticed from Figure 1 that the dip appears to get more pronounced at
the lower ISR energies, and gradually fills in with increasing energy.
As a consequence, a scaling violation in a limited region near the dip
can be seen in Figure 8b. In a simple diffractive picture the imaginary
part is assumed to be the dominant scaling component of the elastic
amplitude and is supposed to vanish at the position of the dip, where
only the small real part contributes to the cross-section. This inter-
pretation is supported by the fact that, as shown in Figure 3, g goes
through zero at about the energy at which the dip is sharpest (see
Section 4.2).

The pp elastic differential cross-section already at an incident
beam momentum Plab as low as 30 GeV/c {22) starts to exhibit a pro-

nounced dip around -t = 1.7 GeVz. At these low energies pp and pp elastic
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scattering look therefore quite different. A direct comparison is shown
in Figqure 9%a at Piap = 50 GeV/c, where the dip structure in pp scattering
is not yet developed. These differences tend to disappear as energy in-
creases. In particular, at Piap = 200 GeV/c there is a well developed
pp dip structure around -t = 1.5 Gevz, similar to that observed in pp
scattering at the same energy (23). A direct comparison of pp (13b) and
pp (21) elastic differential cross-sections at an ISR energy equivalent
to Plap = 1500 GeV/c is shown in Figure 9b. Within the limited stat-
istics of the pp data, the similarity of the diffraction peaks also
extends to the region of the dip, if one considers that the higher
value of the real part of the pp elastic amplitude at this energy may
account for a larger non—digfractive term filling the dip structure
more in pp than in pp. The possible connection between the depth of
the dip and the value of ¢ is discussed in detail in Section 4.2. 1In
conclusion, the differences in the pp and pp differential cross-
sections appear to diminish as energy increases, and it is reasonable
to assume that the Cornille-Martin prediction that the two diffraction
peaks should become equal is essentially verified beyond ISR energies.
Data on pp elastic scattering from the SPS Collider at /s = 546 GeV
are shown in Figure 10a, compared with ISR pp data at /s = 53 GeV. The
conspicuous shrinkage of the diffraction peak is acompanied by a forward
movement of the dip structure that now only appears as a simple break of
the exponential fall-off at -t = 0.9 Gevz. Furthermore, the shoulder
observed in pp at the Collider is more than one order of magnitude
higher than the secondary maximum measured at the ISR.

There are models that attribute the disappearance of the dip in PP
elastic scattering to an intrinsic difference between the pp and the pp

channels rather than to the evolution of the diffraction peak as energy
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increases. Indeed QCD diagrams with three-gluon exchanges have been
considered (24, 25a), which in principle may give rise to a crossing-odd
component in the diffractive peak that can account for a shoulder in pp
and for a dip in pp at the same time. Good fits can be obtained to ISR pp
data, although one might question whether it is plausible to isolate a
few QCD diagrams in this t-region. However, the height of the shoulder
predicted by this model for pp at /s = 546 GeV is about one order of
maghitude lower than the SPS Collider data (see dashed line in Figure 10b).
The correct prediction of the height of the shoulder is a serious
challenge for all models. Good fits to the large-t structures can be
obtained in the 'nucleon core' model (26), but are restricted to this t-
region. In the geometrical scaling picture (see Section 4.2), the dis-
appearance of the dip can easily be accounted for by the growing real
part of the elastic amplitude (27). In this model, however, the value
of the scaled do/dt grows proportionally to o2

tot
one order of magnitude to reproduce the fast growth of the shoulder

and is inadequate by

from ISR to Collider energy (see dotted line in Figure 10b).

A stronger energy dependence of the height of the shoulder is pre-
dicted by the eikonal-type models, which can reasonably reproduce ISR
and Collider data also in the large-t region (28) (see solid line in
Figure 10b). Indeed the prediction of a shoulder at this energy, with
about the correct height, ten years before the measurement at the Col-
lider, has to be considered as a remarkable success of factorizing
eikonal models, which, as discussed in Section 4.3, are able to repro-

duce many qualitative features of elastic scattering.
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2.2 Total Crogs-Section

The total cross-section is one of the basic parameters of hadron-
scattering processes. Although this quantity is directly the sum of the
many cross-sections of all accessible final states, it is simply. related
via the optical theorem to the imaginary part of the amplitude of forward
elastic scattering. To such a simple process, axiomatic approaches are
possible exploiting the general principles of scattering theory, such as
unitarity, analyticity, and crossing symmetry. Therefore a number of
theorems and bounds can be derived, which constrain the asymptotic be-
haviour of the total cross-section in the limit s + ». Well-known ex-
amples (see Section 4.1) are the Froissart bound, which limits the
asymptotic energy dependence of %ot to a 1n2 s growth at maximum, and
the Pomeranchuk theorem, which states that the ratio of the total cross-
sections of particle and antiparticle should tend to unity. Experimental

measurements of o at the highest available energies therefore play a

tot
fundamental role in probing the setting in of an eventual asymptotic
regime,

Total cross-sections cannot be measured at colliding-beam machines by
traditional transmission techniques. Three different methods have been
used instead, by measuring simultaneously two of the three following
quantities: total interaction rate, forward elastic rate, machine lum-
inosity. The most direct method (2) determines Yot by the ratio be-
tween the total interaction rate, measured in a detector with full
solid-angle coverage, and the luminosity. A second method (1) exbloits
the optical theorem, extrapolating to t = O the measured rate of small-

angle elastic scattering. In both cases an absolute calibration of the

machine luminosity is required, usually performed either by the

van der Meer method (29, 30) or by direct measurements of beam profiles
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{31, 32), or even by the measurement of a known electromagnetic process
such as Coulomb scattering (33). when a high-precision luminosity cali-
bration is not available, the simultaneous measurement of low-t elastic
scattering and of the total rate allows the determination of ot with-
out the need for an independent Iuminosity measurement (34-36). The use
of the optical theorem in the second and third methods implicitly assumes
that spin effects at small t can be disregarded. The plausibility of this
assumption was firmiy supported by the precise measurements performed at
the ISR, where all three methods were exploited simultaneously (34),
ocbtaining consistent results to an accuracy of better than 1% [see a
discussion in Reference (25b)].

Until the coming into operation of the ISR, total cross-sections were
believed to approach a finite limit with increasing energy. Actually
some hints of a growth were present in cosmic-ray data at very high
energy (37) in addition to the well-known rising trend of otot(K+p)
that was considered as a transient feature. Moreover, the possibility
of indefinitely rising hadron cross-sections had also been considered
theoretically (38, 39). Nonetheless, the generally-accepted prejudice
was that total cross-sections should tend to constant values, and the
discovery of the pp rising cross-section at the ISR (1, 2) undeniably
came as a surprise. Afterwards, this trend was found to be a general
feature of all hadronic total cross-sections. As discussed in Section

2.1.1, the value of p is sensitive to the variation of o with energy,

tot

via dispersion relations. The simultaneous study of ¢ and %o therefore

t

provides a better understanding of the energy dependence of Iiot and

allows a sensible extrapolation in a domain which extends well beyond
the accessible energy range. This kind of analysis, pioneered in

Reference (7) onp and o £ data then available up to ISR energies,

to
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was indeed able to predict that the pp and pp total cross-sections should

keep rising at least up to /s = 300 GeV at a rate very close to 1n2 5.
Recently, the pp total cross-section has been measured at the SPS

Collider (36) at an energy as high as /s = 546 GeV. The observed value

of 61.9 + 1.5 mb is = 50% highexr than at the ISR and indicates that a

o rise at a rate compatible with 1n2 s persists also in this new

tot
energy domain. This Collider measurement is shown in Figure 11 together
with a compilation of lower energy pp and pp total cross-section data
which includes the recent pp results from the ISR (9, 40). The

dispersion relation fit (7) mentioned above is also shown in Figure 11

for comparison (the simultaneous fit to the real part is the curve shown
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Figure 11. Total cross-section data for pp and pp scattering [early, low-
statistics measurements at the SPS Collider (18,35} are not shown]. The curve
represents the dispersion relation fit of Reference (7).
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in Figure 3). One can notice that the recent pp data at the highest en-
ergies agree well with the prediction of this analysis and their inclusion
in fits of this kind confirms the 1n° s behaviour of 4ot (43, 14c).
It is striking that data at present energies indicate a rate of growth
of Stot which is just the fastest function allowed at asymptotic energies
by the Froissart bound. A suggestive hypothesis is that the observed qual-
itative saturation of the Froissart bound could be the manifestation of
an asymptotic regime, appearing already at present energies, which leads
hadron total cross-sections to increase indefinitely at this rate.

At the energy of the Collider the pp and pp total cross-sections are
expected to have practically the same value. The total cross-section dif-

ference Ao = ctot(pp) - otot(pp) is shown in Figure 12. Its energy

dependence exhibits a Regge behaviour of the kind s_u, with o = 1/2,
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Figure 12. Total cross-section difference Ag = otot(ﬁp) - O¢ot{PP) as a func-
tion of energy; the line is a Regge-like fit [from Reference (40b) ]
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which makes it tend to zero rather rapidly. Actually, if total cross-
sections rise indefinitely, their difference does not necessarily have
to vanish and might even increase logarithmically with energy, still
preserving the limit otot(ﬁp)lotot(pp) + 1 as required by the
Pomeranchuk theorem at infinite energy. Non-vanishing asymptotic con-
tributions (odderons) to the part that is odd under crossing of the
forward elastic amplitude, which determines the behaviour of Ao, have
indeed been considered in the literature (41). The operation of the ISR
both with proton and antiproton beams has allowed the study of the con-
vergence of pp and pp total cross-sections in an energy interval where
the difference is expected to become very small. While otottﬁp) starts
to rise at these energies, the difference Ao keeps decreasing following
the same inverse power law as observed at lower energy. The ISR data
from Reference (40) (black points in Figure 12) could actually suggest
a small, systematic deviation above the Regge fit. However, this
measurement could include a small but significant electromagnetic
inelastic contribution to Ac -- up to 0.4 mb according to the authors
(40b) -- from which the data of Reference (9) (open circles) are free.
As a conclusion, the data are well compatible with the behaviour expected
in the framework of a standard Regge exchange picture, with no need for
odderons, though a sufficiently small contribution of this kind cannot
of course be excluded (see Section 4.1.2).

Data on pp and pp total elastic cross-section 91 measured at the
ISR and at the SPS Collider, and the corresponding ratio °e1/°tot' are
shown in Figures 13a and 13b, respectively, together with lower energy
data. Similarly to %ot el also starts rising at ISR energies, reach-

ing a value of 13.3 + 0.6 mb at the SPS pp Collider (36). More than
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o ., itself, the ratio Gellotot has a crucial role in the investigation

el
of the high-energy regime of hadron scattering, since this parameter

is directly sensitive to the hadron opacity. Great interest was aroused

a few years ago, when this ratio was found to reach a constant value of
about 0.175 over the whole energy range of the ISR (42). This value is
velow the saturation limit of 0.5, which is typical of a fully ahsorbing
black disc. This was interpreted as the attainment of a ‘geometrical
scaling' regime‘in which the proton blackness stabilizes at a rather
‘grey' value and the observed ln2 s rise of %ot only reflects a steady
expansion of the proton radius like ln s (see a more detailed discussion
in Sections 3.4 and 3.5). However, the validity of this attractive simple
picture has been denied by the recent result from the SPS pp Collider.

The measured value °e1/° = 0.215 + 0.005 at /5 = 546 GeV (36) def-

tot
initely indicates an increase of the opacity with increasing energy.

A summary of the most relevant parameters of pp and pp scattering,
at ISR and SPS Collider energies, can be found in Tables 1 to 4. They
also include, when available, results on the direct comparison of pp
and pp data measured by the same experiment, in particular on the
following quantities: Ao, . = otot(ﬁp) - 0, (PP)s Ao = e(pp) - olpp)
and AB = B(pp) - B(pp}.

It is worth stressing that the energy dependence of the parameter
°el/°tot is crucial in order to discriminate bhetween the various
theoretical models that claim to describe the asymptotic behaviour of
hadron scattering. These can be classified coarsely in three groups
(43): in addition to the 'geometrical scaling' approach mentioned above,

in which the ratio oelfu is expected to be energy independent, other

tot
models have been developed in which this parameter is predicted either to

decrease or to increase with energy. In the Reggeon Field Theory with
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Table 1 pp scattering
/s tot el %1/ %0t ¢ot/B
{GeV) (mb) (mb)
23 38.94 + 0.17 6.73 + 0.08 0.1728 + 0.0016 8.47 + 0.15
31 40.14 + 0.17 7.16 + 0.09 0.1784 + 0.0017 8.45 + 0.14
45 41.79 + 0.16 7.17 + 0.09 0.1716 + 0.0018 B.38 £+ 0.13
53 42.67 + 0.19 7.45 + 0.09 0.1746 + 0.0016 8.37 + 0.13
62 43.32 + 0.23 7.66 + 0.11 0.1768 + 0.0021 8.36 + 0.13
Ref. (42)% (42)P (42) (34, 42)
a Scale error + 0.25 mb
b Scale error + 0.09 mb
Table 2 pp elastic scattering
I3 o B B'(-t > 0.15)
(GeV) (Gev %) (Gev %)
23 0.02 + 0.05 11.8 £ 0.2 10.3 + 0.2
31 0.042 + 0.011 12.2 + 0.2 10.9 + 0.2
45 0.062 + 0.011 12.8 + 0.2 11.0 + 0.2
53 0.078 + 0.010 13.1 + 0.2 10.7 + 0.2
62 0.095 + 0.011 13.3 + 0.2 10.4 + 0.2
Ref. (a2 (34) (34)

a Scale

error + 0.015
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Table 3 pp scattering
/s %ot %1 %1/%0t ot /P 80 nt Ref.
{GeV) (mb) {mb) {mb)
31 42.0 + 0.5 7.14 + 0.17 0.170 + 0.005 -- 1.7 £ 0.5 (97
I 42.8 + Q.35 -- - - 2.58 + 0.41 (40}
53 43.65 + 0.41 7.36 + 0,30 0.1e9 + 0.007 8.39 + 0.34 0.98 + 0.36 {9}
53 44.71 4+ 0.46 7.89 + Q.28 0.176 + 0.007 §.25 + 0.36 1.70 + 0.53 (40)
62 43.9 + 0.6 7.62 + 0.19 0.174 + 0.005 8.61 + 0.41 0.2 + 0.6 {9)
b2 45.14 + 0.38 - - -- 1.32 + 0.48 (40)
546 61.9 + 1.5 13.3 + 0.6 0.215 + 0.005 10.5 + 0.3 - (36)
Table 4 pp elastic scattering
Is e B B'(-t > 0.15) Ap AB Ref .
(Gev) (Gev ?) (Gev ) (Gev ?)
31 0.065 + 0.025 -- - 0.036 + 0.027 - (9)
31 - - 11.16 + 0.20 -- - {13a)
53 0.101 + 0.018 13.36 + 0.53 - 0.042 + 0.020 0.51 1+ 0.514 {9)
53 - 13.92 + 0.59 10.68 + 0.26 - 0.83 + 0.83 (40)
53 - - 11.50 + 0.15 - - {13a)
62 0.12 £ 0.03 13.t £ 0.6 - 0.04 + 0.03 0.1 + 0.6 {9)
02 - - 11.12 1+ 0.15 - - (13a}
546 o 15.2 4+ 0.2 13.4 + 0.3 - -- {16}




28

‘critical Pomeron' (44) the opacity, and thus oello decreases with

tot'

increasing energy, while the expansion of the radius prevents %ot from
decreasing. This approach seems now to be excluded by the Collider
measurements. In the 'factorizing eikonal' models, as discussed in
Section 4.3, the asymptotic regime is still far away in energy, although
ot already increases with a dependence close to ln2 s: the opacity is
also increasing slowly with energy, so that hadrons tend gradually to
become completely black discs. The ratio Oellotot is therefore pre-
dicted to reach the value 1/2 at infinite energy [the 'supercritical
string' model (45) also exhibits similar features]. The recent findings
at the SPS pp Collider clearly favour the latter class of models.
Another parameter often used to probe the asymptotic behaviour of

hadron scattering, which however is not independent of o (see

ellotot

Section 4.1.4), is the ratio o /B. Similarly to the former, the

tot
latter is also sensitive to the hadron opacity. The trend of this
quantity is illustrated in Figure 13c up to Collider energy and appears

to be similar to that of oel/o After reaching a constant plateau in

tot”

the ISR energy range at about 8.4 it rises again up to o B=10.5+0.3

tot/
at /s = 546 GeV,

As a conclusion, the measurements at the nowadays highest available
energies consistently indicate that the hadron opacity, which was be-
lieved to have definitely reached a constant value already at ISR
energies, is actually increasing: hadrons become not only larger, but
also darker as energy increases. Despite the observed qualitative satu-
ration of the Froissart bound, there is still a long way to go in the

approach to the elusive asymptopia.
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3. INTERPRETATION OF HADRON SCATTERING AT HIGH ENERGY
3.1 Notations and Kinematics of Scatterindg Processes
In the S-matrix formalism, the most general operator which leads from

the initial state |i> to a final state |f> can be written as

fIFfji>

<£l1 + iT{i> = &

. b

.+ 1(2w) & (P_- P.)}

£ Pl S8 ey 1) 2E)
n n m m

In Equation 2 the running products “j of the initial and final energies
(Em, En, respectively) separate the Lorentz-invariant part F of the trans-
ition matrix T, and the energy and momentum conservation is explicitly
required by the &-function of the initial and final total four-momenta

Pi and Pf (spins are disregarded, as discussed previously). The cross-
section for a process where two particles with masses m o, m give rise

2

to a final state with an arbitrary number of particles (1 + 2 =+

3+4+ ...+ N) takes the following form:
3=+
d'p
0, = 1 (2m)*s* (B P ) IF . | H —B 3,
fi > . f 1 fi (2")3 2F
4 /(p1-p2) - (mm) n=3,N n

where pj is the four-momentum of the j-th particle.
When one considers the particular case of a two-body reaction

(1 + 2+ 3+ 4), Equation 3 beccmes

= 2 2
Ogi = (1/ki)_[ (1/8%W) ’Ffii ke do, - 4.

Here ki and kf are the c.m. momenta of the particles in the initial and
in the final state, respectively, and W is the total c¢.m. energy. For
elastic scattering, one has kf = ki = k and therefore the differential
cross-section per unit solid angle dQcm around the scattering angle 8 can

be expressed as
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~ 2 2
do/dQcm = (1/87W)° |F(W,8)]° . 5.

It is convenient to write all physical quantities in terms of the

Lorentz-invariant Mandelstam variables s, t, u:

W

—2k% (1 - cos 8)

t
fl

2
(91 + pz)
2

It

t = (p1 - paJ

2
u = (P1 - P‘)

]

-2k% (1 + cos 9) + (mf - mlz)z/W2 =

2 2 2 2
+ +m, + -8 -t.
n, m ; v,

Since we are interested in the asymptotic behaviour at high energies,

from now on we shall assume k° >) mi and thus s =» 4k2 and dt » (s/4w) dQcm.

In this limit, Equation 5 reads

do/dt = (1/16ws?)|F(s,t)|% . 6.

3.2 Unitarity and the Optical Theorem
Probability conservation implies the unitarity of the S matrix: s*s =

+

$s* = 1. since S = 1 + iT, one has i(T' - T) = TT*, and therefore

2 Im <f|T{i>

i}

zl<f|T|1><1|T*|i> =

(el)

N EIT|n><n|T |i> , 7.

= }:Iflme”<f|'1'tm><m|'r"|i> + T

where the sum over all possible intermediate states |1> has been split
into separate sums over the inelastic and the elastic channels. Equa-

tion 7 acquires a special meaning when the initial and final states

are the same ({i> =z [f>, as for elastic scattering at 8 = 0):
. 3..
(inel) 4’ p.
2ImF, = I f (2w)"i5‘(Pi-pm)lFim:2 T, —31-— +
m I (2m) 2E,

+

) 2
2.2 |F. _(9)]
W k f in a . . 8.

E1E2 (BrrW)2
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The two terms in Equation 8 can be recognized as the quantities defined
in Equations 3 and 5, i.e. the inelastic and elastic cross-sections
respectively. Equation 8 is therefore the well-known optical theorem,

which is more simply written as

g .,) =~ S0 . 9,

Im F(8 = 0) = 2Wk(o, 280, .

inel * el

In general, as a consequence of unitarity, for elastic scattering at

t # 0 (i.e. |i> # ]f>) one can write

where Ginel(t) and Gel(t) are the inelastic and elastic overlap func-
tions (46) introduced by Van Hove. These functions are so normalized

that G, } = o,

mel(0 inel and Gel(o) = Uel'

3.3 Impact Parameter Representation

Let us consider the standard partial-wave expansion of the scattering

amplitude F:

F(s, cos 8) = (8aW/k) L. (21 + 1) fl(s) P, (cos 8) , 1.

1 1

where fl (s) is the 1-th partial wave amplitude and Pl {cos 8) is the
Legendre polynomial of order 1. Since at very high energy a great number
of partial waves contribute to F, it is legitimate to replace the sum
over 1 by an integral over the bidimensional impact parameter b [with

IB[ = (1 + 1/2)/k]. Equation 11 thus becomes

2 s -
F(s,q") _ 1 igeb 29 _
~8vs " 71 ff{b) e db = j‘f(b) Ju(qb) b db , 12.
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where q = k1 - k3 is the momentum transfer (q2 = -t}. The amplitude f(b)
can then be obtained from the inversion of Equation 12, by the known

properties of Fourier transforms:

_ 1 F(s,g -13 b F(s,g
f(b) = erf B s f 8rs Jo(qb) q dq . 13.

The unitarity condition 10 in the impact parameter space then reads:

Im £(s,b) = |£(s,b)}% + % G, . (8.b) . 14,

Im £(s,b) is usually referred to as the profile function, and represents
the hadronic opacity as a function of the impact parameter b. The

meaning of unitarity relation 14 is particularly simple when integrated

over b, and reduces to Oeot = %a1 + Oinel’ Since from Equations 9 and
12 one has:
Oot = 8w [ Im £(s,b) b db , 15.
oy, =8%  If(s,b))® bab , | 16.
Oinel = B [ 1/4 Ginel(s,b) b db . 17.

In its differential form (Equation 14), unitarity relates the elastic
and inelastic cross-sections at the same value of b: dzctot/dhg =
l/db + & o, l/db This is often referred to by saying that
‘unitarity is diagonal in impact parameter space'. Equation 14 puts a
limit on the inelastic overlap function: G nel £ 1. In addition, since

Ginel is positive, the unitarity condition 14 implies:

0 £ If(s, b)l L Im f(s,b) < 1. 18.
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A relevant physical consequence of Equation 14 is that no scattering
process can be uniquely inelastic: a non-vanishing elastic scattering
amplitude must always be present as a 'shadow' of all the inelastic
channels open at that energy. The forward elastic peak can thus be seen
as analogous to the diffraction pattern arising in classical optics when
a plane wave encounters an absorbing disc. As energy increases, elastic
scattering is indeed expected to become purely diffractive, as small as
allowed by Equation 14 for a given Ginel‘ The elastic amplitude then
tends to be purely imaginary, and the smaller of the two solutions of
Equation 14 is assumed to correspond to the physical situation. In
this case the upper bound 18 is lowered to Im f£(s,b) € 1/2.

In order to satisfy the unitarity relation 14 it is convenient to ex-

press the amplitude f(s,b) in terms of the complex eikonal function

x(s,b):
f(s,b) = i{1 - exp [ix(s.D)}}/2 , 19.

where Im x > O and the inelastic overlap function is recognized to be

G =1~ exp (-2 Im x). For Im ¥ = O, Ginel vanishes: this is the

inel
case when the reaction is below the threshold of all inelastic channels.
At high energy we are rather dealing with the opposite case: elastic
scattering is essentially diffractive, and Re y is small. If Re y = O,
the amplitude f is purely imaginary and determined by the opaqueness
Q(s,b) = Im x. In the limit Q@ + « the inelastic absorption is maximum
and Im f approaches the reduced unitarity bound of 1/2. This is the

case for a completely black disc; the elastic cross-section is then

also maximum and reaches the value (see Equations 15 to 17):

_1
%1 ~ %inel T 2 %tot - 20.
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3.4

Overlap Function Analysis of pp Scattering at the ISR

The geometrical representation outlined in the previous Section provides

an easy, intuitive framework which is independent of the underlying dy-

namics.

Hadron elastic differential cross-sections do exhibit diffraction

patterns quite similar to those observed in optics. As shown in Figure

i4c, this phenomenon becomes surprisingly evident when the scatterer is

a complex nucleus, which has rather well defined dimensions. The profile
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Figure 14. (a),(b) Examples of profile functions and corresponding scat-
tering amplitudes; (c},(d) diffraction patterns observed in hadron scat-
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function f£{b) of a heavy nucleus closely resembles that of a uniformly
opaque disc, whose Fourier transform (Equation 12) is a Bessel function
J1(qR), R being the disc radius. Such an amplitude indeed shows a series
of zeros with the increase of the momentum transfer ¢, as illustrated in
Figure 14a.

A qualitatively different picture is observed when the scatterer is
a single proton. In this case the elastic differential cross-section
exhibits a monotonous, exponential decrease in t, down to |t| = 1.4 GeVZ,
over about six orders of magnitude (see Figure 14d). This apparently
inconsistent behaviour is however easily reconciled when one considers
that an exppnential in t is precisely the Fourier transform of a Gaussian
profile function, as shown in Figure 14b. From this point of view, the
difference between a massive nucleus and a single proton lies just in
the different sharpness of the edges! In a simplified calculation, if
one neglects the real part of the elastic scattering amplitude and more-
over assumes that the differential cross-section can be parametrized by
a single exponential with slope B, by the optical theorem (Equation 9)
one can write the elastic amplitude in the form F(s,t) =
isao ¢ ©XP (-Bit|/2). The profile function, derived by Equation 13,

to
is then:

f(b) = (i/8%) (o, /B) exp (-b/2B) . 21.

Let us go further, and consider a quantitative analysis of pp elastic
scattering data, already shown in Figure 1. In order to compute the

profile function Im f(s,b) from Equation 13,

1/2
Im £(s,b) = (1/4/n} § dt Ju(bf*t) {do/dt - (1/16wsz)[Re F(s,t)]zi '

22.
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an estimate of the real part of the elastic scattering amplitude at

t # 0 is needed. It should, however, be noticed that the real part has
little effect, because at any given value of b the integral in Equation
22 1s dominated by the contribution at low t, where the real part is
known to be small. Therefore the determination of the profile function
does not depend critically on any sensible choice. A reasonable
parametrization of the real part of the elastic scattering amplitude at
ISR energies [see for instance Reference (42)] takes into account the
measured values of g, vanishes at t = 0.2 GeV2 to satisfy dispersion
relation analysis (47) and correctly fills the dip at t ~ 1.4 GeVz,
where the imaginary part is supposed to be vanishing. At all values of
t, anyhow, the real part turns out to be much smaller than the imaginary
part, except of course in the dip region. With a reasonable assumption
for the real part, by Equation 22 the profile function Im f(s,b) can be
computed numerically from the do/dt data: the inelastic overlap function

G 1 (s,b) is then obtained by Equation 14.

ine
The results of such an analysis (48-52) performed on the data at

/s = 53 GeV are displayed in Figure 15. The profile function exhibits a
shape which is very close to a Gaussian in b, as expected from the
approximately exponential behaviour of do/dt. Its r.m.s. width, cor-
responding to the effective proton radius, is found to be slightly less
than 1 fm at this energy. One can notice that Im f(b) has a maximum value
of 0.36, which is far from the unitarity limit of 0.5: this means that
even in a central collision at b = 0 a target proton is not completely
dark, but the projectile has a non-vanishing probability of going
straight through without interacting. The presence of the dip structure

in dofdt at t ~ 1.4 GeV produces a slight flattening of the profile

function with respect to a Gaussian (too small to be visible in the
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Figure 15. Total, inelastic and elastic overlap functions of pp scatterlng
at /s = 53 GeV (50 52). The deviation of the tail from a Gaussian is evi-
denced by the logarithmic scale.

figure) at very small values of b. One should realize that a sharp black
disc with a radius of 1 fm would produce a first dip in de/dt at

~ 0.6 GeV2 (see Figure 14a). In the interval from this value of t to
the measured position of the dip, the elastic amplitude decreases by
two other orders of magnitude. It should then not be surprising that
the striking structure in do/dt can hardly be noticed in the profile
function: the dip at 1.4 GeV2 is simply too far to modify significantly
the basic Gaussian shape of Im f(b). On the contrary, the slight vari-
ation of the slope of do/dt at -t = 0.13 GeVz, though less striking,
brings a distortion to the tail of Im f(b) above 2 fm that is almost
one order of magnitude higher than the Gaussian (see Figure 15h).

The same qualitative features are exhibited by the inelastic overlap
function Ginel(b)' which is related to the profile function by the

unitarity relation 14. According to this equation, the tails of
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1/4 Ginel and of Im f are essentially identical at large values of b,

where the term If[2 is negligible, while near b = 0 the inelastic over-

lap function flattens with respect to the profile function,

Detailed analyses of the energy dependence of Ginel over the ISR

range have been performed (42, 53).

In particular, a systematic study

based on a critical review of available ISR data has been carried out

by the authors of Reference (42). They have selected elastic do/dt data

from several ISR experiments, readjusted the absolute normalizations

taking into account the general trend of the differential cross-section,

and interpolated between neighbouring data sets in those t-ranges in

which no measurement was available. The experimental data they used at

the five ISR energies have been shown in Figure 1. Their results

indicate that the observed 1n’ s rise of O or OVEr the ISR energy range

only comes from an increase of the interaction radius which is linear

in In s, while the central opacity remains practically constant. As a

matter of fact, the variation AGinel(b), which from zeroc at b = 0

reaches a maximum around b = 1 fm (see Figure 16a), essentially
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disappears when the impact parameter is rescaled according to the mean
interaction radius or, equivalently, to the square root of the total

cross-section. Indeed, if G, is expressed in terms of the reduced

inel
impact parameter b' = b/fotot, one obtains an energy independent pat-
tern. This is illustrated in Figure 16b, where the energy variaticn

AG (b') of the inelastic overlap function over the ISR energy range,

inel
as a function of the reduced impact parameter, appears to be consistent

with zero.

3.5 The Geometrical Scaling Hvypothesis confronted with SPS Collider Data:

As discussed in the previous section, the ISR pp elastic scattering data
suggest that, as energy increases, the central blackness remains constant,
while the edge of the overlap function moves towards larger values of b.
It is therefore natural to consider a simple model in which the only
effect produced on the profile function f(s,b) by varying the energy is

a change in the mean interaction radius R. This so-called 'geometrical

scaling' hypothesis can be expressed as follows:

f(s,b) = £'(b/R) . 23.

b/R, Equation 12

Ll

After defining the reduced impact parameter b'

becomes

REF'(R%t) , 24,

F(s,t)/81s = R® [ £'(b')J, (Rb'/-£) b' db’
bl

where F' does not depend any more separately on s and t, but only on the
adimensional variable tRz, with R depending on energy. A direct
consequence of Equation 24, via the optical theorem {(Equation 9), is that

the energy dependence of the total cross-section only comes from the
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variation of R with energy: (5) a Rz(s). If v = is chosen as

%tot 0ot
the scaling variable, it follows from Equation 24 that the quantity

{see Equation 6)

(1/0,,,) do_;/dt = o(1) 25.

tot

has a universal shape independent of energy. As a consequence, the
local slope parameter B = (d/dt) 1n (do/dt) can be written as

otot(d/dr) In {¢(1)] and, therefore,

Utot,B = const. 26.

In particular, it also follows that the position of the dip and the

height of the secondary maximum respectively go like

2

%ot -

!tdipl - 1l°tot and dc/dtlt=t2

In addition

oel/otot = f (1) dt = const. 27.

Indeed elastic-scattering data at the ISR seem to support this hypothesis.
Figure 8b shows how elastic differential cross-sections (1/atot) do/dt
measured at the two extreme ISR energies fall one on top of the other.
Also the ratioe oellotot' shown in Figure 13b, although decreasing at
lower energies, seems to become constant in the ISR energy range. The
same tendency of approaching a constant value is observed in the be-
haviour of the ratio Utot/B up to ISR energies (see Figure 13c).

This nice picture unfortunately fails when the energy span is extended
far beyond the ISR range. As a matter of fact, the recent measurement

of the ratio oeljotot at the pp Collider is definitely larger than at
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the ISR and incompatible with the assumption of constancy (expressed by
Equation 27) as discussed in Section 2.2 and shown in Figure 13b. The
increase of this parameter directly indicates that the opacity of pp
interaction is actually rising, after the seeming plateau observed in
the ISR energy range. The same conclusion is, of course, drawn from

the behaviour of the parameter Utot/B' which is also proportional to
the nucleon opacity (see the simplified example of Equation 21) and is
found to increase sensibly in the same energy interval, as can be seen
in Figure 13c. This violation of geometrical scaling appears quite

evident in a detailed analysis of the overlap function G {(b) (54).

inel
Here, in addition to a clear expansion of the interaction radius, the
central opacity is also found to be definitely larger than at ISR en-
ergies, closely approaching the unitarity limit of one. Even rescaled in
the reduced impact parameter b' [as was done for the ISR data in the

analysis (42) quoted in the previous section], G (b') exhibits a clear

inel

energy dependence when going from the ISR to the SPS Collider. This be-

haviour is clearly shown in Figure 17, in which the energy variation
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Figure 17. Variation 4Gjpa) of the inelastic overlap function from
ISR to SPS Collider enexrgy, asi7zfuction of the reduced impact para-
meter b' = bl[otot(s)/61.9 mb] [from Reference (54)].
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AG (b') from /s = 53 GeV to /s = 546 GeV is found to be incompatible

inel
with a zero level. This picture has to be compared with Figure 16b
where the same quantity, evaluated over the ISR energy span, appears to
be consistent with zero. One can conclude that there is clear evidence
that the nucleon, which at the ISR just seemed to become larger, is also
getting blacker as energy increases. The observed rise of % ot is there-
fore not only due to the expansion of the interaction radius but also

to an increase of the nucleon darkness.

4. THE VERY HIGH ENERGY LIMIT

It is reasonable to assume that at sufficiently high energy the features
of hadron scattering can be interpreted in a simple way in terms of a
few general theoretical principles, independently of specific models.
Asymptotic properties of the scattering amplitudes can indeed be derived
from the requirements of unitarity, agalyticity, and crossing symmetry.
This kind of approach, pioneered by Pomeranchuk (55) and by Froissart
(56) has led to several theorems which impose non-trivial constraints

on hadron behaviour at asymptotic energies [the interested reader can

find a complete review in References (4d) and (4i)].

4.1 Asymptotic Theorems

4.1.1. FROISSART-MARTIN BOUND The well-known Froissart-Martin upper
bound (56) on total cross-section has been derived from axiomatic field

theory (57, 58a) and states that

2 2
4ot £ (n/m“) In® s . 28.

An intuitive idea of the physical meaning of this theorem can be obtained

in impact parameter representation. In oxder to satisfy analyticity, the
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Figure 18. Upper bound to the profile function.

profile function has been shown to be limited by an exponential decrease
with increasing values of the impact parameter, and by a rather slow
increase with energy, of the kind Im f(s,b) { const sB exp (-ZmUb) with
B ¢ 1. 1In the case of diffraction scattering, however, the reduced
unitarity limit Im f£(s,b) £ 1/2 cannot be exceeded (see Section 3.3).

The upper bound shown in Figure 18 is thus obtained:

Im f£f(s5,b)

1/2 for b < hu

Im £(s,bh) exp [~2mn(b - bu)] for b > bu .

where bn = (1/2m“) 1n (s/su). Using Equation 15 one then obtains the
upper limit 28, which corresponds to a full absorption of all partial
waves up to bo: the surface of this black disc increases as ln2 s. The
grey fringe for b > bu imposed by analyticity has a constant width, so
that its surface increases only as 1ln s and has a negligible role in
the upper bound 28 at infinite energy. |

It is worth noticing that Equation 28 is indeed a minimum upper bound
which by no means can be further restricted. For some time, before

rising cross-sections were discovered at the ISR, when people believed

that hadrons had an asymptotically constant size, theoreticians tried
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to lower the bound and to prove that total cross-sections were asymptot-
ically limited by a constant. This effort was revealed to be hopeless
when an example was found by constructing a crossing symmetric ampli-
tude (59) which satisfies unitarity and analyticity, and behaves like

s 1n° s in the forward direction.

ISR and Collider Tt ot data are indeed compatible with a 1n® s rise
(see Figure 11), although with a coefficient much smaller than in
Equation 28. This behaviour may lead to the belief that an asymptotic
regime is already installed at presently available energies and that
the Froissart bound is indeed qualitatively saturated by nature, if not
quantitatively. This might suggest that, for some reason, the profile
function of the nucleon is bound not to exceed the 'greyness' we observe
today and the rise of the total cross-section simply reflects the ex-
pansion of the proton radius. This hypothesis was indeed supported by
the geometrical scaling béhaviour found in the ISR data, as discussed
in Section 3.4. The recent measurement at the SPS Collider indicates,

on the contrary, that the ratio o does not remain constant beyond

e1’ %ot
ISR energies and that the hadronic opacity is actually slowly increasing
with s. One has, however, to remember that in the limit of a completely

saturated black disc the ratio o must approach 1/2, which also

ellotot
at the Collider is far from being the case: even at b = 0 the profile
function is still sensibly lower than the reduced diffractive limit of
1/2 imposed by unitarity. Therefore, if the nucleon becomes blacker and
blacker as energy increases, since it is still far from the quantitative
saturation of the Froissart bound, there might be a very long way to

an asymptotic regime and the present « ln2 s behaviour could just be a

transient accident with no deep meaning.
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4.1.2 POMERANCHUK THEOREM On a phenomenological basis, one observes
that the total cross-section otot(ah) of hadron ‘a' hitting target 'b'
and the total cross-section otot(Eb) of the corresponding antiparticle
hitting the same target, approach each other more and more as energy
increases (see, for instance, Figures 11 and 12). In its original for-
mulation, based on dispersion relations for the forward-scattering
amplitude, the Pomeranchuk theorem (55) stated that if the total cross-
sections of particle and antiparticle tend to a constant with increasing
energy, their difference tends to zero. At the time in which the total
cross-sections were indeed believed to approach a constant limit, every-
body was happy with this formulation of the theorem, which seemed to be
confirmed by experiment. However, this formulation is of no use if the
rising total cross-sections discovered at the ISR are interpreted as the
onset of an asymptotic behaviour of everlasting growth. Therefore many
authors (60) have worked at a reformulation of the theorem in order to
preserve the final statement, which still appeared to be supported by
experimental evidence, by trying to exploit analyticity and unitarity
without adopting additional restrictive assumptions. This method finally
led to proving that if at least one cross-section rises indefinitely

[either o ot(ab) + » Or ctot(ab) + »], then

t

otot(ab)/otot(ab) + 1 29.

for s + ». It should be noted that this formulation does not imply that
the total cross-section difference Ac = ctot(ab) - ctot(ab) goes to zero.
Equation 29 in fact cannot even exclude that Ac goes to infinity as
energy increases. Some authors have indeed considered the possibility
pab _ pab

that the imaginary part of the odd-signature amplitude F = F
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at t = 0, to which Ac is proportional, grows as fast as ln s {41). The
recent data on otot(PP) and otot{bp) from the ISR, however, disfavour
this hypothesis (see Figure 12). Another possibility is that the
asymptotic odd-signature contribution to Ao remains constant with in-
creasing energy [see a discussion in Reference (61)]. An even more
subtle hypothesis assumes that the amplitude F has an asymptotically
vanishing imaginary part and thus does not contribute to Ao, but only
affects the behaviour of the real part p of the elastic scattering
amplitude in the forward direction (25a, 62). Recent analyses (61, §3)
of ISR data on %ot and p, however, leave little room for exotic con-
tributions by such 'odderon' terms. Actually it can be proved (64) that
Ac must go to zero, on the hypothesis that asymptotically Re F* and Im F~
have the same sign (Fischer theorem). Measurements of p indicate that
this hypothesis is probably satisfied, despite the large errors, at ISR
energies. Although, of course, one cannot exclude in principle that
Re F /Im F changes sign at higher energy, it is reasonable to assume
that the cross-section difference goes really to zero.

As a conclusion, the data seem to support a stronger picture than the
one conjectured by the Pomeranchuk theorem, in the sense that not only

the cross-section ratio tends to unity, but also the difference appears

to tend to zero.

4.1.3 CORNILLE-MARTIN THEOREM Some effort was made to extend the
validity of the Pomeranchuk theorem also to elastic scattering. It was
first recognized (60b) that analyticity and unitarity imply that the
ratio of the forward elastic differential cross-sections of particle
and antiparticle should tend to unity for s + = (If o tends to zero,

this statement is equivalent to the Pomeranchuk theorem). Furthermore,
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based on the positivity of the absorptive parts of the elastic
amplitude 11, Cornille and Martin (65) have shown that the above

property is valid for the whole diffraction peak, namely:

doab daab
at [5,t(s)] at [5,t(s)] = 1 30.

for any smooth t(s) such that the ratio {do[s,0]/dt}/{dc[s,t(s)]/dt}
stays finite as s + «. As a consequence, the ratio of the slopes of the
diffraction peak in pp and pp elastic scattering must approach unity as
energy increases: a persistent shrinking in pp elastic scattering must
be accompanied by a similar shrinking in pp. This picture. is indeed
supported by experimental data, as can be seen in Figures 4 and 5. In
particular, the slope measurement at the SPS Collider indicates that
also for pp scattering a shrinkage of the elastic diffraction peak

sets in at a rate compatible with 1ln s.

The theorem extends naturally to the asymptotic equality of the total
elastic cross-sections of particle and antiparticle: ael(Eb)/ael(ab) + 1
for s + ». This feature is in good agreement with the experimental data,
as shown in Figure 13a.

Another important consequence of the Cornille-Martin theorem is that,
if the dip of the pp elastic scattering around -t = 1.4 Gev’2 at ISR
energies belongs to the diffraction peak, then a similar dip should be
present also in pp scattering (provided that ISR energies can really
be considered as asymptotic). Models (24) that predict a different dip
in pp and pp elastic scattering have to apply to a non-asymptotic
situation: when diffraction dominates, the pp and pp dips must behave
in the same way for s + « (43, 61). The data shown in Figure 9b point

to a significant difference in the large-t region, where a shoulder
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seems to be favoured rather than a dip in pp scattering. However,

the limited statistics does not allow to draw a definite conclusion,
particularly when one realizes, as discussed in Section 2.1.3, that at
these energies the pp dip may be partially filled by a higher value

of o.

4.1.4 MacDOWELL-MARTIN BOUND It has been shown by MacDowell and
Martin (66) that the shape of the forward elastic peak must satisfy the

following bound, based on unitarity (disregarding terms of order 1/s):

(d/dt) 1n [Im F(t)]ft=0 2 (1/36n)o 3.

2 /o
tot’ el

If the real part of the elastic amplitude can be neglected, the in-

equality 31 gives a bound on the forward slope B of the elastic peak:

2
B 2 (1/18n)otot/0e1 . 32.

Experimental data show that this bound is almost saturated (within = 15%).
This should not be surprising since the equality B = (1/16w)ciot/oel
holds for a purely imagihary exponential amplitude.

An interesting consequence of the bound 32, tcgether with the require-
ment of analyticity of the scattering amplitude and the assumption of
a qualitatively saturated Froissart bound, 1s the prediction of a
non-uniform behaviour of the slope of the diffraction peak near the for-

ward direction {61, 67). One should notice that, if o » ln2 s, then

tot
B must increase at least as In’ s: since analyticity constrains B not
to exceed a ln2 s behaviour one can conclude that the forward slope B

must go just like ln2 s. Experimental data up to present energies do not

give a clear indication of a 1n2 s behaviour of the forward slope, which
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still may be consistent with a linear increase with ln s (see Figure 5a).
Tt must be clear, however, that if 4ot continues to rise as 1n2 s, at
some finite energy the forward slope must start to increase faster than

1n s in order to prevent a violation of inequality 32.

4.1.5 AUBERSON-KINOSHITA-MARTIN THEOREM From the hypothesis of a
qualitatively saturated Froissart bound follows a remarkable property of
the scattering amplitude. In fact, if asymptotically Otot grows like 1n2 s,
also 01 7 1n2 s (58). By the optical theorem, do/dt]tzo increases like

1n* s, so that the width of the diffraction peak must shrink like 1/1n2 s
(note that a weaker shrinkage is excluded since it would produce Oel
larger than Ty ot at sufficiently high energy). As a matter of fact, it
has been shown (68) that with this limiting behaviour not only the
width but also the whole shape of the diffraction peak is constrained

to exhibit a scaling property. More rigorously, neglecting odd sig-

nature contributions, if ototlln2 s + const for s » =, then

Im F(s,t)/Im F(s,0} » ¢(1) , Re F(s,t)/Re F(s,0) » (d/ar}[t¢(v)] ,
33.

where 1 = t lnz s and ¢(1) is an entire function of order 1/2, i.e. ana-
lytic in t and bounded by exp (c¢/|t}). In other words, if the Froissart
bound is saturated, the diffraction amplitude F(s,t) asymptotically
reduces to a function of a single scaling variable, proportional to totot‘
This is a useful result for applications in phenomenology, which leads

to predictions on the asymptotic behaviour of diffraction scattering

that can be compared with experimental data and can allow testing

whether an asymptotic regime is already installed at present energies.
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4.2 Scaling as an Asymptotic Property: Comparison with High-Energy Data

If one believes that a qualitative saturation of the Froissart bound is
already effective at present energies, then Equations 33 allow one to

write the elastic-scattering amplitude in terms of two input parameters,
%ot and ¢, that can be determined by experiment at each energy, and of

a universal function #{1) (69):

do/dt = (1/16w) aiot (2 (1) + P2l (d/dn) e (1)) . 34.

This differential equation can be solved numerically for ¢{t) if all
other quantities (do/dt, Tyot e) are accurately known at a given energy.
At other energies, the elastic differential cross-section do/dt can then

be computed by inserting the measured values of ¢ and p. It can be

tot
noticed that Equation 34 exhibits the same scaling property as Equation

25, apart from the presence of the quantity ¢ that depends on s alone,
If one considers, however, that the real part of the amplitude is much
smaller than the imaginary part (at all values of t except of course in
the region of the dip) the geometrical scaling hypothesis formulated on
the basis of the ISR data (see Section 3.5) appears to be more than a
phenomenological description of diffraction scattering at high energy:
it comes out naturally as an asymptotic property, provided that the
Froissart bound is saturated. Should this be the case, relations 25 to
27 would hold asymptotically in a model-independent way.

The scaling function ¢(t) has been computed in Reference (70} by
solving numerically Equation 34 at /s = 53 GeV, where the most accurate
data exist. The solution obtained for ¢(z) is shown in Figure 1%a. It
goes through zero at the position of the dip, which is partially filled

by the xeal part of the amplitude. Owing to this feature, the behaviour
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Figure 19. (a) The scaling function ¢ and its derivative computed by
Equation 34 for pp elastic scattering at /s = 53 GeV (the dashed lines rep-
resent the uncertainty of the calculation); (b) sensitivity of the dip-bump
structure to the value of the real part ¢ (the four curves correspond to

g = 0.078, 0.10, 0.12, and 0.14, respectively) [from Reference (70)].

of do/dt at the dip is very sensitive to the real part ¢ in the forward
direction, since Equation 34 states that the value of the crosg-section
becomes proportional to gz where the imaginary part vanishes. This non-
trivial connection between ¢ and the dip is illustrated in Figure 19b.
The ISR data at the other energies are well reproduced by expression 34
also in the region of the dip, which is predicted to be deepest where p
is zero, and gradually filling in with increasing energy as the measured
value of g increases. The scaling violation at the dip, which appeared
in the original geometrical hypothesis of Section 3.5, is therefore
taken into account by the non-scaling term in Equation 34 due to the
energy dependence of . At the energy of the SPS Collider, o should at-
tain a value high enough {g > 0.15) to fill in completely the dip, which

is expected to turn into a shoulder. Indeed recent data on pp elastic
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scattering at /s = 546 GeV (19) exhibit a shoulder at the predicted
position. However, the measured value of the cross-section in this
t-region is almost one order of magnitude higher than predicted (27),
as shown in Figure 10b. This serious discrepancy is hard to reconcile.
Furthermore, the rise of the ratios Uellotot and otot/B found at the
Collider indicates that the nucleon opacity is increasing and provides
clear evidence for violation of geometrical scaling. This growing be-
haviour is detailed in Figure 17, which illustrates the energy depend-
ence of the inelastic overlap function from the ISR to the SPS Collider,
obtained in the analysis (54) discussed in Section 3.5. In conclusion,
the onset 0of an asymptotic geometrical scaling regime, which was be-
lieved to be effective already at the ISR, has to be pushed far beyond
Collider energy, in spite of the observed « ln2 s behaviour of 4ot
that had suggested a precocious saturation of the Froissart bound. This
conflict with Equation 33 may raise a doubt as to whether the hypothesis
of the Auberson-Kinoshita-Martin theorem is really verified; the pre-
sent ln2 s rise of o might only be a transient txend, different

tot
from the asymptotic behaviour.

4.3 Factorizing Eikonal Models

Another interesting approach stems from the original idea that was at
the basis of the Chou-Yang model. In this geometrical picture, elastic
scattering is considered as the result of the attenuation of the in-
coming wave through the extended distribution of matter inside the
hadron {in close analogy with Glauber's optical model of hadron scat-
tering on nuclei). In the pioneering works of Reference (71) the

eikonal representation in impact parameter space (Equation 19) was
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adopted with the assumption that the matter distribution G(b) is pro-
portional to the charge distributionm, i.e. the Fourier transform of the
form factor. In subsequent works (72) after the discovery of rising
cross-sections at the ISR, the energy dependence of %ot was taken into
account by introducing a non-constant factor K(s) in the opaqueness:
9(s,b) = K(s)G(b). At a given energy, the factor K is empirically

determined by the value of ¢ via Equation 15. Such a factorized form

tot
of the eikonal function allowed the generalization of the model, still
preserving its original physical concept.

Already several years before the ISR results, on the other hand,
Cheng and Wu (39) had deduced in the framework of massive QED that the
asymptotic behaviour of the elastic amplitude should be of the eikonal
kind with K(s) o« 5° {c is a positive constant) and G(b) decreasing ex-
ponentially at large b. It should be noticed that this result has a
remarkable predictive power since it implies that the edge of the pro-
file function 19 moves towards larger values of b proportionally to
1n K(s), while its central part approaches the unitarity limit of 1/2
as the energy increases. The interacting hadron tends to appear as a
black core whose radius grows as ln s surrounded by a grey fringe of
constant width, and to behave just as in the limiting case discussed in
Section 4.1.1, completely saturating the Froissart bound at infinite
energy. This model therefore predicts that for all hadrons at extremely
high energies the total cross-section grows as ln2 s, the elastic dif-
fraction peak shrinks indefinitely, and the ratio Uellctot rises with
energy towards the limit 1/2. All these qualitative predictions seem
indeed to be supported by experimental data. In order to improve the

quantitative agreement with the data, the model was subsequently im-

plemented (28) with various phenomenological parametrizations of the
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hadronic-matter distribution G(b). Sometimes an expression of the kind
exp [—A(b2 + bﬁ}1/2] has been adopted (28a), which essentially is a
Gaussian at small b with an exponential tail at b »> bu' in close analogy
with the behaviour of the Fourier transform of a dipole form factor

17¢1 - t/uzlz. Other authors (28b) have tried to multiply a dipole form
factor by an ad hoc slowly varying function of t. In all cases, good
fits to the data are obtained, and the shoulder at large t in pp elastic
scattering at the SPS Collider is predicted with about the correct
height {see Figure 10b). Anyway, independently of a quantitative com-
parison of these specific parametrizations with experimental data, it

is a fact that the qualitative predictions of the bare eikonal formula-
tion of the original models have had remarkable confirmation, first by
the « 1In’ s rise of the total cross-section found at the ISR, and now

at the Collider by the further observation that the ratio o also

el/%ot
grows with energy.

5. CONCLUSIONS

The operation of the CERN ISR with protons and antiprotons has allowed
the study of the expected similarity of the dominant features of particle
and antiparticle in a new higher energy range. The observed convergence
of the properties of pp and pp scattering reinforces the feeling that

the first symptoms of an asymptotic regime do show up already at ISR
energies.

The CERN SPS Collider has made accessible to experimentation an energy
domain which is still one order of magnitude higher, making a long bound
towards the land where the general principles prevail. In order to in-
vestigate the asymptotic features of hadron scattering, it is sensible

to compare ISR pp data directly with Collider pp data, in so far as at
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such energies the two reactions should exhibit practically the same
behaviour.

In spite of the « 1n’ s growth of the total cross-section, the pre-
dicted asymptotic property of geometrical scaling is not observed in
Collider pp data: the geometrical scaling behaviour found at the ISR
should therefore be considered a merely transient feature. The apparent
contradiction with the Auberson-Kinoshita-Martin theorem may lead one

to question whether the o rise at this rate will really persist.

tot
New light will be shed by the measurement of the real part g at the

SPS Collider, which is sensitive to the derivative of o This will

tot’
indicate the trend of the total cross-section beyond presently available
energies, waiting for direct measurements at the forthcoming colliders.
Should the - 1n2 s rise persist, the picture presented by the eikonal
models could really be true: a steadily increasing opaqueness would
lead all hadrons to reach the black disc limit at infinite energy.
The Froissart bound would then tend to be quantitatively saturated
very slowly with increasing energy. In this case the - In’ s depend-
ence of %ot observed already at energies as low as those at the ISR
should be interpreted as a precocious qualitative saturation of the
Froissart bound, and would stay on more and more quantitatively at higher
and higher energy. The hypothesis of the Auberson-Kinoshita-Martin theorem
would actually be true asymptotically and geometrical scaling should
indeed be regarded only as an asymptotic property.

Measurements at future big hadron colliders will be exciting and may

eventually settle these tantalizing questions, making a further step

towards the comprehension of the underlying dynamics.
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