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Introduction

Consider a chair.

[S. Weinberg [67], in Ch. 19

“Spontaneously Broken

Global Symmetries”]

The standard model of elementary particle physics is a caesura of unprecedented
depth and success in the human ambition to understand the schemes behind the ob-
servations of nature. The developments through the 20th century are, to a good share,
based on the sound scientific ground for the natural sciences that quantum physics has
created. Its inherent indeterminism may reflect the risks and the chances of further
deepening this knowlegde, in terms of technological possibilities, the free will of the
humans employing them, but also the openness of future in general.

The present work describes how the frontier of knowledge is pushed in the field of
strong interactions. These forces govern the structure of the nuclei, forming the “back-
bone” of the atoms and molecules usual matter is made of. The knowledge about strong
interactions is in an entangled state: While the gross features are understood and used
in many earthy applications as well as explaining a vast number of astrophysical obser-
vations, both the theoretical and the experimental consolidation of even basic features
are still a matter of ongoing research. The standard model is complete in the sense that
it provides the basic building blocks for strongly interacting matter - quarks and gluons -
and a description of the color force between them in quantum chromodynamics (QCD).
It is, however, still a research field given that neither a series expansion in the coupling
parameter provides a systematic approach, as it is established and very successful in
the case of quantum electrodynamics (QED), nor do brute-force numerical integration
methods allow an exact handling of chromodynamics.
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A promising approach has been pioneered by S. Weinberg [66] and worked out by
J. Gasser and H. Leutwyler [32–34]. The guiding principle is to recognize the symme-
tries of the QCD Lagrangian, and to exploit the related patterns in a systematic way,
including symmetry-breaking. While it is general knowledge how e.g. the translational
symmetry of space gives rise to momentum conservation, the symmetry of interest here
is more complex and even not exact. Its origin is the smallness of the quark masses com-
pared to the mass of the observed particles made up by quarks and gluons. This leads
to a decoupling of left- and right-handed quarks inside the bound systems, and their in-
dependent transformation properties under flavour-space rotations imposes symmetry
constraints on the observed particle spectrum and the corresponding dynamics. This
mechanism has been explored by J. Goldstone [35] and worked out by C. G. Callan,
S. Coleman et al. [21,23]. Its basic consequence is that spontaneous breaking of the chi-
ral symmetry generates eight massless pseudoscalar meson states, the so-called Gold-
stone bosons. Explicit breaking of the chiral symmetry by non-zero quark masses - so
to speak the back of the chair - leads to small masses of the Goldstone bosons, and con-
sequently the lightest J P = 0− meson octet is identified with these Goldstone bosons
of spontaneous chiral symmetry breaking. Guided by the idea to describe their inter-
actions from low energies on, the corresponding effective Lagrangian is organized as
the derivative (small momenta) expansion in chiral perturbation theory (ChPT). The
basic input parameters of ChPT are the masses and the decay constants of the Gold-
stone bosons. For the description of higher-order corrections, also a finite number of
low-energy constants appears, which are a priori unknown and have to be adjusted to
some experimental information. The theory acquires predictive power on this higher
level of precision by linking various physical processes through the constraints of chiral
symmetry.

The focus of the present work is on the properties of the lightest strongly-interacting
particle, the pion. Its mass and lifetime are accurately known quantities, especially for
the charged pion. The most longstanding riddle in establishing ChPT as correct ap-
proach for pionic interactions at low energies is posed by the pion polarisabilities. These
quantities are determined, within ChPT, by low-energy constants and loop corrections
with values that are fixed by other experiments on a high level of precision. The result
is a firm prediction, e.g. for the electric polarisability αC hPT

π = 2.9 · 10−4 fm3. Yet, the ex-
periments done so far in the quest for measuring the pion polarisabilities directly1 have
reported a value more than twice as large [4, 11].

The investigation of ultra-peripheral scattering processes, at tiny momentum trans-

1Experiments on the γγ→π+π− channel are excepted, because they involve a kinematic extrapolation
that precludes to speak of a direct measurement [58].
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fers where the electromagnetic interaction becomes dominant, i.e. the Primakoff effect
discussed in detail in the following chapters, is particularily well suited to determine the
polarisabilities with high accuracy. However, the pioneering experiment at Serpukhov
in the early 1980’s [11] could not reach a sufficiently high statistics, especially concern-
ing important studies of systematic effects that can obscure the extraction of the pion
polarisability. In 1996, it was proposed by the newly formed COMPASS collaboration
(COmmon Muon and Proton Apparatus for Structure and Spectroscopy) to repeat the
measurement at higher beam energy and with much higher statistics at the Super Pro-
ton Synchrotron (SPS) of the European Organization for Nuclear Research (CERN). This
initiative was pushed by the Russian collaborators from Dubna and the German collab-
orators from Munich. At this higher beam energy, the outgoing particles are strongly
boosted in forward direction, and in particular for the Primakoff kinematics their scat-
tering angles are in the range of a few milliradians only, requiring the measurement of
the particle trajectories at the limit of the technically and physically achievable resolu-
tion in the range of microradians.

In the author’s group at the chair of Prof. Stephan Paul (TU München), the measure-
ment was prepared from the year 2001 on by Monte Carlo simulations of the setup [48],
and by the development and construction of the required high-precision silicon mi-
crostrip tracking detectors [12, 25, 30, 36, 61, 65, 68] for the relevant small angles. The
usage of the information of these detectors has been optimized in several steps [49, 72],
also extending the concept of detector alignment, which is usually done on a weekly ba-
sis, to the level of a few hours [26]. In November 2004, a first pilot run for the Primakoff
measurement at COMPASS was done. Extensive analysis efforts were taken [26, 38], but
finally it had to be concluded that especially the electromagnetic calorimetry, playing
an essential role in determining the reactions of interest, was in a too preliminary state
during the 2004 measurement for producing a physics result.

The apparatus was vastly improved in the subsequent time, especially concerning
the calorimetry and its stability monitoring. The continuous liquid-nitrogen cooling of
the silicon detectors to 200 Kelvin, allowing for a ∼ 20% better spatial resolution, was
also achieved [14, 15, 37]. The stable operation was especially challenging due to the
specific requirement that the detectors are placed inside the acceptance of the larger-
area detectors, and consequently shall not feature a massive cold-head geometry being
the usual cryogenic approach. Some experimental artifices are due to the author, in-
cluding a small phase separator installed in the vincinity of the detectors and ensuring
that the thin capillary to the detector module is continuously supplied with purely liq-
uid nitrogen.

In 2009, it was decided to take a two-week Primakoff run with a 190 GeV pion beam.
Indeed, the data quality turned out to be much higher, but with the higher precision
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also a long list of shortcomings became apparent. Those were mostly on the level of
an insufficient Monte Carlo description of the apparatus, and they could effectively be
handled by refining this description. Examplary, the efficiency of the tracking detectors
may be mentioned here. It was previously believed – actually a dangerous word in sci-
entific context – that the redundancy of the more than 200 tracking detector planes is so
high, that even larger uncertainties in their description do not affect the overall tracking
effiency in a relevant manner. It was realized, however, that this was not the case, as too
many detectors were affected. The silicon microstrip detectors were actually found to
belong to the few correctly described detector groups. Repairing the insufficiencies set-
tled the previously observed inconsistencies, that had hindered progress in the analysis
for several months.

Some of the author’s contributions to the data analysis concerning particle identifi-
cation and beam properties are contained in the COMPASS notes reproduced in App. C.

As a result of all these efforts [53] systematic effects of the experiment are now un-
derstood, presumably on the level of the theoretical uncertainty. However, the lengthy
procedure of preparing and releasing the result from the 2009 data set is still ongoing,
hence an official COMPASS result can not be presented yet here. Especially because the
result appears to deviate significantly from the earlier experimental findings and rather
confirms the theoretical ChPT expectation, any possible criticism is to be anticipated
and has to be seriously considered.

Along with preparing the two-week measurement for November 2009, the plan for
a high-statistics Primakoff experiment was worked out by the author of the present
work and included in the proposal by the COMPASS collaboration for a second phase
COMPASS-II (the relevant chapter 4 is reproduced in the appendix). The program was
approved by the SPS Committee in June 2011, and started in 2012 with the currently on-
going Primakoff running. A new development for this beam time, following an idea of
the author, is a logics for the digital trigger that allows to select single-cluster events [41],
extending the photon energy range in pion bremsstrahlung from previously 60 GeV
down to 30 GeV (at a pion beam energy of 190 GeV).

The pion polarisability is determined from the precise measurement of the cross
section of pion bremsstrahlung in forward kinematics, i.e. πZ → Zπγ. This requires a
number of corrections from the theoretical side, such as the QED radiative corrections.
Regarding scalar QED as needed for pion interactions, the situation was found in a sci-
entifically unsatisfactory state when this work was started. At the time of the Serpukhov
experiment, the corrections had been calculated and published by A. Akhundov et al.
only for the specific conditions of that experiment [5–7]. They were thus not available
in a general form that would have made them applicable also under the changed con-
ditions of other experiments, as it had been given long before for the electron and spin-



CONTENTS 11

1
2

-Compton scattering case [18, 51]. Consequently, in collaboration with N. Kaiser (TU
München), the radiative corrections were worked out again and published in analytical
form [45, 46]. This work confirmed the numercial values employed for the Serpukhov
experiment [5]. Along with the implementation of the formulæ [46] for the analysis of
the COMPASS data, as explained in detail in chapter 2 and in Sec. A.5, the present au-
thor succeeded in further simplifying the involved analytic expressions, also getting rid
of the time-consuming numerical integrations given in [45]. This leads to a considerable
simplification of the formalism, hence a reduction in computing time up to a factor 100,
an aspect which might be of minor importance for the purely theoretical point of view,
but which is decisive for the feasibility or at least the accuracy achieved in the required
Monte Carlo simulations. In fact, much work has been invested in the present frame-
work to bridge the gap from the basic theoretical understanding and description of the
underlying process to the correct application for the actual experimental situation. The
present work may partly look theory-overloaded, it nevertheless provides the complete
documentation of the formalism as used in the analysis package for the COMPASS Pri-
makoff program.

As a side remark, it is noted that the present author had worked out and imple-
mented earlier, in cooperation with M. Vanderhaeghen and colleagues [29,63], the QED
radiative corrections to virtual Compton scattering off the proton pγ∗ → pγ. Actually
this measurement has, complementary to the purely-mesonic case discussed in the
present work, confirmed the ChPT prediction for the generalized proton polarisabili-
ties [60]. The respective radiative corrections program code is still in use, e.g. for the
high-statistics measurement of the proton form factor [13].

Further corrections concern the wave distortion of the scattered charged particle
in the Coulomb field of a nucleus – corresponding to multiple photon exchange – and
the screening of the nuclear Coulomb field by the atomic electrons. These Coulomb
distortions have been treated for the present case of interest by G. Fäldt et al. [27] using
the Glauber approach. It is presented with the inclusion of corrections and refinements
by the author for a proper application in Sec. 2.4.2 of this work. The screening effect
through the electrons can be treated on the same level as a modification of the charge
form factor.

Also, for a quantitatively correct determination of the pion polarisabilities from the
data, the known contribution to the cross-section from chiral pion loops [20, 31] has to
be taken into account. It is implemented in the Monte Carlo generator written by the
author for the COMPASS data analysis.

Realizing during the year 2007 that the detection of photons, and consequently of
neutral pions π0→ γγ, poses severe problems in the COMPASS 2004 data set, triggered
the investigation of channels with charged particles in the final state that are related
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to the same physics of interest. In collaboration with N. Kaiser it was found that the
process π−γ→ π−π−π+ was one of the low-energy π−γ-induced reactions studied sys-
tematically in [44], that is accessible in the 2004 data. Together with D. Ryabchikov
(IHEP Protvino) and S. Grabmüller (TU München) the reaction was indeed identified
in analyzing a data sample of about 1 million preselected events. The separation from
background reactions was only possible by employing a specially adapted partial wave
analysis technique, that was published in 2011 in a letter [2] (reproduced in the ap-
pendix). The measured cross-section confirmed the tree-level ChPT prediction given
in [44], which is not unexpected since ChPT is well established for theππ scattering am-
plitude that enters in the considered energy range < 5mπ. Almost as important as this
result can be seen the fact that the analysis employs successfully the Primakoff method
as discussed in the following chapters, thus reconfirming its applicability. This is not to
be taken as granted, since the formalism has still not often been exploited experimen-
tally for strongly interacting particles. Therefore, establishing the experimental meth-
ods is also of high value for other envisaged Primakoff channels such as single π0 pro-
duction, governed at low energies by the chiral anomaly F3π, i.e. the coupling of three
pions to a photon.

The analysis of the 2004 data still has the potential of being pushed further: In the
higher-mass region, the decay width of resonances R− into the π−γ final state can be
studied through the time-inverted process π−γ→ R−, and promising signals have been
observed for the a 2(1260) and π2(1670) resonances. While the radiative coupling of the
a 2 has already been measured [52] and can just be checked with the COMPASS data,
for the π2 only now a first value gets in reach. A radiative coupling of the highly de-
bated exotic π1(1600) state has also been searched for, but up to now not found, which
is surprising in the light that its coupling to πρ is reported to be observed [8].

In addition, the very precise handling of the described corrections opens new pos-
sibilities for investigating the strong interaction. For example, the Coulomb-nuclear
interference has been shown in the data analysis of the πγ coupling to resonances in
unprecedented detail: The interference term can be used to extract the relative phase of
these two exchange mechanisms. This can be used to get a better understanding of the
Pomeron as the effective exchange particle of the strong (absorptive) potential.

So, the investigations initialized within this work were able to broaden the research
field, on top of the ambition to solve the riddle around the pion polarisability.

The present text has been started with the goal of being educational and inviting to
interested newcomers to the field. However, with the rapid and still ongoing develop-
ments – many of the derived formulæ are not or not easily found in the literature, much
of the analysis is very fresh – this standard could not be kept all the way through, and
leaves it in a somewhat heterogenous state.
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Some of the author’s work pursued aside the presented topics are neither included
in the text nor are the publications reproduced in the appendix. One concerns the non-
observation of “pentaquarks” at COMPASS [25], for which the author has worked out
the draft and chaired the drafting committee for the publication [3]. Another is the work
in collaboration with Suh-Urk Chung (BNL/TU München) on covariant helicity ampli-
tudes published in [22], which is the base for future high-precision partial wave analyses
that aim at including relativistic effects in the decay of meson resonances. This omission
was done to keep the present document in a reasonable volume.





Chapter 1

Primakoff Reactions – Overview

Quand tu veux construire un bateau, ne commence pas
par rassembler du bois, couper des planches et distribuer du travail,

mais réveille au sein des hommes le désir de la mer grande et large.

[attributed to Antoine de Saint-Exupéry]

The treatment of Primakoff reactions, which shall be explained and motivated in
the following, is intrinsically a formal and numerical challenge: the relevant kinematic
quantities, from the required beam momenta p ∼ 102 GeV/c to the typically appear-
ing momentum transfers to the target nuclei q ∼ 10−4 GeV/c introduce scales differing
by six orders of magnitude, and the path to the desired physics information is prone to
oversimplification and inadvertence. Yet, the key of the experimental technique is read-
ily descibed: The high electromagnetic field in the vicinity of nuclei is used as a source of
photons γ∗, especially when the collision of e.g. unstable particles with photons can not
be realized in another more direct way. Such reactions, realizing particle-photon colli-
sions with the photon provided by the Coulomb field of a nucleus, are named Primakoff
reactions. This works even for particles that may also interact via the strong interaction
with the nucleus, since the momentum transfer introduces an ordering scheme that
separates the different interaction mechanisms, as will become clear along Chap. 2.

Primakoff reactions are interpreted with sound theoretical justification as effectively
two-body processes in the case when in addition to the scattered incoming particle and
the recoiling nucleus only one additional particle is produced (e.g. πγ∗ → πγ). The
incoming quasi-real photon is provided by the electromagnetic field of the nucleus,
N →N ′γ∗. It is indispensable for their quantitative understanding to calculate the exact

15



16 CHAPTER 1. PRIMAKOFF REACTIONS – OVERVIEW

kinematics. The major part of the cross section is focused in a tiny momentum trans-
fer region on the scale qpeak ∼ 10−4 GeV/c . The cross section features heavy curvature, it
vanishes for q → 0, rises rapidly to qpeak and then falls off approximately∝q−2, cf. Fig. 1.1.

Apart from the experimental challenge to identify such small momentum transfers,
the calculations must be carried out with great care, both on the algebraic and on the
numerical side. Often the seemingly leading terms vanish or one faces series expan-
sions with very slow convergence, and even when calculating numerically with “double-
precision” (∼10−15), round-off effects become sizeable and at times require specific re-
casting of the formulae.

Such small momentum transfers appear in ultra-peripheral collisions, when in po-
sition space the distance of the projectile and the target is large. For the scattering of
a charged particle off a nucleus at a distance a few times larger than the radius of the
nucleus, the strong interaction potential has practically vanished, however the electric
field is still large. For example, in the vicinity of a lead (Z=82) nucleus at 20 fm distance
from its center, the electric field strength is

E (r = 20 fm ) =
1

4πε0

Z e

r 2
= 300

kV

fm
(1.1)

The polarisability of a composed system is the measure for the amount of energy,
stored in inner reconfiguration, when the system is exposed to an outer field. In case
of an electric field, this response is expressed in terms of the induced electric dipole
moment

~p =αch
~E (1.2)

where αch is the electric polarisability. Its index refers to the picture of a pair of charges
torn apart by ~E , the SI unit is [C·m2/V]. With a vacuum permittivity factor 106/4πε0 mul-
tiplied, the unit becomes [cm3]. For hadrons with a diameter in the range of a femtome-
ter, the polarisabilities are rather expressed in units of [10−4 fm3], e.g. for the proton the
electric polarisability is precisely measured [55] to be αp = 12.0 · 10−4 fm3. For the pion,
the polarisability απ is expected from ChPT to be around 3.0 ·10−4 fm3. Under the influ-
ence of a field as given in 1.1, this corresponds to a tiny elementary-charge separation
of about 0.5·10−4 fm. Assuming fractional charges or more complicated charge distribu-
tions, this value certainly varies, but it is obvious that the hadrons appear as extremely
rigid objects when exposed to experimentally realizable fields.

Turning to the quantum mechanical description, the electromagnetic interaction
of the pion with the Coulomb field of a nucleus is described to first order by the ex-
change of one virtual photon. In the ultra-peripheral collisions of interest here, the four-
momentum of the exchanged photon q 2 → 0 and the photons are quasi-real. Since in
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this limit the nucleus is elastically recoiling and takes only a vanishing amount of energy
Er =

q 2

2M
, the three-momentum transfer1 ~q 2 is practically the same as q 2. According to

QED, the masslessness of the free photon implies a propagator behaviour ∼ 1/q 2 when
the photon appears as exchange particle. The consequence is a strong increase of the
cross section for photon-exchange interactions at small momentum transfer.

This was first explored and used in the 1930’s to calculate QED processes, specifically
bremsstrahlung as discussed in detail in the section 2.2. An important observation, pub-
lished by von Weizsäcker and Williams in 1934 [64,69], is that the cross sections for very
small momentum transfer decouple into a real-photon cross section on the one hand,
and a density of almost real, small-momentum photons on the other hand. Using this
approximation for cross sections is called the equivalent photons method. The equiva-
lent photon density increases with the charge number of the scatterer squared Z 2, such
that the cross sections become large for heavy nuclei.

It is due to Henry Primakoff to propose in the year 1951 [59] the same mechanism
for investigating processes of strongly interacting particles with real photons. It was the
first method that allowed to measure the lifetime of the neutral pion, by inverting the
decay π0→ γγ to induce its production by a real photon beam on a nuclear target

γ[Beam]+γ[Coulomb field of nucleus Z ]→π
0→ γ+γ (1.3)

It is noticed here again that seen from the nucleus – internally a complex strongly in-
teracting system – the interaction is purely electromagnetic: The nucleus serves as a
high-density source of (quasi-)real photons. The possibility of strong interaction is sup-
pressed at larger impact parameters, where only the long-range Coulomb potential re-
mains. Fig. 1.1 shows the sharply peaked calculated spectrum of q , compared to the
measured one (actually measured with a muon beam). It is obvious that the underly-
ing theoretical as well as the resolution-limiting effects of the apparatus must be under-
stood extremely well, when the q-integrated measured cross section shall be interpreted
in terms of the theoretical cross section.

The same principle can be applied to investigate the interaction of photons with
other strongly interacting particles, as hyperons and the charged pions, worked out
1961 in a paper of Pomeranchuk and Shmuskewich [57]. Using high-energetic beams
allows to observe scattering reactions also with short-lived particles, profiting from the
relativistic increase of the decay length. The Primakoff reactions are observed with ex-
tremely small momentum transfer just above their kinematical threshold, which is de-
scribed in detail in this work.

1The nomenclature used in the present work is systematically introduced in Sec. 2.1. In fact, due to the
mentioned correspondence, q is (also) used as modulus of the three-momentum transfer
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Figure 1.1: Distribution of momentum transfer q in the reaction µNi → Niµγ for the
kinematic cuts presented in Ch. 3. The red histogram displays the true cross-section
distribution as discussed in Sec. 2.2, the blue histogram is obtained from the analysis of
the COMPASS data set taken in the year 2009. The achieved resolution in the range of
10 MeV/c is about a factor of 10 larger than the true peak structure, and allows a kine-
matic cut in the range 30–40 MeV/c , as indicated by the dashed line. From there on, sys-
tematic shifts due to bin migration in q are not relevant anymore. The depicted distri-
bution is from the control measurements taken with a muon beam instead of pions. For
the reaction of interest, πNi→ Niπγ, the q spectrum features additional structure due
to the non-electromagnetic contribution from strong interaction, which is discussed
along with the data analysis, cf. Fig.3.6. Concerning the Primakoff peak width, the pions
feature the same values as the muons.
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When charged pions scatter off the quasi-real photons surrounding the target nuclei,
possible final states to observe are, indicating the addressed physics

π±+γ(∗)→











π±+γ Compton reaction, pion polarisabilities
π±+π0 single pion production, chiral anomaly
π±+π0+π0 double pion production, chiral tree & loop
π±+π++π− contributions, resonances, search for exotics

(1.4)

a list which can obviously be continued to more and heavier particles produced, ap-
pearing at higher threshold energies.

These interactions are distinguished in the experiment by forward kinematics of the
outgoing particles, and the strong correlation of the outgoing particle momenta pre-
scribed by the small momentum transfer to the nucleus.

The first reaction given in 1.4 is treated in great detail in Ch. 2. COMPASS has taken
data for this reaction in order to determine the pion polarisability. The analysis of these
data is described in Ch. 3. The other reactions are addressed shortly in Ch. 4.

More Primakoff reactions accessible at the COMPASS experiment include channels
with one or more η particles in the final state and a similar group of reactions as 1.4
induced by kaons, which make up an ∼2.5% fraction of the negative hadron beam at
190 GeV. Their analysis is planned in the future, for which especially the ongoing data
taking in 2012 is very promising.
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Chapter 2

Pion Polarisability
from the Primakoff Compton Reaction

This chapter starts with a complete discussion of the small-momentum transfer kine-
matics in the Primakoff region, from threshold to the domain where competing pro-
cesses become important. From this will follow the motivation of the experimental
technique to be employed.

Special weight is attributed to the pecularities of Primakoff measurements at the
COMPASS experiment using the secondary pion beam of the CERN Super Proton Syn-
chrotron (SPS). The pion beam energy can be chosen around 200 GeV, when the spec-
trometer covers fully the interesting angular (forward) region for the outgoing particles,
and the resolution of the involved detectors is sufficiently high to kinematically identify
the Primakoff events. This will be discussed in the coarse of this chapter, as e.g. the ef-
fect of the minimum transverse momentum of the scattered pion, necessary in order to
resolve the interaction point in the target.

Experimentally, the Primakoff Compton events are inevitably admixed with events
from the Primakoff process πγ→ππ0, which are of physical interest themselves, as will
be discussed in Chapter 4. This experimental overlap occurs either when the π0 de-
cays so asymmetrically, that one photon carries negligible energy and is not detected,
or when the π0 energy is so high that the decay photons “melt” into a single calorimeter
cluster. This overlap advises an analysis of the data in terms of the two Primakoff re-
actions at the same time, featuring the pion polarisability in the former and the chiral
anomaly in the latter.

21
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2.1 Kinematics of the Primakoff Compton Reaction

2.1.1 The Primakoff Compton Reaction

The reaction to be identified experimentally is exclusive single photon production in
the scattering of a pion off a nucleus with mass number A and charge Z ,

π AZ −→π′ AZ ′ γ (2.1)

Measured (or known) quantities are the energy-momentum vectors of the beam pion
p µ = (E , ~p ), of the scattered pion p µ

π = (Eπ, ~pπ) and of the photon p µ
γ = (Eγ, ~pγ). The

kinematics of the recoiling nucleus is described the momentum transfer vector q µ =
(−Er , ~q ), being by definition oriented opposite to the recoil, such that the process 2.1
can be treated effectively as the reaction

π γ∗ → π′ γ
(E , ~p ) (−Er , ~q ) (Eπ, ~pπ) (Eγ, ~pγ)

(2.2)

with γ∗ an incoming particle, namely the virtual photon from the Coulomb field of the
nucleus. Furthermore, in the following1 the notation p = |~p |, pπ = | ~pπ|, pγ = Eγ =
| ~pγ| is used. The exclusive reaction must be separated from competing (non-exclusive)
processes with the same observed particles in the final state, as discussed in detail in
Sec. 2.4.

The relative orientation of the particle momenta (cf. Fig. 2.1) is described by the
scattering angles θπ, θγ, and the angle between the scattered particles θπγ. The kine-
matics of a specific final state is completely determined by a set of four variables, e.g.
(Eγ,θγ,θπ,θπγ). Since the pion has spin zero and only the interaction with the rotation-
ally symmetric Coulomb field of the nucleus is treated, the kinematics is rotationally
invariant around the beam axis, and the respective angle φ needs not be further con-
sidered.

Energy conservation reads

E = Eπ+Eγ+Er (2.3)

Er is the energy transferred to the nucleus, assumed to be negligibly small, Er → 0.
In fact, the recoil energy is negligible due to the smallness of the momentum transfer
compared to the mass of the nucleus (for the justification of the neglect of nuclear ex-
citations, s. sec. B.5). Hence, the simple relation E = Eπ + Eγ holds for the energies

1Units with ħh = c = 1 are used.
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Figure 2.1: Nomenclature for Primakoff Compton kinematics. The incoming beam mo-
mentum p is “split” by the interaction with the nucleus into the scattered pion with mo-
mentum pπ and the produced photon with momentum pγ. The momentum transfered
to the recoiling nucleus is ~r =−~q . Compared to typical kinematics in the COMPASS ex-
periment, in the figure the angles of the scattered pion and the real photon are enlarged
by a factor of about 10 and the length of q by a factor 100. The right graph shows the
balance of the momentum components transverse to the incoming beam direction.
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of the observed particles. For their momenta, on the other hand, the non-vanishing
3-momentum transfer to the nucleus,

~q = ~pπ+ ~pγ− ~p (2.4)

is of particular importance, since this is the quantity which allows for a separation of the
Primakoff reaction e.g. from strong-interaction contributions. The sign of ~q is chosen
such that ~q is the momentum transfer of the incoming (virtual) photon colliding with
the beam pion (cf. Fig. 2.1: The longitudinal component q‖ points opposite to the beam
momentum), and, formally, Eq = q 0 < 0. However, the energy component of the four-
vector qµ is assumed to vanish Eq =−Er → 0 in the laboratory system (see above), and
q > 0 can (and will) be used in the following for the modulus of the 4- and 3-momentum
equivalently.

2.1.2 Minimal momentum transfer qmin

Four-momentum conservation in the process (2.1) implies a lower treshold for q . The
minimum momentum transfer qmin for a given Eγ is an important kinematical quan-
tity, ruling the q 2 dependence of the differential Primakoff cross section as outlined in
Sec. 2.2. This minimum value occurs in exact longitudinal kinematics ~p ‖ ~pπ ‖ ~pγ and is
given, to leading order in the pion mass (for higher-order terms see Sec. B.1), by

qmin = qmin(Eγ)
.=

m 2
π ·Eγ

2E (E −Eγ)
, qmin(s )

.=
s −m 2

π

2p
(2.5)

where s is the squared center-of-momentum energy in the pion-photon subsystem.
While the two expressions (necessarily, they are both correct) coincide for any kine-

matics with q = qmin, the right-hand sides differ when evaluated for an arbitrary kine-
matics where q > qmin. The reason is that, when varying q → qmin, two different “paths”
through the phase space are to be considered.

The first expression qmin(Eγ) refers to the limiting kinematics with the same real pho-
ton energy Eγ, and only the laboratory angles are aligned to θγ = θπ = θπγ = 0. The exact
expression, from which qmin(Eγ) is derived for fixed-Eγ kinematics, reads

qmin(Eγ) = p −pπ−pγ (2.6)

= (Eπ−pπ)− (E −p )

and higher terms in m 2
π, beyond the leading term given in Eq. 2.5, are obtained by ex-

panding (E − p ) and (Eπ − pπ) according to (A.1). – The use of qmin(Eγ) is appropriate



2.1. KINEMATICS 25

e.g. in the analysis of experimental data, when the q 2 distribution is examined for a sin-
gle bin in Eγ. If not otherwise stated, in the following qmin refers to this first expression
qmin(Eγ), as it often occurs in this form also in the formulæ relating kinematical quanti-
ties, as e.g. in Eqs. 2.8–2.16.

The second expression qmin(s ) in Eq. 2.5 links kinematics with including fixed-s as
introduced in Sec. 2.1.4, while varying q → qmin(s ). This may be very different from
keeping Eγ constant as can be understood with the relations derived in the following
section (see Eq. 2.15): When s is kept constant, the limiting kinematics with θπγ = 0 is
reached by increasing Eγ to large values, typically close to the beam energy E (unless
very small s are considered), and consequently qmin(s )�qmin. – Further, it is noted that
qmin(s ) in Eq. 2.5 is the approximation of the exact relation

qmin(s ) =
s −m 2

π

2p
+

q 2
min(s )
2p

(2.7)

so the exact qmin(s ) can be found either by solving this quadratic equation (resulting in
the subtraction of two almost equal numbers of the order of p ), or by iterating Eq. 2.7,
starting with qmin = 0. The latter is numerically favorable, since q 2

min(s ) is tiny even com-
pared to s −m 2

π in all kinematics of interest here, and convergence to double precision
is achieved in a single step.

2.1.3 Reconstruction of the momentum transfer

The four-momentum transfer is reconstructed by balancing the observed four-vectors,
q µ = p µ

π+p µ
γ −p µ. Here, the constraint q 0 = 0 helps to partly compensate for the limited

precision of the detectors. Since the dominant uncertainty in the direct calculation of
q µ stems from the (calorimetric) photon energy measurement, a full constrained fit of
the kinematics can be simplified to an appropriate rescaling of the magnitude of the
photon momentum vector. Since the directions of all particles, including the outgoing
photon, determine in their sum the transverse momentum balance, and this is the key
signature of the Primakoff reaction, they must be measured as precisely as possible.

Since usually there is a strong compensation of the large momenta of the observed
particles, yielding the tiny remainder q , it is favorable to use the formal relation ensuring
the correct limiting behaviour. For an event with measured quantities (Eγ,θγ,θπ,θπγ), its
modulus is given by

q 2 =q 2
min+4p pγ sin2 θγ

2
+4p pπ sin2 θπ

2
−4pπpγ sin2 θπγ

2
(2.8)
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as it is shown below, cf. Eq. 2.17. It is obvious that using this formula for the collinear
kinematics θγ = θπ = 0, the momentum transfer q takes on the correct value qmin. This
is numerically problematic if subtracting four-vectors of length ∼100 GeV/c to find q
values in the range of 10−3 GeV/c . For the considerations in the following sections, the
splitting of ~q in components parallel and transverse to the incoming pion direction is
needed, given by (defining q‖ as a positive quantity; for a visualisation of these quantities
cf. Fig. 2.1)

q‖ = p −pγ cosθγ−pπ cosθπ

= qmin+2pγ sin2 θγ

2
+2pπ sin2 θπ

2
(2.9)

q⊥ =
Æ

q 2−q 2
‖ (2.10)

2.1.4 Lorentz-invariant variables

The Mandelstam variables in the pion-photon subprocess are

s = (p µ
π +p µ

γ )
2 (2.11)

t = (p µ−p µ
π )

2 (2.12)

u = (p µ−p µ
γ )

2 (2.13)

and fulfill the relationship
s + t +u = 2m 2

π−q 2 (2.14)

They are related to the quantities measured in the experiment by

s = m 2
π + 2Eγ · (Eπ−pπ) + 4pπpγ sin2 θπγ

2
(2.15)

t = −q 2
min−2 Eγ ·qmin−4p pπ sin2 θπ

2
(2.16)

u = m 2
π − 2Eγ · (E −p ) − 4p pγ sin2 θγ

2
(2.17)

Using Eq. 2.14 one deduces Eq. 2.8. The (rapidly converging) expansion of the terms
(E −p ) and (Eπ−pπ) in m 2

π is obtained as given in Appendix A. The range of t is limited
for given s and q 2 by

tmin/max =−
s̄ 2+q 2(s +m 2

π)
2s

±
s̄

2s

p

(s̄ +q 2)2+4m 2
πq 2 (2.18)
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where the short-hand notation
s̄ = s −m 2

π (2.19)

has been introduced. For the cases of interest, s > m 2
π > q 2 is usually satisfied, and

then from Eq. 2.18 follows s > −t > 0. More precisely, the limits of the t range become
transparent when the square root term is expanded in orders of q 2/

�

(s̄ +q 2)2/4m 2
π

�

,

tmax = −
q 4

s
·

m 2
π

(s̄ +q 2)
·
�

1+
m 2
πs̄

(s̄ +q 2)2

�

+ O (q 6) (2.20)

tmin = −
s̄ 2+q 2(s +m 2

π)
s

− tmax (2.21)

For later use, especially in section 2.1.5, the positive quantity2

τ= t − tmin (2.22)

is introduced, in terms of which t = tmin+τ and

u =
m 4
π+q 2m 2

π

s
+ tmax−τ (2.23)

The range of u is

u min/max = tmin/max +
m 4
π+q 2m 2

π

s
(2.24)

It shall be emphasized that u = 0 lies within the kinematic region of interest, and some
care is needed when terms with u in the denominator appear, as e.g. in the context of
radiative corrections (cf. Eq. 2.107 and A.5).

The Mandelstam variables can be interpreted in the center-of-momentum frame
(CM ) of the pion-photon subsystem, shown in Fig. 2.2. The momenta qCM and pCM of the
incoming and outgoing particles, respectively, are determined by s and q 2

qCM =

p

(s −m 2
π)

2+q 2(2s +2m 2
π+q 2)

2
p

s
(2.25)

=

r

q 2+
(s −m 2

π−q 2)2

4s
(2.26)

pCM =
s −m 2

π

2
p

s
(2.27)

2this is not to be confused with the (also positive) quantity t ′ used e.g. in diffractive hadron scattering
physics, which reads in our notation t ′ = −qµqµ − q 2

min = q 2 − q 2
min, keeping in mind that the energy

transfer to the nucleus is neglected here.
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Figure 2.2: Kinematics of theπ+γ∗→π′+γ reaction in the center-of-momentum frame.
Since the incoming photon has a squared mass −q 2 < 0, the momenta of the outgoing
particles are smaller than those of the incoming particles (The photon must be “lifted”
to its mass shell).

while the CM scattering angle is related to the Mandelstam variables by

cos θCM =
2 t − tmax− tmin

tmax− tmin
(2.28)

where s and q 2 enter indirectly via tmin and tmax.
Eq. 2.14 implies that only three of the four variables s , t , u ,q 2 are independent, and

in the following, the set (s , t ,q 2) is taken. In order to complete the set of invariant quan-
tities, the (laboratory frame) angle Ψ between the planes (p , pγ) and (p ,q ) is added3 in
the following, leading to a one-to-one relation (Eγ,θγ,θπ,θπγ)↔ (s , t ,q 2,Ψ). The angle
Ψ is obtained from the laboratory quantities by (c.f. Fig. 2.1 regarding the transverse
components)

cosΨ =
q 2
⊥+p 2

γ sin2θγ−p 2
π sin2θπ

2q⊥pγ sinθγ
(2.29)

where q⊥ is given by Eqs. 2.9 and 2.10.

3Unlike s , t and q 2, the angleΨ is not an invariant quantity, however it is invariant under a boost along
the beam direction ~p .
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2.1.5 Back-transformation pγ(s , t ,q 2,Ψ) and the range forΨ

Eqs. 2.14–2.17 and 2.29 define completely how to get the set (s , t ,q 2,Ψ) when the labo-
ratory quantities (Eγ,θγ,θπ,θπγ) are known. The respective back-transformation is more
involved, however, it is needed in the implementation of the cross-section in the Monte
Carlo generator employed for the analysis of the COMPASS data. While the three an-
gles (θγ,θπ,θπγ) are easily obtained for given (s , t ,q 2) by solving Eqs. 2.15–2.17 once pγ is
known, the way how to find pγ is tricky.

A key step is to observe that the (laboratory) components of q are given by

q‖(s ,q 2) =
s −m 2

π+q 2

2p
(2.30)

in consistency with Eq. 2.7 regarding the limit q → qmin(s ), in which q = q‖ = qmin(s ).
Then, one considers

t = (pµγ −qµ)2

= −q 2−2pγ(q‖ cosθγ+q⊥ cosΨsinθγ) (2.31)

and replacing pγ as given by Eq. 2.17,

pγ =
m 2
π−u

2(E −p cosθγ)
(2.32)

yields a quadratic equation for cosθγ, solved by

cosθγ =
Eτpτ−qτ

p

q 2
τ+p 2

τ−E 2
τ

p 2
τ+q 2

τ

(2.33)

with

Eτ = E · (t +q 2)

pτ = p · (t +q 2) − q‖ · (m 2
π−u ) (2.34)

qτ = (m 2
π−u ) ·q⊥ cosΨ

Putting the solution for cosθγ, Eq. 2.33, back into Eq. 2.32 gives an exact formula for
pγ(s , t ,q 2,Ψ). In order to display the dependence on q and Ψ, the square root term in
Eq. 2.33 is written

q 2
τ+p 2

τ−E 2
τ = −t (−u s +m 4

π+q 2m 2
π)−q 4m 2

π−q 2
⊥(m

2
π−u )2 sin2Ψ

= s τ(tmax− t )−q 2
⊥(m

2
π−u )2 sin2Ψ (2.35)
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The regionτ≈ 0 (t → tmin), featuring a restricted range inΨ, is discussed in Appendix B.7.
It refers to very small pion scattering angles and is not considered in the experiment,
since it has to be excluded due to the multiple scattering effect treated in Sec. 2.1.9.

For the region of interest, the second term in Eq. 2.35 is negligible compared to the
term proportional to τ, so

cosθγ
.= Eτ/pτ−qτ

p

s τ(tmax− t ) /p 2
τ (2.36)

and

pγ
.=

p 2

E
·
−t −q 2−qτ

p

s τ(tmax− t )

s −m 2
π+q 2

+
m 2
π−u

2E

≈ p ·
−t −q 2−qτ

p

s τ(tmax− t )

s −m 2
π+q 2

(2.37)

2.1.6 Parametric description of the Lorentz transformation

Transforming the four-vectors in scattering processes as treated here from e.g. the lab-
oratory into the CM system is, obviously, a well-established procedure. It is, however,
non-trivial to disentangle the involved rotations and boosts and give them in terms of a
given set of variables (s , t ,q 2,Ψ). Since this is needed in the numerical implementation
of the radiative corrections, it is discussed in this section.

The first step is depicted in Fig. 2.3. The boost direction deviates slightly from the
beam direction, with an invariant perpendicular component q B

⊥ (the index B used for
quantities in the boost frame). For obtaining the quantities in the laboratory frame, with
the z axis along the beam direction, the corresponding rotation by the angle θp has to be
applied as second step. Assuming a given set (p , s ,q 2), from the right triangles on both
sides of the long dashed line follows

(p +q‖)2+q 2
⊥ =

�

2q B
⊥

�2
+

�
q

p 2−
�

q B
⊥

�2
+q B

‖

�2

(2.38)

�

q B
⊥

�2
=

p 2(q 2−q 2
‖ )

p 2+q 2−2q‖p
=

p 2

p 2− s̄
q 2
⊥ (2.39)

=
4p 2q 2− (s̄ +q 2)2

4(p 2− s̄ )
(2.40)

�

q B
‖

�2
=

p 2q 2
‖ −q 2s̄

p 2− s̄
=
(s̄ −q 2)2

4(p 2− s̄ )
(2.41)
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Figure 2.3: Quantities for the incoming particles appearing in the Lorentz transforma-
tion from the center-of-momentum frame (black) to the laboratory frame (red). The
transformation consists of a boost along the direction of ~q B

‖(C M ), and a rotation by θp

bringing ~p in z direction, with respect to which the decomposition into parallel and
perpendicular components is performed. The q components in the laboratory frame
are enlarged in the same manner as in Fig. 2.1, and also the boost is shrinked in order
to fit the sketch. For better readability, the central geometry is redrawn magnified. The
production plane, containing the outgoing particles π′ and γ, might be arbitrarily ro-
tated around the incoming particle’s axis in the CM , which is to be taken properly into
account in the transformation.
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where q‖ is given by Eq. 2.30 and s̄ by Eq. 2.19. The first expression given in Eq. 2.39
follows directly as solution of the quadratic equation 2.38 for q B

⊥ =
p

q 2− (q B
‖ )

2, while
the second expression displays that q B

⊥ is almost the same as q⊥, except a correction
factor approaching unity for large laboratory beam momentum p �

p
s . Apart from the

additional term in the numerator, Eq. 2.41 shows a similar relation for q B
‖ and q‖. Eq. 2.40

and the second version of Eq. 2.41 present the result in terms of the given quantities
(p , s ,q 2) and are used in the calculation of Eq. 2.46. As intermediate steps,

q B
‖CM

=
q

q 2
CM
−
�

q B
⊥

�2
=
Æ

q 2
E CM
+(q B

‖ )
2 (2.42)

=
Æ

q 2
CM
−q 2+(q B

‖ )
2 (2.43)

q 2
CM
−q 2 =

(s −m 2
π−q 2)2

4s
(2.44)

are easily calculated, and the Lorentz factor γ= 1/
p

1−β 2 follows

q B
‖ = −βγqE CM+γq B

‖CM
(2.45)

γ =
q B
‖CM

q B
‖
=

E
p

s
(2.46)

independent of the value of q . The tilt angle θB of the boost direction in the CM system
and the laboratory beam rotation angle θp , cf. Fig. 2.3, are obtained via

tanθB =
q B
⊥

q B
‖CM

=
p

E
·

2q⊥
p

s

|s̄ −q 2|
(2.47)

tanθp =
q B
⊥

p

p 2− (q B
⊥ )

2
=

q⊥
p

p 2− s̄ −q 2
⊥

(2.48)

The outgoing momentum vectors in the laboratory frame are then, cf. Fig. 2.4,

pπCM = pCM







xCM

yCM

z CM






= pCM







−sinθCM cosΨCM

−sinθCM sinΨCM

cosθCM







−→ pCM







x B

yB

z B






= pCM







xCM cosθB − z CM sinθB

yCM

βγεCM+γ (xCM sinθB + z CM cosθB )







−→ pπlab = pCM







x lab

ylab

z lab






= pCM







x B cosθp + z B sinθp

yB

−x B sinθp + z B cosθp






(2.49)
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where in εCM =
p

1+m 2/p 2
CM

the appropriate mass m of the particle to be boosted is to
be inserted. For the photon, pγCM = −pπCM in the first step, then the same two transfor-
mations of Eq.2.49 follow. Consequently the angle ΨCM is given by

sinθCM sinΨCM = ylab = tanΨ ·x lab = tanΨ · (A + B · cosΨCM) (2.50)

where A = cosθCM sinθB cosθp +γ (β − cosθCM cosθB )sinθp

B = sinθCM cosθB cosθp + γ sinθCM sinθB sinθp

cosΨCM =
−A · B + f

p

f 2+ B 2−A2

f 2+ B 2
with f =

sinθCM

tanΨ
(2.51)

This completes the description of how to perform the Lorentz boost from the CM into
the laboratory reference system for a kinematics given by a set of variables (s , t ,q 2,Ψ).
In this form, it is used in the implementation of real-photon bremsstrahlung emission
as a part of the radiative corrections in the Monte Carlo simulation of the experiment
discussed in Sec. 2.5.

2.1.7 Real-photon limit q 2→ 0

In the real-photon limit q 2 = 0, the compact formulæ

tmax = 0

tmin = −s̄ 2/s (2.52)

cos θCM = 2 t s/s̄ 2+1 ≈ 1−2xγ s/s̄ (2.53)

with xγ = pγ/p follow, where pγ ≈ p · (−t /s̄ ) from Eq. 2.37 is used. So for small q 2, one
realizes that pγ in the laboratory system plays a role equivalent to cosθCM in the CM
system by its relation to Mandelstam t , c.f. Eq. 2.28.

Lines of constant xγ in the (
p

s )-versus-(cos θCM) plane are given by

2xγ = (1− cos θCM) ·
�

1−
mπ

s

�

!= const

s =
mπ

1−2xγ/ (1− cos θCM)
(2.54)

constraining the physical region to lie within

cos θCM < 1−2xγ (2.55)
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Figure 2.4: Lorentz boost from the CM system into the laboratory reference system,
according to the steps in Eq. 2.49.
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The real-photon limit is best achieved by q 2 taking its minimum value and q⊥ = 0, from
which pγ⊥ = pπ⊥ = p⊥ follows. Then, rewriting Eq. 2.11,

s = m 2
π+2(EγEπ+pγ⊥pπ⊥−pγ‖pπ‖) (2.56)

→
Æ

p 2
γ−p 2

⊥

p

p 2
π−p 2

⊥ = p 2
⊥+EγEπ− s̄/2

p 2
⊥(E

2− s ) = E Eγs̄ −E 2
γs − s̄ 2/4

→ p 2
⊥ ≈ (1− cos2θCM) s̄ 2/4s

solved by

s = m 2
π+

2p 2
⊥+2p⊥

p

m 2
π(1− cos2θCM)+p 2

⊥

1− cos2θCM

(2.57)

where the positive sign of the square root term has been chosen by recasting the solution
into Eq. 2.56.

2.1.8 Constraints on the laboratory angles

When considering kinematics with a maximum momentum transfer qmax to the nucleus,
the angles of the outgoing particles are restricted. The maximum angles, as treated in
detail in sec. B.1, are max[θ 2

π]≈ qmax · (2pγ/p pπ) and max[θ 2
γ ]≈ qmax · (2pπ/p pγ). As an

example for E=190 GeV and qmax=31 MeV, at high photon energy Eγ=160 GeV the angles
are restricted to θγ < 7.8 mrad, θπ < 42 mrad, while for intermediate photon energy
Eγ=90 GeV, the ranges are θγ < 19 mrad, θπ < 17 mrad. Furthermore, θπγ is restricted,
apart obviously |θπ−θγ|<θπγ <θπ+θγ, by

sin2 θπγ

2
=

p

pπ
sin2 θγ

2
+

p

pγ
sin2 θπ

2
−

q 2−q 2
min

4pπpγ
(2.58)

where the full range is obtained by varying q 2 from q 2
min to q 2

max. Limits on s < smax and
q <qmax further constrain the angles of the outgoing particles, from Eqs. 2.15 and 2.8,

4 pγpπ sin2 θπγ

2
< smax−m 2

π ·
E

Eπ

4 p pπ sin2 θπ

2

4 p pγ sin2 θγ

2











< smax−m 2
π ·

E

Eπ
+q 2

max−q 2
min

(2.59)
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2.1.9 Cut on the transverse momentum of the scattered pion

Since the interaction point is reconstructed using the change of direction of the scatter-
ing pion, the identification of events in the target necessitates a minimum pion scatter-
ing angle θπ. This angle must be significantly larger than the effect of multiple scattering
in the target, which is proportional to pπ⊥ (cf. [54] sec. 27.3). Consequently, for a target
of 50% radiation length, a cut pπ⊥ > 45 MeV/c must be applied to permit a good vertex
reconstruction capability. This cut removes at the same time Primakoff events induced
by incoming electrons, which radiate with much higher cross section due to their small
mass. Since for the 2009 data taking it was decided to reduce the target thickness to 30%,
this cut could be reduced to

pπ⊥ > 40 MeV/c (2.60)

This is further treated along the COMPASS data analysis in Ch. 3.

2.1.10 Relation of Mandelstam and laboratory variables

Figs.2.5-2.6 serve for a better understanding of the relation between the quantities mea-
sured in the experimental setup and the physically relevant variables. On the x axis, the
scattering angle in the CM frame of the process π−γ→ π−γ is drawn, and on the y axis
the CM energy of the π−γ system,

p
s =mπγ in units of the pion mass. The plane covers

all allowed kinematics for this process. The CM angle is taken, rather than Mandelstam-
t only because its range −1, 1 is independent on

p
s , while the range of t opens with

increasing
p

s according to Eq. 2.21; apart from that, the usage of t and cosθCM is equiv-
alent given Eq. 2.28.

Each point in this
p

s -vs-cosθCM plane has a unique correspondence to the labora-
tory kinematics of a process π−Ni → π−Niγ when there is no transverse momentum
transfer, q⊥ = 0. Different lines of constant particle energies and scattering angles are
indicated in the plots.

On the lower plot of Fig. 2.5, it is demonstrated how non-zero q⊥ “wash out” this
correspondence. The peak contribution of the cross-section, however, lies within the
inner band, especially for the low-s region where qmin is still very small. The blue lines
indicate how a cut on the transverse momentum of the scattered pion, pT > 45 MeV/c ,
affects the quantities of interest: It mainly corresponds to small

p
s < 1.5 mπ, but back-

ward scattering angles are also lost at higher
p

s .
It is also obvious from these figures, that measuring the processes under considera-

tion down to photon energies below 60 GeV is desirable, if the full angular spectrum of
the pion Compton scattering process is to be examined, as it will become clear along
the next section.
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Figure 2.5: Upper figure: Kinematic relation of s and t (t presented through cosθCM,
cf. Eq. 2.28) with the photon energy Eγ (lines with notation in GeV) and transverse mo-
mentum of the outgoing photon and pion (notation in MeV) in case of pure longitudinal
momentum transfer, q⊥ = 0. Lower figure: For q⊥ 6= 0, the described relation washes out.
Around the thick central line, representing q⊥ = 0, the cases q⊥ = 0.005 mπ ≈ 0.7 MeV
and q⊥ = 0.01 mπ ≈ 1.4 MeV are shown. The diminishing line widths reflect the lowering
cross section with increasing q⊥ in that range.
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2.2 Differential cross section

2.2.1 Real Compton scattering

The real-photon Compton cross section for a scalar charged particle, e.g. πγ → π−γ,
reads [44]

dσπγ
dΩCM

=
α2(s 2z 2

++m 4
πz 2
−)

s (s z++m 2
πz−)2

−
αm 3

π (s −m 2
π)

2

4s 2(s z++m 2
πz−)

·P (2.61)

where the abbreviation z± = 1± cosθCM is used, and the polarisability contribution is

P = z 2
−(απ−βπ)+

s 2

m 4
π

z 2
+(απ+βπ)−

(s −m 2
π)

2

24s
z 3
−(α2−β2) (2.62)

The polarisabilities have been introduced here according to Gasser et al. [31] (there,
in the crossed-channel kinematics γγ → π+π−), απ and βπ are the usual electric and
magnetic dipole polarisabilities (as discussed in Ch. 1 examplary for απ), and α2 and β2

are the corresponding quadrupole contributions.
Since it is summed over the photon polarisations and consequently, there is no ex-

plicitφ dependence, in the following the cross section will be used in the form

dσπγ
dcosθCM

= 2π
dσπγ
dΩCM

(2.63)

2.2.2 Primakoff Compton cross section

When embedding the real Compton process in a Primakoff reaction, i.e. πZ →Zπγ, the
cross-section reads, employing the equivalent-photon method as described e.g. in [44],

dσ

ds dq 2 dcosθCM

=
α

π(s −m 2
π)
· F 2

eff
(q 2) ·

q 2−q 2
min

q 4
·

dσπγ
dcosθCM

(2.64)

where in the effective form factor F 2
eff
(q 2) all effects steming from the non-Coulomb

structure of the scattering center, as discussed in detail in Secs. 2.3.3 and 2.4.1, are ab-
sorbed.

The shape of the cross-section according to 2.64 is shown in Fig. 2.7, together with a
simulation representing a statistics that is in reach with the COMPASS experiment. The
polarisabilities are assumed in the event generation step to have the values of the ChPT
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Figure 2.7: Cross-section for the process π−Ni→Niπ−γ. Dashed lines are based on the
Compton cross-section for a structureless boson. The full lines show the fit result on the
shown simulated data, leaving the three polarisability contributionsαπ−βπ,απ+βπ and
α2−β2, as well as the overall normalization N , as free parameters. All relevant cuts on
the kinematic range are applied. The simulated statistics corresponds to that expected
for the COMPASS 2012 run (as of 14.8.2012) for the events with Eγ > 76 GeV.
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prediction,

απ−βπ = 5.70 ·10−4 fm3

απ+βπ = 0.16 ·10−4 fm3 (2.65)

α2−β2 = 4.00 ·10−4 fm5

where the contribution of the quadrupole polarisability has been reduced, as it is sup-
posed to be cancelled by this amount due to the pion loop contributions [31]. Fitting
the event distribution, the polarisabilities are retrieved with uncertainties

σ(απ−βπ) = 0.97 ·10−4 fm3

σ(απ+βπ) = 0.04 ·10−4 fm3 (2.66)

σ(α2−β2) = 2.50 ·10−4 fm5

The uncertainty on απ−βπ can be largely reduced by fixing the other two components.
This has been done for the analysis of the Serpukhov data [11], and is how the first anal-
ysis of the COMPASS 2009 data is on the way, cf. Ch. 3.

When απ+βπ = 0 is approximated and also the influence of the quadrupole terms
is neglected, only the dependence on a single polarisability parameter απ remains, and
the relative change of the cross-section 2.64 can be expressed by the simple formula

r =

�

dσ

dxγ

�Â�

dσP =0

dxγ

�

= 1 −
3

2
·

m 3
π

α
·

x 2
γ

1−xγ
απ (2.67)

which is used in this form in the COMPASS data analysis.

2.2.3 Pion-nucleus bremsstrahlung

It is possible to go beyond the equivalent-photon approximation of Eq. 2.64 by calcu-
lating the respective Feynman graphs directly. This has been done by N. Kaiser (TU
München), finding

d 3σ

ds dt dq 2
=
α3Z 2

πq 4

1

2p 2q

π
∫

0

dΨ
1−x 2

E (x z − y )−p (z −x y )
H (2.68)

The kinematical factor preceding H involves for photon forward production (x = 1) the
behaviour dσ∼

p
1−x/(E −p )→ sin

θγ

2
/m 2

π. The squared sum of amplitudes is written

H = |Ā |2p 2(1−x 2)+ |B̄ |2q 2(1− z 2)+2 Re[Ā B̄ ∗]pq (y −x z ) (2.69)
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with Born-level amplitudes

Ā B =
2 E

s −m 2
π

+
2 (E −k )

m 2
π− s − t −q 2

, B̄B =
2 E

s −m 2
π

(2.70)

In this calculation also the ρ(770) resonance contributions have been given as

Āρ =
ξg k q (E z −q −py )
s −m 2

ρ + i
p

s Γρ(s )
, B̄ρ =

ξg k p (p +qy −E x )
s −m 2

ρ + i
p

s Γρ(s )
(2.71)

where

ξg =
g 2
ρπγ

8παm 2
ρ

Γρ(s ) =
g 2
ρπ

�

s −4m 2
π

�
3
2

48πs

gρπγ = 0.17 gρπ = 6.0

The 1-loop ChPT contribution reads, including q-dependence,

Āχ = 0

B̄χ =
kτ2

(4π fπ)2(τ2−q 2)2
�

τ2−q 2+4m 2
π

�

L̃2(q )− L̃2(τ)
�

(2.72)

+2q
p

4m 2
π+q 2 L̃(q )−

2q 2

τ

p

4m 2
π+q 2 L̃(τ)

�

using notations L̃(q ) = ln
h�

p

4m 2
π+q 2+q

�

/2mπ

i

and τ =
p
−t . Finally, the polaris-

ability contribution is

Āp = 0 B̄p =
βπmπk

α
(2.73)

TheΨ spectrum has in fact a particularity, in that not always its full range [0, 2π] is kine-
matically possible, as can also be inferred from Fig. 2.4. The specific shape of the dis-
tribution to be integrated is shown for the case s = 4 m 2

π near the backward kinematics
t ≈−2.26 m 2

π in Fig. B.4.
The comparison of the more precise description of the cross-section by Eq. 2.68 with

the equivalent-photon description by Eq. 2.64 shows that for the small-q range of inter-
est here, they precisely coincide. Differences start to show up at q 2 ≈0.5 GeV2/c 2, where
the kinematic limit is reached (depending on s ). The equivalent-photon method is “ig-
norant” of such a limit – it in principle continues up to q 2→∞.

For the Monte Carlo simulation of the COMPASS experiment, the form of Eq. 2.68 is
implemented on the event generator level.
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2.2.4 Muon Compton scattering

The Klein-Nishina formula for Compton scattering of spin- 1
2

particles can be written

dσ

dt
=

2π

(s −1)2







 

2m 2
µ

s −m 2
µ

+
2m 2

µ

u −m 2
µ

!2

+
5m 2

µ−u

s −m 2
µ

+
5m 2

µ− s

u −m 2
µ






(2.74)

By inserting this µγ cross-section in the equivalent-photon formula Eq. 2.64, the Pri-
makoff cross-section for the muon case is found.

2.3 Treatment of the q 2 spectrum

2.3.1 Weizsäcker-Williams factorization: equivalent-photon method

A process dominated by the exchange of a single (virtual) photon factorizes into parts
given by the two interaction vertices it connects. If one of the currents undergoes elastic
scattering only, its contribution of interaction can be viewed and described as density of
virtual (quasi-real) photons. It is derived from the decomposition of the Coulomb field
into quasi-real photons and features a q 2 dependence, cf. Eq. 2.64,

Φphotons(q 2)∼
q 2−q 2

min

q 4
(2.75)

Apart from including higher-order electromagnetic corrections, namely multi-photon
exchange, the involved approximation of replacing in a process a virtual photon by a real
photon, must be estimated and controlled especially when a high precision is aimed for,
as in the polarisability measurement.

The integral over the peak region in q 2 reads

q 2
max
∫

q 2
min(s )

q 2−q 2
min

q 4
d q 2 = ln(q 2)−

q 2
min

q 2

�

�

�

�

q 2
max

q 2
min

= ln

�

q 2
max

q 2
min

�

−
q 2

min

q 2
max

+1 (2.76)

and so, including the transformation d
p

s/d s = 1/2
p

s ,

dσ

d
p

s d cosθCM

=
Z 2α ·2

p
s

π(s −m 2
π)
·
�

ln

�

q 2
max

q 2
min(s )

�

−
q 2

min(s )
q 2

max

+1

�

·
dσreal(s )
d cosθCM

(2.77)

where q 2
min(s ) takes the value given by Eq. 2.5 (resp. 2.7).
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2.3.2 Sampling the equivalent-photon density

The photon density of Eq. 2.75 can be written

dσ

d lnq 2
=q 2 dσ

d q 2
∼ 1−

q 2
min

q 2
= 1− e lnq 2

min−lnq 2
(2.78)

which clearly displays the logarithmic divergence of the cross section for large q 2, since
dσ/d lnq 2 remains constant as q 2→∞ in this approximation. In order to keep the inte-
gral of the distribution function finite, it must be restricted to some maximum qmax. The
true reason for the infinite cross section is that the considered approximation ceases to
be valid at larger q 2.

For a Monte Carlo simulation, it is of advantage to sample in the distribution of lnq 2,
which has not the extreme slopes and curvatures of the q 2 distribution.

2.3.3 Atomic scattering factors

The atomic form factor can be parameterized, following e.g. [28],

f 0(q ) =
4
∑

i=1

a i · e−b i q 2
+ c (2.79)

The parameters are given for all relevant elements in [28]. The atomic form factor is
combined with the nuclear charge distribution, as handled in the next chapter, in order
to completely describe the distortion of the Coulomb field that the incoming particles
are exposed to.

2.4 Influence of pion-nucleus strong interaction

2.4.1 Scattering amplitudes from interaction with potentials

This discussion follows that given by Fäldt and Tengblad [27], except where modifica-
tions were found to be in place. The authors write the cross-section for πA → Aπγ
at lowest momentum transfer, where photon exchange dominates and the equivalent-
photon method can be employed, in Born approximation for a pointlike nucleus

M (B )
C (~q ) =

2Zα

q 2
~g · ~q =

−1

2πi

∫

e−i ~q ·~r ~g · ~∇VC (r )d 3r (2.80)
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encoding the reaction dynamics in the vector ~g and making use of the relation
∫

e−i ~q ·~r ~∇VC d 3r = i ~q

∫

e−i ~q ·~r VC d 3r (2.81)

Here, the Coulomb potential of the pointlike charge is VC (r ) = −Zα/r ; for the uniform
charge distribution of the nucleus with radius ru = 1.1 fm ·A1/3

ρ(r ) =

(

Z/
�

4
3
πr 3

u

�

for r < ru

0 for r > ru

(2.82)

the Coulomb potential is

VC (r ) =

(

−Zα · (3− r 2/r 2
u )/2ru for r < ru

−Zα/r for r > ru

(2.83)

The impact to the matrix element (2.80) by the extended-charge Coulomb potential with
ru > 0 as well as the nuclear strong-interaction potential is investigated in the next sec-
tion.

2.4.2 Eikonal approximation for the pion wave distortion

Soft interaction with the traversed potential may be viewed as a distortion of the one-
particle wave function, rather than a full quantum-field-theoretic treatment. In this so-
called eikonal approximation (also Glauber or Locher model, for a comprehensive in-
troduction, see e.g. the text book of M. Perl [56]), the distortion of the pion wave is taken
into account by assuming a straight-line propagation of the particle, and integrating the
phase difference along the traversed potential,

MC (~q ) =
−1

2πi

∫

e−i ~q ·~r ~g · ~∇VC (r ) e iχC (~b )d 3r (2.84)

with ~b the impact parameter coordinates perpendicular to the incoming beam direc-
tion, which defines the z coordinate. For a rotationally invariant potential, the Coulomb
phase function χC (b ) depends only on the modulus b = |~b |,

χC (b ) = −
1

v

∞
∫

−∞

VC (b , z ) d z = lim
a→∞
−

1

v

a
∫

−a

VC (b , z ) d z (2.85)
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and is evaluated to4

χC (b ) =
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(2.86)

using the abbreviation η= 2Zα/v .
If the interaction can be described with the vector ~g in the impact parameter plane,

~g = ~g⊥, then in evaluating ~g · ~∇ the z component can be neglected. With the operator
~∇b = (∂ /∂ x ,∂ /∂ y , 0)T ,

~g ·~b ∂b χC (b ) = b ~g · ~∇b χC (b ) =

∞
∫

−∞

d z ~g · ~∇VC (~b , z ) (2.87)

The derivatives are in the limit a �b ,

b ∂b χC (b ) =







−η + η ·
�

1−b 2/r 2
u

�3/2
for b < ru

−η for b > ru

(2.88)

and for arbitrary a , the termηb 2/(a 2+b 2+
p

a 2+b 2) is to be added to both expressions.
For evaluating the influence of the finite nuclear size, the expression

b ∂b

�

e iχC (b )− e iη ln(2a/b )
�

= i b
�

e iχC (b )∂b χC (b )+η · e iη ln(2a/b )
�

= i ηc
h

e iη[− ln(1+β̄)+β̄+β̄3/3] �β̄ 3−1
�

+ e−iη lnβ
i

(2.89)

is entering, with the b -independent factor c = e iη ln(2a/ru ) and using the abbreviations

β =b/ru and β̄ =
p

1−β 2.

4In [27], the term
�

4
3
− 1

3
b 2

r 2
u

�

is wrongly given as
�

1
3
+ 2

3
b 2

r 2
u

�

. As a consequence, in Eq. 2.89 the term
�

β̄ 3−1
�

would read, with Fäldt’s assumptions,
�

3β̄ −2β̄ 3−1
�

.
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2.4.3 Form factors for the nuclear potentials

The form factor contribution due to the finite extension of the nucleus reads, in the
notation of Fäldt,

δF u
C (q⊥,q‖) = i

ru
∫

0

d b b 2 J1(bq⊥)
bq⊥

∂b

�

e iχC (b )− e iη ln(2a/b )
�

(2.90)

= −ηc
r 2

u

γ

1
∫

0

dβ J1(βγ)
h

e iη[− ln(1+β̄)+β̄+β̄3/3] �β̄ 3−1
�

+ e−iη lnβ
i

(2.91)

with γ = ru q⊥. The Bessel function is effectively evaluated for small arguments x < 50
with the expansion [17]

Jn (x ) =
x n

2nΓ(n +1)

�

1−
x 2

2 · (2n +2)
+

x 4

2 ·4 · (2n +2) · (2n +4)
− . . .

�

(2.92)

Fäldt derives the contribution due to the strong interaction of the pion with the nucleus
by the replacement

~∇VC (r ) → ~∇ (VC (r )+VN (r )) (2.93)

with the strong-interaction potential approximated by

VN (r ) =







−
σ

2
(i +α) ·ρN for r < ru (i.e. |z |<

p

r 2
u −b 2)

0 for r > ru

(2.94)

taking ρN = A/
�

4
3
πr 3

u

�

≈ 0.179/ fm3 constant inside the nucleus. While the derivative

contribution ~∇VN in fact vanishes (apart from an ill-defined contribution on the nuclei
rim), the strong-interaction potential gives rise to the additional phase shift analogous
to Eq. 2.85, approximating the particle velocity v = c = 1,

χN (b ) = −
1

v

∞
∫

−∞

VN (b , z ) d z =
σ

2
(i +α) ·TA(b ) (2.95)

with the nuclear thickness function

TA(b ) = ρN ·2
p

r 2
u −b 2 (2.96)
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2.5 QED radiative corrections

Reactions involving charged particles that change their momentum, may it be in di-
rection or in modulus or in both, are affected by virtual photon loop and real photon
emission processes. Those can not be isolated experimentally from the leading-order
processes under study. However, with QED as well-established and calculable theory,
the effects can be taken into account in terms of a radiative correction, based on the
perturbative expansion of QED. At first order, they appear as a factor with respect to the
leading-order process,

σcorrected = (1+δ) ·σnon-radiative (2.97)

where δ is usually in the order of a few percent, depending on the kinematics. It is
composed of a part steming from the virtual-photon loop contributions, δv , and a part
from the emission of real photons, δr (λ), that depends on the upper limit λ of their
energy.

2.5.1 Soft photon emission

The emission of real soft photons along with a hard reaction p1+k1→ p2+k2 (involving
charged particles p1, p2 of mass m and neutral particles k1, k2) appears with a relative
weight

δr (λ1 < |~l |<λ2) =
α

π

∫

λ1<|~l |<λ2

d 3l

4πl 0

�

2p1 ·p2

p1 · l p2 · l
−

m 2

�

p1 · l
�2 −

m 2

�

p2 · l
�2

�

(2.98)

=
α

π

λ2
∫

λ1

d l

l

1
∫

−1

d x l

2

2π
∫

0

dφ

2π

�

2p1 ·p2

p1 · l̂ p2 · l̂
−

m 2

(p1 · l̂ )2
−

m 2

(p2 · l̂ )2

�

where the spherical coordinates x l = cosθ and φ of the soft photon momentum di-
rection l̂ = ~l /|~l | will be further used, with respect to the axis z = p̂1 and ~p2 in the
x z−plane. This integral exhibits the famous infrared divergence λ1 → 0, which must
be properly regularized, taking into account corresponding divergences on the side of
virtual photon loop corrections, as extensively discussed in the literature, e.g. [43] and
Refs. therein.

While the removal of the divergent contribution leads to a (typically small) finite
correction factor to the original non-radiative process, the real-photon emission cor-
rection (2.98) involves also the production of additional photons with a specific energy
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and angular dependence. Those lead to a distortion of the original kinematics, and be-
come visible experimentally in terms of the radiation tail towards lower energies of the
outgoing observed particles.

The way pursued here to account for these effects is to subdivide the radiative tail
into a lower- and a higher-energetic part. The lower-energetic part involves only the
emission of real photons that do not play a role experimentally, but are to be accounted
for the in the radiative correction factor. The higher-energetic part is still to be consid-
ered soft, such that the emitted photons follow the distribution 2.98, but may lead to a
distortion of the kinematics that is to be taken into account in the analysis.

This is achieved on the level of the Monte Carlo simulation. For the implementation,
the indefinite integrals of 2.98 are of use and discussed in the following, extending the
expressions given in [43] for the full-range integral. The quantity x2 = cos(∠(~p1, ~p2)) is
introduced, such that the structures in (2.98) can be written in terms of

p1 · l̂ = E −p x l (2.99)

p2 · l̂ = E −p x2 x l −p
p

1−x 2
2

p

1−x 2
l sinφ

= Ex −px sinφ (2.100)

E 2−p 2 = m 2

E 2
x −p 2

x = m 2+p 2 x 2
2 −2E p x2 x l +p 2 x 2

l (2.101)

= m 2(1−x 2
l )+ (E x l −p x2)2

κ = p−1
p

(E 2−p 2x2)2−m 4

Theφ integration can be performed analytically for a fixed x l [(A.10),(A.11)],

∫

dφ
2(E 2−p 2x2)

(E −p x l ) (Ex −px sinφ)
−

m 2

(E −p x l )2
−

m 2
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=
−m 2φ
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m 2 px cosφ

(E 2
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(2.102)

+
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x
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2
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E 2
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p

E 2
x −p 2

x

which is useful in this indefinite form for the Monte Carlo simulation of the radiative
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tail. Carried out over the full range,

2π
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0
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is obtained, for which now in the same manner the indefinite integral over x l is consid-
ered,

∫
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(2.104)

with full-range integration yielding

1
∫

−1

d x l
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(E −p x l )2
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�

−m 2 Ex
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x

+
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=
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ln
(E +p )[κ(E −px2)+ (1−x2)(m 2−x2p 2+E p )]
(E −p )[κ(E +px2)+ (1−x2)(m 2−x2p 2−E p )]

(2.105)

in agreement with the first term of Eq. (20) in [43].
When a real soft photon is emitted, the kinematics is, at least somewhat, distorted

with respect to the non-radiative process used in the ansatz 2.97, e.g. as starting point
in the Monte Carlo simulation. At least, energy-momentum conservation should be
accounted for, such that only kinematically allowed processes are simulated. Since for
a given s and emitted soft photon vector ~ps the distorted kinematics is not unique, as
approximation the kinematics is chosen where the outgoing pion does not change its
direction5, that is ~pπ→ η~pπ with a number η close to one when the momentum of the

5this kinematics is “most nearby” in the way that the angular correlation of the emitted soft photon
and the charged particle is kept.
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soft photon ps is small. A straight-forward calculation shows

η =
pc sp +

p

p 2
c s 2

p − (4m 2
πe 2

p − s 2
p )(e

2
p −p 2

c )

2pCM(e 2
p −p 2

c )
(2.106)

pc = ps cosθγγ

sp = s +m 2
π−2

p
s ps

ep =
p

s −ps

and pCM is given by Eq. 2.27.
In general, it is favorable to “hand over” the description of the bremsstrahlung kine-

matics from the soft-photon limit given here, starting from some intermediate photon
energy to the exact spectrum as given in [44]. This has not been integrated in the COM-
PASS analysis software yet, but should be envisaged for the future analysis especially of
the high-statistics 2012 data set.

2.5.2 Virtual photon loops

The virtual-photon loop corrections for pion Compton scattering are published in [45].
In the present work, these investigations have been extended for a more suitable im-
plementation on the level of the analysis computer program. This is, on the one hand,
the collection of repeatedly appearing terms. Cancellation brings their number down
from originally 100 to 10, with the merit of a faster computing time and better numeri-
cal precision. On the other hand, the highest-order loop integrals had not been solved
analytically in [45], but it was proposed to handle them by numerical integration. This
poses problems, due to the infinite range of the integrals {1,∞}, and because they partly
feature a pole that is integrable, but its principal value needs to be extracted. Computer
algebra packages as Mathematica can certainly handle the involved problems, but with
unaffordably high computing time for the intended purpose of implementing the cor-
rections on event-by-event basis. On the way of implementation, it was found out by the
author that the integrals can all be solved analytically, which reduces the required com-
puting time by about a factor of 100, and makes the handling of numerical round-off
effects much easier.

The contributions of the Feynman graphs at one-photon loop order, separated in
the classes presented in Fig. 2.8, are sorted in amplitudes A and B according to the de-
composition of the T -Matrix as given by Eq. (1) of [45]. Summing all contributions, and
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Class: I II Class: III Class: IV

Class: V Class: VI Class: VII Class: VIII

IX X XI

Figure 2.8: Classification of the Feynman graphs for pion Compton scattering at one-
photon loop order, as treated in [45].

solving the parameter integrals as described in the Appendix A.5, one arrives at
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and
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(2.108)

The functions A I (m , t̂ ) and B m
I (m , t̂ ), which are given in integral form in [45], are evalu-

ated using formulæ A.95, A.101 and A.107, respectively.
For the case of A I (m , t̂ ), it was examined examplarily that using the analytic form

delivers the 10-digit precise result more than 5000 times faster than solving the inte-
gral numerically to 3-digit precision, when a standard Newton-Cotes (equal step width)
procedure is employed. Certainly with more elaborate methods (variable transforma-
tion to a finite integration interval, adaptive step widths etc.) a significant speed-up of
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Figure 2.9: Effect of the QED radiative corrections on the photon energy spectrum, ex-
amined by a high-statistics simulation of the experimental conditions during the 2009
measurement [53]. For pions (left plot), the dependence of the radiative correction on
xγ matches accidentically quite well with a “polarisability” contribution and can be fit-
ted, using Eq. 2.67, with απ ≈ 0.3−0.4 · 10−4 fm3 (depending on the fit range). For muons
(right plot), the trend is a little different, with a smaller dependence on xγ. It is fitted
with the same curve as the pion data, despite there is obviously no “muon polarisabil-
ity” expected here.

the numerical procedure can be expected, however the care that is to be taken for the
contained singularities remains, and just emphasizes again the special value of having
the analytic solution at hand.

The respective radiative corrections for muon bremsstrahlung, used as systematic
control measurements at COMPASS, are published in [43] in a handy form already, and
thus are not reproduced here. They have been implemented in the COMPASS analysis
software analogously to the pion case.

2.5.3 Effect on the polarisability determination

Summing real and virtual photon contributions, the total effect on the cross section is
evaluated for each simulated event. The average value does not have an impact on the
polarisability determination, since only the ratio, Eq. 2.67, is considered with leaving
the normaization as a free parameter. However, a relative change of the radiative cor-
rection with xγ is potentially misinterpreted as polarisability contribution. This effect is
presented in Fig. 2.9. It is realized that the QED radiative corrections have an effect that
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for pions is accidentially very similar to that of the polarisability combination απ−βπ,
just its size is about a factor of 10 suppressed with respect to the ChPT prediction for
the polarisability signal, cf. Eq. 2.65. This observation is in agreement with the earlier
findings of Akhundov et al. [6].

For muons, a similar trend is also seen, however, the radiative corrections do show
a slightly different behaviour at the edges of the xγ spectrum. Their application is in-
dispensable for a precise interpretation of the data taken with muon beam in terms of
controlling the apparatus description on the precent level.

2.5.4 Further corrections

Apart from the QED radiative corrections discussed so far, further effects are to be taken
into account:

• The QED radiative corrections depend themselves slightly on the polarisabilities.
The effect is less than 5% of the structure-independent radiative corrections [45],
so the polarisabilities can be accurately determined from the data by neglecting
this dependence in a first step, and taking the result into account in a second iter-
ation of the analysis procedure.

• The QED radiative corrections depend on the virtuality q 2 of the exchanged pho-
ton, changing their magnitude [46] by some 20% when going from the kinematic
threshold q 2 = q 2

min to q 2 = m 2
π ≈ 0.02 GeV2/c 2. It is a tiny effect when the peak

structure is taken into account, concentrating the main part of the cross-section
in the region well below 0.001 GeV2/c 2. However, if the region at higher q 2 is under
consideration, this effect is not negligible.

• The corrections presented so far assume the soft-photon limit, i.e. the distortion
of the kinematics by the additional photon is not taken into account. The prescip-
tion how this should be done accurately (in next-to-leading order in QED) is given
in [45], but this is not yet implemented on the Monte Carlo generator level in the
COMPASS analysis framework.

• Multiple soft-photon emission is not yet taken into account. An exponentiation
procedure, analogous to that applied in electron scattering [29, 70], may be envis-
aged, but since the leading-order correction still lies in the range of 1–3% the ef-
fect is not expected to be large (in electron scattering, the corrections are typically
above 20%). In addition it is conceptually not really consistent to treat multiple
emission of real soft photons on the quantum mechanical level, while multiple
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virtual photon exchange is treated as continous wave distortion of the scattered
pion, cf. Sec. 2.4.2.

• Higher-order terms from the ChPT chiral-loop expansion [19, 20, 31, 45] do influ-
ence the pion Compton cross-section also in the region from which the polaris-
ability is extracted. These chiral-loop effects are to be clearly distinguished from
the pure polarisability effect. The calculation of the chiral loops in ChPT shows
that they have in general the opposite trend than the polarisability effects, i.e.
they enlarge the cross-section, while the polarisabilities are expected to lower the
cross-section. The two structure effects can be separated if the statistics is suf-
ficient to distinguish their different dependence on the kinematic variables. For
the COMPASS 2009 data, the chiral loop contribution is assumed to be present
as predicted by ChPT in the Monte Carlo simulation, and only the polarisability
contribution is left as a free parameter. With the new high-statistics data, the sep-
aration can possibly be made without that assumption.





Chapter 3

COMPASS Data Analysis for the
Pion Polarisability

3.1 The COMPASS spectrometer setup 2009

The principle of the measurement is depicted in Fig. 3.1, and the full apparatus is pre-
sented in Fig. 3.2. The incoming 190 GeV hadron beam traverses two CEDAR (ChErenkov
Differential counter with Achromatic Ring focus) detectors that identify kaons employ-
ing the method developed by the author and explained in the COMPASS note repro-
duced in C.2.

Before the beam particles hit a solid-state target, their trajectories are accurately
measured by the silicon beam telescope, consisting of three stations as described in
Chap. 5. The targets are mounted inside the recoil proton detector (RPD), which was
used for the prior measurements of diffractive reactions, mainly with the liquid hydro-
gen target, cf. Fig. 5.1. The RPD has been kept in place mainly for the practical reason

ECAL1

CEDARs

SM1 SM2
ECAL2

silicon stations

C/Ni/W targets

2009 RPD

Figure 3.1: Principle of the measurement of the reaction π−Z → Zπ−γ with COMPASS.
The hadron beam enters from the left.

57
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of providing the holding structure for the required equipment in the target region, how-
ever, it was also read out during the Primakoff data taking and it was shown in the analy-
sis that a small part of the Primakoff events also feature signals, mainly fromδ electrons.

Immediately downstream of the target, two silicon stations are placed in the conical
cryostat, which is adapted to the confined space between the opening acceptance of
the spectrometer and the photomultipliers of the RPD. In this configuration, the outgo-
ing particle trajectories are measured with a precision in the range of 30µrad, and ac-
cordingly the scattering angles measured with a precision that is limited by the multiple
scattering in the target and, much thinner but also unavoidable, the detector material.

For the scattered pion, the high-resolution tracking capacity of the spectrometer
is employed, determining the charged-particle momenta with a relative precision of
about 10−4 over a wide range 1-180 GeV. This is achieved with about 200 tracking planes
through the two stages of the magnetic spectrometer, the first magnet, SM1, featuring a
bending power of about 1 Tm, and the second, SM2, about 4 Tm.

The produced real photon is detected in the electromagnetic calorimeter ECAL2, sit-
uated about 32 meters downstream of the target. For the Primakoff reactions of interest
here, the angles of all photons are so small that they are detected only in this second
stage. For the competing channels involving neutral pions, however, it is important to
have also the imformation of the first stage, ECAL1, 18 m downstream of the target, in
order to cover the largest part of the π0 decay kinematics.

The signals of ECAL2 are the core input of the employed digital trigger system, con-
structed by the Munich COMPASS group under the supervision of I. Konorov [41, 47].
Since 2009, the energy sum in the relevant central region of the calorimeter can be deter-
mined; when they exceed the programmable threshold, a trigger is formed. This causes
a kinematic cut at about 60 GeV, present in all analysis plots in this chapter.

The granularity of ECAL2, consisting of cells with an edge size of about 4× 4 cm2

perpendicular to the incoming beam direction, matches the size of the electromagnetic
showers such that always several cells are hit (for energies above 10 GeV). By ampli-
tude weighting, spatial resolutions in the range of 1 mm are achievable. This required
an enormous effort taken by the Munich group, starting from the original finding and
description of the problem during the years 2006-2009 [26], and continued with a task
force of four people working intensively to solve the issue during 2010-2011 [47, 53, 62].
The achieved resolution leads to angular uncertainties for the photon in the same range
as that for the charged pion, such that from combining the two informations the mo-
mentum balance can be calculated, as explained further in Sec. 3.2.1.

The signals from the RICH1 detector, allowing for particle identification π/K /p in
the momentum range below 50 GeV/c , have not yet been employed in the present anal-
ysis.
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Figure 3.2: The COMPASS setup of 2009. The CEDAR detectors, placed about 20 m up-
stream of the target region, are not within the selected region. Figures from [24].
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A peculiarity of the COMPASS setup is the possibility to change over in a short time,
within an hour, from pion to muon beam. This is exhaustively used in this measure-
ment, since practically the same measurement as the one of interest, π−Ni→ Niπ−γ,
can be done with muons, µ−Ni→Niµ−γ. The advantage of the muon process is that it
is completely descibed by QED and no structure effects are expected, so all deviations
from the theoretical expectation appearing in the analysis of the experimental data are,
at least with very high probability, due to apparative effects or missing corrections.

All apparative effects concerning resolution, acceptance and efficiency are taken
into account in a dedicated Monte Carlo simulation on the base of the CERN GEANT
program package, described in detail in [53]. Adapting this description of the apparatus
was in fact the main challenge of the analysis, aiming at an unprecedented precision for
a COMPASS measurement.

3.2 Kinematic distributions

3.2.1 Longitudinal and transverse components of ~q

The resolution of the transverse component of the momentum transferσ(q⊥)≈ 10 MeV/c ,
as already presented in Fig. 1.1, is a remarkable value given that the outgoing particles
have momenta of typically 100 GeV/c .

It is achieved from balancing the momentum vectors of the two outgoing particles
and the incoming beam particle. Since the energy balance is limited to a level of about
1.5 % given by the shower fluctuations in the calorimetric measurement of the photon,
an experimental artifice is employed, decoupling transverse and longitudinal compo-
nents in the momentum balance which are differently affected by the energetic uncer-
tainty. First, energetically exclusive events are selected within the achievable resolution.
Their exclusivity is studied by the shape of the exclusivity peak (see Sec. 3.2.3 below) and
by investigating the contribution of background events, which stems mainly from reac-
tions in which at least one π0 is produced. Then, for the selected events, exclusivity is
assumed, and the momenta are varied within the uncertainty of the measurement such
that the reaction is energetically exclusive. Since the direction of the particles is known
to much better precision than their modulus, this effectively amounts to a rescaling of
the length of the momentum vectors. After this procedure, it is mainly the transverse
component of q which remains and gives rise to the experimental distribution as de-
picted in Figs. 1.1 and 3.6.
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Figure 3.3: Distribution of the pion scattering angle versus the position of the interac-
tion vertex, both determined from the trajectories of the incoming and the scattered
charged track. Left: Primakoff events after kinematic cuts. Right: The signals due to
incoming kaons are efficiently suppressed using the CEDAR information. In both plots,
the cut on the events from the target is indicated.

3.2.2 Spatial and angular resolution

The reconstruction of the interaction point is presented in Fig. 3.3. The coordinate z
along the incoming beam direction is the most difficult one to determine, as the two
tracks, the vertex is reconstructed from, are collinear within a few mrad, and the reso-
lution depends strongly on the scattering angle, as can be inferred from the figure. Due
to the angular uncertainty caused by multiple scattering, a cut on the transverse mo-
mentum pT > 40 MeV/c is applied, leading to a lower limit of the scattering angles of
0.3 mrad for the highest-energetic pions with 130 GeV/c .

On the left plot in Fig. 3.3, the influence of the kaon component in the beam is ap-
parent. Their free decay K − → π−π0 appears all along the beam line, also in the tar-
get region and independent of traversed material. The kaons enter the selection of the
πZ → Zπγ reaction, if one of the decay photons is lost, too low-energetic or merged in
one cluster with the other photon. Due to the decay kinematics and the minimal en-
ergy of the photon due to the trigger selection, the respective pion decay angles lie in
a band between 2 and 4 mrad. They inevitably overlap with the reactions of interest
when accidentially decaying near the target, since their decay is free of recoil, and ac-
cordingly features a spike near zero in momentum transfer, just as the Primakoff events.
This emphasizes the importance to identify their contribution. This is realized with high
efficiency and high purity, i.e. at very little loss of true pion-induced signals, employing
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Figure 3.4: Left plot: Primakoff exclusivity signal for pions. The height of the simulated
spectrum is scaled to the real data statistics, visualizing the good agreement of the peak
width. The applied exclusivity cut is indicated. The right plot compares the photon
energy spectrum of the muon control measurement with its simulation.

the CEDAR signals as presented in C.2. The effect of this suppression is shown in the
right plot of Fig. 3.3. The inefficiency of this procedure, i.e. the fraction of pions lost due
to the CEDAR cut , is less than 2%, and the impurity, i.e. the fraction of kaons remaining
in the sample, is less than 4%. The latter number is to be multiplied with the fraction of
kaons in the beam of 2.5%, such that the remainder of kaons is completely negligible.

3.2.3 Exclusivity peak and photon energy spectrum

The vertices formed by an incoming pion and a scattered charged particle track and
found within the cuts displayed in Fig. 3.3, are combined with the highest-energetic
cluster in ECAL2 that appeared coincidently with the two charged-particle tracks. The
distributio of their energy balance ∆E = Ebeam − Eπ − Eγ is displayed in Fig. 3.4. The
height of the simulated spectrum is scaled to the real data statistics in order to visualize
the good agreement of the peak width for both distributions. A significant background
contribution is visible as a tail towards lower energies, steming mainly from the K − de-
cay contribution, which is not subtracted in this distribution. Fig. 3.5 clarifies the effect.
Since only one photon is considered in the energy balance, the kinematics for kaon de-
cay K − → π−π0 → π−γγ is not complete and features a tail towards lower energy. This
is correlated with a shift in the invariant mass of the outgoing pion-photon system mπγ

with respect to the kaon mass mK − ≈ 0.493 GeV/c 2.
The same effect appears for the contribution from the ρ(770) resonance, produced
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Figure 3.5: Exclusivity versus
p

s = mπγ. The background contributions due to the
ρ(770) resonance, as well as from the free decay of beam kaons, is visible, as discussed
in the text.

in reactions π−Ni → Niπ−π0, eventually featuring another, low-energetic π0 such that
strong-interaction production is not suppressed by G -parity, cf. Ch. 4. While the domi-
nant part of the background is removed by constraining the analysis on mπγ < 0.5 GeV/c 2,
a tail into this region of interest can not be suppressed by cuts on the vertex position or
the CEDAR signal. In order to account for this background, an elaborate description of it
has been developed following an idea by the author, making use of the events where the
two photons are observed and the neutral pion(s) reconstructed. For those events, the
π0 decay kinematics is randomized according to its expected theoretical angular distri-
bution and used in this modified form on the Monte Carlo input level. By this method,
the background contribution to regions, where the background process overlaps with
the pocess under investigation and cannot be distinguished from it in this experiment,
is determined. The respective spectra have not yet been available at the time of writing
up this document.

3.2.4 Reconstructed momentum transfer distribution

The distribution of the momentum transfer q for the previously discussed event selec-
tion is shown in Fig. 3.6, comparing pion and muon data. The shape of the Primakoff
peak at low q is the same in both cases. For the muon data, the simulation reproduces
exactly the shape of the spectrum [53], prodived the Ni form factor is taken into account
(not shown here).

The correct way to handle the diffractive contribution, i.e. the contribution via the
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Figure 3.6: Primakoff peak in q 2 and q (named with capital letters in the plots, cf. the
discussion in Ch. 2), for the reactions π−Ni → Niπ−γ and µ−Ni → Niµ−γ. The dis-
tribution of q 2 (left plot, observe the logarithmic scale) amplifies the strong peaking
as q 2 → 0. The q distribution (right plot) displays the details of the Primakoff peak at
q < 0.03 GeV/c , which matches precisely for pions and muons. In case of the pions,
at higher q the additional strong-interaction contribution becomes dominant, showing
the typical diffractive pattern.

strong interaction which is seen clearly in the q-distribution, is to include its full de-
scription as given in Sec. 2.4 in the reference cross-section of the simulation.. This
takes the overlap of the electromagnetic and the strong-interaction part correctly into
account, also concerning interference effects. While this is prepared in terms of the cal-
culus, the implementation in the Monte Carlo simulation is still on the way.

Momentarily, the diffractive contribution is treated by extrapolating its shape (by a
model e.g. linear in q 2 or quadratic in q ) from the region where it dominates (e.g. 0.003-
0.007 GeV2/c 2) under the Primakoff peak. The estimated contribution is then subtracted
separately in each xγ bin.

So for the following step, the q interval is chosen such that, on the one side, resolu-
tion effects are not dominant and their handling by the simulation can be fully trusted,
and on the other side the strong-interaction contribution is not too large to introduce
a significant uncertainty. This has been shown to be the case [53] for cut-off values
qmax =0.0008–0.002 GeV2/c 2.
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Figure 3.7: Polarisability signal for the muon control sample (left plot) and for the pion
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statistics such that the shown fit approaches 1 for xγ → 0. In the simulation, the QED
radiative corrections as described in section 2.5 have been taken into account.

3.3 Determination of the pion polarisability

With the data selected as described in the previous section, the xγ distribution is com-
pared to the shape expected for a structureless spin-0 particle in case of the pion data,
and for a structureless spin- 1

2
particle in case of the muon control data.

For the muons, fitting a hypothetical “muon polarisability” to the observed spec-
trum, results in αfalse

µ = 0.64± 0.52 as given in Fig. 3.7. This is the correct value for the
muon, almost within the 1-σ uncertainty of 0.52, and is taken as uncertainty estimate
for sources common to pions and muons, e.g. tracking and the photon’s calorimetry.

For the pion, the polarisability determined from the COMPASS 2009 data is, cf. Fig. 3.7,

απ = 1.9 ± 0.7stat ± 0.8syst ×10−4 fm3 (3.1)

in the approximation απ+βπ = 0 described along with Eq. 2.67, and with a systematic
error estimate that is summarized in Tab. 3.1 and described in detail in reference [53].

3.3.1 Discussion of the polarisability result

While the COMPASS result (3.1) is still preliminary, its major impact on the scientific
view on the pion polarisability includes the following points.
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uncertainty source
estimated magnitude
CL= 68 % [10−4 fm3]

tracking 0.6
radiative corrections 0.3
background subtraction in Q 0.4
pion-electron scattering 0.2

quadratic sum 0.8

Table 3.1: Systematic uncertainties estimated on 68 % confidence level

• The COMPASS result is in major tension with the other experimental findings,
especially with the dedicated determinations [4, 11] as depicted in Fig. 3.8. About
the reasons for this deviation can only be speculated at this point.

• The COMPASS result decreases the tension with respect to the theoretical expecta-
tion from ChPT dramatically, to the point that agreement within the uncertainties
of both theory and experiment is achieved.

• Given this long-lasting riddle on the pion polarisability appears to be solved, it is
desirable to further push the limit of experimental knowledge on this observable
to the level where is can help to refine the theoretical approach within ChPT, or
even beyond.
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Chapter 4

Primakoff Pion Production

4.1 Channels accessible at COMPASS

The data presented in the previous chapter were recorded in 2009 predominantly for
the pion polarisability measurement, but they contain also a major contribution from
reactions with neutral pions in the final state, since the calorimetric signals of their de-
cay photons are also accepted by the digital trigger described in 3.1. They partly stem
from Primakoff reactions, identified with a similar signature in the momentum transfer
spectrum as it appears for the bremsstrahlung process treated in the previous chapters.
A preliminary analysis of those channels, done by the author in March 2011, had indi-
cated that both channels involving neutral pions listed in 1.4 are indeed present in the
data and worth to be analysed, cf. Fig. 4.1.

4.1.1 Single-π0 production

The single-π0 production π−γ→ π−π0 shows a strong contribution of the ρ(770) reso-
nance in the invariant mass mπ−π0 spectrum (cf. Fig. 4.1, left plot), which is actually also
visible in the single-photon spectra, cf. Fig. 3.5, when one of the decay photons is lost.

On the low-mass side of the ρ(770) contribution, a tail is present in the spectrum
that extends down to the kinematic threshold which is not driven by a resonant be-
haviour but by the chiral anomaly. This effect allows the three pions a point-coupling to
the photon via the relativistic Levi-Civita-Tensor εµναβ and it defines the respective cou-
pling constant F3π. It has been measured in the same Serpukhov experiment [10] that
has measured the pion polarisability via the Primakoff effect [11], resulting in a value
for F3π with a relative error of about 10%. With the COMPASS data, the results of this

67
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Figure 4.1: The single (left plot) and double (right plot) π0 Primakoff production chan-
nels observed in a preliminary analysis of 2009 COMPASS data. Since e.g. calibrations
were not final, only a fraction of the actually obtainable statistics is shown here. Also,
the method to identify the beam kaons was not yet finalized, therefore a fraction of free
kaon decays K −→π−π0 is left in the sample dubbed “CED-π”. The red “CED-K ” curves
show the kaon events identified with CEDAR analysis software in a preliminary state.

measurement can be checked, along with a list of further work, also in the framework of
ChPT, for this quantity [9, 39, 50].

4.1.2 Two-π0 production

Furthermore, the data contain a large number of events from the exclusive reaction
π−Ni → Niπ−π0π0, also depicted in Fig. 4.1. While the transition of the incoming π−

into a pair π−π0 can not be mediated by Pomeron exchange, leading to a comparatively
clean Primakoff event sample in that case, the transition into π−π0π0 is perfectly al-
lowed by G -parity conservation and is thus mediated also by Pomeron exchange. Its
treatment is analogous to the case of three charged pions in the final state as presented
in the next section.

4.2 Primakoff Two-Pion Production

In the year 2004, the first attempt was taken to measure Primakoff reactions at COM-
PASS. As it was found out afterwards, the electromagnetic calorimetry was not yet in a
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Figure 4.2: Kinematic distributions for the π−Pb→ Pbπ−π−π+ reaction from the 2004
run. In the momentum transfer distribution (left plot, observe the logarithmic y -scale),
the regions below 0.001 GeV2/c 2, where the Primakoff effect contributes, and the region
up to 0.01 GeV2/c 2, dominated by Pomeron exchange, are indicated by the red lines. In
the mass spectrum (right plot), the peak due to the free kaon decay is visible.

status to deliver reliable physics data, in contrast to the 2009 measurement for which
it has been proven now to be the case on a unprecedented level of precision, and pre-
sented in the previous chapter.

However, in 2004, in parallel to the calorimetric trigger, data were taken with an ad-
ditional trigger, consisting of a scintillator disk installed immediately downstream of the
3 mm thick lead target. The threshold on the amplitude of the scintillating light was ad-
justed such that a trigger was delivered if two or more charged tracks cross the disk, in
coincidence with the signals of the incoming beam particle that are taken with a beam
counter, which was installed upstream of the target. This so-called multiplicity counter
turned out to work as foreseen, and it delivered data that lead already to some publica-
tions [2, 8], and still shows the potential for more physics output, as shall be discussed
in the following.

In the analysis for the reaction to be discussed in the following, π−Pb→ Pbπ−π−π+,
events are selected where two negatively and one positively charged track form, within
the uncertainty of their spatial resolution, an interaction point with the incoming beam
trajectory in the target volume. Energetic exclusivity was ensured with a cut similar
to what has been presented for the Primakoff Compton reaction in Sec. 3.4. Since no
particle identification was available for these data, it is assumed in the following that all
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particles are pions.
In Fig. 4.2, kinematic distributions for these events are presented. The momentum

transfer, reconstructed from the incoming and the three outgoing pions, shows the clear
exponential drop-off in the range below 0.01 GeV2/c 2, which is associated with Pomeron
exchange. In the adjacent spectrum, also inelastic processes on the lead nucleus play a
role and make the interpretation of the spectrum more difficult.

Here and in the following, the momentum transfer to the nucleus is named t , and
its modulus, reduced by its minimum value, is abbreviated t ′ = |t |−|t |min. This quantity
has been denoted q 2 (= t of now) in the previous chapters, as it is done in the literature
on structure physics more generally. The usage of t ′ is common practice in the field of
diffractive reactions, and for this reason adopted in the present context. It is somewhat
in tension with the usage of t as Mandelstam variable in the πγ subsystem, as it has
been done in the previous chapters in tune with the notation in the literature relevant
there.

4.2.1 Partial-wave analysis

The understanding of the mass spectrum depicted in Fig. 4.2 requires the framework
of partial wave analysis (PWA), which has been employed and shall be quoted in the
following, but is too complex to be introduced in a satisfactory manner here. The reader
is referred to the carefully written text book of M. Perl [56] for general aspects, and to the
publications by the author [2, 8] for the concrete realization in the present work.

The guiding principle is that the intermediate states, into which the pion is excited
through the interaction, are mesonic resonances with well-defined quantum numbers,
determined by spin J , parity P and charge-conjugation parity C (for the latter in case of
charged resonances, the C -parity of the neutral partner in their constituent-quark mul-
tiplett). In addition to those, two more quantum numbers are specified for some con-
sidered transition: First, the projection M of the resonance spin J onto the incoming-
particle axis (in the CM of the resonance). Secondly, the reflectivity ε of the transition is
determined. It expresses, using the parity of the incoming and outgoing system and
the involved orbital angular momentum, whether the exchange particle has natural
(J P = 0+, 1−, 2+, . . . ) or unnatural (0−, 1+, 2−, . . . ) quantum numbers.

Next, it is assumed that the decay of the resonance R into the observed three pions
goes through some “isobar” configuration, meaning that the decay proceeds in fact in
two steps of two-body decays. In the first step, the resonance decays into a bachelor
pion and a two-pion isobar resonance r , i.e. R → πr , where r , for the mass range of
interest here, is typically a ρ(770) or an f 2(1270). In the second step, the isobar decays
into two pions, r → ππ, and the final state is reached. A specific spin configuration
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in such a resonance decay is thus given by J PC M εrπL, where L determines the orbital
angular momentum between r and the bachelor π in the first decay step.

All such excitations to existing resonances that decay into three pions, give rise to
an amplitude that contributes to the total transition probability. This probability is
obtained by squaring the total amplitude, to which the single amplitudes have been
summed up.

The key feature of PWA is that due to their quantum numbers, the contributing res-
onance decays have different angular patterns in the 5-dimensional decay volume. The
correlations between the variables is sufficiently high, such that even with only a lim-
ited knowledge of the three-pion distribution, the contributing amplitudes can be con-
cluded without ambiguity. Additionally, due to the squaring of the amplitude sum, the
respective interference terms must be present in the three-pion distribution.

The interference terms are useful in a two-fold way: First, they can serve to identify
small-resonance contributions. If an amplitude is small with respect to another, over-
lapping contribution, then the interference term is possibly much larger and can be
identified already at lower statistics. Secondly, at this point it becomes relevant that a
resonance is described on the quantum-mechanical level by a complex phase, running
from 0 (on the low-energetic side of the resonance) through π (on top of the resonance)
and approaching 2π when the exciting energy is much higher than the resonance en-
ergy. This phase determines the size and the sign of the interference term, or in turn,
from knowing the interference term, the phase motion can be concluded.

4.2.2 Main resonances in the π−π−π+ channel

The PWA of the three-pion spectrum of Fig. 4.2 is presented along with Figs. 4.3 and 4.4.
The dominant contributions can be recognized already by eye in the mass spectrum of

Fig. 4.2, once one is pointed to their position and strength. Firstly, they are the a 1(1260)
and the a 2(1320), and their decay amplitudes in 1++0+ρπS and 2++1+ρπD, respectively,
are presented in Fig. 4.3 (upper-left and middle-left plot). The side bump at higher en-
ergy of the three-pion mass spectrum is due to the π2(1670) resonance. Its main decay
amplitude 2−+(0/1)+ f 2πS is shown in Fig. 4.4 (upper and middle left plot). The two plots
for the π2(1670) represent the two spin orientations M = 0 and M = 1 of the resonance.

In all cases, the contribution to the mass spectrum is shown for two ranges of mo-
mentum transfer: In red the contribution for extremely low values t ′ < 0.0005, which is
even only half of what is usually considered the Primakoff range, but anyway referred to
in the following as the Primakoff region. And in black the contribution for the disjunct
window determined by 0.0015< t ′ < 0.01, called in the following the diffractive region.
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Figure 4.3: Interference between the a 1 and a 2 resonances for different ranges of mo-
mentum transfer.
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Figure 4.4: Interference between the two spin components M = 0 and M = 1 of the π2

resonance for different ranges of momentum transfer.
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In the lower-left plot of the two figures, the phase motion extracted from the in-
terference term between the two resonances is shown. In the case of the a 1 and the
a 2 resonances, the full resonance behaviour of the a 2 can be recognized on the high-
energetic shoulder of the a 1, where the a 1 exhibits only little phase motion. Looking at
the relative phase motion between the two spin projections of theπ2, it is demonstrated
that, indeed, the same resonance decays in two ways: the phase motion between the
two contributions does not change at all with mass.

Comparing the relative strengths present for the two t ′ ranges in the various res-
onances, indicates already that they must be of quite different origin: While the a 2

strength in the Primakoff region is at the 70% level of the diffractive region, for the a 1

it amounts to only 40%. The reason for this behaviour is discussed in the next section.

4.2.3 Radiative coupling of the a 2(1320) and of the π2(1670)

For understanding better the different strengths observed in the two t ′ windows, the
PWA is repeated in thin t ′ slices, which is presented in Figs. 4.3 and 4.4 on their right-
hand columns. Doing so, it is recognized that the increased strength of the a 2 decay
amplitude 2++1+ρπD at smallest t ′ belongs to a sharp rise at the smallest measured t ′

values.
This is at first sight surprising. For Pomeron exchange, one expects on theoretical

grounds (see e.g. [56]) that the amplitude exhibits a t ′-dependence ∝ t ′(M/2) exp(−b t ′)
with the slope parameter b ≈ 400 (GeV/c )−2 being determined by the diffractive radius
of the target Pb nucleus. This value of b describes indeed very well the slope for the
1++0+ρπS and 2−+0+ f 2πS partial waves (displayed in the upper right plots in the fig-
ures). Following this prescription, one would expect for the M = 1 cases (middle rows of
in figures) a ∝ t ′ exp(−b t ′) behaviour, implying that it vanishes at smallest momentum
transfer t ′→ 0, rises smoothly to a maximum at t ′max = b−1 ≈ 0.0025 and then also falls
off exponentially.

However, the peaking happens on a completely different scale, in case of the a 2 M =
1 component more than a factor 10 narrower. What is observed here is the Primakoff
effect, being responsible for the narrow peaking near t ′ = 0. The fact that the exchange
particle is an almost real photon necessitates that it shows up with M = 1, since the
photon, with helicity +1 oder -1, collides with a (spin-0) pion to form the resonance.

For the a 2, the coupling a 2←πγ has in fact already been observed in a similar mea-
surement via the Primakoff effect by the SELEX collaboration [52].

For theπ2, the observation of its radiative coupling is a new observation by the COM-
PASS collaboration, and the publication, along with the figures presented here, is envis-
aged. For extracting the actual value of the radiative width, the obtained strength must
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Figure 4.5: Interference between the π2 components and the a 1: The M = 1 component
(left plot) features a phase motion due to photon exchange, which is absent in the M = 0
case (right plot).

still be normalized, which is planned to be done in a same way as the absolute normal-
ization has been obtained in [2], using beam kaon decays K −→ π−π−π+, appearing as
small spike in Fig. 4.2. The fact that the π2 features a radiative width does not only show
up when it is interfering with its own M = 0 strong-interaction component, but also in
interference with the a 1 resonance, cf. Fig. 4.5.

4.2.4 Coulomb-nuclear interference

A novel aspect in the observations discussed so far is the exact study of the phase mo-
tions.

On the one hand, there is an overall shift observed when comparing the phase mo-
tion in the two t ′ regions, as it is done in the lower-left plots in Figs. 4.3 and 4.4: The
(red) Primakoff-region data show exactly the same resonance behaviour as the (black)
diffractive-region data (that is, one looks at the same object), they are just shifted by
about 90 degrees. This is exactly what should be observed, given that the electromag-
netic interaction is a real-amplitude scattering process, while the strong interaction
stems from an imaginary-amplitude absorptive process, cf. Eq. 2.94.

This analysis can be done, with the COMPASS data for the first time, in much greater
detail using thin t ′ slices, cf. the lower-right plots in Figs. 4.3 and 4.4. The phase shift
starts at angles bigger than 90 degrees, in case of the a 2 rather 120 degrees, at t ′ = 0,
and then falls off to 0 with larger t ′. It is anticipated that this interference behaviour
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Figure 4.6: No evidence for a Primakoff 1−+ signal.

can be modeled by the methods presented in Sec. 2.4. On the one hand, the Coulomb
phase steming from multiple-photon exchange is relevant here, but on the other hand,
those data can be used to study the details of the formation of the strong-interaction
potential seen by the pion excitation process, i.e. getting a more detailed understanding
of the Pomeron.

4.2.5 Other radiative couplings

Along the same line, the COMPASS data were searched for more indications for light-
meson radiative couplings. There is no Primakoff behaviour visible anywhere for the a 1

signal, so it is inferred that there is no significant radiative coupling of the a 1, which is
at variance with the findings in [71].

Another study has been done for the spin-exotic 1−+1+ρπP wave, presented in Fig. 4.6.
It shows no evidence for a radiative coupling of a π1(1600), which comes a little as sur-
prise, given that such a state was reported to couple to ρπ in [8].

4.2.6 Reflectivity doubling

An important effect, when using PWA in the extreme forward kinematics of the Pri-
makoff processes, is caused by the limited resolution on the particle’s angles. At some
point, the direction of the momentum transfer can not be safely reconstructed anymore,
and it may take on some arbitrary direction, in case the multiple scattering effect is
larger than the transverse momentum transfer.



4.2. PRIMAKOFF TWO-PION PRODUCTION 77

)2/c2Momentum Transfer t' (GeV
0 1 2 3 4 5 6 7 8 9 10

-310×

)2
/c2

 G
eV

-4
In

te
ns

ity
 / 

(1
0

0.0

0.5

1.0

1.5

2.0

2.5

310×
 Dπρ +1++2 COMPASS 2004

Pb+π-π-π →Pb -π
2 < 1.38 GeV/cπ31.26 < m

preliminary

)2/c2Momentum Transfer t' (GeV
0 1 2 3 4 5 6 7 8 9 10

-310×

)2
/c2

 G
eV

-4
In

te
ns

ity
 / 

(1
0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

310×
 Dπρ -1++2 COMPASS 2004

Pb+π-π-π →Pb -π
2 < 1.38 GeV/cπ31.26 < m

preliminary

Figure 4.7: Appearence of negative reflectivity at very low momentum transfers.

For M=0-components, this poses not a problem, since they have noφ dependence,
however for M = 1 the PWA algorithm relies on a correct determination of the recoil di-
rection. It was shown in a specific Monte Carlo simulation by Dima Ryabchikov (Protvino
/ TU München), that this effect leads to a wrong determination of the reflectivity. This
means, that even if in the experiment only positive-reflectivity components appeared,
they give rise to intensities in both reflectivities in the PWA. This is demonstrated in
Fig. 4.7 for the case of the a 2 Primakoff signal. It is clearly displayed that the effect ap-
pears only at very small t ′, above 0.002 there is no negative-reflectivity intensity visible
at all.

It is of great importance to take this effect into account when the radiative widths are
determined. The mentioned Monte Carlo study has shown that this is correctly done by
summing up the contributions found in the two reflectivities.

4.2.7 Cross-sections for π−γ→π−π−π+

The Primakoff reaction π−γ→ π−π−π+, that has been examined in the previous chap-
ters in terms of resonance couplings, is also of interest from the ChPT point of view,
since for this process, at its kinematic threshold a firm prediction is possible at tree level,
and was given in [44]. N. Kaiser has also given the 1-loop corrections for this process
in [42].

The region to be examined is displayed in Fig. 4.2, visible in the three-pion mass
distribution as the lower-energetic foot around the kaon peak. Technically, the determi-
nation of this chiral contribution was done be implementing the fully-differential form
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of the cross-section,
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as an own partial wave in the framework of the PWA software, as described in [2].
Integrating the 4-momentum conserving δ function in the phase space element, us-

ing rotational symmetry around the z axis, and carrying out the square, the form pub-
lished in [44] is obtained,
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 (4.2)

The procedure has been extended by including the chiral loops [42] as well as a pre-
liminary version of non-resonant πρ(770) coupling and other interesting extensions.
This work is still to be finalized, but indications have already be seen that a much bigger
fraction of the spectrum can be understood following this approach, than has been ex-
plored by now [2].

With this, I close the journey through the field of Primakoff reactions. It has been
started on the will to solve the riddle around the pion polarisability. On the way, it was
found the the experimental technique is much richer, and lends itself for the study of
strong interaction in much more and exciting aspects.



Chapter 5

Silicon Microstrip Detectors
for COMPASS

The silicon microstrip detectors for the COMPASS experiment have been developed in
a group at the chair of Prof. Stephan Paul (TU München), whose coordination the au-
thor of the present work has taken over in 2001. The development profited from that
for another experiment (HERA-B), especially in terms of taking over the silicon sensors
when they were not needed for the original purpose anymore, and also from the large
experience that members of the team, first to mention I. Konorov, have brought with
them from employing silicon detectors in the WA89 experiment at CERN.

A complete characterization of these detectors is not given here, but is found e.g. in
the respective section of publication [1] (and upcoming [24]) which is also reproduced
in the Appendix of the present work, and in all detail in various works of the involved
students [12,14,25,26,30,36,37,40,49,61,65,68,72]. It shall only be emphasized that the
employed detectors feature a double-sided readout, which minimizes the material that
the particles have to cross, and also allows the usage of amplitude correlations between
the signals of the two sides in the analysis [49].

5.1 Cooling the COMPASS silicon detectors

The original proposal of the COMPASS experiment foresaw that the employed silicon
microstrip detectors are cooled to 130 Kelvin and make use of the “Lazarus effect”, refer-
ring to a “revival” of heavily irradiated silicon detectors at cryogenic temperatures [16],
in order to cope with the expected fluences and the related radiation damage. It was
found out much later, that the radiation impact especially of high-energetic pions is

79
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Figure 5.1: Target region in 2009. The silicon detectors are all operated in cryogenic
mode, requiring cryostats that provide an insulation vacuum on the level of 10−5 mbar.
This is specifically difficult to achieve in the confined space directly downstream of the
target, where the cryostat has precisely the conical opening of the apparatus acceptance
and the available space in the recoil proton detector.

not as high as it was previously assumed [37, 68], and also that it is of advantage for
the whole experiment to employ a different beam optics than originally foreseen. The
hadron beam is now not focused in the target region, but rather at the position of ECAL2
(cf. Fig. 3.2), where the required beam hole is reduced to a minimal size in order to cover
as much of the phase space for high-energetic photons as possible. This is, obviously,
a reasoning unrelated to the silicon detectors, but has the effect of a widened beam
profile in the target region, reducing the local radiation damage by about one order of
magnitude.

Thus, the original reasons for cooling were weakened with time. However, its en-
visaged and finally successful realisation and installation in the setup, as sketched in
Fig. 5.1, turned out to be of great use in other ways.

Firstly, the temperature stabilization made the silicon detectors robust against the
annual temperature variations present in the experimental area, which is situated above
ground and follows the meteorological conditions. One of the influences of temperature
variations is the moving of detectors due to thermal expansion of their support struc-
tures. This has been found to concern, for the 2004 data, also the silicon detectors with
daily variations on the level up to 50µm, about an order of magnitude larger than their
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Figure 5.2: Signal amplitudes for warm (black histograms) and cold (red histograms)
detectors, from [37]. Signals from the same silicon sensor, named “SI1.12”, are shown in
all histograms. The detector was employed in the position called SI04XY during the year
2008 in warm operation, and in the position SI05UV during 2009 in cold operation.

spatial resolution. Following ideas by the author, a first version of a “run-by-run” align-
ment (i.e. position correction for the detectors on the time scale of a few hours) was
implemented [26], which is by now integrated in the alignment package of COMPASS as
established procedure for the data taking with a hadron beam.

Secondly, the cooling has a benficial effect on the signal-to-noise ratio, as depicted
in Fig. 5.2, which increases by about 20%, as discussed in [37]. Part of this increase is due
to a different behavior of the employed APV readout ASIC. Its operation was found to be
most stable when the detector is cooled to 200 Kelvin, and since no radiation damage is
observed for the cold detectors yet, there is no need to reach the originally planned 130
Kelvin, where is was observed that the APV chips tend to become unstable [12] .

The increase in amplitude translates to an enhancement of the spatial and time res-
olution on the same relative level, and typical values of 7µm spatial and 1.5 ns time res-
olutions are achieved.

5.2 Future developments

As an example for possible further developments, a promising analysis of the silicon
detector signals is shown in Fig. 5.3. The signal amplitudes in the silicon detectors are
read out with a high precision, as can be inferred from Fig. 5.2, mainly for the purpose of
enhancing the spatial resolution by charge weighting, using the relative height of neigh-
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Figure 5.3: Left plot: The quantity Π, defined in Eq. 5.1, for the four signals of the detec-
tor planes in the conical cryostat measuring the horizontal coordinate (named “XU”) is
shown versus the momentum of the respective trajectory. The band above zero is as-
sociated with double-tracks, as explained in the text. The right plot shows the strong
correlation observed between the signals from the “XU” detectors and those from the
vertical “YV” projections.

boring strips. The amplitudes belonging to a particle trajectory combined, are a mea-
sure of the energy loss, which is approximately Landau-distributed.

The amplitude informations a i for a particle trajectory of the four silicon detectors
in the concial cryostat (see Fig. 5.1) can be combined using a specially adapted transfor-
mation, where only events are selected where all amplitudes are bigger than the most
probable amplitude, a i > â i ,

Π =
∑

i

log

�

a i − â i

â i

�

requiring all a i > â i (5.1)

in order to make visible when all amplitudes are commonly above a certain threshold.
Formula 5.1 is constructed such that if all amplitudes are more than twice the most
probable value a i > 2â i , its value is above zero.

This offers a novel way to recognize so-called double-tracks, where two particles are
so close to each other in space, that they can not be separated by the silicon detectors.
This happens especially for the electron-positron pairs emerging from the conversion
of a high-energetic photon, γZ → Z e+e−, since the opening angle between the e+ and
the e− is extremely small. The quantity Π allows for a clean separation of such double-
tracks, requiring Π> 0.
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Especially channels with several photons in the final state suffer from loss of some
of the photons due to conversion. The approach presented here has the potential to
recover a part of them.
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Summary
As the lightest particle of the strong force, the pion plays a central role in the field of strong
interactions, and understanding its properties is of prime relevance for understanding the
strong interaction in general.

The low-energy behaviour of pions is of particular interest. Although the quark-gluon
substructure and their quantum chromodynamics is not apparent then, this specific in-
ner structure causes the presence of approximate symmetries in pion-pion interactions
and in pion decays, which gives rise to the systematic description of processes involv-
ing pions in terms of few low-energy constants. Specifically, the chiral symmetry and its
spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads
to firm predictions for low-energy properties of the pion. To those belong the electro-
magnetic polarisabilities of the pion, describing the leading-order structure effect in pion
Compton scattering.

The research presented in this work is concerned with the interaction of pions and
photons, including pion Compton scattering, and also the production of neutral and
charged pions in pion-photon collisions. Common to all investigated processes is, that
the collision energy is in the range below a few pion masses. This region is reigned by the
chiral dynamics as said before. For all processes, predictions have been available, or were
obtained along this work.

From the year 2000 on, the COMPASS experiment at CERN has been prepared in sev-
eral steps for precision measurements of such processes. The pion-photon interaction is
studied through the Primakoff effect by scattering high-energetic pions off the quasi-real
photons of a nuclear Coulomb field. The principal characteristic of Primakoff events is
extremely small momentum transfer to the target nucleus, below 10−3 GeV2/c 2. Their re-
construction requires detectors for the charged and neutral particles at the limit of the
physical feasibility. For high-precision charged-particle tracking, silicon microstrip de-
tectors were built, and their operation continuously enhanced. Furthermore, a thorough
understanding of QED effects is mandatory in order to really get a handle on the strong-
interaction aspect. A good part of the present work was dedicated to solve the open QED
issues for the measurements.

From data taken with COMPASS in the year 2004, the Primakoff reaction of the process
π−γ→π−π−π+ could be isolated and analyzed in terms of the absolute cross-section. The
published result confirms the leading-order ChPT prediction. More results could be ob-
tained from the same data concerning the radiative widths of meson resonances, where
that of the π2(1670) is a novel observation. The interplay of electromagnetic and strong
effects could be observed with unprecedented detail and is subject to further investiga-
tions.

In the year 2009 data have been taken that were shown in the present work to be of
sufficiently high quality, along with a very detailed unterstanding of the apparative effects,
such that the aimed-at determination of the pion polarisability is now in reach.

Some of these results are expected to be completed and published within the next
3-6 months. 85
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Appendix A

Formulæ and Algorithms

A.1 Series expansions

High-relativistic form of E −p . Noting that

p

1±x = 1 ±
x

2
−

x 2

8
±

x 3

16
−

5x 4

64
± . . .

one expands the difference (E − p ) of a high-relativistic particle with mass m , energy
E �m and momentum p ≈ E

E −p =
p

p 2+m 2−p

=
m 2

2p
−

m 4

8p 3
+

m 6

16p 5
− . . . (A.1)

used on p.24

Logarithmic series in radiative corrections. Especially when the Mandelstam vari-
able u is near 0, for the evaluation of the virtual photon loops series expansions are
needed, and some short-hand notations are introduced:

Lf0(x ) = ln(1−x ) = −x −
x 2

2
−

x 3

3
−

x 4

4
− . . . (A.2)

Lf1(x ) =
ln(1−x )

x
= −1−

x

2
−

x 2

3
−

x 3

4
−

x 4

5
− . . . (A.3)

Lf2(x ) =
ln(1−x )+x

x 2
= −

1

2
−

x

3
−

x 2

4
−

x 3

5
− . . . (A.4)
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and

Lf0(x )−Lf1(x ) = (1−x−1) ln(1−x ) = 1−
x

2
−

x 2

6
−

x 3

12
− . . . (A.5)

A.2 Integrals and Derivatives

Most of the following integrals and derivatives are contained in collections of mathe-
matical formulæ(e.g. [17]) or can be obtained using computer algebra programs (e.g.
Mathematica R©), and are given here for convenience in the specific form as used in the
main text. The relation E 2 = p 2+m 2 is sometimes employed in an obvious way.

∫ �

3−
x 2+b 2

r 2
u

�

d x =

�

3−
b 2

r 2
u

�

x −
1

3r 2
u

x 3 (A.6)

p
r 2

u−b 2
∫

−
p

r 2
u−b 2

�

3−
x 2+b 2

r 2
u

�

d x = 2ru

�

3−
b 2

r 2
u

−
r 2

u −b 2

3r 2
u

�

p

1−b 2/r 2
u

= 2ru

�

8

3
−

2

3

b 2

r 2
u

�

p

1−b 2/r 2
u (A.7)

∫

c
p

x 2+b 2
d x = c ln

�

p

x 2+b 2+x
�

(A.8)

p
r 2

u−b 2
∫

0

b 2

(x 2+b 2)3/2
d x =

x
p

x 2+b 2

�

�

�

�

�

p
r 2

u−b 2

0

=
p

1−b 2/r 2
u (A.9)

∫

dφ

E −p sinφ
=

2
p

E 2−p 2
arctan

E tanφ/2−p
p

E 2−p 2

(monotonically increasing in −π<φ <π)

=
2

p

E 2−p 2
arctan

E tan(φ−π)/2+p
p

E 2−p 2
+ c (A.10)

(monotonically increasing in 0<φ < 2π)
∫

dφ

(E −p sinφ)2
=

−p cosφ

(E 2−p 2)(E −p sinφ)
+

E

E 2−p 2

∫

dφ

E −p sinφ
(A.11)
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used on p.49

∫

x d x

(a −2b x + c x 2)3/2
=

a −b x

(b 2−a c )
p

a −2b x + c x 2
(A.12)

∫

d x

(a −2b x + c x 2)3/2
=

b − c x

(b 2−a c )
p

a −2b x + c x 2
(A.13)

∫

d x

(d −x )
p

a −2b x + c x 2
=

1

κ
ln
κ
p

a −2b x + c x 2+a −b d +(c d −b )x
d −x

with κ=
p

a −2b d + c d 2 (A.14)

With the identifications

a =m 2+p 2x 2
2 b = E px2 c = p 2 d = E/p (A.15)

b 2−a c = −p 2m 2(1−x 2
2)

a −b d = m 2−x2(E 2−p 2x2)

c d −b = E p (1−x2)

Ex = E −p x2 x l

E 2
x −p 2

x = a −2b x l + c x 2
l

= (E x l −p x2)2+m 2(1−x 2
l )

κ =
p

a −2b d + c d 2

= p−1
p

(E 2−p 2x2)2−m 4

the integrals (A.12), (A.13), (A.14) are used in finding

∫

m 2 d x l

(E −p x l )2
=

m 2

p (E −p x l )
(A.16)

1
∫

−1

m 2 d x l

(E −p x l )2
= 2 (A.17)
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∫

m 2 Ex d x l

(E 2
x −p 2

x )
3/2

=
E (E px2−p 2x l )−px2(m 2+p 2x 2

2 −E px2x l )

−p 2(1−x 2
2)
p

E 2
x −p 2

x

=
p 3x2(1−x 2

2)−E p 2x l (1−x 2
2)

−p 2(1−x 2
2)
p

E 2
x −p 2

x

=
E x l −p x2
p

E 2
x −p 2

x

(A.18)

1
∫

−1

m 2 Ex d x l

(E 2
x −p 2

x )
3/2

= 2 (A.19)

∫

pκd x l

(E −p x l )
p

E 2
x −p 2

x

= ln
κ
p

E 2
x −p 2

x +(1−x2)(m 2−x2p 2+E p x l )

d −x l
(A.20)

1
∫

−1

pκd x l

(E −p x l )
p

E 2
x −p 2

x

= ln
(E +p )[κ(E −px2)+ (1−x2)(m 2−x2p 2+E p )]
(E −p )[κ(E +px2)+ (1−x2)(m 2−x2p 2−E p )]

(A.21)

and finally
∫

d x l
−m 2

(E −p x l )2
+

�

−m 2 Ex

E 2
x −p 2

x

+
2(E 2−p 2x2)

E −p x l

�

1
p

E 2
x −p 2

x

=

= −
m 2

p (E −p x l )
−

E x l −p x2
p

E 2
x −p 2

x

+

+
2(E 2−p 2x2)

pκ
ln
κ
p

E 2
x −p 2

x +(1−x2)(m 2−x2p 2+E p x l )

d −x l
(A.22)

1
∫

−1

d x l
−m 2

(E −p x l )2
+

�

−m 2 Ex

E 2
x −p 2

x

+
2(E 2−p 2x2)

E −p x l

�

1
p

E 2
x −p 2

x

=

= −4 +
2(E 2−p 2x2)

pκ
ln
(E +p )[κ(E −px2)+ (1−x2)(m 2−x2p 2+E p )]
(E −p )[κ(E +px2)+ (1−x2)(m 2−x2p 2−E p )]

(A.23)

used on p.50



A.2. INTEGRALS AND DERIVATIVES 91

Derivatives appearing in the eikonal approximation. In the context of Eq. 2.88 and
the footnote on p. 46, the following derivatives are used:

∂

∂ x
L a =

∂

∂ x

�

ln
�

1+
p

1+x 2

��

=
x

x 2+1+
p

1+x 2
(A.24)

∂

∂ x
L =

∂

∂ x

�

ln
�

1+
p

1−x 2

��

=
x

x 2−
�

1+
p

1−x 2
� (A.25)

=
1

x
+

p

1−x 2

x (x 2−1)
(A.26)

∂

∂ x
S1 =

∂

∂ x

��

1

3
+

2

3
x 2

�

p

1−x 2

�

=
x (1−2x 2)
p

1−x 2
(A.27)

∂

∂ x
S2 =

∂

∂ x

��

4

3
−

1

3
x 2

�

p

1−x 2

�

=
x (x 2−2)
p

1−x 2
(A.28)

∂

∂ x
(S1− L) = 2x

p

1−x 2+

p

1−x 2−1

x

= x



2
p

1−x 2−
1

p

1−x 2+1





=
(1+2x 2)

p

1−x 2−1

x
(A.29)

=
3
p

1−x 2−2 (1−x 2)3/2−1

x
(A.30)

∂

∂ x
(S2− L) =

(1−x 2)3/2−1

x
(A.31)
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A.3 Special functions

A.3.1 Gamma function

The Gamma function is defined [17]

Γ(x ) =

∞
∫

0

e−t t x−1 d t (A.32)

and can be evaluated, for complex argument z = a + ib when a > 0.75, using

Γ(z ) =

∞
∫

0

e−t+(z−1)·ln t d t (A.33)

=

π/2
∫

0

e− tanξ+(z−1)·ln tanξ (tan2ξ+1)dξ (A.34)

=

π/2
∫

0

[cos(b · ln tanξ)+ i sin(b · ln tanξ)] ·

·e− tanξ+(a−1)·ln tanξ (tan2ξ+1)dξ (A.35)

A.3.2 Bessel functions

The Bessel function Jn (z ), solution of the differential equation

z 2 d 2w

d z 2
+ z

d w

d z
+(z 2−n 2)w = 0 (A.36)

is

Jn (z ) =
i−n

π

π
∫

0

e i z cosφ cos(nφ)dφ =
�z

2

�2 ∞
∑

k=0

(−z 2/4)k

k !Γ(n +k +1)
(A.37)
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The modified Bessel function Kn can be evaluated

Kn (z ) =

∞
∫

0

e−z cosh(t ) cosh(n · t )d t (A.38)

=
1

2

∞
∫

0

e−z cosh(t )+n ·t + e−z cosh(t )−n ·t d t (A.39)

=
1

2

π/2
∫

0

�

e−z ·c t (ξ)+n ·tanξ+ e−z ·c t (ξ)−n ·tanξ
��

tan2ξ+1
�

dξ (A.40)

using the variable tanξ= t and the abbreviation c t (ξ) = cosh(tanξ), or, taking tan2ξ= t
and c t 2(ξ) = cosh(tan2ξ),

Kn (z ) =

π/2
∫

0

�

e−z ·c t 2(ξ)+n ·tan2ξ+ e−z ·c t 2(ξ)−n ·tan2ξ
�

2 tanξ(tan2ξ+1)dξ (A.41)

For small z , K1(z ) can be expanded into (valid to better than 10−8 for z < 0.1)

z K1(z ) = 1+
2 ln z −κ

4
· z 2+

4 ln z −2κ−3

64
· z 4+ . . . (A.42)

with κ= 1+2 ln 2−2γ≈ 1.231863, which is much faster to evaluate than Eq. A.41.
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A.4 Coulomb amplitudes in eikonal approximation

The Coulomb form factor for a pointlike charge is

MC =
−Zα

2πi

∫

e−i ~q ·~r ~g · ~∇VC (r ) f (b ) d 3r (A.43)

=
−Zα

2πi

∫

e−i ~q ·~r ~g ·~r
r 3

f (b ) d 3r (A.44)

=
−Zα

2πi

∞
∫

−∞

d z

2π
∫

0

dφ

∞
∫

0

b d b e−i (~q⊥·~b+q‖z )
~g ·~b

(z 2+b 2)3/2
f (b ) (A.45)

= ~q⊥ · ~g
2Zα

q⊥

∞
∫

0

q‖b K1(q‖b ) J1(q⊥b ) f (b )d b (A.46)

using the integrals

∞
∫

−∞

d z
cos(q‖z )
(z 2+b 2)3/2

=

∞
∫

−∞

d z ′

q‖

cos(z ′)
((z ′/q‖)2+b 2)3/2

(A.47)

= q 2
‖

∞
∫

−∞

d z ′
cos(z ′)

(z ′2+(q‖b )2)3/2
(A.48)

= q 2
‖

2

q‖b
K1(q‖b ) (A.49)

and, introducing the angle α=∠(q⊥, g ),

2π
∫

0

dφ e−i ~q⊥·~b ~g ·~b =

2π
∫

0

dφ e−iq⊥b cosφ g b cos(φ−α) (A.50)

= 2

π
∫

0

dφ e−iq⊥b cosφ g b cos(φ)cos(α) (A.51)

= −2πi J1(q⊥b ) b
~q⊥ · ~g

q⊥
(A.52)
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Along the same reasoning, the Coulomb form factor for a uniform charge distribu-
tion is

M u
C =

−Zα

2πi

∞
∫

−∞

d z
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∫
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dφ ·

·
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(A.55)
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= ~q⊥ · ~g
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∞
∫
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∫
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(A.56)

where

bu (z ) =

¨
p

r 2
u − z 2 for z < ru

0 for z > ru
, z u (b ) =

¨
p

r 2
u −b 2 for b < ru

0 for b > ru

The difference to the pointlike case emerges as the expression

M u
C −MC = ~q⊥ · ~g

2Zα

q⊥

ru
∫

0
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+

z u (b )
∫

0
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r 3

u

−
b 2 · cos(q‖z )
(z 2+b 2)3/2

�

f u (b )









(A.57)

where the limit of integration of the first term has been constrained to the region where
is integrand is different from zero.

In the limiting case q‖ → 0, the term q‖b K1(q‖b )→ 1, the z integral can be carried
out analytically using the formula A.9,

p
r 2

u−b 2
∫

0

d z

�

b 2

r 3
u

−
b 2

(z 2+b 2)3/2

�

=

�

b 2

r 2
u

−1

�

p

1−b 2/r 2
u

= −(1−b 2/r 2
u )

3/2

= −
�

1+b ∂b χC (b )/(2Zα)
�

(A.58)

where the replacement in the last line has been made according to Eq. 2.88. Then ex-
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pression A.57 simplifies, with inserting f (b ) = e iη ln(2a/b ) and f u (b ) = e iχC (b ),

M u
C −MC = ~q⊥ · ~g

ru
∫

0

d b
J1(q⊥b )

q⊥

�

−2Zα f (b )−
�

b ∂b χC (b )
�

f u (b )
�

= ~q⊥ · ~g i

ru
∫

0

d b
J1(q⊥b )

q⊥
b ∂b

�

f u (b )− f (b )
�

(A.59)

in agreement with the findings in [27], there Eq. (31).

A.5 Numerical implementation of the radiative correc-
tion for pion Compton scattering

Nur noch kurz die Welt retten.

[Tim Bendzko, 2011]

This treatment extends the calculations in [45]. The nomenclature is kept, and further
abbreviations are introduced,

Li2m (x ) =
1

x −1

�

π2

6
−Li2(x )

�

(A.60)

Li2t (t ) =
t −2

p

t 2−4t

�

Li2(w )−Li2(1−w )+
1

2
ln2 w −

1

2
ln2(1−w )

�

(A.61)

where w =
1

2
−

1

2

Ç

−t

4− t
with t < 0
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Li2h(t ) =
t −2

p

t 2−4t
[ Li2(h−)−Li2(h+) ] (A.62)

where h± =
t ±
p

t 2−4t

2

L(t ) =
1
p
−t

ln

p
4− t +

p
−t

2
(A.63)

L 4(t ) =
p

4− t L(t ) (A.64)

L t (t ) =
t −2

p

t 2−4t
·4
p
−t L(t ) (A.65)

The dilogarithmic function Li2(x ) is, along with two relations used in the following (re-
produced from [29], App. B.1)

Li2(x ) = −

x
∫

0

ln |1−ξ|
ξ

dξ (A.66)

Li2(x ) = −Li2(1−x )− ln |x | ln |1−x |+
π2

6
(A.67)

Li2(x ) = −Li2

�

1

x

�

−
1

2
ln2

�

−
1

x

�

−
π2

6
(A.68)

Special care has to be taken when the argument of ln2(·) is negative,

Re [ln2(−a )] = ln2(a )−π2 (A.69)

Also, for Li2(x ) in its general (analytic) definition, the logarithm in the integrand is en-
tering without taking the modulus of its argument, and accordingly an imaginary part
appears for x > 1. However in the present circumstances, only the real part of this func-
tion enters, and thus taking the definition as A.66 is sufficient.

When calculating the virtual-photon loops for scalar Compton scattering, the fol-
lowing integrals appear.

First, integrals with polynomials of order 3 or 4 in the denominator are discussed.
The indices j and k are meant to complete, together with i , the set {0,1,2}. Due to the
symmetry of the expressions under j ↔ k the ordering choice for j and k is arbitrary.

∫

(a−1x−1+a 0+a 1x )d x

(x − r0)(x − r1)(x − r2)
= −

a−1 lnx

r0r1r2
+

2
∑

i=0

(a−1ri
−1+a 0+a 1ri ) ln(x − ri )
(ri − rj )(ri − rk )

(A.70)
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∫

(c0+ c1x ) ln(x )d x

(x − r0)(x − r1)(x − r2)
=

2
∑

i=0

(c0+ c1ri ) [Li2(x/ri )+ ln(x ) ln(1−x/ri )]
(ri − rj )(ri − rk )

(A.71)

For the required definite integrals
∫∞

1
· · · the relations
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2
∑
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(A.73)

lim
x→∞
[Li2(x/ri )+ lnx ln (1−x/ri )] =

1

2
ln2

�

1

x

�

−
1

2
ln2

�

−
1

ri

�

−
π2

6
(A.74)

are used to obtain

IA1(a−1, a 0, a 1, r0, r1, r2) =

∞
∫

1

(a−1x−1+a 0+a 1x )d x

(x − r0)(x − r1)(x − r2)

= −
2
∑

i=0

a−1ri
−1+a 0+a 1ri

(ri − rj )(ri − rk )
ln(1− ri ) (A.75)

used on pp.104 and 108

IA2(c0, c1, r0, r1, r2) =

∞
∫

1

(c0+ c1x ) ln(x )d x

(x − r0)(x − r1)(x − r2)

= −
2
∑

i=0

(c0+ c1ri )
(ri − rj )(ri − rk )

�

Li2

�

1

ri

�

+
1

2
ln2

�

−
1

ri

��

=
2
∑

i=0

(c0+ c1ri )
(ri − rj )(ri − rk )

Li2(ri ) (A.76)

used on p.104
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Later, the special case of Eqs. A.75 and A.76 with r2 = r1
−1 is needed, and for this, the

handy notation with skipping the last argument is introduced

IA1(a−1, a 0, a 1, r0, r1) = IA1(a−1, a 0, a 1, r0, r1, r1
−1)

IA2(c0, c1, r0, r1) = IA2(c0, c1, r0, r1, r1
−1) (A.77)

Next, integrals with polynomials of order five in the denominator are given. For n =
0, 1, 2, 3

∫

x n d x

(x − r )(x − r1)2(x − r2)2
=

r n ln(x − r )
(r − r1)2(r − r2)2

+
2
∑

j=1

�

r n
j

(rj − r )(rj − rk )2(rj −x )

+
Pn j k · ln(x − rj )
(r − rj )2(rj − rk )3

�

(A.78)

and

∫

x n ln(x )d x

(x − r )(x − r1)2(x − r2)2
=

r n [Li2(x/r )+ ln(x ) ln(1−x/r )]
(r − r1)2(r − r2)2

+
2
∑

j=1

 

r n−1
j ((rj −x ) ln(x − rj )+x ln(x ))

(rj − r )(rj − rk )2(rj −x )

+
Pn j k ·

�

Li2(x/rj )+ ln(x ) ln(1−x/rj )
�

(r − rj )2(rj − rk )3

!

(A.79)

where j and k now form the set {1, 2} (their order does matter here), and the polynomi-
als Pn j k are defined as

P0j k = 2r −3rj + rk

P1j k = r (rj + rk )−2r 2
j

P2j k = rj (2r rk − r 2
j − rj rk )

P3j k = r 2
j (3r rk − r rj −2rj rk )
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The respective definite integrals are

I B1(b0,b1,b2, r, r1, r2) =

∞
∫

1

(b0+b1x +b2x 2)d x

(x − r )(x − r1)2(x − r2)2

= −
(b0+b1r +b2r 2)
(r − r1)2(r − r2)2

ln(1− r ) −
2
∑

j=1

 

b0+b1rj +b2r 2
j

(rj − r )(rj − rk )2(rj −1)

−
(b0P0j k +b1P1j k +b2P2j k )
(r − rj )2(rj − rk )3

ln(1− rj )

�

(A.80)

I B2(d 0, d 1, d 2, r, r1, r2) =

∞
∫

1

(d 0+d 1x +d 2x 2) ln(x )d x

(x − r )(x − r1)2(x − r2)2

=
(d 0+d 1r +d 2r 2)
(r − r1)2(r − r2)2

Li2(r )

+
2
∑

j=1

�

(d 0rj
−1+d 1+d 2rj ) (1− rj ) ln(1− rj )
(rj − r )(rj − rk )2(rj −1)

+
(d 0P0j k +d 1P1j k +d 2P2j k )

(r − rj )2(rj − rk )3
Li2(rj )

�

(A.81)

Analogously to A.77 short-hand notations are introduced,

I B1(b0,b1,b2, r, r1) = I B1(b0,b1,b2, r, r1, r1
−1) (A.82)

I B2(d 0, d 1, d 2, r, r1) = I B2(d 0, d 1, d 2, r, r1, r1
−1)

In [45], the Feynman graphs are grouped in 11 classes I–XI, and the calculation is
presented separately for these classes. The terms proportional to Lfi (s , u ) are added up
and give

ALf =
α

2π
·
�

−Lf1(û ) −Lf1(ŝ ) +Lf0(û ) +Lf0(ŝ ) −
3

2

�

(A.83)

BLf =
α

2π
·
�

Lf1(û ) +Lf1(ŝ ) −Lf0(û ) −Lf0(ŝ ) + 2 +
t̂

û −1
( −2Lf0(û ) + 2 )

�
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The dilogarithmic and logarithmic loop contributions are combined, and read

AL =
α

2π






Li2m (ŝ )
︸ ︷︷ ︸

VII

+Li2m (û )
︸ ︷︷ ︸

VIII

+L 4(t̂ )+Li2t (t̂ )
︸ ︷︷ ︸

IX

− 1
2 L 4(t̂ )− L2(t̂ )−Li2m (ŝ )

︸ ︷︷ ︸

X

− 1
2 L 4(t̂ )− L2(t̂ )−Li2m (û )

︸ ︷︷ ︸

XI









=
α

2π

�

Li2t (t̂ )−2L2(t̂ )
�

(A.84)

BL = −AL +
α

2π






−L2(t̂ )
︸ ︷︷ ︸

X

−L2(t̂ )
︸ ︷︷ ︸

XI







+
α

2π

t̂

û −1






−Li2m (û )
︸ ︷︷ ︸

VIII

+Li2m (û )
︸ ︷︷ ︸

XI

−Li2t (t̂ )− L t (t̂ ) ln(1− û )−Li2h(t̂ )
︸ ︷︷ ︸

XI







=
α

2π

�

ŝ −1

û −1
Li2t (t̂ ) −

t̂

û −1

�

L t (t̂ ) ln(1− û ) + Li2h(t̂ )
�

�

(A.85)

Collecting the terms up to here, one finds the expressions

An I (ŝ , û ) =
α

2π

�

−
3

2
+

û −1

û
ln(1− û ) +

ŝ −1

ŝ
ln(1− ŝ ) + Li2t (t̂ )−2L2(t̂ )

�

(A.86)

and

Bn I (ŝ , û ) =
α

2π

�

2 −
û −1

û
ln(1− û ) −

ŝ −1

ŝ
ln(1− ŝ ) +

ŝ −1

û −1
Li2t (t̂ )

+
t̂

û −1

�

2 − 2 ln(1− û ) − L t (t̂ ) ln(1− û ) − Li2h(t̂ )
�

�

(A.87)

=
α

2π

�

ŝ −1

û −1

�

Li2t (t̂ )−2
�

−
û −1

û
ln(1− û ) −

ŝ −1

ŝ
ln(1− ŝ )

−
t̂

û −1

��

2+ L t (t̂ )
�

ln(1− û ) + Li2h(t̂ )
�

�

(A.88)
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There remain four integral expressions in class X and XI as given in [45], for which it
was proposed to solve them numerically. A new analytic treatment has been developed
along the present work. First, the integral

A I (m , t̂ ) =

∞
∫

1

d x

(x −m )
2− t̂

((x −1)2+ t̂ x )

�

(x +1) lnx + 2(1−x )
p

4− t̂ L(t )
�

(A.89)

is considered, rewriting it with the replacement t̂ → ξ

− t̂ =
(ξ−1)2

ξ
, ξ = 1 +

−t̂ +
p

−t̂
p

4− t̂

2
(A.90)

= 1−h− =
1

1+h+
> 1

for which the relations

2
p

ξ =
p

4− t̂ +
p

−t̂

(ξ+1)/
p

ξ =
p

4− t̂

(ξ2+1)/ξ = 2− t̂
p

ξ

2(ξ−1)
lnξ = L(t̂ )

h± = ±(ξ∓1−1)

hold. This turns A.89 into

A I (m ,ξ) = −
ξ2+1

ξ(ξ−1)

∞
∫

1

d x

x −m
·
(x −1)(ξ+1) lnξ − (ξ−1)(x +1) lnx

(x −ξ) (x −ξ−1)
(A.91)

This shows explicitely that at x = ξ the numerator and the denominator of the integrand
vanish at the same time, and only at x =m occurs a pole that necessitates the determi-
nation of the principal value when integrating numerically. It is, however, preferable to
solve the integral analytically, by using Eqs. A.75 and A.76 with

r0 = m

r1 = ξ (A.92)

r2 = ξ−1
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The common factor

f A = −
ξ2+1

ξ(ξ−1)
(A.93)

is used in specifying

a A
0 = −a A

1 = − f A (ξ+1) lnξ c A
0 = c A

1 = − f A (ξ−1) (A.94)

in terms of which the solution of integral A.91 is written, employing A.77,

A I (m ,ξ) = IA1(0, a 0, a 1, m ,ξ) + IA2(c0, , c1, m ,ξ)

= f A ·
2
∑

i=0

[(ξ+1) lnξ] (1− ri ) ln(1− ri )− (ξ−1)(1+ ri )Li2(ri )
(ri − rj )(ri − rk )

(A.95)

used on p.52

Next, the integral

BI (m , t̂ ) =

∞
∫

1

d x

(x −m )
2− t̂

((x −1)2+ t̂ x )2



t̂ x (x +1) lnx + ((x −1)2+ t̂ x )(x −1)

+
2(x −1)
p

4− t̂

�

t̂ 2x −6t̂ x −2(x −1)2
�

L(t )



 (A.96)

is considered, starting with the rearrangement

BI (m , t̂ ) =

∞
∫

1

d x

(x −m )
(2− t̂ ) (x −1)
((x −1)2+ t̂ x )



1−
4

p

4− t̂
L(t )





+

∞
∫

1

d x

(x −m )
(2− t̂ ) t̂ x

((x −1)2+ t̂ x )2

�

(x +1) lnx − 2 (x −1)
p

4− t̂ L(t )
�

(A.97)
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Figure A.1: The integrand of BI as given in Eq. A.96 for the case m = 1.5, t = −0.1.
The integrand exhibits a pole at x =m , whose contribution is finite when the principal
value is considered. While the region around x = ξ≈ 1.37016 is a smooth function of x
(left plot), numercial imprecision leads to unpredictable results near this point, where
numerator and denominator vanish commonly (right plot).

for which the substitution A.90 turns it into

BI (m ,ξ) = −
ξ2+1

ξ(ξ2−1)

∞
∫

1

d x

(x −m )
·
(1−x ) (ξ2−1−2ξ lnξ)
(x −ξ) (x −ξ−1)

−
(ξ2+1)(ξ−1)

ξ2

∞
∫

1

d x

(x −m )
·

x ((ξ−1)(x +1) lnx − (x −1)(ξ+1) lnξ)
(x −ξ)2 (x −ξ−1)2

(A.98)

The finiteness of the integrand at x = ξ is now less transparent then in the case of
Eq. A.91, and requires the recombination of the two contributions. Possible ways to
treat this region of integration are:

• Define a region around x = ξ in which the limiting behavior of the integrand is
worked out analytically, and use the respective series expansion instead of the
original expression A.96.

• Replace in a region around x = ξ the integrand by its value in the vincinity, where
the numerical unstability is still small. This is a practical method for finding the
value in a specific case, when the introduced error can be estimated by eye, but



106 APPENDIX A. FORMULÆ AND ALGORITHMS

for the general case the systematics of the involved approximation has to be de-
termined.

• Solve the integral analytically. This avoids the mentioned numerical problems
and is much faster in computation, and thus the way pursued here.

Isolating a common factor

f B = −
ξ2+1

ξ2
= f A ·

ξ−1

ξ
(A.99)

the ξ-dependent parameters in A.98 are written

a 0 = −a 1 = f B ξ (1 − 2ξ (ξ2−1)−1 lnξ)

b1 = −b2 = f B (ξ2−1) lnξ (A.100)

d 1 = d 2 = f B (ξ−1)2

and the integral A.98 is solved, using the notation of Eqs. A.77 and A.82, by

BI (m , ξ) = IA1(0, a 0, a 1, m , ξ)

+ I B1(0, b1, b2, m , ξ) + I B2(0, d 1, d 2, m , ξ) (A.101)

The last integral appears in BX I and is rearranged in the following way

BI ′(m , t̂ ) =

∞
∫

1

d x

(x −m )
2− t̂

((x −1)2+ t̂ x )2



t̂ (x +1)(2− t̂ −x ) lnx (A.102)

+ ((x −1)2+ t̂ x )
�

x −1+ t̂ +
t̂

x

�

+
2L(t )
p

4− t̂

�

t̂ 3(x +1)+ t̂ 2(3x 2−3x −4)+2t̂ (x 3−4x 2+2x +1)−2(x −1)3
�





= BI (m , t̂ ) +

∞
∫

1

d x

(x −m )
2− t̂

((x −1)2+ t̂ x )2



t̂ (x +1)(2− t̂ −2x ) lnx

+ ((x −1)2+ t̂ x )
�

t̂ +
t̂

x

�

+
2L(t )
p

4− t̂

�

t̂ 3(x +1)+ t̂ 2(2x 2−2x −4)+2t̂ (x 3−x 2−x +1)
�
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BI ′(m , t̂ ) = BI (m , t̂ )+

∞
∫

1

d x

(x −m )
(2− t̂ )t̂

((x −1)2+ t̂ x )





1

x
+ 1+

4L(t )
p

4− t̂
+ x

4L(t )
p

4− t̂





+

∞
∫

1

d x

(x −m )
(2− t̂ )t̂ (x +1)
((x −1)2+ t̂ x )2

�

(2− t̂ −2x ) lnx − 2t̂
p

4− t̂ L(t )
�

(A.103)

and after the replacement t̂ → ξ according to A.90

BI ′(m ,ξ) = BI (m ,ξ)

−
(ξ2+1)
ξ2

(ξ−1)
(ξ+1)

∞
∫

1

x−1(ξ2−1) + (ξ2−1+2ξ lnξ) + x (2ξ lnξ)
(x −m ) (x −ξ) (x −ξ−1)

d x

−
(ξ2+1)(ξ−1)2

ξ3

∞
∫

1

((ξ2+1) + x (ξ−1)2−x 2 2ξ) lnx + (x +1) (ξ2−1) lnξ
(x −m ) (x −ξ)2 (x −ξ−1)2

d x

(A.104)

The common factor is abbreviated

f ′B = −
(ξ2+1) (ξ−1)
ξ3 (ξ+1)

= f B
ξ−1

ξ (ξ+1)
(A.105)

in the ξ-dependent parameters

a ′−1 = f ′B ξ (ξ
2−1)

a ′0 = f ′B ξ (ξ
2−1+2ξ lnξ)

a ′1 = f ′B ξ 2ξ lnξ

b ′0 = b ′1 = f ′B (ξ
2−1) (ξ2−1) lnξ

d ′0 = f ′B (ξ
2−1) (ξ2+1)

d ′1 = f ′B (ξ
2−1) (ξ−1)2

d ′2 = f ′B (ξ
2−1) (−2ξ)

and the integral BI ′ is found to be, in terms of IA1 (A.77), I B1 and I B1 (A.82),

BI ′(m , ξ) = BI (m , ξ)+ IA1(a ′−1, a ′0, a ′1, m , ξ)

+ I B1(b ′0, b ′1, b ′2, m , ξ) + I B2(d ′0, d ′1, d ′2, m , ξ) (A.106)
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or, combining with the expression A.101 for BI ,

BI ′(m ,ξ) = IA1(a ′−1, a ′0+a 0, a ′1+a 1, m , ξ)

+ I B1(b ′0, b ′1+b1, b ′2+b2, m , ξ)

+ I B2(d ′0, d ′1+d 1, d ′2+d 2, m , ξ) (A.107)

Finally, the integrals are combined in the way they appear in the radiative correction
expression,

B s
I (m ,ξ) = BI (m ,ξ)−A I (m ,ξ)

= IA1(a s
−1, a s

0, a s
1, m , ξ)

+ IA2(c s
0 , c s

1 , m , ξ)

+ I B1(b s
0 , b s

1 , b s
2 , m , ξ)

+ I B2(d s
0, d s

1, d s
2, m , ξ) (A.108)

B u
I (m ,ξ) = BI ′(m ,ξ)−A I (m ,ξ)

= IA1(a u
−1, a u

0 , a u
1 , m , ξ)

+ IA2(c u
0 , c u

1 , m , ξ)

+ I B1(b u
0 , b u

1 , b u
2 , m , ξ)

+ I B2(d u
0 , d u

1 , d u
2 , m , ξ) (A.109)

with 22 ξ-dependent parameters

m = ŝ m = û
a m
−1 0 a ′−1

a m
0 a 0 −a A

0 = a B
0 a ′0+a 0 −a A

0 = a ′−1+a ′1+a B
0

a m
1 a 1 −a A

1 = −a B
0 a ′1+a 1 −a A

1 = a ′1−a B
0

b m
0 0 b ′0

b m
1 b1 b ′1+b1 = b ′0+b1

b m
2 b2 =−b1 b2 =−b1

c m
0 −c A

0 −c A
0

c m
1 −c A

1 = −c A
0 −c A

1 = −c A
0

d m
0 0 d ′0

d m
1 d 1 d ′1+d 1 = d ′0+d ′2+d 1

d m
2 d 2 = d 1 d ′2+d 2 = d ′2+d 1

(A.110)
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They feature 9 different terms, which are all needed for the case m = û , and a subset of
4 appears for m = ŝ . The newly introduced combination a B

0 is, making use of A.99,

a B
0 = f B ξ

�

1−
2ξ

ξ2−1
lnξ

�

− f B
ξ

ξ−1
(ξ+1) lnξ

= f B ξ

�

1−
2ξ+(ξ+1)2

ξ2−1
lnξ

�

(A.111)

and the others

b1 = f B (ξ2−1) lnξ (A.112)

c A
0 = f A (ξ−1) = f B ξ (A.113)

d 1 = f B (ξ−1)2 (A.114)

This is the form how the radiative corrections are implemented at the time of writing
up this document. A promising further step for simplification is clearly, to group the
contribtions according to

B m
I (m ,ξ) = β0 ln(1−m ) + βL0 Li2(m )

+ β1 ln(1−ξ) + βL1 Li2(ξ)

+ β2 ln(1−ξ−1) + βL2 Li2(ξ−1)

and make use of the relations between logarithmics and dilogarithmic functions. Indi-
cating the terms appearing only for m = û in square backets [+ · · · ]m=û ,

β0 =
−a B

0 (1−m )
(m −ξ)(m −ξ−1)
︸ ︷︷ ︸

IA1

+
b1 m (1−m )

(m −ξ)2(m −ξ−1)2
︸ ︷︷ ︸

I B1

(A.115)











+
(−a ′−1 m−1−a ′1) (1+m )

(m −ξ)(m −ξ−1)
︸ ︷︷ ︸

IA1

+
−b ′0(1+m )

(m −ξ)2(m −ξ−1)2
︸ ︷︷ ︸

I B1











m=û

=
(1−m ) (−a B

0 κ+b1m )
�

+ (1+m )
�

(−a ′−1 m−1−a ′1)κ−b ′0
��

m=û

(m −ξ)2(m −ξ−1)2
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βL0 =
−c A

0 (1+m )
(m −ξ)(m −ξ−1)
︸ ︷︷ ︸

IA2

+
d 1 m (1+m )

(m −ξ)2(m −ξ−1)2
︸ ︷︷ ︸

I B2











+
(d ′0+d ′2 m ) (1+m )
(m −ξ)2(m −ξ−1)2
︸ ︷︷ ︸

I B2











m=û

= (1+m )
−c A

0 κ+d 1m
�

+ d ′0+d ′2 m
�

m=û

(m −ξ)2(m −ξ−1)2
(A.116)

β1 =
−a B

0 (1−ξ)
(ξ−m )(ξ−ξ−1)
︸ ︷︷ ︸

IA1

+
b1 m (1−m )

(m −ξ)2(m −ξ−1)2
︸ ︷︷ ︸

I B1

(A.117)











+
(−a ′−1 m−1−a ′1) (1+m )

(m −ξ)(m −ξ−1)
︸ ︷︷ ︸

IA1

+
−b ′0(1+m )

(m −ξ)2(m −ξ−1)2
︸ ︷︷ ︸

I B1











m=û

= κ−2
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Appendix B

Further Kinematic Aspects

B.1 Higher-order terms in the pion mass

The minimum momentum transfer qmin for constant Eγ (appearing in longitudinal kine-
matics ~p ‖ ~pπ ‖ ~pγ) is given by

qmin =
m 2
π

2E
·

Eγ
Eπ

�

1+
m 2
π(E

2+E Eπ+E 2
π)

4E 2E 2
π

+ O
�

µ4
π

�

�

(B.1)

=
m 2
π

2p
·

p −pπ
pπ

�

1−
m 2
π(p

2+p pπ+p 2
π)

4p 2p 2
π

+ O
�

µ4
π

�

�

(B.2)

Higher-order terms are classified in powers of

µ = mπ/E , mπ/p
µπ = mπ/Eπ, mπ/pπ
µγ = mπ/Eγ

(B.3)

where the high-relativistic caseµπ,γ ≈ 0 is assumed for all particles, and the same symbol
µ is used, independent whether E or p in the denominator applies.

The Mandelstam variables in the pion-photon subprocess are related to the quanti-
ties measured in the laboratory system by

s = m 2
π +

pγ
pπ

m 2
π + 4Eγpπ sin2 θπγ

2
(B.4)

t = −q 2
min−2Eγ ·qmin−4p pπ sin2 θπ

2
(B.5)
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u = m 2
π −

pγ
p

m 2
π − 4p pγ sin2 θγ

2
(B.6)

s = m 2
π + 2Eγ

�

Eπ−pπ + 2pπ sin2 θπγ

2

�

(B.7)

= m 2
π + Eγpπ

�

m 2
π

p 2
π

+ 4 sin2 θπγ

2

�

+ O
�

µ4
π

�

(B.8)

t = −m 2
π

E 2
γ

E Eπ
−4E Eπ sin2 θπ

2

�

1−
m 2
π

E 2
π

−
m 2
π

E 2
+ O

�

µ4
π

�

�

(B.9)

q 2 = q 2
min+4p

�

pγ sin2 θγ

2
+pπ sin2 θπ

2

�

−4pπpγ sin2 θπγ

2
(B.10)

B.2 Maximum scattering angles

A first idea on the range of the scattering angles is obtained by the following kinematic
consideration: For a maximum momentum transfer qmax to the nucleus, the angles of
the outgoing particles are restricted. The relation derived from the geometrical con-
struction of Fig. B.1 reads

1+ cos(π− [θπγ]max) = 1+
q 2
γ +q 2

π−q 2
max

2qγqπ
(B.11)

=
qmax(2p −qmax)−qmin(2p −qmin)

2pπpγ
(B.12)

The quantities qπ and qγ can be understood from Fig. B.1. From Eq. B.12 the handy
expression max[θ 2

πγ] ≈ (2p/pπpγ)qmax follows. The angles of the scattered particles
with respect to the incoming pion beam directions are restricted by

sin2 [θπ]max

2
=

qmax(2pγ+qmax)−qmin(2pγ+qmin)
4p pπ

(B.13)

sin2 [θγ]max

2
=

qmax(2pπ+qmax)−qmin(2pπ+qmin)
4p pγ

(B.14)

with approximations max[θ 2
π] ≈ (2pγ/p pπ)qmax and max[θ 2

γ ] ≈ (2pπ/p pγ)qmax such
that max[θπγ]≈max[θπ]+max[θγ].
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pπ
pγ

q

q

π γ

p

q

Figure B.1: Kinematics in the case of maximum angle θπγ. qπ and qγ extend the vectors
of the scattered particle’s momenta to the intercepting point. As throughout this work,
the energy transfer to the nucleus is neglected, and consequently, for fixed modulus p
and pγ, the modulus of pπ is also fixed, from Eπ = E − Eγ. Allowed kinematics for fixed
pγ and pπ are constructed with the vectors ~pγ and ~pπ on spheres with respective radii.
The spheres do not touch, but have the tiny minimal distance qmin(Eγ), cf. Eq. 2.5.

pγ[GeV] θγ,max [mrad] pπ [GeV] θπ,max [mrad]
q⊥ < 0.1 q⊥ < 0.1

20 16.7 14.3 170 5.7 2.3
30 13.7 11.8 160 5.9 2.8
70 8.9 7.2 120 6.8 4.5
80 8.4 6.5 110 7.2 4.9

170 5.7 2.3 20 16.7 14.3

Table B.1: Constraints on the laboratory angles for different kinematics with fixed pπ
and pγ, valid for s +q 2 < 55 m 2

π.

Along the same line, the consideration is refined by taking into account the con-
straint on the component q‖ of the momentum transfer given by the range in s via
Eq. 2.30. Namely, for the investigations in the present work, s < 49 m 2

π is relevant, and
so q‖ <q‖(smax)≈ 2.8 MeV (valid for the region q 2 < 0.1 GeV2/c 2).

This leads to constraints on the scattering angles of the particles

cosθπ[γ],max > 1−
q‖(smax)

pπ[γ]
or θπ[γ],max <

r

2q‖(smax)
pπ[γ]

(B.15)

leading to maximum angles θγ,max and θπ,max as given in Tab. B.2 When the range of q 2 is
restricted, the allowed scattering angles are further reduced. This follows from consid-
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q (s,q )

pγ

pπ

2

p

q

Figure B.2: Kinematics for constrained q‖(s ,q 2).

ering the component

q⊥ = pπ⊥−pγ⊥ (B.16)

=
p

p 2
π− (pπ−q‖π)2−

Æ

p 2
γ− (pγ−q‖γ)2

=̇
p

2pπq‖π−
Æ

2pγ(q ′‖−q‖π) (B.17)

with q ′‖ =q‖−qmin. In turn, the parallel component is obtained from q⊥ by

q‖π =
q ′‖ ·pγp ′ − q 2

⊥ · (pγ−pπ)/2 + q⊥ ·
p

pπpγ(2p ′q ′‖−q 2
⊥)

p ′2
(B.18)

using the notation p ′ = pπ+pγ.

B.3 Range of q 2

smin(Eγ) = The kinematic limit for q 2 for constrained s < smax at fixed Eγ is obtained by
maximizing, analogously to (B.17),

∂

∂ q‖π
q⊥ =̇

∂

∂ q‖π

h

p

2pπq‖π+
Æ

2pγ(q ′‖−q‖π)
i

!= 0 (B.19)

q‖π(q⊥max) =
pπ

pπ+pγ
q ′‖ (B.20)

−→ q⊥max =
Æ

2p q ′‖ =
p

s −m 2
π+q 2−2p qmin (B.21)
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B.4 The transformation pγ(s , t ,q 2,Ψ)

Some intermediate steps in the derivation of Eq. 2.37 are displayed starting from

p 2
γ (q

′2
‖ +2ε′q 2

c ) + pγ (q ′‖t
′−2µ′q 2

c ) + (t
′/2)2+µ2q 2

c = 0 (B.22)

where

qc = q⊥ cosΨ q ′‖ = q‖(1+ε)−qmin−ε p

t ′ = t +q 2+qmin(2p −qmin)−2µq‖ (B.23)

ε = (E −p )/p ε′ = ε(1+ε/2)

µ = (m 2
π−u )/2p µ′ = µ(1+ε)

This equation does not render pγ directly (as solution of a quadratic equation), since
the expressions q ′‖ and t ′ contain an implicit (non-linear) pγ dependence through qmin,
c.f. Eq. 2.5. However, qmin is small compared to the other terms, and for a first approx-
imation can be neglected, qmin = 0. Using the result, Eq. B.22 is iterated to the desired
precision.

The solution of Eq. B.22 (as quadratic equation), with the terms worked out such
that the dependence on qc is displayed, reads

pγ =
1
2
q ′‖t

′−µ′q 2
c +qc

Æ

q 2
cµ

2−
�

t ′+ 1
2
εt ′+q ′‖µ

��

1
2
εt ′+q ′‖µ

�

q ′2‖ +2ε′q 2
c

(B.24)

where only the positive sign of the square root term solves the problem.

Some intermediate steps in the derivation of the back-transformation pγ(s , t ,q 2,Ψ)
are given here:

2q⊥pγ⊥ cosΨ = q 2−q 2
‖ +p 2

γ−p 2
γ‖−p 2

π+p 2
π‖

= q 2−q 2
min+2(p −q‖)(pγ−pγ‖)−2(p −pγ)(q‖−qmin) (B.25)

= −q 2
min+2(p −q‖)(µ−εpγ)−2δminp +2pγ(q‖−qmin) (B.26)

= 2pγ(q‖−qmin−ε(p −q‖))+2µ(p −q‖)−2δminp −q 2
min (B.27)

= 2pγ q ′‖+ t ′ (B.28)
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where

q‖ =
s −m 2

π+q 2

2p
(B.29)

δmin =
s −m 2

π

2p
−qmin (B.30)

pγ−pγ‖ =
m 2
π−u

2p
−

E −p

p
pγ = µ−ε pγ (B.31)

pγ‖ =
u −m 2

π

2p
+

E

p
pγ = −µ+(1+ε) pγ (B.32)

t ′ = 2µ(p −q‖)−2δminp −q 2
min (B.33)

= t +q 2+qmin(2p −qmin)−2µq‖ (B.34)

p 2
γ⊥ = (µ−ε pγ)((2+ε)pγ−µ) (B.35)

= −ε(2+ε) p 2
γ+(2+2ε)µ pγ−µ2 (B.36)

= −2ε′ p 2
γ+2µ′ pγ−µ2 (B.37)

So with qc =q⊥ cosΨ follows (pγq ′‖+u ′)2 = p 2
γ⊥q 2

c and

p 2
γ(q

′2
‖ +2ε′q 2

c )+pγ(2q ′‖u
′−2µ′q 2

c )+u ′2+µ2q 2
c = 0 (B.38)

B.5 Energy transfer to the nucleus

splitting up Er = Eq + Ee x c i t into the kinetic and nuclear excitation energy. where for
small momentum transfer ~q = ~pπ+ ~pγ− ~p

Eq =
q 2

2MZ
≈ 0 (B.39)

is assumed (meaning that also no excitation of the nucleus occurs), such that q can be
used in the following for the modulus of the 4- and 3-momentum equivalently.
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B.6 Solving for x (s , t , y ,ψ)

Short-hand notations are introduced,

x

xπ

=

=

cosθγ
cosθπ

«

> 0 and −−∼ 1 (forward kinematics)

y = cosθq < 0

z = cosθγq = x y +
p

(1−x 2)(1− y 2)cosΨ
zπ = cosθπγ = x xπ+

p

(1−x 2)(1−x 2
π)cosΨπ

(B.40)

Measured angular quantities are x , xπ and zπ. The expression for zπ determines Ψπ ∈
[0,π]. Examining the longitudinal and transverse components of the momenta (s. Fig. 2.1)

q‖ = −qy = p −xπpπ−x pγ

q⊥ =
Æ

q 2−q 2
‖

pπ⊥ = pπ
p

1−x 2
π (B.41)

pγ⊥ = pγ
p

1−x 2

p 2
π⊥ = p 2

γ⊥+q 2
⊥−2pγ⊥q⊥ cosΨ

allows to solve for y , q⊥ and Ψ, such that the last variable z can be calculated using
Eq. B.40.

The Mandelstam variables in terms of the kinematical variables Eq. B.40 read

s = m 2
π−2pqy −q 2 (B.42)

Find x (s , t , y ,ψ) given that

t =−q 2 E −px +2py z

E −px −qz
=−q 2

�

1+
(q +2py )z

E −px −qz

�

(B.43)

E −px −qz =−q 2 (q +2py )z
t +q 2

(B.44)

px −E =
�

q 2 (q +2py )
t +q 2

−q

�

z (B.45)
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where z (x , y ,Ψ) is defined in Eq. B.40. Introducing

a =
q 2(q +2py )

t +q 2
−q , c = a cosΨ

p

1− y 2

b = p −a y

from eq. (B.45) follows

xb −E = c
p

1−x 2

or, for ξ=
p

1−x 2,

b
p

1−ξ2−E = cξ

(c 2+b 2)ξ2+2c Eξ+E 2−b 2 = 0

ξ± =
−c E ±b

p

b 2+ c 2−E 2

b 2+ c 2

where only ξ+ solves eq. (B.43).

B.7 Region of constrainedΨ range

The angle Ψ has a limited range for extreme values of t near tmin, formally connected to
the square root term in Eq. 2.33, from which q 2

τ > E 2
τ−p 2

τ or

q 2
τ > (t +q 2)

�

m 2
π(q

2+m 2
π)+ (s + t +q 2−2m 2

π)(s +q 2)
�

−q 2
‖ (m

2
π−u )2

(B.46)

follows, meaning a constraint on the Ψ range if q⊥ 6= 0 and if t is below tΨ given by,
neglecting the tiny term proportional to q 2

‖ ,

t < tΨ = −s +2m 2
π−q 2−

m 2
π(q

2+m 2
π)

s +q 2
(B.47)

< −
(s −m 2

π)
2

s
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Figure B.3: Limit given by tΨ for q = 0.005 mπ (black line) and q = 0.05 mπ (red line), in
the extreme backward scattering regime.
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5 Tracking Detectors

The tracking system of COMPASS is composed of several tracking stations,
each consisting of a set of planar tracking detectors of different sizes, granu-
larities and resolutions. On the one hand, large areas of several square meters
have to be covered in order to detect slow particles scattered at large angles
and deflected by the magnets, while, on the other hand, the particle rates
quickly increases with decreasing distance to the undeflected beam, requiring
fast detectors with good resolution. The large-area tracking is provided by
several variants of wire-based gas detectors such as Multiwire Proportional
Chambers (MWPC), Drift Chambers, and Straw Tube Chambers. The region
close to the beam, where the particle rates are too high for wire-based detec-
tors, is covered by two types of Micropattern Gaseous Detectors (MPGD) with
strip readout, the Micromegas and the GEM detectors. The beam region itself,
where rates above 1 · 105 mm−2s−1 are observed, is equipped with Scintillating
Fibre Detectors and novel GEM detectors with pixel readout, the PixelGEMs.
Tracking immediately upstream and downstream of the target is performed
by Silicon Microstrip detectors. This section focuses on the upgrades of the
tracking system for the hadron program with respect to the setup used for
muon beams, detailed in [1]. The wire and strip detectors measure different
projections of a particle penetration point, which are called X (horizontal) Y
(vertical), and U and V for orthogonal projections rotated by a given angle
with respect to X and Y .

5.1 Silicon Microstrip Detectors

For the hadron program, the COMPASS silicon microstrip tracking system
consists of three stations upstream of the target which are used as a beam
telescope, as well as a double station downstream of the target, used for vertex
reconstruction. As these detectors are traversed by the beam and practically
all the forward-boosted reaction products, they are prone to radiation damage.
In order to minimise the various effects of this damage, like an increase of the
depletion voltage or the increase of the leakage current, they are cooled with
a liquid nitrogen cooling system. Since the leakage current decreases with
temperature, noise caused by radiation damage is suppressed. In addition to
reducing the effects of radiation damage, the cooling leads to a significant
improvement of the spatial and time resolution compared to room-temperature
operation, as discussed below.

One station consists of two silicon detectors with a stereo angle of 5◦ between
their strip orientations in order to enhance the multi-track ambiguity resolu-
tion. The detectors consist of a 300µm thick silicon sensor with an active area
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Figure 17. The conical cryostat with the upstream beam window dismounted.

of 5 × 7 cm2. The readout is designed double-sided with 1280 readout strips
on the n-side and 1024 strips on the p-side, perpendicular to the n-side strips.
The sensors are glued onto two L-shaped FR4 printed circuit boards which
hold the APV25-S1 [9] based readout electronics. There are three upstream
cryostats for the beam stations and one special cryostat, shown in Fig. 17,
matching the very constrained space downstream of the target (cf. Fig. 3),
housing together the last two stations, i.e. four detectors.

A specific challenge in cooling the COMPASS silicon detectors with the at-
tached front-end chips is that no massive parts are to be brought nearby, as the
detectors are necessarily mounted in the acceptance of the spectrometer. This
forbids traditional ways of connecting the detectors, e.g. to a massive coldhead
to dissipate the heat created by the electronics. The technology developed for
the COMPASS silicon detectors consists of evaporation of liquid nitrogen in
thin capillaries on the PCBs. For allowing a heat removal of about 8 W at each
detector in this light-weighted way, the nitrogen must be provided in pure liq-
uid phase to the capillary. For this purpose, a dedicated phase separator is
incorporated in each cryostat. The whole cooling infrastructure increases the
effective radiation length of the PCB part by less than 10%.

The nitrogen arrives from the central COMPASS Dewar and is led by a 100 m
long vacuum isolated flexible transfer line to a valve box nearby the stations.
The valve box acts primarily as a buffer for the liquid nitrogen which is kept
at 1.8 bar. By opening cryogenic valves the liquid nitrogen in is allowed to flow
through 2–3 m long transfer lines to each station. Within the shielding vacuum,
the nitrogen reaches the phase separator, on top of which gas evaporated
in the transfer line is allowed to escape. At the bottom two capillaries are
connected, one for each detector. The capillaries are connected by soldering
dots to the L-boards. The temperature of the detector is regulated through the
gaseous exhaust flow with a rapid feedback time in the order of one second.
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Figure 18. Functional schematics of the valve box.
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Figure 19. Functional schematics of the conical cryostat. Symbols as in Fig. 18.

All involved components are operated by a Programmable Logic Controller
(PLC, SIMATIC S7 300), utilising a Proportional Integral Derivative (PID)
algorithm for the temperature regulation. The programming is realised as
Java

TM
based application developed at CEA-Saclay called Anibus

TM
, featuring

real-time monitoring, remote control, data storage and an alarm system.

For the first time in 2009, all silicon stations were cooled to 200 K. The sta-
bility of the system is shown in table 4. These values were obtained from all
temperature data collected in 2009. The data were then filtered to include
only time intervals where the corresponding station was in cold operation and
no other anomalies were present. The second column shows the ratio between
data used for the analysis and the complete data set where the station con-
cerned was connected. The cooling system proved very stable cooling on the
level of ± 1 K.
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Table 4
Operation characteristics of the silicon detectors during the 2009 run

Station Gaussian σ (K) RMSX(µm) RMSY (µm) σt (ns) HV (V)

SI01 A 0.60 9.4 7.2 0.97 75

SI01 B 0.18 8.1 7.4 1.02 95

SI02 A 0.57 — 6.8 [1.84] 130

SI02 B 0.51 7.4 6.8 1.26 135

SI03 A 0.30 8.4 7.1 1.15 60

SI03 B 0.13 7.7 6.9 1.03 85

SI04 A 1.66 6.7 7.8 1.18 110

SI04 B 1.81 6.8 7.3 1.25 115

SI05 A > 2 5.8 6.6 1.32 120

SI05 B > 2 5.0 6.7 1.30 105

To calculate the spatial residuals, data taken in standard muon run conditions
was used, only using the silicon detectors. With these settings, the track error
typically is less than 3µm and can be easily deconvoluted to obtain the intrin-
sic detector resolution. The spatial resolution strongly depends on the cluster
size, i. e. the number of adjacent strips which are combined to one cluster.
One strip clusters offer only limited spatial information, because the cluster
position is assigned to the strip centre, whereas for two strip clusters the clus-
ter position can be refined using the strip amplitudes as weighting factor. In
addition an empirical correction, compensating for nonlinear charge sharing
effects, is applied for two strip clusters. The ratio of size two clusters mainly
depends on the wafer design were for the p-side (i.e. Y-, V-planes) and on some
detectors also for the n-side (i.e. X-,U-planes) intermediate strips improve the
charge sharing. The average fraction of two strip clusters is 0.55 for the X-
like detectors and 0.57 for the Y-like detectors. Therefore, the Y-like detectors
show a better spatial resolution compared to the X-like detectors. The average
intrinsic spatial resolution of the COMPASS silicon detectors is 5.3µm (see
Fig. 22) for the p-side and 6.9µm for the n-side. The best observed spatial
resolution is 3.7µm. This is a significant improvement compared to the res-
olution observed in room-temperature operation (8µm and 11µm for p- and
n-side, respectively). While the specific causes for this enhancement have not
yet been fully disentangled, an important aspect is the associated cooling of
the front-end chips.

The average efficiency for standard muon run conditions, where hits within a
spatial window of ±3σ around the extrapolated track position are accepted,
is above 99%. Fig. 21 shows a typical two dimensional efficiency plot for one
COMPASS silicon detector.
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Figure 20. Two dimensional efficiency
plot for a plane from the beam telescope.
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Figure 21. Two dimensional efficiency
plot for a plane downstream of the target.

m]µ [hit -xtrackx
-50 -40 -30 -20 -10 0 10 20 30 40 50

E
nt

rie
s

0

10

20

30

40

50

310×
mµRMS 1 = 7.11 

mµRMS 2 = 3.94 

mµRMS total = 7.10 

Figure 22. Residual distribution for one
Silicon Y-plane. The blue and red his-
togram show the distribution for one and
two strip clusters, respectively.

 [ns]track - thitt
-30 -20 -10 0 10 20 30

E
nt

rie
s

0

0.2

0.4

0.6

0.8

1

310×

Clustersize 1

Clustersize 2

All

Time resolution = 1.39 ns

Figure 23. Temporal residuum of a single
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The time resolution was shown to be better than 2.5 ns for each single plane
with an average resolution of 〈σt〉 = 2.1 ns. A typical signal time distribution
for a single silicon plane is shown in Fig. 23.

5.2 PixelGEM Detectors

To minimise the material from detectors directly exposed to the beam, some
of the scintillating fibre detectors used for tracking of the muon beam were
replaced by thinner micropattern gas detectors based on the GEM [10] for the
hadron beam. Starting with the first hadron run in 2008, five GEM detectors
with a novel kind of readout and a thickness of 0.26 % of a radiation length
(X0) and 0.1 % of a nuclear interaction length (λI) in the beam region were
installed, corresponding to an improvement by a factor of 5–10 in material
budget compared to the scintillating fibre detectors.

GEM detectors with a two-dimensional strip read-out have been used in COM-
PASS since its start-up [11]. These gaseous detectors have proved to be able
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CEDAR performance 2009

Jan Friedrich

Physik-Department, TU München

December 2010

Abstract

The performance of beam particle identification by the two CEDAR detectors in the COMPASS
beam line during the 2009 Primakoff data taking is investigated. The work was started with the urge
to conclude on the CEDAR performance for the envisaged future measurements, in view of state-
of-the-art usage of the detector information, the multiplicity cut (identifying kaons when at least
6 photomultipliers of one CEDAR have a signal). This is known to have a bad overall efficiency
of about 40%, bringing up the challenge which enhancements are in place for a high-statistics
Primakoff data taking, which aims also at the first determination of the kaon polarisability.

The presented log-likelihood evaluation of the CEDAR information increases the efficiency to
about 80%. The investigation also reveals the good hardware performance of the CEDARs, leaving
potential for additional improvement only in a slight change of the beam aligment with respect
to the CEDAR setup, apart from the obvious gain of information, that the installation of a third
CEDAR could bring.

The presented log-likelihood method can be also used in order to filter pion samples. The kaon
content can be reduced by more than a factor 20, at a pion efficiency larger than 90%.

1 Data set and definitions

The fraction of kaons in the COMPASS 190 GeV/c hadron beam is around 3.5% at the production
target, and 2.5% at the target. By restricting the recorded events to a subsample by kinematic
cuts on the spectrometer information, kaons may be enriched or sparsified. The sample used in the
following contains events from the two reactions

K− −→ π−π0 free kaon decay (1)

π− N −→ N π−π0 diffractive / Primakoff π0 production (2)

The produced π0 → γγ triggers the readout of such events, and a high statistics could be collected
in the few days of data taking in November 2009. About 47% of the first test production with LED
corrections for ECAL2 was used (T38). The reactions were selected by requiring

• the reconstructed π0 mass and the energy sum of the outgoing particles in the ranges as shown
on Fig. 1 and 2.

• the momentum transfer q = pπ − pπ′ − pπ0 to be restricted 0 > q2 > −0.01, cf. Fig. 1. The
nucleus in reaction (2) is assumed to recoil elastically, carrying away only a negligible amount
of energy.

Since the π0 calibration for the ECAL2 cells was missing at the time of this analysis, the recon-
structed π0 mass is off the PDG value and broader than finally achieved. The obtained distribution
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Figure 1: Left: The reconstructed π0 mass and the selected region for the further analysis. Right:
Q2 distribution, indicating the Primakoff region < 0.001 GeV2/c2. The peak corresponds to the cross
section dominance of photon exchange in pion-nucleus scattering at small momentum transfer, and
being exactly zero in case of the free kaon decay. It is broadened in a very similar manner for both
cases by the experimental resolution.
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of the final-state mass mππ0 is repesented in Fig. 3. It features clear signatures for the two con-
tributing processes: The free kaon decay leads to the peak at mK ≈ 0.5 GeV/c2 and a tail towards
lower masses from (semi-)leptonic decays. The Primakoff and diffractive scattering of pions is seen
by the predominant contribution of the ρ(770) resonance. The samle contains about 765 000 events,
enriched by the chosen cuts to a content of about 14.5% kaons.

It turns out that the CEDAR response strongly depends on the angle under which the beam
particle traverse it. The beam divergence, propagated from the measured information of the COM-
PASS beam telescope to the CEDAR position, is presented in Fig. 5. It lies in a narrow cone of
about 200 µrad in both spatial directions. The symmetry axes of the CEDARs are positioned close
to the peak intensity of the beam, with some tilt angle between the two, which actually increases
the overall efficiency. For both CEDARs, the incoming particle direction is converted to a radial
offset r1 and r2 with respect to these symmetry centers, and azimuthal position φ1 and φ2.

2 CEDAR information

Both CEDARs are equipped with 8 photomultipliers, circularly positioned near the focus of the
Cherenkov rings produced by the traversing particles. The principle and design is exhaustively
discussed in [1].

The response of the PMs is processed by collecting the in-time signals in subgroups G0· · ·G8,
which are determined by the beam tilt direction with respect to the symmetry axis of the CEDAR
detectors as shown in Fig. 6. From the data, the number of PM signals in each group is determined
for pion and kaon samples obtained by the appropriate kinematical cuts. The radial dependence
of this expectation is parameterized as shown in Figs. 7–10. The function by which the data are
fitted is

probnK,πg (j, r) = pnK,πg0 +

up to 4∑

i=1

pnK,πg3i arctan((r − pnK,πg1i )/pnK,πg2i ) (3)

where n = 1, 2 is the number of the CEDAR, j = 0, 1, 2 is the number of signals in the respective
group g = 0, ..., 8. It is seen that within a single group, the expectation for a pion may change from
no signal at small r to 2 signals at larger r, and vice versa. The overall response of one CEDAR
detector is then judged by multiplying the probabilities for each group response (or rather adding
the respective logarithms),

CnG0KLOG =
∑

log probnK0,2,4,6,8(j, r) (4)

CnG1KLOG =
∑

log probnK1,3,5,7(j, r) (5)

CnG0PLOG =
∑

log probnπ0,2,4,6,8(j, r) (6)

CnG1PLOG =
∑

log probnπ1,3,5,7(j, r) (7)

where either G0 or G1 is chosen, depending on the particle direction.
Those probabilities are further investigated in their r dependence, shown in Figs. 11–14 exam-

plary for CEDAR1. r-dependent cuts are chosen such that the kaon-like region does certainly not
contain pions, and vice versa. The cut functions are parameterized similar to the probability curves
above, e.g.

C1G0KKLIM = −3.5 + 1.8 ∗ arctan(CED1r/7e− 5− 1) (8)

C1G0KPLIM = −10.4 + 5.0 ∗ arctan((CED1r + 5e− 5)/8e− 5) (9)

Events in the remaining “common” region (between the black lines) are left untagged by the
respective CEDAR.
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Figure 3: Efficiency of CEDAR cuts on kaon identification. The black curve is the raw mππ0 distribu-
tion without cuts on CEDAR or beam characteristics. The multiplicity cut leads to the light-blue curve
with about 43% of the kaon signal, the log-likelihood cut results in the red distribution containing
80% of the original kaon signal. The values have been determined as explained in Fig. 4.
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Figure 4: Inefficiency of the kaon identification cuts. The strengths of the remaining kaon peaks are
determined to be 21% in case of the log-likelihood cut, and 57% in case of the multiplicity cut. Those
numbers have been obtained by subtracting from the inefficiency histograms the original histogram
scaled by the factors 0.21 and 0.57, respectively, chosen such that the remaining histogram (the two
lower curves) turn out smooth in the region of the kaon peak.
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Figure 5: Angular distribution of the beam at the CEDAR position. The symmetry centers of the
two CEDARs are indicated by the black plobs, determined from the position of multiplicity-8 kaons.
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Figure 6: Geometry of the Cherenkov rings with respect to the diaphragm, showing the dependence of
expected signals on the direction under which the particle crosses the detector (upper row). The left
graph shows the case when the particle trajectory coincidences with the symmetry axis of the CEDAR
optics, and only the kaon ring is detectable. On the other two graphs, there is an increasing tilt angle,
when first the kaon ring leaves the acceptance of the diaphragm, and then the pion ring enters it on
the opposite side. The lower plots introduce the grouping convention of the photomultipliers with
respect to the tilt direction of the beam particle. In case the tilt plane lies close to the center of a
photomultiplier, the grouping in 0,2,4,6,8 shown in the left figure is made, if the lies between two
neighboring PMs, the grouping 1,3,5,7 shown in the right figure applies.

7

C.2. CEDAR PERFORMANCE 2009 135



rk_0_0
Entries  40
Mean   0.0002466

RMS    0.0001274

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_0_0
Entries  40
Mean   0.0002466

RMS    0.0001274

rk_0_0 rk_0_1
Entries  40
Mean   0.0002569

RMS    0.0001731

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_0_1
Entries  40
Mean   0.0002569

RMS    0.0001731

rk_0_1

rk_1_0

Entries  40
Mean   0.0002433
RMS    0.0001167

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_1_0

Entries  40
Mean   0.0002433
RMS    0.0001167

rk_1_0
rk_1_1

Entries  40
Mean   0.0002741
RMS    0.0001582

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_1_1

Entries  40
Mean   0.0002741
RMS    0.0001582

rk_1_1
rk_1_2

Entries  40
Mean   0.0002427
RMS    0.0001795

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_1_2

Entries  40
Mean   0.0002427
RMS    0.0001795

rk_1_2

rk_2_0
Entries  40

Mean   0.0002651
RMS    0.0001182

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_2_0
Entries  40

Mean   0.0002651
RMS    0.0001182

rk_2_0
rk_2_1

Entries  40

Mean   0.0002468
RMS    0.0001468

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_2_1
Entries  40

Mean   0.0002468
RMS    0.0001468

rk_2_1
rk_2_2

Entries  40

Mean   0.0002295
RMS    0.0001737

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_2_2
Entries  40

Mean   0.0002295
RMS    0.0001737

rk_2_2

rk_3_0

Entries  40
Mean   0.000296

RMS    0.0001325

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_3_0

Entries  40
Mean   0.000296

RMS    0.0001325

rk_3_0
rk_3_1

Entries  40
Mean   0.0002642

RMS    0.0001301

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_3_1

Entries  40
Mean   0.0002642

RMS    0.0001301

rk_3_1
rk_3_2

Entries  40
Mean   0.0002061

RMS    0.0001533

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_3_2

Entries  40
Mean   0.0002061

RMS    0.0001533

rk_3_2

rk_4_0
Entries  40

Mean   0.0003029
RMS    0.0001383

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_4_0
Entries  40

Mean   0.0003029
RMS    0.0001383

rk_4_0
rk_4_1

Entries  40

Mean   0.0002709
RMS    0.0001349

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_4_1
Entries  40

Mean   0.0002709
RMS    0.0001349

rk_4_1
rk_4_2

Entries  40

Mean   0.0002117
RMS    0.0001423

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_4_2
Entries  40

Mean   0.0002117
RMS    0.0001423

rk_4_2

rk_5_0

Entries  40
Mean   0.0002848

RMS    0.0001293

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_5_0

Entries  40
Mean   0.0002848

RMS    0.0001293

rk_5_0
rk_5_1

Entries  40
Mean   0.0002545

RMS    0.000132

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_5_1

Entries  40
Mean   0.0002545

RMS    0.000132

rk_5_1
rk_5_2

Entries  40
Mean   0.0002144

RMS    0.000162

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_5_2

Entries  40
Mean   0.0002144

RMS    0.000162

rk_5_2

rk_6_0
Entries  40

Mean   0.0002537
RMS    0.0001175

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_6_0
Entries  40

Mean   0.0002537
RMS    0.0001175

rk_6_0
rk_6_1

Entries  40

Mean   0.0002497
RMS    0.000154

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_6_1
Entries  40

Mean   0.0002497
RMS    0.000154

rk_6_1
rk_6_2

Entries  40

Mean   0.0002423
RMS    0.0001792

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_6_2
Entries  40

Mean   0.0002423
RMS    0.0001792

rk_6_2

rk_7_0
Entries  40
Mean   0.0002341

RMS    0.0001174

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_7_0
Entries  40
Mean   0.0002341

RMS    0.0001174

rk_7_0 rk_7_1
Entries  40
Mean   0.0002744

RMS    0.000161

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_7_1
Entries  40
Mean   0.0002744

RMS    0.000161

rk_7_1 rk_7_2
Entries  40
Mean   0.0002675

RMS    0.0001804

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_7_2
Entries  40
Mean   0.0002675

RMS    0.0001804

rk_7_2

rk_8_0
Entries  40

Mean   0.0002405
RMS    0.0001281

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_8_0
Entries  40

Mean   0.0002405
RMS    0.0001281

rk_8_0
rk_8_1

Entries  40

Mean   0.0002726
RMS    0.000175

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-3

10×0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rk_8_1
Entries  40

Mean   0.0002726
RMS    0.000175

rk_8_1

Figure 7: Probabilities for the possible responses for kaons in CEDAR1. From top to bottom, the
groups G0...G8 are shown. The leftmost histogram shows the probability curve for zero signals, the
next histogram for one signal, and the rightmost for 2 photomultiplier signals.
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Figure 8: Probabilities for the possible responses for pions in CEDAR1. Same meaning of the his-
tograms as in Fig. 7.
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Figure 9: Probabilities for the possible responses for kaons in CEDAR2. Same meaning of the his-
tograms as in Fig. 7.
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Figure 10: Probabilities for the possible responses for pions in CEDAR2. Same meaning of the
histograms as in Fig. 7.
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Figure 11: Log-likelihood for kaons in CEDAR1 in G0, dependent on r.
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Figure 12: Log-likelihood for kaons in CEDAR1 in G1, dependent on r.
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Figure 13: Log-likelihood for pions in CEDAR1 in G0, dependent on r.
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Figure 14: Log-likelihood for pions in CEDAR1 in G1, dependent on r.
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3 PID by the likelihoods

The following explains a sample usage of the log-likelihoods in order to obtain the beam particle
identification. Logical expressions (A > B) are to be read as 1 if fulfilled and 0 if not, according to
the C++/root standard. The PID proposals of each CEDAR are given by

CnKLOGID =
∑

g=0,1

(CnGgKLOG > CnGgKKLIM)− (CnGgKLOG < CnGgKPLIM)

CnPLOGID =
∑

g=0,1

(CnGgPLOG < CnGgPKLIM)− (CnGgPLOG > CnGgPPLIM) (10)

which assume the value +1 for a kaon, −1 for a pion, and 0 for “no decision”. Further, the
information of the two CEDARs is combined using

C1PID = (C1KLOGID + C1PLOGID > 0)− (C1KLOGID + C1PLOGID < 0)

C2PID = (C2KLOGID + C2PLOGID > 0)− (C2KLOGID + C2PLOGID < 0) (11)

and finally

CPID = (C1PID + C2PID > 0)− (C1PID + C2PID < 0) (12)

For the investigated data sample containing 764 292 events, 613 305 (80.2%) incoming particles are
identified as pions, 84 203 (11.0%) as kaons and the remaining 66 784 (8.7%) events belong to the
unattributed “flat wave”. From the kinematic signature of the resulting spectra, the efficiencies
and impurities of these identifications are derived as summarized in Tab. 3. The histograms are
shown in Fig. 16.

By applying more strict cuts on the Primakoff signature, a subsample with a further enriched
kaon component is obtained, the mass distributions are given in Fig. 17. The efficiencies and
impurities for pion and kaon identification are consistent in both cases on the sub-percent level.
Assuming them also for the unbiased beam and taking the known fractions of pions, kaons and
anti-protons into account, the values given in the last line of Tab. 3 is found.

The presented method allows for an identification of kaons with 82% efficiency. The misiden-
tification probability of a pion as a kaon (ηπ) is below 5 · 10−4, consequently an unbiased sample
of beam particles with CEDAR identification as kaons will at most contain a 2.2% admixture of
pions.

Selecting pions by the respective CEDAR condition has an efficiency of 94%. Misidentifying
kaons as pions has a probability of 6%, leading to an admixture of about 0.1% kaons in an unbiased
sample. This is a suppression of the original content of kaons by a factor 20, such that for most
analyses a very good estimate of the desired pure pion spectra should be feasible.

References

[1] C. Bovet et al., The CEDAR counters for particle identification in the SPS secondary beams:
a description and an operation manual, CERN82-13, Geneva.
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Table 1: CEDAR particle identification. For each investigated sample, the relative strength of finding
CPID= 1, 0,−1 is given. By statistical subtraction of the obtained mππ0 distributions from eachother,
determining the weight factor that makes the wrong signature disappear, the relative true particle
contributions are found. Since the flat and the K distributions are found very similar in shape, their
relative admixture in the 1% contamination of the pion sample cannot be distinguished on the present
statistical precision.

π K flat / p̄
CPID= −1 CPID= 1 CPID= 0

kin. π K/flat kin. π K kin. π K flat/p̄

80.2% 11.0% 8.7%

Full sample 0.990 0.010 < 0.004 ≈ 1 0.55 0.27 0.18

764 000 events 85% επ = 0.943 13.3% εK = 0.824 ≈ 1.7%
ηK = 0.06 ηπ < 0.0005

59.3% 29.4% 11.3%

Primakoff 0.963 0.037 < 0.001 ≈ 1 0.37 0.55 0.09

121 000 events 63.5% επ = 0.934 35.6% εK = 0.825 ≈ 0.9%
ηK = 0.06 ηπ < 0.0005

Beam at 96.8% 91.0% 2.4% 2.0% 0.8% 7.0%

target 0.999 0.001 < 0.022 > 0.978 0.83 0.06 0.11
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Figure 15: Left: Statistics in the log-likelihood regions as defined in Figs. 11–14 for kaon and pion
identification with CEDAR1, as expected strongly anti-correlated. Middle: same picture for CEDAR2.
Right: Combining the information of the CEDARs according to Eqs. 11.
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Figure 16: Decomposition of the mππ0 spectrum into the single contributions by CEDAR beam identi-
fication. By subtracting e.g. the kaon histogram, multiplied by an appropriate weighting factor, from
the pion histogram, such that the remainder kaon signature disappears, the impurities in Tab. 3 have
been obtained.
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Figure 17: Same like Fig. 16, but with tight Primakoff cuts. Subtracting from the flat wave (yel-
low distribution) appropriately weighted the kaon and pion distributions, results in the light-grey
distribution.
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Reconstruction of the Pion Beam Energy from Beam Optics
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Abstract

The trajectories of the incoming beam particles are determined with high precision in the
COMPASS silicon microstrip beam telescope. Since for hadron beams there is no beam momentum
station installed, the momentum is known only to lie within the momentum distribution given by
the beam line (i.e. by the scrapers). Yet, the beam line optics incorporates correlations between
the momentum of the beam particle and its position and angle, even downstream of the COMPASS
target. This information can in turn be used to constrain the momentum of the beam particles.

While it is obviously good advice to apply this correction in analyses where the beam energy
plays a role, it also opens a whole new field of investigating energy dependencies over the quite
considerable spread of about 3% (188.5 – 194.5 GeV). The gaussian energy resolution is about 1.2
GeV.

1 Data set, definitions

In order to determine the beam parameter correlations, exclusive diffractive 3-charged-pion final
states are selected, at small momentum transfer (t′ < 0.2 GeV2/c2) from the Primakoff 2009 data.
Those events are triggered by the calorimetric trigger due to the electromagnetic component of
hadronic showers started by at least one of the charged pions, which leads to a complicated, certainly
energy-dependent efficiency. For the present considerations, this efficiency plays only a secondary
role. About 1.37 million events are extracted from the 2009 Primakoff data set (pre-production
T51; as the analysis is performed on the subset of events with maximum energy of the outgoing
pions Eπ± < 155 GeV, so the full statistics of the final state is expected to be higher).

The chosen final state relies on the momentum resolution of the charged-particle tracking only.
Since the data are dominated by low momentum transfers, correction for energy loss to the recoiling
particle is neglected. At higher momentum transfers, indications of the target recoils could be
identified after the presented energy correction was applied. This, however, is not further discussed
here.

The direction and position of the incoming beam particles is described by the transverse co-
ordinates (x, y) at the Ni target position z = 72.5 cm, and the respective slopes (dx/dz, dy/dz),
abbreviated in the following by (dx, dy). Units are cm and rad.

2 Representation and determination of E(x, y, dx, dy)

The beam line optics leads to a correlation of E with the spatial coordinates (x, y, dx, dy), which can
be determined from the described data set. Without prior knowlegde on the details of the beam

∗jan@tum.de
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optics, this was achieved in a first step using a neural network in a x,y,dxs,dys:50:25:6:6:E

4-layer configuration (notation of the employed root implementation TMultiLayerPerceptron, cf.
http://root.cern.ch). The quantities dxs and dys refer to the slopes scaled by a factor 10.000,
such that the pion beam divergence of about ±200µrad spreads over a range of the order of one, as
required for the training process of the neural network. The given neuron/layer structure with 4
hidden layers and 92 neurons has been manually optimized in several steps to match the complexity
of the present problem.

Because this neural network takes quite a considerable time to evaluate (∼msec per evaluation
on a standard desktop computer), in a second step it is reduced to a multidimensional polynomial.
Terms up to 5th order in each variable x, y, dx, dy and all possible mixed terms are taken into
account, resulting in 441 free parameters. The 4th-power components turn out to be quite large
and presumably a consequence of (non-linear) effects in the beam line optics. The parameterization
is given in the appendix, including a C-code for implementation.

In Fig. 2 the original spectrum of the exclusivity signal for E3π = Eπ− + Eπ− + Eπ+ is shown
with the most probable value 191 GeV subtracted, in comparison to the corrections applied. The
width of the exclusivity peak is reduced from about 2.0 GeV to 1.5 GeV (signal RMS), equivalent
to a deconvolution of a beam momentum distribution with an RMS of 1.3 GeV.

The correlation of the beam energy with each of the 4 coordinates is given in Fig. 2, comparing
the uncorrected case with the two discussed parameterizations.

The corresponding beam energy profiles are given in Fig. 2.
Other final states, especially those including photons in the final state which do not depend on

the tracking but rather on the e.m. calorimetry, confirm that applying the given energy correction
deconvolutes a gaussian width of about 1.3 GeV.
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Figure 1: Exclusivity peak for diffractive π−π−π+ final states at low momentum transfer. The signal
obtained from the momenta of the outgoing pion trajectories only (denoted “191”) is compared to the
neural network (“NN”) and polynomial fit (“P4”) using also the spatial parameters of the incoming
beam pion. The quoted “σ” are RMS of the signal distributions fitted as the sum of two gaussians.
The background is parameterized by an arctan function, smoothly connecting a flat background at
lower energies with vanishing strength at high energy.
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Figure 2: Left column: Uncorrected correlations of E3π with x, dx, y and dy. Middle column: The
NN correction applied. Right column: The polynomial correction applied. The vertical scale is always
GeV.
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Executive Summary
The research fields of hadron spectroscopy and hadron structure are closely connected
since their very beginnings. In 1964, spin-1/2 quarks were conjectured to be the build-
ing blocks of baryons and mesons in order to explain their quantum numbers observed
in hadron spectroscopy. In 1969, when interpreting data from first direct studies of the
structure of the proton, partons were hypothesised as its internal constituents and soon
after identified with quarks. In the early 1970’s, Quantum Chromodynamics (QCD) be-
came accepted as the theory of strong interactions, explaining the observed weakening
of the interquark forces at short distances or large momentum transfers. QCD not only
describes hard processes through perturbative expansions, but also the non-perturbative
dynamics of the strong interaction, down to soft and extremely soft processes which are
involved in meson spectroscopy and linked to chiral perturbation theory.

Parton Distribution Functions (PDFs) describe the structure of the nucleon as
a function of the nucleon momentum fraction carried by a parton of a certain species.
They are studied primarily in Deeply Inelastic Scattering (DIS) where the longitudinal
momentum structure of the nucleon is explored in the collinear approximation, i.e. ne-
glecting transverse degrees of freedom. Up to now, PDFs were investigated independently
from nucleon electromagnetic form factors that are related to ratios of the observed elas-
tic electron–nucleon scattering cross section to that predicted for a structureless nucleon.
The recently developed theoretical framework of Generalised Parton Distributions (GPDs)
embodies both form factors and PDFs, such that GPDs can be considered as momentum-
dissected form factors which provide information on the transverse localisation of a parton
as a function of the fraction it carries of the nucleon’s longitudinal momentum. Obtain-
ing such a “3-dimensional picture” of the nucleon is sometimes referred to as “nucleon
tomography”. In a complementary approach, the subtle effects of intrinsic transverse par-
ton momenta are described by Transverse-Momentum-Dependent PDFs (TMDs). These
effects become visible in hadronic Drell–Yan (DY) and Semi-Inclusive DIS (SIDIS) pro-
cesses. The structure of hadrons can not yet be calculated in QCD from first principles.
However, the deformation of the shape of a hadron in an external electromagnetic field,
described by polarisabilities, can be predicted by chiral perturbation theory which is a
low-energy expansion of the QCD Lagrangian.

More than 10 years ago, the Compass experiment was conceived as “COmmon
Muon and Proton apparatus for Structure and Spectroscopy”, capable of addressing a
large variety of open problems in both hadron structure and spectroscopy. As such, it
can be considered as a “QCD experiment”. By now, an impressive list of results has been
published concerning nucleon structure, while the physics harvest of the recent two years
of hadron spectroscopy data taking is just in its beginnings. The Compass apparatus
has been proven to be very versatile, so that it offers the unique chance to address in
the future another large variety of newly opened QCD-related challenges in both nucleon
structure and hadron spectroscopy, at very moderate upgrade costs. It consists of a high-
precision forward spectrometer and either an unpolarised, longitudinally or transversely
polarised target. It is located at the unique Cern SPS M2 beam line that delivers hadron
or naturally polarised µ± beams in the energy range between 50 GeV and 280 GeV.

This proposal lays the ground for a new decade of fascinating QCD-related studies
of nucleon structure and in hadron spectroscopy. It details the physics scope and re-
lated hardware upgrades for those topics for which data taking can be envisaged to start
in 2012. This implies mainly studies of chiral perturbation theory, “unpolarised” gen-
eralised parton distributions, and transverse-momentum-dependent parton distributions.
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More distant projects, as the whole complex of future QCD studies using hadron spec-
troscopy and also studies of “polarised” GPDs, will be described later in an addendum
to this proposal. All these studies will significantly expand our knowledge on key aspects
of hadron structure and spectroscopy which are inaccessible to any other facility existing
or under construction.

The concept of GPDs attracted much attention after it was shown that the total
angular momentum of a given parton species, Jf for quarks (f = u, d or s) or Jg for gluons,
is related to the second moment of the sum of the two GPDs H and E. As of today, it is
by far not fully understood how the nucleon spin 1

2
is shared between the contributions of

intrinsic and orbital angular momenta of quarks of various flavors and gluons. Constraining
quark GPDs experimentally by measuring exclusive Deeply Virtual Compton Scattering
(DVCS), µ p → µ γ p, or Deeply Virtual Meson (M) Production (DVMP), µ p → µM p,
is the only known way to constrain the quark components of the nucleon’s spin budget
1
2

=
∑

f=u,d,s J
f + Jg. Such data will also be very important to experimentally validate

GPD moments calculated from first principles through QCD calculations on the lattice. In
order to ensure exclusivity of DVCS and DVMP events, a new recoil detector will surround
a 2.5 m long liquid hydrogen target. The kinematic domain accessible with 160 GeV
muon beams cannot be explored by any other facility in the near future. The DVCS
cross section will be determined as a function of both the momentum transfer between
initial and final nucleons and the fraction of the longitudinal nucleon momentum carried
by the struck parton. A new electromagnetic calorimeter (ECAL0) will provide coverage
of substantially higher values of this fraction as compared to the existing calorimeters
ECAL1 and ECAL2. One key result will be the first, model-independent answer on the
question how the transverse nucleon size varies gradually from the gluon/sea-quark region
to that dominated by valence quarks. Only Compass can explore the kinematic region
between the H1/Zeus collider range and the Hermes/JLab fixed-target range, so that
particularly important results can be expected from 3-dimensional nucleon “tomography”
within this kinematic domain. The transverse structure of the nucleon in the Compass
kinematic range is considered to be important input for background simulations in proton-
proton collisions at LHC. The second key result is information on the GPD H, obtained by
separating the real and imaginary parts of the DVCS amplitude. This will be accomplished
by combining data from positive and negative muon beams. The azimuthal dependence
of the cross section will be used to isolate the contribution of the GPD H, which is of
particular importance for the evaluation of the spin sum rule. The measurements with
the liquid hydrogen target will mainly constrain H. An extension of the programme is
envisaged using a transversely polarised target, mainly to constrain E. This will be subject
of an addendum to this proposal. After completion of data taking, the combined DVCS and
DVMP data set of H1, Zeus, Compass, Hermes and JLab will constrain the nucleon-
helicity-conserving u and d quark GPDs over a wide kinematic range in parton longitudinal
momentum versus parton transverse localisation, and virtual-photon resolution scale. It
is expected that ongoing activities towards global fits of GPDs will lead to a reliable
determination of total and also orbital quark angular momenta.

Simultaneously with the GPD programme, high-statistics data will be recorded
on unpolarised semi-inclusive deep inelastic scattering, µ p → µhX. The pion and kaon
multiplicities will be used to extract at leading order αs (LO) the unpolarised strange
quark distribution function s(x) as well as fragmentation functions describing how a quark
fragments into a hadron. Presently, the poor knowledge of these quantities is the limiting
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factor in the determination of the polarisation of strange quarks from SIDIS data. These
multiplicities will also represent important input to future global analyses beyond LO.

The transverse momentum of partons is a central element in understanding the
3-dimensional structure of the nucleon. From the measured azimuthal asymmetries of
hadrons produced in unpolarised SIDIS and DY processes a sizable transverse momentum
was derived. When this intrinsic transverse momentum is taken into account, several new
functions are required to describe the structure of the nucleon. Transverse spin, in fact,
couples naturally to intrinsic transverse momentum, and the resulting correlations are en-
coded in various transverse-momentum-dependent parton distribution and fragmentation
functions. The SIDIS cross section contains convolutions of these two types of functions,
while the convolutions in the DY cross section comprise only PDFs and/or TMDs. In
spite of the widespread interest in this approach which goes beyond collinear QCD, the
field is still in its infancy and only data can sort out which correlations are apprecia-
bly different from zero and relevant. Of particular interest are the correlations between
quark transverse momentum and nucleon transverse spin, and between quark transverse
spin and its transverse momentum in an unpolarised nucleon, which are encoded in the
so-called Sivers and Boer–Mulders functions, both (näıvely) T -odd. The Boer–Mulders
function contributes to the azimuthal modulations in the cross sections of unpolarised
SIDIS and DY processes which have been observed since many years. We intend to ac-
curately measure such modulations both in DY and in SIDIS (this last measurement in
parallel to the GPD programme). Much attention in the recent years has been devoted
to the Sivers function originally proposed to explain the large single-spin asymmetries
observed in hadron–hadron scattering. From T -invariance arguments, for a long time it
was believed to be zero. One of the main theoretical achievements of the recent years was
the discovery that the Wilson-line structure of parton distributions, which is necessary to
enforce gauge invariance of QCD, implies a sign difference between the T -odd distribu-
tions measured in SIDIS and the same distributions measured in DY. According to this
“restricted universality”, the Sivers function can be different from zero but must have
opposite sign in SIDIS and DY. There is a keen interest in the community to test this
prediction which is rooted in fundamental aspects of QCD, and many laboratories are
planning experiments just to test it. The Sivers function was recently measured by Her-
mes and Compass in SIDIS off transversely polarised targets and shown to be different
from zero and measurable. In order to test its sign change, DY experiments with trans-
versely polarised hadrons are required, but none were performed so far. The main goal
of our DY programme is to measure for the first time on a transversely polarised target
the process π−p↑ → µ+µ−X. This will be a unique measurement as at Compass energies
the virtual photon originates mainly from the fusion of a ū quark from the pion and a
u quark from the nucleon, both in valence-like kinematics. In two years of data taking
with the 190 GeV π− beam and the Compass spectrometer with the NH3 transversely
polarised target, the fundamental prediction for the sign of the u quark Sivers function
can be tested for the first time.

Measurements of exclusive final states produced by incoming high-energy pions
at very small momentum transfer to the recoiling nucleus, explore the Primakoff region
where the cross section is dominated by the exchange of a quasi-real photon. The initial
π−γ∗ system may scatter into π−γ (Compton reaction), π−π0, π−π0π0, π−π+π−, or fi-
nal states containing more pions. In QCD, chiral Perturbation Theory (ChPT) predicts
the low-energy behaviour for all these reactions at small intermediate-state masses m2

πγ,
from threshold to a few pion masses. The chiral expansion of the cross section contains
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several low-energy constants which describe important physical properties of the pion.
For the Compton reaction, the ChPT calculations result in deviations from the QED
bremsstrahlung cross section that is exactly calculable for a point-like particle. The first
term in the expansion in mπγ originates from the electric and magnetic dipole polarisabil-
ities of the charged pion, απ and βπ, and is proportional to their difference απ − βπ. In
order to resolve these two polarisabilities independently, i.e. to also determine απ + βπ, it
is necessary to measure the cross section differential in the centre-of-momentum scattering
angle θcm, in which the two contributions have a complementary functional dependence.
At that level of precision, it is possible (and necessary) to also account for the most rele-
vant combination of the pion quadrupole polarisabilities, α2 − β2. Its effect has a similar
θcm dependence as that of απ−βπ but is proportional to m4

πγ instead of m2
πγ. The planned

measurements will also allow for the determination of the two combinations απ + βπ and
α2 − β2, for the first time. The neutral (electromagnetic) trigger permits at the same
time the precise measurement of final states containing one or more π0. The threshold
behaviour of π−π0 determines the chiral anomaly constant F3π, for which the new data set
will allow a new level of experimental precision beyond that of the theoretical prediction
of about 1%.

The physics programme described in this proposal covers a period of five years,
one year for the tests of chiral perturbation theory and two years each for the GPD and
DY programmes. The tentative schedule for the first three years is as follows:

– 2012: Tests of chiral perturbation theory,
– 2013: GPD programme,
– 2014: Drell–Yan programme.

On the basis of the results from the 2008 and 2009 hadron runs, an addendum to this
proposal aiming at further hadron spectroscopy measurements will be submitted in due
time. The schedule of these measurements will be considered together with that of the
remaining parts of the proposed GPD and DY programmes, possibly taking into account
extensions of the latter as sketched in the proposal.

6
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4 Experimental studies of chiral perturbation theory
From the earliest attempts to understand the strong interaction more than 70

years ago, the pion and its properties have played a key role, first as an exchange particle
in the nucleon–nucleon interaction, and later as the lightest quark–gluon bound state of
Quantum Chromodynamics (QCD). Revealing and explaining the pion’s global properties
and the details of the internal structure, is still a challenge for experimental and theoretical
particle physics, specifically in verifying the validity of QCD for the dynamics of non-
perturbative bound states and low-energy reactions.

Exploiting the smallness of the u, d, s quark masses, the approximate chiral sym-
metry of the QCD Hamiltonian, SU(3)L×SU(3)R, can be used to construct the low-energy
effective field theory, which allows to expand the strong interactions systematically in the
particle momenta. This approach is called Chiral Perturbation Theory (ChPT). Accord-
ing to the Goldstone theorem, the spontaneous breaking of the chiral symmetry in the
QCD vacuum manifests itself in the occurrence of (almost) massless pseudoscalar Nambu-
Goldstone bosons. These are identified with the observed pions and kaons (and the eta).
Within this theory, their small masses originate from the non-vanishing quark masses,
which break the chiral symmetry explicitly. The first complete treatment of ChPT up
to one-loop order has been presented by Gasser and Leutwyler in Ref. [154], where also
references to earlier work can be found. For a recent overview of the current status of
ChPT in the meson sector, see Ref. [155].

The crucial feature of ChPT is to establish various connections between physical
observables as a consequence of the (approximate) chiral symmetry of QCD, often referred
to as low-energy theorems. Working out the systematic corrections, ChPT can give firm
predictions for the strong interaction dynamics of the Goldstone bosons, which is often
very difficult to determine experimentally. The most striking example concerns the long-
standing problem of the pion electromagnetic polarisabilities. In ChPT, the (dominant)
difference of the electric and magnetic polarisabilities is directly related to the strength
of the radiative pion decay. Beyond that, higher-order corrections and a theoretical error
estimate have been worked out recently in Ref. [156]. The pion polarisabilities (together
with chiral loop contributions) give rise to deviations of the pion Compton cross sec-
tion σ(πγ → πγ) from the QED expectation valid for a structureless spin-0 particle, as
discussed in detail in Sect. 4.1.

Moreover, within ChPT the coupling constants for reactions including more pions
in the final state are equally well controlled, e.g. the chiral anomaly driving the low-
energy behaviour of the reaction π±γ → π±π0. The potential of measuring also those
reactions, closely related to the Compton reaction and consequently measurable in parallel
as reviewed in Ref. [157], is addressed in Sect. 4.2.

4.1 Pion and kaon polarisability measurement
The pion electric and magnetic dipole polarisabilities απ and βπ characterise the

response of a (charged) pion, as a composite qq̄ system, to external electromagnetic fields
in the low-frequency limit. Clearly these are fundamental structure parameters of the pion,
and the comparison between theoretically predicted and directly measured values provides
a stringent test for various theoretical approaches, like ChPT, dispersion sum rules, QCD
sum rules and quark confinement models. The theoretical predictions disagree markedly
with each other and lie in the range (2− 8)× 10−4 fm3 for the absolute values of απ and
βπ [157–159]. Several attempts were made in the past to measure these quantities (see,
e.g. Ref. [160]) using different experimental approaches. The results obtained are affected
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Figure 40: Pion Compton reaction (right graph) embedded in the Primakoff reaction (left
graph) on a nucleus of charge Z. Kinematical quantities in the laboratory and the CM
scattering angle are indicated.

by large uncertainties and there are even large discrepancies between them. The ongoing
dispute about the compatibility of the ChPT results for the pion polarisabilities with the
those of the dispersion relation approach, as expressed in Refs. [161, 162], demonstrates
once more the urgent need for experimental clarification.

The Compass experiment provides unique tools to measure precisely the pion
polarisabilities in the Primakoff reaction

π−Z → π−Zγ (53)

embedding the pion Compton scattering reaction as depicted in Fig. 40. The cross section
for the Primakoff reaction (53), treating the nuclear vertex in the equivalent photon
approximation [163] is given by

dσ

ds dt dQ2
=

α

π(s−m2
π)
· F 2

eff(Q2) · Q
2 −Q2

min

Q4
· dσπγ

dt
(54)

where Qmin = (s −m2
π)/2Ebeam, s and t are the Mandelstam variables in the πγ system.

Using the threshold expansion for the πγ subprocess, the polarisabilities are introduced
at the level of Compton amplitudes (following Ref. [156])

α

mπ

H+∓(t, s = m2
π) = (απ ± βπ) +

t

12
(α2 ± β2) + . . . (55)

where the leading Born terms are subtracted to obtain the reduced (spin-flip and spin-
nonflip) helicity amplitudes H+∓. This leads (to linear order) to the pion polarisability
term P for the differential cross section

dσπγ
dΩcm

=
α2(s2z2

+ +m4
πz

2
−)

s(sz+ +m2
πz−)2

− αm3
π (s−m2

π)2

4s2(sz+ +m2
πz−)

· P (56)

which is given by

P = z2
−(απ − βπ) +

s2

m4
π

z2
+(απ + βπ)− (s−m2

π)2

24s
z3
−(α2 − β2) (57)

and z± = 1 ± cos θcm, θcm the scattering angle in the CM system of the outgoing πγ
pair. The last term accounts for the quadrupole polarisability difference α2 − β2, which
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emerges in a consistent treatment in the same order as the dipole polarisability sum
απ +βπ. The full expansion in s = m2

πγ to the given order requires terms quadratic in the
polarisabilities. They are omitted here as they do not change the salient features given by
the linear terms.

The effect of the difference of electric and magnetic polarisability (απ − βπ) is
strongest under backward angles (for this reason, this quantity is also called backward
polarisability), while the forward polarisability (απ+βπ) influences the cross section mostly
at large cos θ. While the latter forward polarisability is expected to assume small values,
it is enhanced in the cross section by the prefactor s2/m4

π. As a consequence, measuring
the energy and angular dependence of the cross section allows to extract the two dipole
polarisabilities separately. Furthermore, within ChPT the 1- and 2-loop contributions are
to be taken into account for a correct interpretation of the experimental cross section.

The effect of the polarisabilities as given by Eq. (56) is depicted in Fig. 41, also
showing the kinematical relation with the laboratory quantities. The physically interesting
region includes photons with energies in the range from 20 to 180 GeV at angles from 0
to 8 mrad with respect to the incoming beam pion direction.

The study of Primakoff reactions in Compass was first started in the pilot hadron
run in 2004 using 190 GeV π− and µ− beams impinging on a solid Pb target, segmented
in longitudinal direction. Additional samples for Cu and C targets were also collected.
The total amount of pion Primakoff events from the lead target was about 60,000 events
with photon energies above 40 GeV. Instabilities in the amplification of many cells of the
electromagnetic calorimeter connected with saturation effects and some features of the
Primakoff trigger, including a missing row in the sensitive central region, turned out to
cause significant systematic uncertainties of the measurement and do not allow to extract a
reliable value for the pion polarisabilities from the 2004 data. However, the measurement
allowed to address the full measurement procedure and established the feasibility of a
much improved measurement.

The most important achievements of the present analysis are, on the one hand, the
selection of Primakoff reactions as exclusive πγ events (Fig. 42), the identification of the
Primakoff peak and the diffractive background in the Q2 distribution (Fig. 43) allowing
to confirm the Z2 dependence of the Primakoff peak following the theoretical prediction
(Fig. 44). On the other hand, we determined important parameters of our setup such
as resolutions and Monte Carlo control of detector efficiencies and identified the main
sources of background, both, non separable physics processes (the ratio of Primakoff
signal to diffractive background for different targets is shown in Fig. 43) and backgrounds
stemming from beam impurities for which a set of procedures for background reduction has
been developed. Corrections to the pure tree level Primakoff cross section come from the
Compton vertex, multiple photon exchange, vacuum polarisation, nuclear charge screening
by atomic electrons and contribution of nuclear form factor and have now also been
calculated [164, 165]. The full Q2 dependence was also investigated within the Glauber
model in the work of [166, 167], incorporating the influence of the strong interaction.

In the recent Primakoff data taking in November 2009, several of the learnings from
the 2004 run have been taken into account, with the perspective of extracting a reliable
value for απ − βπ from a statistics of about a factor three larger than the one of 2004.
Those include

– Usage of an unsegmented target with the thickness of 0.3X0. This target provides
the opportunity to collect large statistics with high data quality (good resolution
for Q2, low background from beam kaon decays due a shorter fiducial volume cut).
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Figure 41: Top: Pion Compton scattering cross section (continuous line: point-like case)
and polarisability effect (dashed line: prediction of chiral perturbation theory). Bottom:
relation to the photon kinematics (energy and production angle) in the laboratory. In
colour, the relative effect of the dipole polarisabilities (ChPT values) on the cross section
is shown (in light colour saturation, the region outside of the kinematical cuts is indicated).
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Figure 44: Z2 dependence of the Primakoff
cross section.
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Figure 45: Systematic shift of απ due to
radiative corrections.

Replacing Pb by Ni as target material reduces the effect radiative corrections more
significantly for lead, and the correction related to the nuclear form factor. The
spin-0 58

28Ni nucleus simplifies the estimation of radiative corrections.

– The layout of the target region was kept similar to the hadron run 2009, with the
hydrogen target being replaced by a solid target. The present geometrical positions
of silicon and PixelGEM detectors allow to measure the scattering angle of pions
with the required precision of ∆pT < 10 MeV, and to also collect the statistics
for beam kaons decay up- and downstream of the target, which is important for
K− → π−π0 background determination, though kaon background will be much
reduced owing to the CEDARs.

– The new digital ECAL2 trigger on the Primakoff photons was installed. As these
photons are concentrated in the central part of ECAL2, it was sufficient to include
the 12×12 central cells. For the other processes of interest, as outlined in the next
section, will require a larger active ECAL area to be included in the trigger.

– The trigger hodoscopes downstream of the concrete wall, used in the muon program
in order to provide particle identification in the range 15 GeV/c < p < 20 GeV/c,
was activated in order to provide muon–pion separation.
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Table 13: Proposed running time, the respective total beam flux for pions and muons,
and expected total errors on the pion polarisabilities (units 10−4 fm3, except quadrupole
polarisability values in units of 10−4 fm5).

Days π beam, µ beam, Flux Flux απ − βπ απ + βπ α2 − β2

days days π, 1011 µ, 1011 σtot σtot σtot

120 90 30 59 12 ±0.27 fixed fixed
±0.26 ±0.016 fixed
±0.66 ±0.025 ±1.94

ChPT prediction
5.70 0.16 16

– CEDARs are required for beam kaon identification. Their performance in 2009 is
still to be studied.

– An optimised electron converter was installed on the beam line to decrease the
admixture of the electrons in the hadron beam. It is positioned close to the last
major bending dipoles or downstream of CEDAR 2.

– The VetoBox surrounding the target and used in 2004 was replaced by the new re-
coil proton detector, serving as veto system. The forward sandwich veto suppresses
reactions of particles under large angles.

One of the key features for this measurement within Compass is the study of sys-
tematic effects using a well known calibration process, Primakoff scattering by muons. In
the following we assume all of the systematic effects to be measured using muons, thereby
neglecting for the moment effects on beam shape and intensity, secondary interactions
and systematic effects based on concurring physics processes different for the two particle
species. In order to keep the systematic uncertainty below the statistical one, we need to
collect data shared between pion and muon beams as given in Table 13. Using a 0.3X0 Ni
target and beam intensities of 4× 107 per spill for pions and 4× 108 per spill for muons
we have calculated event rates and uncertainties, where we assume the geometrical ac-
ceptance for Primakoff events and the efficiency of our selecting cuts to be the same as
in 2004 (but which improved performance of ECAL 2 and trigger hodoscopes). Collecting
10 full runs (1000 spills) per day, as was realised in the previous beam times, we give the
corresponding values for beam fluxes and the total uncertainties for different periods of
data taking in Table 13, subdivided into three different ways to fit the polarisabilities:
Fixing the subleading contributions απ + βπ and α2 − β2 to some value decreases the
statistical uncertainty on the free parameter(s) as given in the first two rows. This, how-
ever, will lead to an unknown shift of the fitted value(s) due to the correlation between
them (especially απ − βπ and α2 − β2). Since none of the polarisability combinations is
constraint in principle, only the full 3-parameter fit (3rd row) is regarded as the goal for
this measurement. For the quadrupole contribution, the full 2-loop result is given [156].
If the 1-loop contribution (12× 10−4 fm5) is explicitly taken out, as has been done for the
dipole polarisability extraction in the Serpukhov data analysis [168], the ChPT prediction
reads 4× 10−4 fm5. In Table 13, time needed for detector commissioning is not included.
Small data samples with empty target which will help to study the systematic effects are
also not included, however their collection should take just a few hours.

So far all experiments performed have only been able to address a combination of
electric and magnetic polarisability (namely απ − βπ). Compass can, for the first time,
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Table 14: Expected precision of the kaon polarisability measurement obtained in parallel
with the proposed running time in Table 13 (units 10−4 fm3).

π/K beam Flux Flux αK − βK αK + βK αK,2 − βK,2
days π, 1011 K, 1011 σtot σtot σtot

90 59 1.4 ±0.08 fixed fixed

ChPT prediction
1.0 - -

also perform an independent measurement of απ and βπ using the information about both,
energy and scattering angle of Primakoff photons. Within the proposed data taking, we
can expect a statistical uncertainty on the level of 0.66 × 10−4 fm3 on the difference of
dipole polarisabilities, and 0.025 × 10−4 fm3 for their sum. Here, it should be stressed
that the investigation of the full s dependence includes to account for the 1- and 2-loop
contributions predicted by Chiral Perturbation Theory, which are also viewed as dynamic
polarisability απ(s), in contrast to the s-averaged measurements discussed so far. The
range of s accessible for Compass includes also the region of ρ meson decays, which
contains interesting information, as the radiative width of the ρ, by itself.

In addition to the precise measurement of the pion polarisabilities, we can observe
Primakoff scattering with charged kaons for the first time and thus obtain the kaon po-
larisability. For the proposed data taking, we expect about 4000 Primakoff events with
kaons in the sensitive range 0.5 < ω < 0.9. Thus a first and coarse measurement of the
kaon polarisability can also be obtained in parallel to the high precision determination
of the pion polarisability outlined above due to the usage of CEDARs for separation of
kaons and pions in the beam (Table 14).

The experimental setup has to be optimised in the following ways for the proposed
data taking:

– In order to ensure high redundancy in the tracking of incoming and outgoing pions,
an additional tracking station will be installed downstream of the target. Precision
in the scattering angle requires distances smaller than 1 m between target and
closest tracking stations.

– The measurement of the kaon polarisabilities require an improvement in kaon iden-
tification by the CEDAR system, which has to be optimised or rebuilt.

– The RICH beam pipe has to be replaced by a solution which minimises the con-
version probability for photons and the multiple scattering for charged particles.

– The digital trigger electronics, which came as a very new installation to the 2009
data taking, has to be finalised.

4.2 Primakoff reactions with neutral pions in the final state
In parallel to the Primakoff Compton scattering Eq. (53) Compass also aims to

measure Primakoff reactions with neutral mesons in the final state, already been observed
in the 2004 pilot run:

π−Z → π−Z π0 (58)

π−Z → π−Z π0π0 (59)

π−Z → π−Z η (60)
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dominated by a2(1320). Improving event
selection and subtraction of background is
expected to clear up the picture.

The measurement of Eq. (58) allows to determine the chiral anomaly amplitude F3π, for
which Chiral Perturbation Theory (ChPT) makes an accurate prediction by relating the
process to the π0 decay constant fπ and the electric coupling constant αem. This consti-
tutes a test of higher-order ChPT. The reaction Eq. (59) is calculable directly at tree level
ChPT [157], using the pion scattering lengths a0, a2, combined with the electromagnetic
coupling α. Here, the ChPT expansion should be reliable on the percent level, and so,
the experiment constitutes a strong test of χPT at tree level and goes much beyond the
determination of low energy constants.

Reaction Eq. (58) has already been examined by the Serpukhov experiment [169],
however in the relevant region of s < 10 m2

π only about 200 events were obtained. Reaction
Eq. (59) has not been determined up to now.

Reaction Eq. (60) allows the direct observation of 1−(1−+) exotics created in pho-
toproduction as the selection of Primakoff events removes a0 decaying to the same final
state (Figs. 46 and 47).

All of these channels have been identified in the 2004 pilot run with effectively
three days of Compass beam on a segmented 2+1 mm Pb target. About 320 events with
exclusive single π0 production with s < 10 m2

π (Fig. 48), and 85 events with exclusive
double π0 in the interesting range s < 22 m2

π have been reconstructed (Fig. 49). The cut
on exclusivity was ±10 GeV for the reaction of Eq. (58) and ±15 GeV for that of Eq. (59)
around the nominal beam energy, obtained as exclusivity peak in the sum of the outgoing
pion energies. The quasi-real photon exchange was selected with cuts of Q2 < 0.001 GeV2

and Q2 < 0.005 GeV2 for reactions of Eqs. (58) and (59), respectively. Background has
been subtracted using an adjacent Q2 side band. A new measurement should aim for at
least 10,000 events in the s < 10 m2

π range for the π0 channel, as it was also originally
proposed for Compass. We expect about 2,500 events for the π0π0 channel at the same
time.
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Appendix D

Articles on πγ Reactions, Radiative
Corrections and Chiral Dynamics

N. Kaiser, J. M. Friedrich: Cross-sections for low-energy π−γ reactions [44]

N. Kaiser, J. M. Friedrich: Radiative corrections to pion Compton scattering [45]

N. Kaiser, J. M. Friedrich: Radiative corrections to pion-nucleus bremsstrahlung [46]

C. Adolph et al. [The COMPASS collaboration]:
First Measurement of Chiral Dynamics in π−γ→π−π−π+ [2]

edited and the drafting chaired by J. M. Friedrich
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