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ABSTRACT
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1. — INTRODUCTION AND SUMMARY

Although the masses are basic characteristics of the elementary particles,

L

their origin remains mysterious. The Higgs mechanism of their generation should
be considered phenomenclogical by definition: mass scale is fixed by non—-zero
vacuum expectation value of a scalar field, but each mass is determined by its
own coupling constant which is independently renormalized. Hence, elementary

particle masses can be described (parametrized) but cannot be calculated.

On the other hand, the Higgs mechanism is theoretically clean and phenomeno-
logically very successful. It thus seems worthwhile to look for its microscopic

foundation rather than for an alternative.

A microscoplc theory underlying the Higgs one should, as one generally re-
guires from microscopic theories, (1) reproduce good features of the phenomenolo-
gical theory more economically, (2) be able to calculate parameters of the pheno-
menological theory, (3} provide new predictions lying outside the range of vali-
dity of the phenomenological theory, and (4) lead to the phenomenological theory

by a controllable sequence of approximations.

A typical example of an interrelation of phenomenological and microscopic
theory, hopefully relevant to our discussion, is the Ginzburg-Landau theory of
superconductivity with its microscopic BCS counterpart. Relevance relies wupon
a commonly accepted view that the Higgs Lagrangian is a one-to-ome relativistic
translation of the Ginzburg-Landau Lagrangianz). What is then the relativistic
translation of the BCS Lagrangian? This paper 1s devoted to a discussion of the

properties of one such candidate.

We suggest to study the Higgsless standard SU(Z)LXU(l)Y gauge model supple-
mented with a neutral vector boson C with a mass M coupled to all fermions of
both chiralities with a strength h. Liberty is taken of assigning to different
fermlong different € hypercharges. These are pure numbers not undergeing
renormalization. The model is operationally defined by its renormalizable (off-

mass shell) perturbation expansion.

Dynamical mass generation is, however, a genuine non—perturbative phenome-
non; chiral symmetry for fermions and gauge symmetry for gauge bosons guarantee
masslessness in every order in perturbation theory. Since a systematic non-per-—
turbative technique is not available in relativistic field theory without scalar

3)

fields™’, our considerations will only be plausibility arguments.
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Our strategy is the following. Fermion-C boson interaction is treated non-
perturbatively and it is argued that it is capable of generating fermion masses
in terms of C-hypercharges. Standard electroweak interactions are considered as
weak external perturbations. When switched off, the dynamical generation of
fermion masses implies the appearance of three Nambu—Goldstone (NG) bosons with
calculable couplings to fermions. When switched on, “"would-be” NG bosons bhecome
longitudinal spin components of the originally massless gauge fields in

4)

accordance with the general Schwinger mechanism “. As a result, masses of W and Z

bosons are calculated in terms of masses of all fermions present in the theory.

When asking about the massiveness or masslessness of a theory with the oanly
mass scale being the renormalization point [see Eq.- (3)], it is natural to

5)

employ the renormalization group™ . It appears that our model is theoretically
consistent with the assumption of dynamical mass generation only if we assume
that the renormalized fermion-C boson coupling constant h lies in the domain of
attraction of a non-trivial ultra—-violet (UV) fixed point hﬁv in the region of

validity of perturbation theory6).

Obviously, this assumption7)

cannot be disproved with present theoretical
tools (i.e., with perturbation theory). An ultimate decision about the quality of
this strong speculative assumption can be made only after the theory is more or
less exactly solved*). Results of our plausibility arguments presented in the
following bona fide provide an iIndication of an a posteriori justification of our

assumption.

In practice we analyze in this paper the fermion—-C boson sector by applying

8)

the Nambu-Jona-Lasinio (NJL) technique to the effective four-fermion Lagrangian

due to the C boson exchange. Consequently, concerning the calculability of

9

fermion masses, we can speak only of matters of principle . With our assumption

of the existence of hﬁv, fermion—-C boson dynamics resembles the dynamics of

chiral symmetry breaking in QCD with quarks in different representations of

SU(3) 10). Different fermions f condense at different mass scales u_ due to
celour f

different C hypercharges YLeYRE" A renormalization group equation naturally pro-
vides large amplification of condensation mass scales as a response to small

changes in C hypercharges.

7}

*
) In that case, however, renormalization group analysis becomes unnecessary’’.



-3 -

Since € hypercharges are pure numbers of the same order of magnitude, we can
speak about the calculability of the fermion masses. We believe that the
mechanism of the gauge boson mass generation, being quite general, can be

trusted even in its present four-fermion formll).

The paper is organized as follows. Section 2 is devoted to a discussion of
the properties of the Lagranglan we suggest for dynamical mass generation. In
Section 3, the dynamical fermion and gauge boson mass generation is explicitly
elaborated using the NJL and Freundlich-Lurié techniques applied to an effective
four-fermion interaction. Flavour mixing is discussed in Section 4, and Sectiomn 5

contains a comparison of the present approach with a canonical one.

2. - PROPERTIES OF THE LAGRANGIAN

The model we suggest to discuss is defined by its Lagrangian density
L = @-L%«(ad-tg,i%’ﬁd +ig % B, ~vh Yy Cq)lpL+
Do i (0 th 2V, C ) + 86 (0, + 4B, ~ih 3, C Jeg +
g *(2, ".’ﬁ’i?xa ~ig B, -k 3 Y, Cy g, +
T, (0195 B R C ug + i (2, + 19 3B, ~th 2, C)dg - @
-5 (9 Rg-2 R+ %def&’p)z ~5(9 By~ 2B, ) ~
-5 (2,Cq- af;c“)2 ++M2C C*

Tt is the standard Glashow-Weinberg—Salam (GWS5)} model without Higgs sector,
supplemented with a neutral vector boson C with a mass M interacting with all
fermions of both chiralities with a coupling constant h. We take the liberty of
assigning to different fermlons different C hypercharges YH' For more fermion
families, Lagrangian (1) is form—invariant. Weak interaction fermion eigenstates
¢L’ vR, eps- - become columns of like fermions in famlly space and YHare diagonal
non~degenerate real matrices.

1. - SU(Z)LXU(I)Y gauge invariance of the model {1) is tramsparent. It is this

symmetry that prevents fermlon and gauge boson bare mass terms being present in

(1).



2. ~ Renormalizability. To be defined, the model has to be renormalizable.

Although it is known that both the GWS model and QED with a massive photon are
renormalizable theories, the problem of renormalizability of essentially their
sum 1s non—trivial because of new triangular anomalies. Nevertheless, a two-para-

meter set of C hypercharges

Yoo = (409, Y (u), %(dp) 5 Y () YlvR), Y(€R))

“? 2
= o + (2)
V= Yy + Yy
is proved to correspond to an anomaly—freelz), hence renormalizable, theory.
Here
M _ - . -
Y =(Vs,4/3 ~2/3 5 -1,0, -2)
2) . - . —_
Yf-(i)"(071) 15 0,1, 1),
3. - There 1s no genuine renormalization of the mass M13). The polarization

tensor of the C field being transverse due to the corresponding current conserva-
tion contains one over—all logarithmic divergence. It is removed by a wave func—
tion renormalization constant of the C field, MR = Molzj(ho JA/n). Since also the
coupling constant is renormalized as h‘R = hgZj(hg yA/u) due to the Ward identity
which 1is valid here, we have MR = (My/hy )hR' We may set

(3
where ¢ is a theoretically arbitrary dimensionless parameter. It will become
fixed only after identification of M‘R and hR with their physical values. In this
respect, the Lagrangian (1) resembles purely massless theory, i.e., there ig only

one mass scale which is the remormalization point p.

4. - C hypercharges YI-I are not renormalized. This trivial property is crucial to

calculate the fermion masses. One can easily imagine that these C hypercharges
become completely fixed, i.e. quantized, 1f the present scheme is embedded into a
simple GUT group.

5)

5. — Renormalization group argument °. For any dynamically generated mass in a

theory with one mass scale [see footnote 10 of Ref. 14)], the formula

m=CA‘F”'uR,C) (&)



follows on dimensiomal grounds. The mass m, being physical, cannot depend upon

):

where the theory is renormalized*
2
dm _ 1.9 4 m = O
Mdp = [@a@ P(hR)aER] : ()

Here

P(&’R) - a%; E,UR(&”A/C‘ )l\;)‘lo fixed

Equation (5) is easily solved:

~

h
m = af(h,)epl (/b6 1,

-~
where h is an arbitrary parameter chosen in such a way that B has no zeros be-

tween h and hR.

For fixed p, m is not analytic around” fixed points of the renormalization
group [those values of the coupling constant for which B(hR)=O]. At an UV stable
fixed point, m vanishes while at an infra-red (IR) stable fixed point it

3),6) is that in the

explodes. The immediate conclusion of such an analysis
domain of attraction of the origin hR = (, asymptotically free theories can
generate masses dynamically (hR=0 is a perturbative UV stable fixed point), while
infra~-red free theories cannot (hR=0 is a perturbative IR stable fixed point).

15)

Our fermion-C boson interaction is certainly IR free . Hence, when looking

for a dynamical mass generatiom in a theory like this, we simultaneocusly assume

Kk
that there is a non-trivial UV stable fixed point h§v6)’ ). Taken literally,

such a fixed point does exist in Abelian theoryl6). But hﬁv discussed here is
rather of a non—perturbative origin. When the physical mass is found by some non-=

perturbative method which can be trusted, hﬁv is reconstructed by using (5).

*) In the Landau gauge, which is known to be renormalization—-group invariant7),

gauge dependence can be ignored.

* %
) In the presence of other interactions, which is our ggse, a necessary cond%—
tion is in fact weaker: IR zero must not be stable”/. However, we assume )
that fermion-C boson dynamics can be treated separately for all momenta.



3. - DYNAMICAL MASS GENERATION

In this section we demonstrate the dynamical mass generation by using the

effective Lagrangian density which follows from (1) for momenta squared <<M? ;

Cooe = &L _ 3¢ g (6)
eff = Fgws M2 Ve ‘

This Lagrangian is again SU(Z)LXU(l)Y gauge invariant, i.e., without bare mass
terms of fermions and gauge bosons. Since we are going to use the non-perturbati-
ve Hartree-Fock-like procedure, a hope is that lack of perturbative renormaliza-

bility will not invalidate qualitative properties of the obtained results.

J

3.a. Fermion masses

For electrically charged fermions, only those terms in JSJCG can yield to
a (foR> condensation (hence to fermion masses) which contain fields of opposite
chiralities:

B = B HDYOOT, e YT~ R WIHERIT, o Yy B -
- 5%4%2'%[‘10"3‘(“9 96,9 Ur ¥ Ug - E%/Ela“é(‘lﬂ%(dk)%o& g dggdg =

= ?1’925"3(%)'5(”19 Y Ve P t -l\%%{"PL)qd'(eR)q;LeR B +
Y)Y, Ug - T, + é’%%tqdwaﬁhda A9, o

For neutrinos which can also have Majorana mass terms, the following Lagran—

gian is allowed as well

W o2 . e = o .2~ o -
= mﬂj(wa VR g,,(UR'DLg D;_ +EF1'2"3("R)UL gduf.. ) ng Pr =
oo - - K NG T
T, 5 - e T
(8

CET. A consistent

In (8), the superscript c abbreviates charge conjugation, ¢c

treatment of the dynamical generation of neutrino masses deserves separate
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treatment. Here we assume for simplicity that the neutrinos acquire Dirac masses
due to the interaction (7). The interaction (8) will not be taken into account

in the following.

Iin rearrangingcﬁaNJL we have used the Flertz transformation to make corres-—

pondence with the standard Higgs mechanism transparent. We may identify

e (Eg 9 ) = ¢©

‘nl{z (ER %7 = q)(d) &
with two Higgs doublets with weak hypercharge y = +1 and

() = ¢

ulia,) = 4 ao

with two other doublets with y = -1.

Fermion mass generation will be demonstrated for the electrom, using the

part OféEJNJL which contains the composite doublet ¢(e):

2 — —_—
éet\ij)[_ = *ﬁ%"ﬂ(lpi_)’%‘(erz) P - Eg¥, =
= 9o [P+ ¢s)e.8(-¢5)v + &(1+4)e. B(I-¢s)€E | , (11)

where

#t ,
ge = Tryz AUY(ER) - (12)

Other parts ofé& ve rise to masses of other fermions.

N1 8%

8) of dealing with interactions like (l1) is a relativistic

The NJL method
generalization of a self-consistent perturbation theory, which can also be
formulated as a Hartree-Fock linearization procedure. We would like to stress
that since in this approach one chooses the form of the physical ground state a
priori at the beginning, the same results are obtained with the exact interaction

o —(h2 2 C_Ca
égint (h* /™ )JaJ as with ée'NJL'

Both interactions lead to the self-comsistency equation for the electron

mass m
e



AZ
dip 4 Ge S 2 /p2 2
(2R g\ J1-4mi/e? d2? = O 3
,1 — gi’%e [zﬂ)q P‘Z__ mé. (”'LZ qmg e (1 )

For a non~trivial solution m, # 0 to exist, 8, has to be positive. It is easy

to find a C hypercharge set (2) such that &; > 0 for all fermion speciles f.

Assuming the HF condensate field <ee> to be different from zero, we get by

linearizing interaction —(h2/M2)J§JGa (or & ) another equivalent formula for

NJL
the electron mass:

me=—2ge<§e>. (14)

At this point we use our assumption of the existence of a non-trivial UV
fixed point hﬁv. With this assumption, fermion-antifermion condensation is a low
momentum phenomenon (U < M) and we may compare our model of dynamical fermion
mass generation with chiral symmetry breaking in QCD.

In QCD one can arguelo)’17)

that (i) the chiral gymmetry breaking depends
entirely on the strength of the quark-antiquark binding potential which is based
on the one-gluon exchange approximation; (ii) the perturbation theory holds in

10)

the region of chiral symmetry breaking. It then follows that quarks in differ-

ent representations R of SU(3) condense at widely separated mass scales bp

colour
due to thelr different colour charges C,(R) (quadratic Casimir operators).

Adapted to our case, this implies that different fermions f condense at very
*
different mass scales e )

- _ 3
<FE> =
*k)
due to their (slightly)} different ¢ hypercharges YerYer . Using Eq. (14), we
see that a very wide fermion mass spectrum Is in principle easily understood (see
the Table). We set khznyyfR = 107! for simplicity and M = 10° GeV. Such a high

mass of the C boson 1s a necessity, since in the case of flavour mixing the

*) The anomalous dimension of Ff /7 is not considered in our qualitative analy-
| q
sis.

* %
) The rate ufﬁxf. depen?s upon the character of a non—trivial zero of the B
function that we assume ).
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current Jf is not flavour~diagonal (see Section 4). Hence, the lowest

condensation mass scale lieg in the range p ~ 100 GeV.

3.b. Nambu-Goldstone bosons

If the electroweak long-range forces are switched off, the dynamical appear-
ance of fermion masses implies a dynamical breakdown of the global SU(Z)LXU(l)Y
symmetry down to U(l)em. Consequently, three massless spinless NG bosons must
appear in the physical spectrum. We find them as massless poles in the fermion-—
antifermion scattering matrices c¢alculated with (11) in the chain approxi-

8)

mation “.

The ve scattering matrix (¢_ component in the canonical Higgs approach) is

given as

9e
= (1+¢5), T (1-¢s) (15)
Mge = (U+85), T=J, (q2) {
in accordance with Fig. 1. We set m, o= to simplify the notation. Here

dt m
J m(ql) = 'i"jeS@E)"f ‘tr(lngf')S(;(P)(HgS)sF (P‘“[) =1- Glz‘ﬁe Io;m (qz)) (16)

o;

where
2
1 S J’l l&mz/&Z 2
1) = .
Io';m{q) 4n? °|2+"“262(4 + /1~ 4m’ 22 z an

In arranging (16), we have used the self-consistency equation (13). With (16) and

{17), the ve scattering matrix acquires the desired form

= (1+¢%35), Io m qz I 25); (18)

of a massless spinless exchange. Constant 1;¥m(0) is naturally interpreted as a
¥

fermion—charged NG boson coupling constant.

- *
The scattering matrix ee (¢, + ¢, component in the canonical Higgs approach)

is evaluated analogously:
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see Fig. 2. Here,

#p . em m
Jmim<q2)=igeg(z%‘ff”‘6ssp ®igsSp - = 1= ge Lmim@, @O

where
NE
J1- 4o f22 Az
1m rn 92 + 92 + 22 : (21)
m
Hence
!
Mge = (85); Im/fn '35' mim (4504 (22)

describes the exchange of a massless pseudoscalar meson. Its coupling to the

electron field is 1_% (0).
m;m

(e)
NJL
mation, we have found one component of the composite NG boson triplet. In gene-

Considering explicitly only the interaction;ﬁ' in the chain approxi-

ral, we have

ING ($)) = ! [muIme,le D)~ melzzm 18>+ lg)" [3)]
{Zmi Lojmg
() — [, L2 17.e3-me L%, ey +[8) = [d) ]

V32 Lo

(23)

y )
4 [varfpi m,, 1D 5>+ Me Iff-ei me €148 &) (;):'

ING(©) )=

\/Z*;mf I, m,
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3.c. Gauge boson masses

In Section 3.b, we have made an intermediate assumption of switching off the
SU(Z)LXU(I)Y gauge interactions. In reality, W, Z and A are present and two of

them contribute also into fermion—antifermion scattering matrices we have consi-

dered in Section 3.b. We know in advance4) what must happen: gauge bosons W and Z

"

eat” bound state NG bosons and become massive. To realize this programme expli-

citly in our model, we have to calculate fermion-gauge boson vertex functions,
11) (e)

, using the interaction O%NJL'

again in the chain approximation

The vertex function F; is (see Fig. 3) given as

. 1 y _
l'\:, =E§.’fi_. “([_g5)+—ﬁ:"2\{2—(l+¥5) 1-d__ (a0 \Jo;m(q)

T Veim
]
= B ¢4+l g (1), L

where

dq Ly of m
Jd = ﬂeS(—zﬁ%{-‘r(l*&)sF(P)g ("KS)SF (p-q)= c[mm %e Io;m (92). (25)

oim

With Fig. & taken into account, the second term in Eq. (24} is understood as an
effective coupling between the charged NG boson and the W boson. This coupling
gives rise to the longitudinal part of the polarization tensor of the W hoson,
singular at q2 = 0 with a ;esidue 1/4 gzmzlo;m(O). Because of current conservati-

. 11
on we know in fact the whole polarization tensor of the W boson. Hencel)’6)’ )

m%.\, = IIE%‘I m?. Io'.m (0) -

The vertex functions P:; and F; are evaluated analogously (see Fig. 5):

2
1 _Jm;m (q?.)

L = 5965 (1-¢s) + 435

o
Ad Jm;m(q) =
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= 198 -g) + 4§35 T Im¢s
[ = - 4g -8~ 39 80485 +hg 5 T Imgs

where

at m m
Jrnim@ = %e (&5t g ST 857 (o) = * g L (@2,

Hence, a residue at the pole of the longitudinal part of the polarization tensor

of neutral vector bosons is given by the matrix

2 |
¥ tm*I,. . ()
%l %;2 4 1
in the (A3,B) basis. Its diagonalization leads to
m?.,_ = ’}*(ﬂi+g‘2)mzlm;m(°)
2 -
mi = O,
where
. ‘ S
2, =-tos©, AL +35inB, B, A =8, Ay T wsBy, By

and 6 is the Weinberg angle, tgew = g'/g.

Considering all components oféﬁnJL, i.e., considering a complete coupling

of NG bosons (23) to the gauge bosons, we arrive at the sum rules

m& = -‘11'%2{2”‘% Io;m_g

mZ = qi(g%g'f)?mi I (26)
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Comments
(i) The coupling constants I“% and I_k, are calculable numbers in an ulti-
O,mf mf,mf
mate theory and are to be compared with a quark-pion coupling constant of a
17)

dynamically broken chiral symmetry in QCD
(i1) Addition of more fermion families without flavour mixing means that the
sumnation index f in (26) runs over all the fermions present in the theory.
Consequently, Eqs. (26) provide an upper bound on the heaviest fermion in
the world. To saturate (26) by just ome fermion f (with I = 1 for

orientation) means m_ » 250 GeV (vacuum expectation value of the Higgs

f
field in the standard approach).
(111) There is no fundamental weak interaction mass scale.

{(iv) The canonical ratioe

mZ, /ml cos® O, = 1 7
is slightly violated. For equal fermlon masses in weak doublets it would be
gatisfied. Dependence of Io;m and Im;m upon fermion masses is rather ::?k.
(v) A parallel with the technicolour idea of gauge boson mass generation is
clear. The difference is that the technicolour force does not feel flavour,
so that bound state technipions [to be compared with (23)] form an exact

pseudoscalar SU(2) doublet and (27) holds.

4. - FLAVOUR MIXING

In this section we show how the mechanism of fermion and gauge boson mass

generation is generalized for the case of more families with fermion mixing taken

into account.

Fermion families 1 in the weak interaction basis are distinguished by €

hypercharges

) ()
Yy = o VT pYy (28)

Four—fermion interactions responsible for generation of charged lepton and Dirac

neutrino masses are
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Be _ - 5 o B o
x:J?L = ™z hPYR [%i8ir - iRVl T SicCir-Sr e; | (29a)
and
@ oK (&, v Ui € + U Ui . Ui Vs 1
O%MJL = W%(%}%jw@ S jR* JR TiL ARTTREE S (29b)

respectively. If we assume that the general nom-diagonal mass term

e

- — P
—_ .=, .- W +H.c. 30
Drpass =~ B -3 Cjr ~ Pirs—ij YR (30)

develops dynamically, it is determined by the self-consistency gap equation

4
4‘}"2 d*p mele) _
m, (€) &g ~ 7z Vac (&) ) ¥ o mI e Vep (€2) = ©O. (31)

An analogous equation holds for ma(v), V(vL) and V(vR). In order to derive

Eq. (31), we have introduced mass elgenstates of charged leptons Ri = (e,p,t) and
of neutrinos n, = (ve,vu,vt):
L, = Ulepe , b, = Ulegleg
32
n =UmI V. , ng = U(vg) Vg . 32
Matrices U diagonalize the mass term (30)
xmass = = [,Lm(e) sz - hLm(D)hR + HJC.) (33)
that is,
vy
mie)= Ule)Z€U%eg) ,mm= LI UT(R) . (34)
Matrices V are defined as follows:
Vie,) = Ue)uw ) UTe,) , Vien= Ule)yle)Ute
e)= D40 L/ r) = ViCg) Yleg R
(353

V)= Umue) Vi) Vv = Vg Ut

Generation of the gauge boson masses will be demonstrated using a formal
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193,20
) ): SU(Z)LXU(I)Y invariance of the Lagrangian implies Ward-Takahashi

approach
identities which must remain valid even in the presence of a symmetry breaking.

This implies that the vertex parts r% and I'? must develop massless poles which

2Y) z
correspond to the "would-be” NG bosons :
of ! _ﬂf e+
& Lav - i oS P, -1
o= Fenfe raglhIie Nl e ] 36)

and analogously for_F;.

The form of the pole term in (36) determines the coupling of fermioms to
20)

these NG bosons

p= (NY2 [(1-¢)5° = (1+¢5)e* ] (37)

The normalization factor will be calculated in the following. The only thing to

be calculated is the loop integral:

d4P + of
J;Mim(e) (q) = %{SW’“" 508 (¢S (p-9) )

where s’ and 3% are propagators of leptons with non-diagonal mass terms (30).

They are easily diagonalized using (34). We regularize the integral (38) by set-

ting & in the nominator of the fermion propagator in (38) t022),23)

6018 M3
ZDJE(PQ) = -———-—-——-Mz_ PQ-

This regularization, besides being convenient, is quite physical. We have repla-
ced the constant. fermion mass term by the corresponding proper fermion self-ener-

gy part which is assumed to appear when the programme of dynamical fermion mass

generation is realized by using Schwinger-Dyson equations3)’19)’20)’23)- When-

ever it is convenient, we use the property m(f) = U(fL)ch+(fR).M. The result is

r &ty N2 (39)

m(v)im(e) () = WZ ?
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where

= + ¥
N —[(M(U)U(DR)U (eL))*".i (m(v)U(uR)UﬂeLﬂ{j Imi’m} mi(e) + e e ]
and
t 4 (M2- mi(e)x + mt () z
I _—_Z—ngﬂm[ L el ]olx
mg ()3 m;(e) T (mi(v)-mj(e))x, + m (e) (40)

The analogous calculation is easily repeated also for F;.

a
Having calculated Ji )(q) and Jm(f);m(f)(q)’ we add analogous contrl

(v)im(e
butions from quark mass terms Es, L~ and we are ready to write down the final sum

rules for mw and mz:

+ ¥
& Z{[(m(p)u(ug)u (eg)t‘i (m(v)U(vR)U“(e,_))tj T e U 1+

¥
[ima Um0 UQUHAN, T, iy *+ 4 d]f

. *
m% = 4%+ 3'2)Z{KM(“)U(VR)U+("L))§ (m(l’)Uf”R)U“'(DL)){j Im‘:(p)ima.(u) U e]+

%*
+[('"(“)U(uR)U+(“L))£j (mw) U(UR)U-'-(UL)@ Imi(u)';mj(u) +uod ]} . UD

When the Lagranglan (1) 1s rewritten In terms of mass eigenstates, both for
leptons and quarks, we see that: (i) the electromagnetic current and the weak
neutral current remain intact; (1i) charged weak currents, leptonic and quark,
contain unitary Kobayashi-Maskawa mixing matrices U(vL)U+(eL) and U(uL)U+(dL),

regpectively; (iii1) the neutral current Jg becomes
(S n T
Jd = -Z—[n,_\/(vggdnl_ + R Vg, e + L VIR L + ] , (42)

where mixing matrices V are defined in (35). They are neither diagonal nor uni-
tary. This property imposes a severe constraint on M, which we take as
M = 1000 TeVZA).
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5. = CONCLUSIONS

General principles of dynamically broken gauge symmetries are very attrac-
tive and provide us with a hope of reducing a number of free parameters of the
standard model. If the standard GWS model without Higgs sector were capable of
producing both fermion and gauge boson masses dynamically, this would definitely

be the most economic possibility. Unfortunately, this is not the case21)’25).

We suggest a minimal extension of the Higgsless GWS model defined by (1),
and heuristically argue that it may be understood as a microscopic basis under-

lying the phenomenclogical Higgs approach.

1. = The model is operationally well defined. Electroweak interactions remain
standard. Fermion masses, mixing angles and gauge boson masses are generated. The
canonical ratio mé/m%coszew = 1 is only slightly modified. Hence, good features

of the standard model are reproduced.

2. - Fermion masses, mixing angles and gauge boson masses are calculable (in
principle). There is only one free parameter h. Obviously, we count only those
which undergo renormalization and which are theoretically undeterminable. C

hypercharges can easily be quantized.

3. — There are some new features of the model (1) not shared by the standard
model:

(1) There should exist heavy spinless bosons, both charged and neutral, with
calculable couplings to fermions. Their existence is guaranteed by the fact
that only one linear combination (23) (for a given charge) of the many-
component composite Higgs doublets 1s absorbed by a gauge fileld as a
"would~-be" NG boson. Orthogonal combinations to those in (23) must remain
in the physical spectrum. Being in a sense partners of W and Z bosons, they
might have also masses*) comparable to Lo and m, . We point out that the

existence of neutral heavy spinless bosons is phenomenologically postulated

*) This estimate 1s consistent with a lowest condensation scale p = 100 GeV (see
the Table).
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(1ii)

(iv)

4. -

step
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26)

at present in order to explain peculiar cecllider events

27)

. When flavour
mixing is taken into account, one has to assure that the effective Yukawa
couplings of neutral heavy spinless bosons are not flavour—changing. Since
quarks of different charges get masses from two different many-component
composite doublets, it seems that the general criterion of Glashow and

8)

satigfied here.

Weinbergz for diagonal fermion-neutral Higgs boson couplings is also

There is no fundamental weak interaction mass scale. The value of (\/ZGF)J5
= 250 GeV is only a remnant of heavy fermions.

There should exist rare processes mediated by a C boson exchange. We re-
strict their strength to be of the same order as the same processes at one
loop with W and Z exchanges.

Mixing angles of the right-handed fermions are observable. See Eqs. (41)

and (42).

At every stage of our calculations we are able to point out a corresponding

in the standard approach. This indicates that a formal derivation of the

Higgs Lagranglan from a microscopic one, Eg. (1), can be done in the spirit of

Gorkov's derivation

nature of the solutions of field theory7

29) of the Ginzburg-Landau Lagrangian from BCS.

A renormalization-group analysis makes d1mportant predictions about the

)

. We are trying at present to repeat the

programme described here with the renormalization group Iimplemented into the

Schwinger-Dyson equations for the fermion propagator and the propagator of the

3) -

field C°7.
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B (GeV) 100 103 10 10°

n 100 ev | 107! Mev | 107! Gev | 100 Gev

Table: Typical range of fermion masses due to different

condensation mass scales.
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FIGURE CAPTIONS

Fig. 1 Chain of graphs which gives rise to the charged NG boson.
Fig. 2 Chain of graphs which gives rise to the neutral NG boson.
Fig. 3 Chain of graphs for the W boson vertex function.

Fig. 4 Effective coupling of the charged NG boson with fermions and with the W

boson.

Fig. 5 Effective couplings of the neutral NG boson with fermions and with

neutral gauge bosons A% and B.
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