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Abstract
The LHCb experiment at CERN has been designed to perform high precision measurements of
B meson decays. In this thesis the LHCb magnetic field parameterization and the emulation
of the LHCb Silicon Tracker noise reduction algorithms are discussed. Both studies have
contributed to the general performance of the LHCb detector.
The ability of the LHCb experiment to accurately measure B meson production and decay
vertices allows the experiment to perform precision time-dependent studies. Most ✓ leptons
detected by LHCb either originate from B mesons or Ds mesons, which causes the ✓ decay
vertex to be significantly displaced. This makes the LHCb experiment a great detector for ✓
physics studies. Tauonic decays are thought to be highly sensitive to New Physics contribu-
tions due to the high ✓ mass. Each known decay containing a ✓ lepton, also includes at least
one ✓ neutrino, due to lepton flavour conservation. Decays containing ✓ leptons are often
disregarded due to reconstruction difficulties with neutrinos passing straight through the
LHCb detector, carrying undetectable energy. However, if one can overcome these difficulties,
there are numerous interesting decays with ✓ leptons that are highly sensitive to New Physics
contributions, but are unexplored at LHCb.
In the first part of this thesis the exclusive reconstruction of a number of interesting ✓ physics
channels is performed. These decays all suffer from missing energy and some even contain
unreconstructable vertices. It is shown that despite these difficulties, the full ✓ momentum
can be calculated up to a certain ambiguity in all cases considered. The analytical calculation
is then extended to a constrained fit that exploits measurement errors to obtain the best result.
The constrained fit improves the reconstruction efficiency and may also improve the accuracy
of the calculation.
In the second part, the developed ✓ reconstruction method is tested on LHCb data collected in
2011. A specific tauonic decay is chosen on which the exclusive ✓ reconstruction is performed
in an attempt to extract its signal. It is shown that the goodness of the constrained fit can be
used as an excellent new selection cut to reduce background. However, to confidently extract
the observed number of signal events, the study can be improved. The foundations are laid for
exclusive ✓ reconstruction at LHCb and the developed methods in this thesis will continue to
be used to perform ✓ physics analyses at LHCb.

Keywords: CERN, LHCb, magnetic field parameterization, emulation, Silicon Tracker, noise
reduction, tau lepton, exclusive reconstruction, constrained fit
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Résumé
L’expérience LHCb au CERN est conçue pour effectuer des mesures de précision dans le sys-
tème du méson B. Dans cette thèse, sont présentés la paramétrisation du champ magnétique
de l’aimant dipolaire de LHCb, ainsi que l’émulation de l’algorithme de réduction de bruit
dans le détecteur de trajectoires au silicium. Les résultats de ces deux études sont essentiels à
l’excellente performance du détecteur LHCb.
La mesure de phénomènes dépendant du temps de vie du méson B sont rendu possibles à
LHCb par la capacité du détecteur à mesurer avec précision les vertex de production et de
désintégration. La plupart des leptons ✓ (tauon) détectés par LHCb proviennent de mésons
B ou Ds. Par conséquent, les tauons sont produit dans des vertex déplacés. Cela fait de
LHCb un excellent détecteur pour l’étude de la physique du lepton ✓. Les désintégrations
du ✓ sont en principe très sensibles à la Nouvelle Physique, de part sa masse élevée. Mais la
conservation du nombre leptonique implique que chaque lepton ✓ est produit conjointement
avec un neutrino ✓. Les neutrinos traversent le détecteur LHCb sans être détectés. A cause
de l’énergie emportée des neutrinos et des difficultés de reconstruction qu’elle implique, les
désintégrations contenant un tauon sont souvent ignorées. Toutefois, si des solutions sont
trouvées à ces complications, de nombreux processus physiques contenant des leptons ✓ et
sensibles à la Nouvelle Physique peuvent être étudiés à LHCb.
Dans un premier temps, cette thèse présente la méthode de reconstruction de plusieurs
processus intéressants contenant des leptons ✓. Dans tous ces processus, le problème de
l’énergie manquante due aux neutrinos est adressé. Il est montré que, malgré ces difficultés,
la quantité de mouvement du ✓ peut être déterminée dans tous les cas considérés, bien que
parfois persiste une ambiguité dans les solutions. Le calcul analytique est ensuite généralisé à
un fit contraint qui exploite les incertitudes de mesures et qui permet une meilleure précision.
Finalement, la méthode de reconstruction des leptons ✓ est testée sur les données LHCb
collectées en 2011. Une désintégration spécifique a été choisie, pour laquelle il est montré
que la qualité du fit contraint peut être utilisée efficacement comme un nouveau critère
de sélection. Les données de LHCb sont modélisées, et le signal est mesuré. Toutefois, la
description pourra être améliorée dans le futur pour obtenir une mesure plus précise.
Les fondations sont posées pour la reconstruction de leptons ✓. Les méthodes développées
dans cette thèse vont continuer à être utilisées pour l’étude de la physique du lepton ✓ à LHCb.

Mots clés: CERN, LHCb, paramétrisation du champ magnétique, émulation, Silicon Tracker,
réduction de bruit, tau lepton, la reconstruction exclusive, fit contraint
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Introduction

Although the Standard Model is used to describe all particles and their interactions, it is
known not to be complete. Measurements in particle decays that are not in agreement with
the Standard Model are indicators of New Physics. The differences between measurement
and prediction will shed light on the type of New Physics contribution necessary to cause
such differences. The semitauonic B0 � D�↵✓+�✓ decay is thought to be highly sensitive
to contributions beyond the Standard Model. In this thesis, the foundation of an exclusive
reconstruction method is laid, which offers a new approach to the study of the B0 � D�↵✓+�✓.

In Chapter 1 the Standard Model of particle physics is introduced. Aspects of the Standard
Model that are important to the semitauonic B0 � D�↵✓+�✓ decay are emphasised. The decay
rate of b � c✓+�✓ is calculated based on a free quark model. More accurate calculations on the
decay rate and branching fraction of the full B0 � D�↵✓+�✓ decay including QCD corrections
are described. Finally, the current measurements are given and New Physics possibilities are
discussed.

Chapter 2 introduces the LHCb experiment. All its subdetectors, responsible for particle
identification and track reconstruction, are discussed. Extra emphasis is put on the LHCb
magnetic field. A full description of its parameterization, leading to the current field map used
by LHCb, is given. The emulation of the Silicon Tracker online noise reduction algorithms and
its perfect results are also described in detail. A short description of the LHCb trigger and its
software framework is given.

Chapter 3 tackles the exclusive reconstruction of several interesting decays that include at least
one ✓ lepton. Analytical reconstruction possibilities are described and the improvements that
a constrained fit could bring discussed. All reconstruction analyses in this chapter are based
on Monte Carlo data, but the results of the different reconstruction methods are discussed
both for generated particles and reconstructed ones.

In Chapter 4 the exclusive ✓ reconstruction is applied on the B0 � D�↵✓+�✓ decay. Its efficiency
is tested on 0.37 fb↵1 data taken in 2011. All steps involved with the signal extraction of this
decay are covered in this chapter. The signal and physics background distributions are taken
from simulation and used to model the real data candidates. A systematics study is performed
to determine the likelihood of real ✓ particles being present in the selected data.
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1 Theory

1.1 The Standard Model of particle physics

1.1.1 Particles and forces

The Standard Model (SM) of particles and forces is the only theory currently available to
describe the fundamental structure of matter and the forces of nature. It is based on the
idea that matter is ultimately made from twelve elementary particles and their anti-particles
governed by three of the four fundamental forces. These elementary particles are called
fermions and hold an intrinsic angular momentum of spin- 1

2 . The twelve fermions appear as
two types: quarks and leptons, with each two elementary particles in three generations. For
each particle there is a corresponding anti-particle, which has identical mass and spin, but
has opposite values for all other non-zero quantum number labels.

The four fundamental forces of nature are the strong force, electromagnetism (EM), the
weak force and gravity. The Standard Model theory encapsulates how the twelve elementary
particles interact mediated by the first three of these forces. The effects of gravity, although
important on macroscopic scales, are negligible due to their low intensity on the elementary
particle scale compared to the other forces. Gravity is therefore not incorporated in the
Standard Model.

Each type of interaction has a characteristic set of force carrier particles associated with the
quantum excitation of the force field related to that interaction. These mediator particles hold
an intrinsic angular momentum of spin-1 and are therefore called bosons. The strong force
is mediated by gluons, which couple to colour charge. This type of charge is only carried by
quarks and gluons and comes in three types: red, blue and green. The electromagnetic force
carrier is the photon and couples to all electrically charged particles. There are three weak
force carriers; the neutral Z boson and a positively and a negatively charged W boson. The
weak interaction acts on all quarks and leptons. The Standard Model fermions and bosons are
summarised in Table 1.1.

3



Chapter 1. Theory

Force EM charge Charge carrier

Bosons

Strong 0 g⇧, ⇧ ⌃ {1, . . . ,8} (gluons)

EM 0 ⌥ (photon)

Weak
0 Z0 (Z boson)

±1 W± (W bosons)

Type EM charge I II III

Fermions

Quark
+2

3 u (up) c (charm) t (top)

↵1
3 d (down) s (strange) b (bottom)

Lepton
↵1 e (electron) µ (muon) ✓ (tau)

0 �e (e neutrino) �µ (µ neutrino) �✓ (✓ neutrino)

Table 1.1: The mediator bosons of the fundamental interactions and the three generations of
fermions, divided into quarks and leptons.

In the Standard Model, the electromagnetic and weak interactions are combined into the
electroweak interaction. The electromagnetic and weak forces are distinguishable at low
energies through spontaneous symmetry breaking, which will be discussed in Section 1.2. A
fifth interaction type is needed for this unification. The force carrier of this interaction, the
Higgs boson, is still unobserved. The discovery or exclusion of the Higgs boson is one of the
goals of the LHC.

Although the Standard Model has proven to be an accurate theory by correctly predicting
most physics results, it is still believed to be a low energy effective theory of a more general
high energy theory. It also does not include the gravitational force. In addition, it fails to de-
scribe experimentally observed phenomena like dark matter and the large matter-antimatter
asymmetry in the universe. New experimental results constantly challenge the theory.

1.1.2 Interaction amplitudes

Feynman diagrams are a visualisation of particle interactions. Each diagram represents a
contribution to the interaction amplitude M , where |M |2 is related to the probability of the
process occurring. There is a basic set of rules for calculating the contribution represented by
each diagram, which are called the Feynman rules. Figure 1.1 shows a basic Feynman diagram.

Fermion fields (or wave functions), denoted by � and �̄, are 4-component spinors and are
represented by a solid line. The bosonic field, Aµ, mediates between the two fermion fields.
The vertex factor incorporates the coupling constant, g , of the interaction, which is a dimen-
sionless number dependent on the strength of the interaction. °µ represents a 4�4 matrix,
which describes the Lorentz structure of interaction, as described below.

4



1.2. Weak interaction

�(x) �̄(x)

Aµ(x)

i g°µ

Figure 1.1: A Feynman diagram depicting two fermions mediated by a boson.

Wave functions themselves do not represent observables directly, but observable currents
can be constructed from bilinear covariants of the wave functions. Bilinear covariants are
products of the form �̄°�, where ° is a 4�4 matrix. Any 4�4 matrix can be written as a linear
combination of 16 linearly independent matrices. A set of 16 linearly independent matrices is
provided by the matrices I ,⌥µ,⌥5,⌥µ⌥5 and ⌘µ� = i

2 [⌥µ,⌥�]. The bilinear covariants of this set
of matrices have the transformation properties of tensors or pseudotensors. The names given
to these objects and their transformation properties under a change of coordinates are

Scalar: S(x) = �̄� S
⌅
(x

⌅
) = S(x) (1.1)

Pseudoscalar: P (x) = �̄⌥5� P
⌅
(x

⌅
) = det(§)P (x) (1.2)

Vector: V µ(x) = �̄⌥µ� V µ⌅
(x

⌅
) =§µµ⌅V µ(x) (1.3)

Axial-vector: Aµ(x) = �̄⌥µ⌥5� Aµ⌅
(x

⌅
) = det(§)§µµ⌅ Aµ(x) (1.4)

Tensor: T µ�(x) = �̄⌘µ�� T µ⌅�⌅
(x

⌅
) =§µµ⌅§�

�⌅T µ�(x) (1.5)

with

§µµ⌅ = ⇤xµ

⇤xµ⌅ (1.6)

the coordinate transformation matrix.

The interaction Lagrangian for the interaction between a fermionic vector current and a
bosonic gauge field is then given by

L =↵g �̄⌥µ�Aµ (1.7)

In order to calculate the full interaction amplitude, the sum over the contributions of all
perturbations of the interaction is taken.

1.2 Weak interaction

The weak and electromagnetic forces are unified in the electroweak interaction. The gauge
fields or bosons of the electroweak interaction are here denoted by W0, W1, W2 and B0. Each
of these bosons is massless.

5



Chapter 1. Theory

The Standard Model W ± and Z 0 bosons of the weak force and the ⌥ of the electromagnetic
force are produced by the spontaneous symmetry breaking of the electroweak symmetry
caused by the Higgs mechanism [1]. These massive bosons are linear combinations of the
electroweak bosons as

W ± = 1
⌦

2
(W1 � iW2) (1.8)

√

⌥

Z 0

!

=
√

cos↵W sin↵W

↵sin↵W cos↵W

!√

B0

W0

!

(1.9)

where ↵W is the Weinberg angle [2].

The mass eigenstates of the quarks are not the same as the weak eigenstates. Mass eigenstates
are measured with a definite lifetime and decay width, whereas the weak force acts on the
weak eigenstates. In order to describe the transformation between the quark eigenstates,
Kobayashi and Maskawa introduced the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [3]. The W± bosons change the quark flavour from up-type to down-type and visa versa.
They are referred to as the charged current of weak interaction. The neutral weak current,
mediated by the Z0 boson cannot change flavour, just like the photon in the electromagnetic
interaction.

The strong and electromagnetic forces conserve the three fundamental discrete symmetries
of nature: parity (P), charge conjugation (C) and time reversal (T). The weak interaction has
the unique property that it violates parity, as well as charge conjugation and the combined
charge-parity (CP) symmetries. However, the combined CPT is still thought to be conserved.

1.2.1 The CKM Matrix

The complex, unitary 3�3 quark-mixing matrix VCKM defines the transformation of down-type
quarks from the mass eigenstates (d , s,b) to the weak eigenstates (d ⌅, s⌅,b⌅).

0

B

@

d ⌅

s⌅

b⌅

1

C

A

=

0

B

@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vt s Vtb

1

C

A

| {z }

VCKM

0

B

@

d

s

b

1

C

A

(1.10)

Where the elements Vi j , with i ⌃ {u,c, t } and j ⌃ {d , s,b}, represent the different coupling
strengths between quarks. The nine elements each initially contribute two degrees of freedom:
a real and a complex parameter. However, the unitarity of the matrix implies nine constraints
on its complex parameter. Six constraints are due to orthogonality and three to normalisation:

X

i
Vi j V �

i k = 0 and
X

i
|Vi j |2 = 1 (1.11)

6



1.2. Weak interaction

holds for all i ⌃ {u,c, t } and j ,k ⌃ {d , s,b} with j ⌥= k. This reduces the eighteen parameters
which define the matrix to nine, which can be interpreted as three mixing angles and six
complex phases. Redefining the quark fields can be used to reduce the six complex phases to a
single complex phase. As a result, the CKM matrix is defined by four parameters: three mixing
angles and one phase. This phase is the source of all C P-violating effects in the Standard
Model.

A popular form of the CKM matrix is the Wolfenstein [4] parameterization as it exhibits a
hierarchical structure in the magnitudes of the matrix elements

VCKM =

0

B

@

1↵ �2

2 � �3 A(⇣↵ i⌦)

↵� 1↵ �2

2 �2 A

�3 A(1↵⇣↵ i⌦) ↵�2 A 1

1

C

A

+O (�4) (1.12)

It is obtained from an expansion around �= sin↵C , with ↵C the Cabibbo angle. Currently, the
best determination of the expansion parameter is �= 0.2253±0.0007 [5]. A, ⇣ and ⌦ are real
parameters of order unity. A non-zero value of ⌦ turns some matrix elements into complex
numbers, introducing a phase angle and thereby violating CP invariance.

1.2.2 Parity violation

The helicity of a particle is +1 when the sign of the projection of its spin vector onto its
momentum vector is positive. Equivalently, its helicity is -1 when this projection is negative.
For massive particles, helicity is dependent on the frame of reference. For massless particles it
is a Lorentz invariant property of the particle and equal to the more abstract intrinsic property
of chirality, which is determined by whether the particle transforms in a right- or left-handed
representation of the Poincaré group.

General spinors in the Dirac representation can have both left- and right-handed compo-
nents. The matrix ⌥5 is called the chiral projection operator and can separate these compo-
nents. (⌥5)2 = 1 and therefore its eigenvalues are �=±1. The right-handed component �R

(eigenvalue +1) and left-handed component �L (eigenvalue -1) of a general spinor �, can be
expressed as

�R = PR� and �L = PL� (1.13)

Where the right- (PR ) and left-handed (PL) operators are given by

PR = 1+⌥5

2
and PL = 1↵⌥5

2
(1.14)

The weak current exhibits a V ↵ A (Vector minus Axial-Vector) structure. Its interaction

7



Chapter 1. Theory

operator is therefore given by

°µ = ⌥µ
1
2

(1↵⌥5) (1.15)

This operator will thus filter out the left component of the spinor, leading to parity violation in
the weak system. As a consequence, only left-handed particles or right-handed anti-particles
couple to the W boson.

1.3 Phenomenology of the semileptonic B0 � D�↵⌅+⇥⌅ decay

It is not possible to precisely calculate the B0 � D�↵✓+�✓ decay rate due to QCD corrections
within the B and D� meson.

It is possible though to calculate the b � c✓�✓ decay rate, when all QCD corrections are
neglected and the d-quark acts as a spectator particle. In Section 1.3.1 the branching fraction
ratio of b � c✓�✓ over b � cµ�µ, which is equal to the ratio of their decay rates, is calculated.

Several model-dependent or measurement-based calculations that do account for QCD cor-
rections have been performed and are discussed in Section 1.3.2. Current measurements are
compared with these calculations in Section 1.3.3.

1.3.1 The b � c�⇥� decay rate

The general expression for the differential decay rate of a particle of energy E is given by
Fermi’s ‘Golden Rule’:

d°= 1
2E

�|M |2 d© (1.16)

where d© denotes the phase space which depends on the masses and the momenta of the
particles in the initial and final states. The details of the interactions of the particles via the
various forces are encoded in the matrix element M , which is averaged over initial state spins
and summed over final state spins.

The decay b � c⌅�
⌅

occurs through the weak interaction. Figure 1.2 depicts the Feynman
diagram of this decay. The vertex factors of this decay are given by gw°

µ/
⌦

2, where the weak
interaction coupling strength is denoted by gw and the weak V ↵ A interaction matrix is given
by °µ = ⌥µ 1

2

°

1↵⌥5¢. The CKM element |Vcb | describes the quark mixing. A factor of
⌦

2 is
applied by convention. The Feynman propagator factor of the mediating W boson is given by

1

m2
W ↵ q2

⇤ 1

m2
W

(1.17)

where q2 denotes the transferred momentum squared by the virtual W, which is negligible
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compared to m2
W , the W mass squared.

b c

W

gw°µ⌦
2
|Vcb |

gw°
µ

⌦
2

�
⌅

⌅

Figure 1.2: A Feynman diagram depicting the b � c⌅�
⌅

decay according to the quark spectator
model.

Combining these decay amplitude contributions, the matrix element is expressed as

M = gw⌦
2
|Vcb |

µ

�̄c⌥µ
1
2

°

1↵⌥5¢�b

∂

· 1

m2
W

· gw⌦
2

µ

�̄⌅⌥
µ 1

2

°

1↵⌥5¢��

∂

(1.18)

The average matrix element squared can solely be expressed in terms of the neutrino energy
E� as (Equation A.11)

�|M |2 = 64G2
F |Vcb |2

1
2

≥

m2
b ↵2mbE� ↵m2

c ↵m2
⌅

¥

mbE� (1.19)

The full derivation is given in Appendix A. The phase space, integrated over b- and c-momenta
can be reduced to

d©= 1
4(2✏)3 dE�dE⌅ (1.20)

The expression of the total decay rate becomes

°=
4G2

F

(2✏)3 |Vcb |2
Z

≥

m2
b ↵2mbE� ↵m2

c ↵m2
⌅

¥

E�dE�dE⌅ (1.21)

Where E = mb in the b-quark center of mass frame. Working out the integral over the neutrino
and ✓ lepton energies, the total decay rate can be expressed as

°=
G2

F m5
b

192✏3 |Vcb |2 fps (1.22)

where fps is the phase space factor, dependent on the masses mb, mc and m⌅. Its full expres-
sion is also given in Appendix A.

The individual b- and c-quark masses are not well known. More accurately measured is the
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Chapter 1. Theory

difference in mass [5]

mb ↵mc = 3.43±0.05 GeV (1.23)

This difference is used to calculate the phase space factors for the ✓ lepton and the muon as a
function of the b-quark mass, depicted in Figure 1.3. In addition it shows the ratio of phase
space factors, which in the spectator quark model is equal to their branching fraction ratio.
This ratio is found to be approximately 0.2 to 0.25, depending on the quark masses chosen.
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1
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1

Figure 1.3: The phase space factors for the B0 � D�↵✓+�✓ decay, the B0 � D�↵µ+�µ decay and
their ratio as a function of the b-quark mass. The thickness of the bands represent the c-quark
mass range from mc = mb ↵3.48 GeV to mc = mb ↵3.38 GeV.

1.3.2 The B0 � D�↵⌅+⇥⌅ decay including QCD corrections

In reality the b- and c-quarks are confined by the strong interaction inside mesons; particles
which consists of one quark and one anti-quark. The B0 meson consists of a down and a
bottom quark, whereas the D�↵ particle consists of a down and a charm quark:

B0 = {d,b} and D�↵ = {d,c} (1.24)

The strong interaction is mediated by gluons, acting on quarks, anti-quarks and other gluons.
These interactions, within and between mesons, have to be taken into account when calcu-
lating the decay rate. In semileptonic decays, a simplification comes from the fact that the
leptonic current coupling to the W boson does not strongly interact with the hadronic current.
Hence, the complication of additional gluon interactions is limited to the B and D� mesons.
This is illustrated in the Feynman diagram in Figure 1.4.

In the matrix element of Equation 1.18, the hadron current, Hµ, complicated by strong inter-
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1.3. Phenomenology of the semileptonic B0 � D�↵⌅+⇥⌅ decay

b c

W↵ �✓

✓↵

d d
B0 D�+

Figure 1.4: A Feynman diagram depicting the B0 � D�↵⌅+�
⌅

decay, including QCD gluon
interactions.

actions, is given by

Hµ = �D�|�̄c⌥µ(1↵⌥5)�b|B (1.25)

The relatively model-independent heavy-quark effective theory (HQET) can be used to de-
termine the matrix element for the decay. HQET is a theoretical approach used to describe
meson systems that contain one heavy quark (b or c) and one light quark (u, d or s). The
b- and c-quark masses are much larger than §QCD, the characteristic energy scale of QCD
quark binding. As the momentum exchanges in mesons due to the strong force are of the
order §QCD, the change in velocity of a heavy quark during an interaction is approximately
§QCD/mq , with q ⌃ {c,b}. In the limit where mq �⇧, the heavy quark’s velocity is therefore
conserved. And in this limit, the heavy quark spin does not interact with the gluon field. Heavy
quarks of different flavours and spins can thus be treated identically. This is called the heavy
quark spin-flavour symmetry. Analogous to the electron and proton in the hydrogen atom, the
assumption is that the light quark in the heavy-light meson is independent of the heavy quark
kinematics, up to hyperfine corrections. Such corrections manifest themselves, for example,
as the mass splittings between pseudoscalar and vector mesons such as �m = mD� ↵mD0.

The hadronic uncertainties are all due to the coupling of the final state charm quark with the
spectator light quark. The probability of a particular final state configuration is parameterized
by form factors. When the heavy quark decays it acquires motion relative to its initial state. For
a given transferred momentum, q2, from the b-quark to the lepton-neutrino system, the form
factor describes the likeliness of the light quark and the moving heavy quark reassembling
into a particular final state.

A key result of HQET is that, in the heavy quark symmetry limit, all decays from one light-
heavy meson to an other light-heavy meson can be described in a single common form factor.
Dominated by heavy quark kinematics, the form factor does not depend on the light quark
nor does it depend on flavour. This common form factor is called the Isgur-Wise function [6].

From Lorentz invariance one finds the decomposition of the hadronic current in terms of
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form factors. The HQET preferred parameterization is given by [7]

Hµ =
q

mBmD� [ i hV (�) µ�⇧⌃⇥
��v⇧

B v⌃
D�

↵hA1 (�)(�+1)⇥�
µ+hA2 (�)⇥� · vBvBµ+hA3 (�)⇥� · vBvD�µ ] (1.26)

With ⇥ the polarisation vector of the vector meson. The form factors hi , with i ⌃ {V , A1, A2, A3},
are expressed in terms of �= vB · vD�, because velocity is a conserved quantity in the mq �⇧
limit.

In the infinite quark-mass limit, the spin-flavour symmetry of the quarks relates these form
factors to a single universal function �(�).

lim
mq�⇧

hi =⇧i�(�) (1.27)

with coefficients

⇧V =⇧A1 =⇧A3 = 1 and ⇧A2 = 0 (1.28)

This function is the Isgur-Wise function and is independent of the heavy quark masses. The
shape of �(�) is not predicted by HQET. However, its value at �= 1 is well defined. In this case,
at which vB = vD� and there is no relative motion between the initial and the final heavy quark,
the light quark is insensitive to the decay and therefore

�(1) = 1 (1.29)

Outside the heavy-quark symmetry limit, the current can no longer be described by the Isgur-
Wise function. In order to take the hyperfine corrections in powers of§QCD/mb and§QCD/mc

into account, the Isgur-Wise function is replaced by a form factor denoted by F (�), which
at � = 1 is shifted away from unity due to the corrections. An important advantage of the
B0 � D�↵⌅+�

⌅
decay mode is that the first order corrections to F (1) vanish as a consequence

of Luke’s theorem [8]. As a result, F (1) is theoretically known to about the 5% level [9]:

F (1) = 0.927±0.024 (1.30)

The determination of the shape of F (�) is however model dependent. And therefore there is
no unique answer to what the SM B(B0 � D�↵✓+�✓)/B(B0 � D�↵⌅+�

⌅
) ratio is.

In 1989 J.G. Körner and G.A. Schuler considered the spectator quark model to determine the
ratios [10]

B(B0 � D�↵✓+�✓)/B(B0 � D�↵e+�e) = 0.2519 (1.31)

B(B0 � D�↵✓+�✓)/B(B0 � D�↵µ+�µ) = 0.2529 (1.32)
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In 2000 D.S. Hwang and D.-W. Kim determined a model independent ratio, by using the CLEO
experimentally determined form factors from 1997 [11]. They came to a ratio of

B(B0 � D�↵✓+�✓)/B(B0 � D�↵e+�e) = 0.256+0.014
↵0.013 (1.33)

The latest theoretical prediction of the ratio comes from C.-H. Chen and C.-Q. Geng in 2006
[12]. Using the light-front quark model (LFQW), they determine the different branching
fraction which leads to a ratio of

B(B0 � D�↵✓+�✓)/B(B0 � D�↵⌅+�⌅) = 0.2518±0.0181 (1.34)

1.3.3 Current measurements

The BaBar collaboration has measured the branching fraction of B0 � D�↵✓+�✓ to be [13]

B(B0 � D�↵✓+�✓) = (1.62±0.31±0.10±0.05)% (1.35)

Previously the Belle experiment had reported [14]

B(B0 � D�↵✓+�✓) = (2.02+0.40
↵0.37 ±0.37)% (1.36)

A new preliminary result on the observation of the B0 � D�(2010)�✓±�✓ decay was presented
by the BaBar collaboration at the Europhysics Conference on High-Energy Physics 2011 (EPS
2011) [15]. Normalised to the equivalent semi-muonic decay, which is well-measured to be
B(B0 � D�↵µ+�µ) = (5.11±0.23)% [5], the updated study results in a fraction of

R(D�) =B(B0 � D�↵✓+�✓)/B(B0 � D�↵µ+�µ) = 0.356±0.038±0.032 (1.37)

This result is separated by ⌘2⌘ from the theoretical predication given in Equation 1.34.

1.4 New Physics possibilities

Despite the fact that the Standard Model is the most successful theory describing particle
interactions, it is incomplete. It is believed that it must be replaced by a more fundamental
theory at high energy scales. Any new physics occurring at this higher energy scale will
generate low energy effective couplings that contribute to SM processes. Thus, by measuring
deviations from Standard Model predictions, signatures of new physics can be studied.

There are numerous New Physics (NP) models. Semileptonic B decays are used to analyse
possible couplings beyond the SM V ↵ A coupling. However, one of the most compelling
reasons to search for the exclusive B0 � D�↵✓+�✓ decays is that it can be used to constrain
classes of models with scalar interactions, such as those which arise in models with extended
Higgs sectors. This decay channel is potentially sensitive to a charged Higgs boson, as the tree
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level b � c⌅�
⌅

process can be mediated by an H± instead of a W±. Since the Higgs coupling
is proportional to the particle masses, this effect may be observed in semileptonic B � X✓�✓
decays and remain unobserved in other semileptonic modes.

The contribution of a charged Higgs to the B0 � D�↵✓+�✓ decay has been studied [16]. Figure
1.5 shows the ratio of branching fractions B(B0 � D�↵✓+�✓)/B(B0 � D�↵µ+�µ)SM depending
on the charged Higgs mass and assumes no new physics contribution in the muon decay. The
undetermined ratio of the vacuum expectation values of the neutral Higgs fields, is given by
tan⌃. The bands depict a measurement uncertainty in the Isgur-Wise function.
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Figure 1.5: The branching ratio of B(B0 � D�↵✓+�✓)/B(B0 � D�↵µ+�µ)SM depending on the
charged Higgs mass for tan⌃= 20 and tan⌃= 50 [16].

1.5 Conclusion

The branching ratio B(B0 � D�↵✓+�✓)/B(B0 � D�↵µ+�µ) is a measurement sensitive to
physics beyond the Standard Model. These NP contributions are expected to be large in
the tauonic B decay due to the larger coupling of the charged Higgs boson to the ✓ lepton,
relative to the muon. The Standard Model prediction of this ratio, based on measured form
factors, is 0.25±0.02 [12]. A measurement different from this value would be a strong indicator
of new physics. B(B0 � D�↵µ+�µ) has been well measured. The study of B(B0 � D�↵✓+�✓),
which is started in this thesis, will determine the existence of NP contributions in this decay
process.
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2 The LHCb experiment

The LHCb experiment is a precision experiment dedicated to studying b-hadron decays at
CERN’s Large Hadron Collider (LHC) [17]. Figure 2.1 shows a side-view schematic of the LHCb
detector with a right-handed coordinate system: the interaction point is defined as the origin,
the z-axis is defined as the beam axis and the y-axis is pointing upwards. LHCb is a single
arm spectrometer covering an angle of 10 mrad to 250 or 300 mrad, vertically or horizontally
respectively. LHCb is designed as a spectrometer due to the angular distribution of b-hadron
decays, which occur predominantly in either forward or backward direction.

3.2. THE LHCB EXPERIMENT
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Figure 3.4: Schematic diagram of the LHCb detector, from [42]. Labels are described
in-text.
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Figure 3.5: Angular distribution of b- and b-quarks inside LHCb, from [45].

45

Figure 2.1: Schematic diagram of the LHCb detector [17].

The b-hadron decays studied by the LHCb experiment are produced in proton-proton colli-
sions of the LHC. The LHCb detector is designed to operate at a nominal luminosity of 2 ·1032

cm↵2 s↵1 in order to collect 2 fb↵1 of data in a nominal year based on a b b-quark production
cross section of 500 µb at 14 TeV centre-of-mass energy collisions.

In 2010 and 2011 the LHC has delivered collisions with a centre-of-mass energy of
⌦

s = 7 TeV.
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During 2010 approximately 35 pb↵1 of data was collected by the LHCb experiment. Using
these data the b b-quark production cross section was measured to be (75.3±5.4±13.0) µb
[18]. In the first half of 2011 an abundance of 370 pb↵1 of data was added to this collection. In
this thesis, both the data collected in 2010 and before the summer of 2011 are used to study
the B0 � D�↵✓+�✓ decay.

The subset of B0 � D�↵✓+�✓ decays is studied where the ✓+ particle decays as ✓+ �✏+✏+✏↵�✓
and the D�↵ particle is required to decay as D�↵ � D0✏↵, with D0 � K+✏↵. The considered
B0 � D�↵✓+�✓ decay thus results in 5 charged pions and a charged kaon, which need to be
reconstructed and identified in order to remodel the original decay. The LHCb experiment is
designed to accurately determine the charge, momentum and type of all particles that traverse
the detector.

A key component in the determination of charge and momentum is the LHCb dipole magnet.
Traversing through the magnetic field, ~B , causes the particle trajectory to deflect. A particle
of charge q experiences a force of ~F = q~v � ~B , where ~v is the velocity of the particle. The
direction of the bending reveals the charge of the particle, whereas its curvature is used to
measure the momentum of the particle. Simplifying the conditions by assuming the particle
traverses orthogonally through a constant field, the force experienced becomes F = qvB . This
field causes the particle to follow a circular path of radius r and its motion is described by
the relation p = B |q|r , where p is the momentum of the particle. The momentum p is thus
proportional to the radius of the curvature. This thesis covers the parameterization of the
LHCb magnetic field. This field description is used for all LHCb analyses. The magnetic field
and its parameterization are described in more detail in Section 2.1.

In order to measure the curvature of the particle trajectory caused by the magnetic field, a
tracking system is needed. The LHCb Silicon Trackers (ST) and Outer Tracker (OT) record
the exact position of all traversing charged particles before and after the magnet. This part
of the tracking system is described in Section 2.2. In order to achieve high accuracy in the
trajectory measurements, the tracking detectors are divided into hundreds of thousand de-
tecting elements or strips. A particle traversing through LHCb will only be registered by a
few of these detection strips. Therefore only the information of those strips that detected a
signal is stored. The process of this so-called zero-suppression of the raw data for the LHCb
ST is described in Section 2.3. This thesis covers the offline emulation of the noise reductive
Field-Programmable Gate Array (FPGA) algorithms used for the zero-suppression. The tests
performed using the emulator have resulted in bit-perfect agreement between the online and
offline clusterisation algorithms.

While the magnetic field and the tracking system are used to determine the momentum of a
particle, its energy is measured by calorimeters. All particles, except for muons, are absorbed
in the calorimeters, where the energy released during their absorption is measured. Besides
the measurement of energy, the LHCb calorimeters are also used to distinguish between
photons, electrons and hadrons. In addition, low-level trigger decisions are based on its fast
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transverse energy estimations. To identify and measure muon tracks, a muon tracking system
is installed downstream of the calorimeters.

In principle, the particles traversing LHCb can be identified and reconstructed using the
named subdetectors. However, the LHCb experiment also houses two Ring Imaging Cherenkov
(RICH) detectors. These detectors can identify particles of different masses by measuring
their velocity, provided their momentum is known. The RICH system is especially designed
to distinguish charged pions from kaons and protons. This ability enables the accurate
identification of the numerous particles originating from hadronic collisions. The particle
identification detectors are described in Section 2.4.

Because LHCb is dedicated to studying b-hadron decays, it is important to accurately measure
the production and decay positions of a particle. After being created in a proton-proton
collision, the B meson typically flies a centimeter before decaying. The LHCb Vertex Locator
(VELO) is designed to distinguish these secondary vertices from the primary vertices with
great precision. The VELO tracking detector is described in more detail in Section 2.5.

The design frequency of two proton bunches crossing at the LHCb interaction point is 40 MHz.
Approximately 10 MHz of these bunch crossings will result in collisions with particles inside
the LHCb acceptance region. Only a fraction of these collisions contain B meson decays that
are of interest to the LHCb physics program. The event rate that can be recorded is limited by
the offline computing capacity of 2 kHz. A triggering system is in place to efficiently select
those events which contain B decays of interest. The LHCb Trigger is described in Section 2.6.

2.1 Magnetic field

The bending power of the magnet is represented by the integrated field, which is approximately
R

B ·dl = 4 Tm when integrated over the detector length in z-direction. With the xz-plane
the main bending plane of the experiment, By is the main field component. To eliminate
asymmetry effects caused by detector systematics, this component can be chosen to be either
positive or negative, corresponding to upward or downward polarity, respectively. Figure 2.2
shows the values for each of the field components of the upward polarity field versus the
z-axis.

The upward and downward polarity field have the same values but with opposite sign. A
simple and accurate parameterization method which can be equally applied on both upward
and downward polarity measurements is used to map the magnetic field values. The method
has been shown to be robust by obtaining consistent results when applying the exact same
method on different data sets. This magnetic field parameterization, described in 2.1.1, has
indeed shown that a single field map can be used for both polarities. This result has been
implemented and is used for all current LHCb physics analyses.
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Figure 2.2: Values of the (a) Bx , (b) By and (c) Bz measured field shapes versus z-axis.

2.1.1 Magnetic field parameterization

The magnetic field parameterization is based on measurements taken in December 2005 [19].
These measurements do not cover the full acceptance region of the detector and extrapolation
is needed to determine the field values in these areas. Using the simulation model TOSCA
[19, 20] field values are calculated which do cover the full acceptance of LHCb. The magnetic
field parameterization of LHCb is a realistic description based on both data measurements
and calculated field values to regulate the extrapolation. The parameterization covers the full
acceptance region.

Parameterization of residuals. High order polynomials are needed to accurately describe
the measured field as a function of space coordinates but induce large errors when extrap-
olated. Therefore it is chosen to parameterize residuals: the differences between measured
values and calculated values. The residuals are generally described by smooth, continuous
functions which parameterization requires lower order polynomials and extrapolates in a
controlled manner.

Construction of the residuals. Calculated magnetic field values are available on a grid of
100�100�100 mm3. The field must be determined on the measurement coordinates in order
to calculate the residuals between the calculated and measured values. For each measurement
a surrounding cube of 27 calculated values is selected. These values are then interpolated
onto the measurement coordinate. The 3D polynomial fit function TMultiDimFit [21] is
used with polynomials of order 2 to perform this interpolation. The interpolated values are
independent of polarity (up to their sign) and can be used to calculate the field residuals on
the measurement coordinates.

Fit method and regions. The parameterization of the residuals is performed per field com-
ponent -Bx , By and Bz - and is divided up in 11 areas of different z-coordinate. An overlap in
fitting regions ensures small discrepancies on the boundaries. All four quadrants of the coordi-
nate system are fitted simultaneously. The residuals are fitted using TMultiDimFit. Restricting
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2.1. Magnetic field

the polynomials to an order of 3 or 4 per dimension is sufficient to obtain good agreement
between the residual values and the parameterization without introducing uncontrolled
extrapolation.

Due to the small number of measurements for z < 2.8 m, those measurements outside
the LHCb acceptance region are included to improve fit results. For regions with larger z-
coordinate, measurements up to 10 cm outside the acceptance region are included to improve
fit results at the boundary of the acceptance region.

Extrapolation in z-coordinate. Data measurements are taken up to z = 9.1 m, but an accu-
rate field description is required up to z = 14 m. Extrapolation is not relied upon to describe
the magnetic field between z = 9.1 m and z = 14 m. Instead, the residuals are taken at z = 9
m where the fit is accurate and zero field is assumed at z = 14 m and beyond. Between these
points the residuals are reduced as a linear function of z4, as that is the best match visually
found (Figure 2.3). The advantage over using calculated simulation values is that this method
ensures a smooth transition and avoids discontinuities in the parameterized field at z = 9.1 m.

z (m)
7 8 9 10 11 12 13 14

By
 (T

)

-0.2

0

0.2

0.4

0.6

Figure 2.3: The upward polarity parameterization results for z > 7 m and (x, y) = (100,10) cm
(upper measurements) and (x, y) = (100,200) cm (lower measurements).

LHCb software grid. The LHCb software works with magnetic field values on a discrete grid
of 100�100�100 mm3 in space. The magnetic field values on the coordinates of this grid are
determined during the parameterization and stored directly into a field map and used by the
LHCb reconstruction software.

Schematic overview. Figure 2.4 schematically depicts the steps of the parameterization.
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(a) (b) (c) (d)

Figure 2.4: (a) Calculated values (red) and measured values (blue). (b) The residuals between
calculated and measured values and their parameterization (grey) and in (c) in addition the
residuals on the simulation coordinates (magenta). (d) The calculated values (red) and the
final parameterized field values (green).

2.1.2 Parameterization results and comparison

In order to determine the accuracy of the field parameterization, it is necessary to know the
measurement error. The discrepancies between different measurements taken at the same
space coordinates have determined the measurement error to be in the order of 10↵3 Tesla
for both the upward and downward polarities. In addition, the absolute differences between
upward and downward polarity measurements show the same distributions as measurement
error distributions of a single polarity.

The parameterized map is validated by the differences between measurement and parameter-
ized values. The distributions of these differences for the different field components and their
magnitude are of the order of the measurement error. In addition, the discrepancies at the
boundaries between different fit regions are also of the order of the fit accuracy or less.

Fitting residuals smooths out small fluctuations in the calculated values. However, those
fluctuations are later reintroduced by adding the calculated values to the fitted residuals. The
fluctuations in the calculated values will therefore remain.

The distribution of differences between parameterized values of the upward and downward
polarities are fitted using double Gaussians. The result shows discrepancies of the order
10↵3 T or 10↵4 T for the inner Gaussian fits. The results of the fits are given in Table 2.1
and superimposed for all components in Figure 2.5. The agreement between the upward
and downward polarity parameterizations is consistent with the agreement in measurement
between the two polarities.

Table 2.1: The fit results of the differences between parameterized values of the upward and
downward polarities for (a) �Bx , (b) �By , (c) �Bz and (d) �|B | for z < 9.1 m.

single Gaussian double Gaussian
deviation inner deviation outer deviation inner/outer (%)

�Bx 8.0 ·10↵4 3.0 ·10↵4 1.3 ·10↵3 47/53
�By 4.2 ·10↵4 3.7 ·10↵4 3.0 ·10↵3 73/27
�Bz 5.6 ·10↵4 4.1 ·10↵4 3.1 ·10↵3 67/33
�|B | 4.0 ·10↵4 3.7 ·10↵4 3.4 ·10↵3 73/27
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Figure 2.5: The differences between parameterized values of the upward and downward
polarities for (a) �Bx , (b) �By , (c) �Bz and (d) �|B | for z < 9.1 m, plus corresponding Gaussian
fit results in black dotted line and double Gaussian fit results in red solid line.

The amount of deflection on the particle trajectory depends on the integrated field. From
the interaction point, the magnetic field is integrated over paths with initial slopes tx in x-
direction and ty in y-direction ranging between [-0.3,0.3] rad and [-0.25,0.25] rad, respectively,
matching the acceptance region. The integrated Bdlx component is depicted as a function
of these slopes in Figure 2.6 for the upward and downward parameterizations as well as for

21



Chapter 2. The LHCb experiment

the simulation values up to z = 9.1 m, as this is the region of the parameterization based on
measurements. The integrated field Bdlx component of the simulation values is significantly
higher than those using either the (flipped-sign) upward or downward parameterization,
which show similar results.
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Figure 2.6: The integrated field component Bdlx (Tm) vs (a) tx and (b) ty (rad) for the calcu-
lated field (red, top curve) and upward (blue) and downward (magenta) parameterized field
based on data measurements (bottom curves).

The Bdlx component is mainly dependent on the By component of the field and to a lesser
degree on the Bz component. The quadrant comparison of the field components show a
mirror symmetry along the y↵axis, but an asymmetry along the x↵axis for the By and the Bz

component. This is consistent with the integration results depicted in Figure 2.6. It is difficult
to explain where the difference between upward and downward polarity comes from for ty > 0.

An important conclusion of this work is that a single parameterization adequately describes
both the upward and downward polarities with a simple sign inversion. The reconstruction of
LHCb data taken since the beginning of 2010 has been performed using the parameterization
derived from the described fit to the combined upward and downward polarity data so to ob-
tain highest precision. The momentum and hence mass resolution of the LHCb spectrometer
is dependent this work, notably in the world best B meson mass measurements [22].

2.2 Tracking system

The main LHCb tracking system comprises four tracking stations. The first station is named
the Tracker Turicensis (TT) and is located in the fringe field upstream of the magnet. The other
three stations (T1-T3) are located downstream of the magnet and are spread over a distance of
approximately two meters. These three stations are divided into two subdetectors: an Inner
Tracker (IT) and an Outer Tracker (OT). The IT is situated around the beam pipe and deals
with the higher occupancy region. The OT covers the remainder of the LHCb acceptance
region. The tracking system employs two different detector technologies. The TT and the IT

22



2.2. Tracking system

use silicon microstrip detectors, whereas the OT uses straw-tube drift chambers. Their more
detailed specifications are discussed in Sections 2.2.1-2.2.4.

2.2.1 Tracker Turicensis

The TT subdetector, situated upstream of the LHCb dipole magnet, is constructed of two
sets of two layers, which consist of silicon microstrip detectors. The first two layers (TTa) are
separated form the last two layers (TTb) by a distance of 27 cm. All layers cover the nominal
acceptance region of the LHCb experiment. The TT subdetector has the approximate spatial
dimensions of 150 � 130 cm in order to fulfil the the full acceptance requirement. The outer
two layers have a vertical strip geometry (x-layers), whereas the second and the third layer
are rotated by a stereo angle of +5✏ and -5✏, respectively (u/v-layers). This geometry provides
accurate tracking information in the xz-bending plane of the particle. The rotated layers
enable positioning in the y-direction, with worse resolution than that for the x-direction.

The layout of the detection layers is based upon the use of 9.64 cm wide and 9.44 cm long
silicon sensors with a readout strip pitch of 183 µm. A readout sector consists of 512 data
strips. The layers in the TTa subdetector consist of twelve modules, each constructed from
fourteen sensors, which are positioned left and right of the beam pipe. In addition there are
two so called half-modules, which consist of seven sensors, placed around the beam pipe. The
TTb layers follow a similar structure, but is widened by an extra module on each side. The
layout of the TTa and TTb x-layer is depicted in Figure 2.7. The colour coding illustrates which
sensors are connected to the same readout sector.

Figure 2.7: Layout of the x-layer in TTa (left) and in TTb (right).

2.2.2 Inner Tracker

The IT is located downstream of the LHCb dipole magnet. Its three tracking stations (T1-T3)
are composed of four independent detector boxes. These boxes are positioned in a cross-
shaped manner around the beam pipe and cover the 120 cm � 40 cm high occupancy region
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of the LHCb acceptance. A detector box contains four detection layers which follow the xuv x-
geometry, alike the configuration of the Tracker Turicensis detection layers. Each detection
layer is divided into seven silicon strip ladders. One-sensor ladders are used in the top and
bottom boxes, whereas two-sensor ladders compose the left and right boxes. The IT silicon
sensors are 7.6 cm wide and 11 cm long and carry 384 readout strips with a strip pitch of 198
µm. The sensors are connected to a readout sector of 384 data strips. The IT geometry is
depicted in Figure 2.8.

Figure 2.8: Geometry of an IT2 x-layer.

2.2.3 Silicon Tracker readout

The electronic data from the Tracker Turicensis (TT) and Inner Tracker (IT) of the LHCb
experiment are transmitted from the front-end read-out chips, called Beetles, of the detector
to the data acquisition boards called TELL1s. A TELL1 can process the data of 3072 readout
strips, which is equivalent to the readout of 24 Beetle chips, which is composed of 128 readout
strips each. The raw unprocessed data that are collected by the TELL1s are called non-zero-
suppressed (NZS) data. The main task of the TELL1 boards is the clustering of this NZS
data.

The first two TT layers are built from 33.792 silicon microstrips and thus each require 11 TELL1s
to manage their readout. The second two layers both consist of 37.888 strips, corresponding
to 13 TELL1s per layer. A total of 48 TELL1 boards is used to process the full data information
from the 143.360 readout strips. The combined IT layers result in a total of 129.024 readout
strips. Each IT station is read out by 14 TELL1s, resulting in a total of 42 TELL1s needed for the
full IT data acquisition.

Data acquired by a front-end Beetle is divided into 4 analog links (A-Links) of 32 data strips.
These 32 data strips are preceded by 3 header words, which are also part of the same link, as
shown in Figure 2.9. The value of a header word is either significantly higher or lower than the
average signal on a data strip and is therefore considered as either positive or negative. The
header words are used to encode event information, e.g. the pipeline column number (PCN),
which identifies the position of an event in the pipeline of the Beetle chip. The full NZS bank
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data format of the ST is described in [23].

8-bit

Beetle
A-Link
0

Data 
0..31

H1
H2
H3

8-bit8-bit8-bit

35 
word

Beetle
A-Link
1

Data 
0..31

H1
H2
H3

Beetle
A-Link
2

Data 
0..31

H1
H2
H3

Beetle
A-Link
3

Data 
0..31

H1
H2
H3

« ST » 1 Optical link input from 
1 Beetle

Figure 8: Velo input data format received from the ADC cards.

6.4 Non-zero suppressed data for ST

The data from the six optical links is distributed over the three data sections (A,B and
C)as shown in Fig. 9. Here follows the definition of the data fields:

Word 1 The first word of the Beetle header that was removed by the GOL transmitter
is replaced with a dummy word marked as “D” to make the format length identical to
the one for the VELO.

Word 2..4 Unprocessed analog values of the Beetle header, the representation is
8-bit unsigned!

Word 5..36 Non-pedestal subtracted 8-bit values, the representation is 8-bit un-
signed!

Non-zero suppressed data   « ST »
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Beetle 0
A-Link 0
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LSBMSB
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Figure 9: ST non-zero suppressed (non-pedestal subtracted) data.

10

Figure 2.9: ST input data format received from the ADC cards.

2.2.4 Outer Tracker

The Outer Tracker (OT) is the second of the two tracking subdetectors behind the LHCb dipole
magnet and covers the part of the LHCb acceptance that is not covered by the Inner Tracker
(with a small overlap of about 1 mm). The boundaries between the IT and the OT have been
chosen such that the expected mean occupancy in the hottest region of the OT is limited to
below 10%. Contrary to the other tracking subdetectors, the Outer Tracker is a gas detector
and is composed of 5.0 mm outer diameter (4.9 mm inner diameter) straw drift-tubes. They
are mounted with a pitch of 5.25 mm. The OT consists of three stations made up from four
layers, which in turn are composed of a left- and a right-half, each consisting of nine modules.
Each OT module consists of two staggered layers (monolayers) of 64 tubes aligned vertically.
There are two types of modules: short modules are located above and below the beam pipe
and the IT boxes and long modules extend the entire height of the subdetector (4.85 m). Each
OT layer consists of 8 short and 14 long modules. The orientation of the layers follows the
same stereo angle configuration as the ST subdetectors. The complete OT detector with all
three stations comprises approximately 55.000 single straw channels. These straws are filled
with an Ar/CO2 (70%/30%) mixture. This gas mixture enables a fast drift time (approximately
40 ns) and a drift-coordinate resolution of 200 µm is achieved.

2.3 Emulation of the ST TELL1 algorithms

Each TELL1 board contains four Field Programmable Gate Arrays (FPGAs), which perform
low-level tasks like noise reduction and clustering. The data output of the TELL1 is called zero-
suppressed (ZS) data and only holds information on the clusters found in the data. The raw
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data is also referred to as non zero-suppressed (NZS) data. Figure 2.10 shows the algorithms
performed on the programmable FPGAs.

NZS data

ZS data

Header Correction

Pedestal Subtraction ⇥ Pedestal Following

LCM Suppression

Zero Suppression

Figure 2.10: The flow diagram of the different algorithms applied on the NZS data in order to
obtain ZS data.

Due to limited storage resources only the ZS output data of the TELL1s will be stored for further
physics analysis and all NZS data will be lost. Therefore it is crucial to verify the functionality
of the FPGA algorithms. In order to verify this functionality, an emulator has been developed
and tested using simulated data as well as noise and test data from the detector.

The algorithms implemented in VHDL on the FPGAs have restricted complexity; for example,
division is only possible through bit shifts. The emulator is coded in C++, but takes into
account the firmware’s restricted complexity concerning divisions and rounding differences.

2.3.1 Noise reduction algorithms

On the FPGAs three types of noise reduction are performed: Header correction, pedestal
subtraction and LCM suppression.

The crosstalk between the header data and the data on the first strips of each link induces noise
on these data strips. The origin of the crosstalk is not well understood. A header correction is
applied on the affected strips. In addition, for each strip there is a positive offset in the signal,
which fluctuates around an ADC count of 128 depending on strip number. An ADC count of
128 lies in the middle of the allowed range of 0-256 ADC. The offset is also referred to as the
pedestal. The pedestal is calculated and updated using the pedestal following algorithm. The
data is corrected for this pedestal value by its subtraction. After these corrections are applied
for each individual strip, the noise induced by common mode is subtracted per link.
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2.3. Emulation of the ST TELL1 algorithms

Header correction

Crosstalk between the header data and the data on the first strips of each link can cause a
pedestal shift on these strips. This causes the first strips to seem more noisy. A dependence
has been observed between the number of strips affected by header crosstalk and the length
of the cable used to transport the data. The IT cables range in length from 2.7 to 5.5 m and
mainly the first two strips of each link suffer from header induced noise. The TT cables are 8 m
in length and increased noise levels are visible up to the first six strips. For the implementation
of the header correction on the TELL1, a header correction is needed which reduces the noise
sufficiently, but takes into account the number of correction parameters.

The effect of header crosstalk can be reduced by applying a correction to the ADC counts of
the affected strips, depending on whether the relevant headers are positive or negative. For
each strip to be corrected, three dependencies are considered: the values (positive or negative)
of the two last header words ([H2] and [H3] as depicted in Figure 2.9) per link and whether the
PCN is odd or even. The PCN for a given Beetle is encoded in these last two header bits, as
follows

PCN = 27 · [H2,3]+26 · [H3,3]+·· ·+21 · [H2,0]+20 · [H3,0] (2.1)

where [H x, y] is the xth header of the y th link and takes the value 0 for a negative header and
1 for a positive one. Whether the PCN is an odd or even number is therefore dependent on
whether the last header of the first link ([H3,0]) is positive or negative. The header correction
for each strip is thus dependent on the values of three header words, except for the strips in
link 0 of the Beetle, where corrections depend on two header words. Eight corrections are used
to reduce the header crosstalk induced noise on the first six strips of each link.

The eight corrections, c±±±, applied are the difference between the average ADC count of
the strip, �a , and the average ADC count of the same strip depending on whether the three
relevant headers are positive or negative, �a±±± , given by

c±±± = �a±±± ↵�a 

The PCN also has a large influence on the common mode noise of the full Beetle. This noise
contribution needs to be suppressed before the calculation of the value of �a . Figure 2.11
shows the average noise per strip over 96 Beetle analog links before and after applying header
corrections for IT TELL1 8 and TT TELL1 35.

Pedestal following and subtraction

The pedestal is the average ADC offset on a strip without signals applied. To start the pedestal
calculation, an initial pedestal value, p0, is assumed per strip. This can be an ADC of 128 for all
strips or individually specified pedestal values from a conditions database. The initial pedestal
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Figure 2.11: The average noise (over 96 Beetle analog links) per strip before (orange triangles)
and after (green circles) applying header corrections for TELL1s (left) IT TELL1 8 and (right)
TT TELL1 35.

sum is then defined as

sum0 = 210 ·p0 (2.2)

Every event the new pedestal value is calculated as

pi+1 =
sumi+1

210 = sumi ↵ sumi /210 +ai

210 (2.3)

The mean pedestal (in its first iteration p0) is subtracted from the pedestal sum, while a newly
measured offset, ai , is added. The resulting sum is then divided by 210, i.e. a bit-shift of 10
is applied, to obtain the updated pedestal value. Note that the offline emulator is purposely
limited to using bit-shifts as the multiplication and division methods to accurately mimic the
firmware. In each event the updated pedestals are subtracted from the data.

Figure 2.12 shows the pedestal value for a given strip as a function of the number of events
used for its calculation. It shows that from an initial value of 128 ADC, the pedestal value
converges to a value of 141 ADC, which is the true pedestal value.

To minimise the effect of a signal in the pedestal calculation, the update of the pedestal sum
is limited to a maximum of 15 ADC per event. The signal thus has a minimal effect on the
pedestal if its occurrence is infrequent. A constant signal may result in an overestimated
pedestal value.

After performing the pedestal following, the correct pedestal value for each strip can be stored.
If believed that the pedestal values do not vary over short periods of time, then the subtraction
of the pedestals can be performed without the pedestal following on.
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Figure 2.12: The pedestal value for a given strip dependent on the number of events used for
its calculation.

Linear common mode suppression

After the pedestal subtraction and header corrections, the data is corrected for common mode
(CM) noise. The algorithm is performed per analog link (32 strips) and consists of the following
steps:

1. Subtraction of the mean ADC count

2. Subtraction of a second refined mean where ADC values above a threshold are set to
zero in order to exclude possible signal hits

3. Correction of the slope

This process sequence is depicted in Figure 2.13. As we are limited to the use of bit shifts
instead of division, the mean must be calculated over 32 (25) values. Therefore in the second
mean calculation, possible hits are set to 0 instead of being left out of the calculation.

The slope, s, is calculated using the method

s = 3 ·Pi (i ↵16) ·ai

213

where index i stands for the strip number ranging from 0 to 31 and ai is the ADC count of strip
i . Due to the limitation caused by programming in integers, two approximations are made

�i ↵16 ⌘ 0

213/3 ⌘
X

i
(i ↵16)2
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Figure 2.13: The ST linear common mode suppression algorithm. (1) The common mode
suppression is applied on pedestal subtracted data. (2) The average ADC count of each link
(32 strips) is calculated and subtracted. (3) Strips with an ADC values above CMS threshold
(calculated per strip) are detected. (4) A second refined mean is calculated, with the possible
hits and their neighbouring values set to 0. (5) A linear slope is calculated and corrected for.
(6) The values which are above hit threshold (calculated per strip) are considered hits.

By estimating the slope in this manner the outer strips are weighted more than the inner strips.
Therefore the noise in the outer strips is suppressed more, which causes a ‘bumpy’ structure
in the noise distribution.

2.3.2 Clustering

Three thresholds are used in the Silicon Tracker clustering process after the noise subtraction.
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1. Hit threshold. Hit thresholds are determined per strip and the ADC value of the strip
must be above hit threshold in order for a strip to be part of a cluster. Its value typically
ranges from 5 to 7 ADC.

2. Sum threshold. When a cluster is created, its total ADC count must be above sum
threshold. The sum threshold can vary per half Beetle. Most thresholds are 7 to 9 ADC.

3. Spill-over threshold. The spill-over threshold is also set per half Beetle. Its value is
considerably higher at around 25 ADC. When the total ADC count of a cluster exceeds
the spill-over threshold, the spill-over bit of the cluster is set to 1. This information is
used to discriminate between real clusters and clusters from previous bunch crossings.

The clustering is performed per Beetle. The TELL1 processes two Beetle halves simultaneously,
looping over all strips, starting with the first strip of each Beetle half. A new cluster is created
when the ADC value of a strip is above its hit threshold. If the ADC value of the following
strip is also above its hit threshold, it is added to the existing cluster. A maximum of 4 strips
are allowed per cluster, thereafter a new cluster is created. If a cluster is created, but its total
charge is below the sum threshold, the cluster is discarded. Clusters can be created across
Beetle half boundaries. When the ADC value of the first strip of the second Beetle half is above
threshold, the TELL1 considers the last 3 strips of the first Beetle half and will create a cluster
across the boundary where applicable. Only when the last 4 strips of the first Beetle half are all
over hit threshold, the clustering process will be performed on each Beetle half separately.

2.3.3 Results from early data taking

Pedestal stability

A pedestal stability study has been performed to determine the need of real time pedestal
following. Different samples of NZS data, collected over a time interval of 20 days, show minor
pedestal shifts fluctuating around 0. The difference pedestal values is plotted in Figure 2.14.

Based on these results the pedestal following will not be performed real time by default.
Pedestals will be read from a stored database and can be updated periodically.

2010 data results

The performance of the emulator was tested on 2010 data. In this case, the choice not to run
pedestal following is essential as the NZS data that is used to verify the FPGA algorithms, is not
stored every event. Over 40 runs were randomly selected between March and November 2010.
Running over the first data file of each run approximately 20 million clusters were created in
the TT and IT each.

The 20,940,733 clusters created in the TT were emulated perfectly. The exact same number of
clusters was found, on exactly the same strips and with exactly the same total ADC counts. An
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Emulation of the ST TELL1 Algorithms Ref: unknown
Internal Note Issue: 1
2 Pedestal Subtraction Date: September 4, 2009

2 Pedestal Subtraction
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Figure 2 Using given pedestals as a reference the difference after 7 and 20 days is depicted.
Pedestals seem to be quite stable. Results shown are for two different TELL1s,

For each channel we find that there is an offset in the signal. This offset is very much strip dependent,
but is spread around an ADC count of 128. Correcting this so called pedestal is done by calculating
a strip dependent number over a given amount of events and subtracting it. Since we see in figure 2,
that the pedestals may vary over time it is important to keep track of this value and update it. The
shown pedestals were calculated over 3,000 events, starting from a value believed to be the actual
pedestal of each channel. The updating of pedestals we call pedestal following.

The pedestal following starts with a given value, stored in the condition database. The value of the
pedestal for the next event pi+1 is calculated from the current pedestal pi in the following way

pi+1 =
210 · pi � pi + ai

210
, (1)

where i is the event number and ai the ADC count in the current event. The current pedestal is mul-
tiplied with 210 to ensure, that hits or random fluctuations do not affect the pedestal as much. Note
that we are limited to using bit-shifts on the chip, which is the reason for multiplying and deviding
by powers of two. As we can see in figure 3 the pedestal converges after 3000 to 3500 events, even
though the starting value is far off the actual pedestal. In practice we will put the expected pedestal
values for each strip in the condition database, ensuring a much smaller number of events needed for
convergence. Note that only the pedestal of every 30th event is displayed.

2.2 Header Correction

Crosstalk between the last header and the first strip of each link (32 strips) causes a pedestal shift on
this first strip. This causes the first strip to seem more noisy. This effect can be reduced by applying
a correction to the ADC count of strip 0, depending on whether the adjacent header is positive or
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Figure 2.14: The difference in pedestal after 7 days (green) and 20 days (blue) for IT TELL1 13
(left) and TT TELL1 10 (right).

accuracy of 100%.

For the IT an inaccuracy of 0.025% was found. The clusters which were inconsistent between
TELL1 and emulator were all created on 4 analog links. Of the clusters created on the three
faulty links of TELL1 8, 87.3% was perfect, 12.4% contained the correct strips but with different
charge and 0.3% was not created by the emulator. Of the clusters created on the faulty link of
TELL1 64, 44.2% was perfect, 46.4% contained the correct strips but with different total ADC
counts and 9.4% was not created by the emulator.

The 19,322,793 clusters created on all other analog links of the IT were created with 100%
accuracy.

2.4 Particle identification

To distinguish between different particles and therefore identify different B decays, particle
identification is required over a large momentum range for several types of particles. The
LHCb particle identification system is divided into three sub-systems.

• The calorimeter system, subdivided into a Scintillator Pad Detector (SPD), a PreShower
(PS), an electromagnetic calorimeter and an hadronic calorimeter. These subdetectors
are optimised to identify hadrons, photons and electrons and to measure their energy.

• The muon detector, used for µ identification.
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• Two Cherenkov detectors (RICH1 and RICH2), which are designed for optimal ✏/K
separation from a few GeV/c to ⌘100 GeV/c.

2.4.1 Calorimeters

The calorimeter system measures the energy and the position of particles by their absorption.
All particles, except muons, are absorbed in the calorimeters. Through the interaction of
the incident particle with bulk material, its energy decreases and it is finally absorbed. The
result is a shower of secondary particles, which on their turn loose energy in the bulk material
until they are absorbed. The ionisations induced by this particle cascade excite atoms in
the scintillator material, which emit scintillation light as they return to their ground state.
The total amount of scintillation light in the shower is a measure for the initial energy of the
particle.

The LHCb calorimeter system consists of the following detectors arranged in downstream
direction

• A 15 mm thick Scintillating Pad Detector (SPD) which identifies charged particles. It is
used to improve the rejection of neutral pion background with high transverse energy.

• A PreShower (PS) detector, which is a second 15 mm thick scintillating detector and
follows a lead 12 mm thick plate. The PS identifies electromagnetic particles. This is
particularly useful to reject the charged hadronic background in electron identification.

• An electromagnetic calorimeter (ECAL) to identify electrons and photons and to mea-
sure their energy. The ECAL uses the shashlik technology with 66 alternating layers of 2
mm thick lead and of 4 mm thick scintillator.

• An hadronic calorimeter (HCAL) to measure the energy of charged hadrons, in particular
pions and kaons, and to measure their energy. The HCAL structure chosen is an iron-
scintillating tile calorimeter read out by wave length shifting fibers. The scintillators are
4 mm think and the iron plates are 16 mm thick. Its total thickness is 1.2 m.

2.4.2 Muon system

Muons traverse the full calorimeter system before being detected by the muon system. The
muon system is used in the Level-0 trigger, described in Section 2.6, as well as in the offline
event reconstruction. In the Trigger the muon system is used to identify the muons among
the tracks found by the tracking stations and to select those muons with a high transverse
momentum. This is achieved by performing a stand-alone muon track reconstruction and
transverse energy estimation. The muon detector is equipped with 5 double layer (x y) sta-
tions (labelled M1 to M5). The most upstream muon station, M1, is located in front of the
SPD detector, the remaining four detectors are positioned downstream of the calorimeters.
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Between these last four stations, 80 cm thick iron plates act as a muon filter. Multi-wire propor-
tional chambers (MWPC) are used for all regions except the inner region of station M1 where
the expected particle rate exceeds safety limits for ageing. In this region triple-gas electron
multiplier (triple-GEM) detectors are used. The fast drift gas inside the MWPCs, Ar/CO2/CF4

with 40% Ar and variable concentrations of CO2/CF4, is used to satisfy trigger requirements.

In the fast and standalone track reconstruction, particles are selected which traverse through
all five muon stations. The trigger algorithm starts with hits in the middle station and searches
for additional hits in the other stations in order to define a muon track. The slope of the
track between M1 and M2 is used to estimate the the particle momentum assuming that it
originated from the interaction point and combined with the knowledge of the integrated
magnetic field

R

B ·dl .

2.4.3 RICH detectors

The purpose of the Ring Imaging Cherenkov (RICH) detectors is to differentiate species of
charged particles. When charged particles traverse any transparent medium faster than the
local speed of light in that medium, photons are emitted coherently. These Cherenkov1

photons travel away from the charged particle at a specific angle with respect to the trajectory
of the particle depending on its velocity, ⌃, and the refractive index, n, of the medium. This
relation is given in Equation 2.4.

cos(↵c ) = 1
n⌃

with ⌃= v

c
= p

E
= 1

q

1+
°

m/p
¢2

(2.4)

When the momentum of a particle is known and its velocity is measured based on the
Cherenkov angle, the particle can be identified by the calculation of its mass.

As momentum values increase and the value of cos(↵c ) tends to zero, it becomes difficult
to distinguish between different particles. The rate at which this happens depends on the
refractive indices of the chosen medium. To be able to identify particles over the full momen-
tum range, LHCb employs two RICH detectors; one upstream of the magnet and the second
following the IT and OT tracking stations.

The first RICH detector (RICH1) is designed to separate pions from kaons with momentum
in the range of 1-60 GeV. The RICH1 covers the full acceptance of LHCb and consists of two
radiator materials with different low refractive indices: a 5 cm layer of aerogel (SiO2) and 85
cm of C4F10 gas. The first enables kaon identification above 2 GeV and pion-kaon separation
up to 10 GeV. The second enables pion-kaon separation up to 50 GeV.

Higher momentum particles will continue to traverse the second RICH detector (RICH2),
which covers an angular acceptance of 15-120 mrad in x- and 15-100 mrad in y-direction. It

1named after the physicist Pavel Alekseyevich Cherenkov.

34



2.5. Vertex Locator

provides pion-kaon separation from 15-100 GeV. The RICH2 operates with CF4 gas as single
radiator material.

Both detectors use plane mirrors in addition to the principle curved mirrors, to reflect the
Cherenkov light onto the Hybrid Photon Detectors (HPDs) that are placed outside the accep-
tance, where they are protected from the magnetic field by shielding structures.

The result of the pion-kaon separation, based on summer 2011 data which is consistent with
the data used for the study in this thesis, is depicted in Figure 2.15. The separation efficiency
is shown as a function of particle momentum. It is shown that if a high kaon likelihood is
selected, all pions are suppressed, but the efficiency of the kaon selection is reduced at higher
momentum values. If a lower likelihood is required, all kaons are selected, but the suppression
of pion selection is reduced at higher momentum values.

Figure 2.15: The efficiency of pion-kaon separation as a function of particle momentum based
on summer 2011 data. The results are obtained with the magnetic downward polarity (left)
and the upward polarity (right).

2.5 Vertex Locator

The Vertex Locator (VELO) is the detector of LHCb which is closest to the interaction region
and it is separated from the beam vacuum by only a thin foil of aluminium. The VELO is
contained within a vacuum vessel of 1.7 m length and 1.1 m diameter, which is part of the LHC
beam pipe and is sealed by a 2 mm thick aluminium exit window. The VELO strip detectors
are distributed over two secondary vacuum boxes which are separated from the LHC beam
vacuum.

The VELO contains 21 detector stations, which are distributed over a length of about 1 meter
and positioned perpendicular to the beam line. The LHCb interaction region is enclosed by
the VELO stations, which also cover the backward region to provide the optimal vertexing
of the interaction point. Tracks are reconstructed when a particle has traversed a minimum
of three stations. The VELO acceptance thus exceeds the angular acceptance of the LHCb
spectrometer.
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Because the VELO is used to reconstruct particle trajectories near the vertex, the innermost
radius of these stations should be as small as possible, since a short track extrapolation
distance leads to a more precise impact parameter reconstruction. The innermost radius of a
VELO strip detector is 8.2 mm; the outer radius 42.0 mm.

Since this distance to the beam is smaller than the 30 mm aperture required by LHC during
injection, each station is divided in two halves, a left and a right half module, each spanning
182 degrees to allow for a small overlap to obtain full azimuthal coverage and to accommodate
for the relative alignment. The stations reside on a common support system that can be
retracted during injection to a save position clear from LHC’s required aperture. This retracted
position is called the open VELO mode. When the beams have stabilised the VELO returns to
its closed mode. To enable full closure, the VELO halves are staggered. Deep inner corrugations
in the foil close to the beam axis reduce the material, traversed by particles before the first
measured point, to a minimum. The corrugations also allow for the overlap of the left side and
right side detector box.

A module consists of two 300 µm thick silicon sensors, a© sensor and an R sensor. The two
sensors of a module are each mounted on a hybrid. The hybrids are glued back to back on a
carbon fibre paddle and base, leaving a distance of 2 mm between the sensors. Each hybrid is
cooled to a temperature below zero degrees Celsius by direct thermal contact of cooling pads
mounted on the base.

Both the R and the © sensor contain 2048 readout strips. The R sensor contains curved
concentric strips and determines the r radius of a transversing particle. The R sensor is
divided into 4 azimuthal sectors of approximately 45 degrees each and thus they contain 512
strips each. Based on R measurements alone tracks can be tested if they come from a common
vertex or from a secondary decay. Segmenting the R sensors into 4 sectors increases the track
finding efficiency. The distance between the centre of strips, the pitch, varies linearly with R

from 40 µm to 101 µm, with the smallest pitch closest to the beam axis.

The© sensor contains straight radial strips and, together with the R coordinate, determines
the ◆ angle. This sensor is divided into 2 radial sectors, an inner and an outer sector. The
© strips are tilted with a stereo angle, which is different in sign and magnitude for the inner
(20 degrees) and outer (-10 degrees) sector. If extending the strips, their distance of closest
approach to the beam axis would be 2.8 mm for the inner sector and 3.1 mm for the outer
sector. Its inner sector contains 683 strips and runs from r = 8.2 to r = 17.2 mm, with a pitch
width varying from 35.5 to 78.3 µm. The outer sectors thus contains 1365 strips running from
r = 17.3 to r = 42.0 mm, with its pitch varying from 39.3 to 96.6 µm. The geometry of the r and
◆ sensors is depicted in Figure 2.16.

From data collected in 2011, the signal over noise ratio (S/N) is measured to be 19 or 22, for
r and ◆ sensors respectively. The primary vertex resolution in x and y is measured to range
from 0.010 to 0.037 mm, depending on the number of tracks used in the reconstruction. In z

direction the resolution ranges from 0.05 to 0.25 mm. The impact parameter (IP) resolution
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Figure 5.4: Sketch illustrating the r� geometry of the VELO sensors. For clarity, only a portion
of the strips are illustrated. In the � -sensor, the strips on two adjacent modules are indicated, to
highlight the stereo angle. The different arrangement of the bonding pads leads to the slightly
larger radius of the R-sensor; the sensitive area is identical.

is 38 µm, increasing linearly to 101.6 µm at the outer radius of 41.9 mm. This ensures that mea-
surements along the track contribute to the impact parameter precision with roughly equal weight.

The � -sensor is designed to readout the orthogonal coordinate to the R-sensor. In the simplest
possible design these strips would run radially from the inner to the outer radius and point at the
nominal LHC beam position with the pitch increasing linearly with radius starting with a pitch of
35.5 µm. However, this would result in unacceptably high strip occupancies and too large a strip
pitch at the outer edge of the sensor. Hence, the � -sensor is subdivided into two regions, inner
and outer. The outer region starts at a radius of 17.25 mm and its pitch is set to be roughly half
(39.3 µm) that of the inner region (78.3 µm), which ends at the same radius. The design of the
strips in the � -sensor is complicated by the introduction of a skew to improve pattern recognition.
At 8 mm from the beam the inner strips have an angle of approximately 20� to the radial whereas
the outer strips make an angle of approximately 10� to the radial at 17 mm. The skew of inner and
outer sections is reversed giving the strips a distinctive dog-leg design. The modules are placed so
that adjacent � -sensors have the opposite skew with respect to the each other. This ensures that
adjacent stations are able to distinguish ghost hits from true hits through the use of a traditional
stereo view. The principal characteristics of the VELO sensors are summarized in table 5.1.

The technology utilized in both the R- and � -sensors is otherwise identical. Both sets of
sensors are 300 µm thick. Readout of both R- and � -sensors is at the outer radius and requires
the use of a second layer of metal (a routing layer or double metal) isolated from the AC-coupled
diode strips by approximately 3 µm of chemically vapour deposited (CVD) SiO2. The second
metal layer is connected to the first metal layer by wet etched vias. The strips are biased using

– 21 –

Figure 2.16: Sketch illustrating the r◆ geometry of the VELO sensors. For clarity, only a portion
of the strips are illustrated [17].

results are depicted in Figure 2.17. It shows the IP resolution has a linear dependency to the
inverse transverse momentum.
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Figure 2.17: The impact parameter (IP) resolution measured in x (left) and y (right) as a
function of inverse transverse momentum, based on 2011 data.

2.6 The Trigger

The LHCb Trigger system consists of three stages: the Level-0 (L0) trigger and the High Level
Triggers 1 and 2 (HLT1 and HLT2). The L0 trigger is the hardware trigger, which decision is
based on information received from the calorimeter, the muon system and pile-up system,
which consists of two dedicated silicon layers and is located upstream of the VELO subde-
tector. The calorimeter registers the cluster with the highest transverse energy and a particle
hypothesis of either photon, electron or hadron is assigned to it. The muon system selects the
two muons with the highest transverse momentum. The pile-up system registers how many
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interactions take place each bunch crossing and vetoes those events with too many collisions.
The measured transverse energy and momenta need to exceed a certain threshold in order
for the event to be triggered. After the L0 trigger the event rate is reduced from 40 MHz to
approximately 1 MHz, which is the maximum rate at which the detector can be read out. The
thresholds are chosen to meet this requirement.

After the event has been selected by the L0 trigger, the higher level trigger algorithms are
performed on a computing farm. The HLT1 is designed to confirm or reject the L0 trigger
decision. Its decision is based on a partial event reconstruction which includes the tracks or
clusters that triggered the L0 decision. This process is split up into alleys, where each alley
addresses one of the trigger types of the L0 trigger.

The combined output rate of the events accepted by the HLT1 alleys is sufficiently low to allow
an offline track reconstruction. The information obtained through this full track reconstruc-
tion is used for the HLT2 decision. Prior to the final selection, composite particles are created
from the reconstructed tracks based on loose cuts on momentum and impact parameter.
These particles are used to support the HLT2 decision. This decision either selects exclusive
decay modes of interest or inclusive decays based on special event topologies.

The B0 � D�↵✓+�✓ decay, as studied in this thesis, is a multi-body decay and suffers from low
transverse momentum per particle, which results in a low L0 efficiency. However, D0 � K+✏↵

and ✓+ �✏+✏+✏↵�✓ result in 2-prong and 3-prong vertices, which can be sufficiently displaced
to pass the topological trigger.

2.7 LHCb Software

The experiment-wide software (C++) framework known as Gaudi [24] is used for the generation
and processing of data. It ensures availability of all LHCb tools and algorithms across the
experiment and enforces global consistency of LHCb analyses. Its main components can be
separated in terms of

• Generation: The LHCb software package Gauss is responsible for the generation of
Monte Carlo (MC) simulation data. In this step, the primary pp beams collisions are
simulated using PYTHIA [25] and the B particles that are produced decay according to
the EvtGen [26] decay model.

• Digitisation: The response of the LHCb detector to the generated particles is handled
by the Boole application. A model of the LHCb detector based on GEANT4 [27] is used
to simulate the digital output. The digitised data is the MC equivalent of real measured
data. From this point, both pass through the same reconstruction chain.

• Reconstruction: The Brunel application handles the reconstruction of the digitised
output of the detector responses. Signal hits in the detector are clustered and associating
tracks are constructed. Particle properties such as momentum are determined and PID
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measurements are performed. The output of Brunel is a full reconstructed dataset
known as a ’Data Storage Tape’ (DST) file.

• Analysis: Offline analyses are performed using the DaVinci package. The DaVinci
application allows for reconstructed particles to be combined and determines primary
and secondary vertices as well as kinematic quantities, such as invariant masses of
decayed particles and their distance of flight.

Individual algorithms store their produced data in a Transient Event Store (TES), which is
consecutively used as an input location for the following process. A global conditions database
[28] contains all parameters required for the current running conditions of the experiment.

The MC samples used in this thesis are labelled MC10 and are generated using parameters
compatible with the LHCb 2011 data sample.
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3 Studies of ⌅ reconstruction using
simulated events

The goal of this chapter is to demonstrate the principle of event reconstruction methods for
various interesting processes in which one or two ✓ leptons are involved. Since the purpose is to
demonstrate the methods, simulated data signal samples are used. In order to understand the
signal properties, only tracks coming from the process of interest are considered. However, to
understand the effect of the detector resolution, both generated quantities and reconstructed
quantities are used in the study.

The momentum of the ✓ particle is notoriously difficult to reconstruct. All its major decay
channels contain a ✓ neutrino, �✓. The neutrino traverses LHCb undetectably and therefore
causes missing energy in the decay. As LHCb doesn’t have a full solid angle coverage, only a
subset of particles from each collision traverses the detector. A vast amount of energy is lost
in all events. It is therefore impossible to determine the amount of energy that is lost due to
an undetectable neutrino. The ✓ mass can thus not be calculated by combining its daughter
particles’ measured momenta.

An exception is the neutrinoless flavour violating decay of ✓↵ �µ+µ↵µ↵. This rare ✓ decay is
fully reconstructable, but its branching fraction is yet to be measured. Section 3.1 shortly dis-
cusses the measurement possibilities for this decay at LHCb. A difficulty in the determination
of the ✓↵ �µ+µ↵µ↵ branching fraction is choosing a ✓ normalisation channel.

The decay mode of ✓↵ �✏+✏↵✏↵�✓ has been considered as a possible normalisation channel.
It is found that when the origin and decay vertex of the ✓ particle are reconstructable and
the missing mass is limited to a single neutrino, the ✓ momentum can be calculated up to
a twofold ambiguity, which is shown in Section 3.2. This requires that the ✓ lepton decays
into a three-prong of charged particles to enable the reconstruction of the decay vertex. The
branching fraction of such events, with no additional neutral particles, is approximately
9.8% [5]. Although other decay reconstruction possibilities have arisen from the possible
reconstruction of ✓↵ �✏+✏↵✏↵�✓, the channel is insufficient as a ✓↵ �µ+µ↵µ↵ normalisation
channel due to overwhelming physics background.
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The decay channel of B0 � D�↵✓+�✓ contains two ✓ neutrinos when required that the ✓ lepton
decays as ✓+ �✏+✏+✏↵�✓. Both neutrinos originate from particles (the ✓ lepton and B0 meson)
of which the production vertex and decay vertex are measurable. At the generation level, its
reconstruction is thus equivalent to that of a single ✓↵ � ✏+✏↵✏↵�✓ decay. However, the
additional information available can be used to constrain its reconstruction. Chapter 4 is
dedicated to the analysis of the B0 � D�↵✓+�✓ decay channel, in which also its application to
real data is discussed.

The decay into a single ✓ particle can be extended to a ✓ pair originating from a known
common vertex. Its reconstruction is discussed in Section 3.3, which focuses on the Z0 � ✓+✓↵

decay mode.

When additional information is available, the production vertex of the ✓ lepton does not
always need to be known for its full reconstruction. A more complicated problem is that of a ✓

pair coming from an unknown displaced vertex, which occurs in the decay channel B0
s � ✓+✓↵.

Section 3.4 deals with this more elaborate mathematical reconstruction.

Section 3.5 shortly discusses other interesting reconstruction possibilities. In the lepton
flavour violating (LFV) decay of B0

s � ✓+µ↵ one of the ✓ particles is replaced by a µ lepton,
constraining the allowed location of the ✓ production vertex. Instead of replacing one of the ✓

particles, it is also possible to add an additional track in order to constrain the vertex location,
which is the case for the rare B+ � K+✓+✓↵ decay. This is the first decay that is fully constrained
without fixing the mass of the B particle. The last considered reconstruction is that of the rare
B0 � K�✓+✓↵ decay mode. Here, the fully reconstructable K� particle fixes the ✓ production
vertex completely.

Theoretically, all these decays can be reconstructed analytically. However, due to measurement
errors in particle momenta, production and decay vertices, an analytical solution is not always
possible. The reconstruction possibilities can be improved using computational methods.
Even when an analytical solution exists, the accuracy may be increased by a constrained event
fit.

3.1 The lepton flavour violating decay ⌅↵ �µ+µ↵µ↵

In the Standard Model, lepton flavour conservation is explicitly assumed. However with
the discovery of neutrino oscillations, charged lepton decays can now violate the lepton
flavour conservation. The ✓↵ � µ+µ↵µ↵ branching fraction through neutrino oscillation is
proportional to the term (m�/mW)4 ⌘ 10↵50, where m� and mW are the neutrino and W mass
respectively. This rate is immeasurably small by many orders of magnitude compared to
what could be measured by any experiment. However, New Physics models, like mediating
boson models or supersymmetry (SUSY) models, predict much higher branching fractions.
The non-universal Z⌅ model predicts a branching fraction of the order 10↵8 [29], whereas the
minimal supersymmetric model predicts it to be 10↵9 [30].

42



3.1. The lepton flavour violating decay ⌅↵ �µ+µ↵µ↵

The lepton flavour violating decay ✓↵ �µ+µ↵µ↵ is an ideal decay mode for LHCb to probe. The
muons are easily identified and triggered upon by their penetration through iron shielding. The
decay can be reconstructed with high efficiency and precision, using the vertex detector which
is specifically designed to identify secondary vertices. This results in a precise determination
of the ✓ vertex location and an excellent ✓ mass resolution, since there is no missing neutrino.
As most ✓ leptons come from b and c hadrons, its vertex will be sufficiently displaced to pass
the impact parameter requirements, designed to select B mesons in the LHCb trigger.

Upper limits on the branching fraction have been set by BaBar and Belle. BaBar has obtained
a limit of 3.3 ·10↵8 [31], but the strongest limit of 2.1 ·10↵8 [32] is currently set by Belle at a
90% confidence limit. These limits are in the range of many New Physics predictions and any
improvement will have a direct effect on the understanding of New Physics.

3.1.1 Estimation of measurement limit at LHCb

Based on PYTHIA estimations [25], the total ✓ cross section at LHCb is calculated to be ⌘111µb
at

⌦
s = 14 TeV. A nominal year (107 seconds) of data taking yields 2 fb↵1 of data and 2.22 ·1011

✓ particles will be produced. The geometrical efficiency of the ✓ leptons decaying to three
muons, i.e. all three daughters are in the acceptance of LHCb (10 mrad < ↵ < 400 mrad), is
estimated from simulation to be ⌘19.5%. The branching fraction of this decay is currently
known to be smaller than 2.1 ·10↵8 (Belle’s limit). There are therefore less than 910 signal
events in LHCb per nominal year. The reconstruction efficiency, with minimal pre-selection,
is ⌘25%, resulting in less than 228 signal events before applying any selection criteria.

Around half -52%- of the signal ✓ particles come from prompt Ds mesons, 34% come directly
from B mesons and the remaining 14% come from Ds mesons through B meson decays.
Prompt ✓ particles are estimated to contribute <1% to the total source of ✓ particles, but is
to a large extend uncertain. The main source of background originates from µ lepton pairs
produced in b and b quark decays combined with one random track.

An initial study, based on Monte Carlo signal and di-µ background events, estimates the signal
selection efficiency to be ⌘5% [33]. Based on this selection and including all ✓ sources, an
upper limit on the branching fraction of 3.2 ·10↵8 could be set with a 90% confidence level
within one nominal year of data taking at

⌦
s = 14 TeV. This number matches BaBar’s current

limit, but would not be an improvement on Belle’s limit. Within the lifetime of LHCb, which
corresponds to 10 fb↵1, the limit on the branching fraction would improve to 1.3 ·10↵8.

3.1.2 Normalisation difficulties

After a certain number of signal candidates are selected, it is necessary to know how many
candidates there were to start with in order to determine a branching fraction. To overcome
this problem, the signal candidates can be normalised using the number of candidates selected
from a different decay of which the branching fraction is already well-measured. A difficulty
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with any ✓ normalisation channel which conserves lepton flavour, is that it suffers from
missing energy.

The decay channel of ✓↵ �✏+✏↵✏↵�✓ has been considered as a possible normalisation chan-
nel. This decay is unique in the sense that it is fully reconstructable. However, because the
prompt ✓ cross section is significantly small compared to the inclusive b and c cross sections,
this decay channel is dominated by physics background.

The background mode D↵ � ✏+✏↵✏↵✏0 has a similar signature as the considered ✓↵ �
✏+✏↵✏↵�✓ channel. Although the D± meson is heavier than the ✓ lepton, reconstructable
mass is lost through the ✏0, resulting in a mass similar to that of the ✓ lepton. Based on the
cross section and branching fraction, the occurrence of prompt D↵ �✏+✏↵✏↵✏0 events can
be estimated to be a factor 4,500 larger than prompt ✓↵ �✏+✏↵✏↵�✓ events. This abundant
physics background is irreducible due to the similar signatures of the two decays. In Figure 3.1
the distributions1 of the invariant 3✏ mass is depicted for both decays.
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Figure 3.1: The 3✏ invariant mass distributions of D↵ � ✏+✏↵✏↵✏0 in blue, radiative D↵ �
✏+✏↵✏↵⌥ with missing photons in green and signal ✓↵ � ✏+✏↵✏↵�✓ -scaled by a factor of
1,000- in black. The 3✏ invariant mass is normalised to the ✓ lepton mass.

To overcome normalisation difficulties, a current study considers only ✓ leptons from Ds

mesons, which is its main source. An attempt is being made to normalise these ✓ leptons to
the Ds decay channels D↵

s �◆(µ+µ↵)✏↵ and D↵
s �✏+✏↵✏↵ [34].

Although using the decay channel ✓↵ �✏+✏↵✏↵�✓ as a ✓↵ �µ+µ↵µ↵ normalisation channel
has been shown to be impossible, it has led to interesting new research. In the Sections
3.2-3.5.3 the reconstruction possibilities of this decay mode and its possible applications and
physics interests are discussed.

1Whenever the focus is on the distribution shape or on the relative number of events between distributions, but
not on the absolute number of events, the label "Events/bin size" is omitted.
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3.2 Reconstruction of ⌅↵ �⇤+⇤↵⇤↵⇥⌅ from a known vertex

Interesting decays containing a ✓ lepton from a known vertex are Z0 � ✓+✓↵, B0 � K�✓+✓↵ and
B0 � D�↵✓+�✓. The concept of single ✓ lepton reconstruction does not distinguish between
these decays when generated quantities are used. With reconstructed quantities however,
the results depend on the accuracy of the reconstructed values and on additional event
information.

Note that it is possible to select only those three-prongs which mass is close to the ✓ lepton
mass. The existence of the neutrino can then be neglected based on the assumption that all
energy has been transferred to the hadrons. Using this method, only a small fraction of ✓
decays is selected. In addition, the calculated ✓ momentum is an approximation; its accuracy
depends on the missing energy.

In this section full and exclusive ✓ reconstruction is discussed. A majority of ✓ decays can be
accurately reconstructed and used in different physics analyses. A schematic representation
of the ✓ lepton decay is depicted in Figure 3.2.

↵✓

3✏

�✓

Figure 3.2: A schematic representation of ✓↵ �✏+✏↵✏↵�✓.

3.2.1 Analytic reconstruction

Two precepts are applied for the full ✓ reconstruction: the ✓ mass is fixed at its rest value,
m✓ = 1777 MeV and the neutrino is massless, m� = 0. The fixed value of the neutrino mass
is necessary as the �✓ 4-momentum is unknown. The ✓ decay daughters can therefore not
contain more than one neutral particle, as their combined mass will be unknown. If no other
information is available, the ✓ production vertex needs to be known to allow the determination
of the ✓ 4-momentum, p✓.

The combined 3✏ 4-momentum and the production and decay vertices of the ✓ lepton are
the known parameters in this calculation. The unit vector along the ✓ momentum trajectory,
given by the decay vertex minus the production vertex, is referred to by ~u. The relations which
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Chapter 3. Studies of ⌅ reconstruction using simulated events

need to be satisfied are:

0 =
°

p✓ ↵ p3✏
¢2 (3.1)

m2
✓ = E 2

✓ ↵ |~p✓|2 (3.2)

~p✓ = |~p✓| ·~u (3.3)

Equations 3.1 and 3.2 ensure the correct �✓ and ✓ masses, respectively, whereas Equation 3.3
ensures the correct direction of the ✓ 3-momentum.

As Equation 3.3 introduces two unique relations, there are four unknowns and four relations.
However, due to the quadratic nature of the mass constraints, there are two physically valid ✓

momentum solutions, given by measured quantities only as

|~p✓| =

≥

m2
3✏ +m2

✓

¥

|~p3✏ |cos(↵)±E3✏

r

≥

m2
✓ ↵m2

3✏

¥2
↵4m2

✓|~p3✏ |2 sin2(↵)

2
≥

E 2
3✏ ↵ |~p3✏ |2 cos2(↵)

¥ (3.4)

Here ↵ is the angle between the ✓ and 3✏ momentum vectors. Having obtained the ✓ momen-
tum, all ✓ 4-momentum components are now derived using Equations 3.2 and 3.3. Figure 3.3
illustrates the distribution of the two allowed ✓ momenta per measured angle for one event.
The discrepancy between the two ✓ momentum solutions is largest when the momentum of
the three-prong and the ✓ momentum are co-linear. At the maximal allowed angle there is a
unique solution for the ✓ momentum.
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Figure 3.3: The two possible ✓ momentum solutions as a function of the angle ↵ for one event.
The solutions with a positive discriminant are depicted in green, those with a negative one in
blue. The red dot represents the unique solution where the discriminant is 0.

The two solutions for the neutrino momentum have equal transverse component with respect
to the ✓ lepton direction. In the ✓ rest frame, the two neutrino solutions occur in opposite di-
rection (180✏ difference). Figure 3.4 illustrates the relation between the 3✏ and �✓ momentum
solutions for a given ✓ value in the lab frame. Each colour represents a possible solution. In
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green are those solutions where a higher energy is assigned to the three-prong. Each of these
solutions has a counterpart solution in blue, where the transverse momentum of the particles
is the same, but where less energy has been transferred to the three-prong. The solution
depicted with red arrows, corresponds to the unique solution where the angle between the
three-prong and the ✓ lepton is maximal.

�p⇤

�p3⇥

�p�

1

Figure 3.4: A schematic representation of the possible combinations of ✓ and neutrino mo-
menta. The red arrows represent the solution where the discriminant is equal to 0.

Although each ✓↵ �✏+✏↵✏↵�✓ decay has two physically valid solutions for the ✓ momentum,
there is naturally only one correct solution which matches with the true ✓ momentum. Due to
the rounding errors in the calculation, even when the generated quantities are used for the 3✏

momentum and the production and decay vertices of the ✓ lepton, the correct solution for the
✓ momentum calculated using Equation 3.4 is not exactly the same as the generated value. To
demonstrate this, Figure 3.5 shows the |~p✓| asymmetry defined as

⌘(|~p✓|) =
|~p✓|↵ |~p✓|MC

|~p✓|+ |~p✓|MC
(3.5)

A FWHM of the asymmetry distribution of 0.3·10↵3 corresponds to an error of (1↵0.3·10↵3)/(1+
0.3 ·10↵3) ⌘ 0.06%.
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Figure 3.5: The asymmetry distribution between the generated momenta and the calculated
momenta which match the MC information.

The size of the ✓ momentum asymmetry between the correctly and incorrectly assigned
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momentum solutions is related to the invariant 3✏ mass; the less energy is given to the
neutrino, the closer the two ✓ momentum solutions. The 3✏ invariant mass distribution and
the asymmetry as a function of the invariant mass are shown in Figure 3.6. A 3✏ invariant
mass cut at m3✏/m✓ > 0.9 means that the absolute asymmetry is always smaller than 0.1, and
thus that the correct ✓ momentum is calculated with an error smaller than 20%. This mass cut
keeps ⌘10% of the decays.
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Figure 3.6: (a) The relation between ✓ momentum asymmetry and the 3✏ invariant mass and
(b) the 3✏ invariant mass distribution. Both invariant mass distributions are normalised to the
✓ lepton mass.

3.2.2 Analytic limitations

As Equation 3.4 shows, a solution for the ✓ momentum is only found when the angle ↵ is equal
to or smaller than a maximum allowed value based on the 3✏ 4-momentum, given by

↵max = asin(
m2

✓ ↵m2
3✏

2m✓|~p3✏ |
) (3.6)

When ↵ is measured to be larger than ↵max due to rounding or measurement error, it is impos-
sible to calculate an analytic solution. Figure 3.7 shows the generated ✓ momenta between
|~p✓|min and |~p✓|max versus the calculated ↵ with relation to ↵max (log scale) using generated
values (orange) and using reconstructed values for prompt ✓ leptons (grey). It demonstrates
the calculation’s sensitivity to errors as small as rounding and need of error exploitation. At
generator level a solution is found for ⌘95.5% of the ✓ decays. For reconstructed data this
efficiency falls to ⌘29% based on prompt ✓ leptons.

3.2.3 Constrained fit

The constrained fit exploits the errors on the measured quantities to find a best estimation of
the ✓ momentum when an exact calculation is not possible. Its aim is to minimise the value of
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Figure 3.7: The generated ✓ momentum versus the angle ↵ as a function of ↵max for generated
data (orange) and for reconstructed data (grey).

the 2, defined as

2 = (m ↵h(x))T W (m ↵h(x)) (3.7)

The measured values are denoted by m. The description of the system, h(x), contains the
calculated values of the measured quantities based on parameters x. W is the weight matrix;
the inverse of the covariance matrix of the measured quantities.

The function and its parameters need to be chosen to ensure convergence to a minimum 2

value. The standard measured quantities are the production vertex, pV , the decay vertex, dV ,
and the 3✏ 4-momentum, (E3✏ ,~p3✏). A small variation of the 3✏ energy and its momentum
can lead to a negative 3✏ invariant mass. It is therefore more stable to use the 3✏ invariant
mass in the description of the system rather than its energy and a convenient choice of variable
is m2

3✏ . The Jacobian matrix is applied to the covariance matrix in order to make it compatible
with the change of variable. The chosen description consists of the following 10 quantities:

h(x) =
n

pV ,dV ,~p3✏ ,m2
3✏

o

(3.8)

The parameters which are used to describe the system are the production vertex, the ✓ mo-
mentum, the �✓ momentum and the scaling factor L✓, defined by |dV ↵ pV | = L✓|~p✓|:

x =
©

pV ,~p✓,~p�,L✓
™

(3.9)

The ✓ and neutrino mass are inserted directly into the description of the system, by expressing
the 3✏ mass as

m2
3✏ = m2

✓ ↵2E�E✓+2~p� ·~p✓ (3.10)
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with

E� = |~p�| and E✓ =
q

m2
✓+|~p✓|2 (3.11)

Minimising the 2 is equivalent to finding the root of its derivative. Root finding can be
performed by the Newton-Raphson method. Initial values of the parameters, x0, have to be
provided.

It is essential that the initial guess is made close to the true values of the parameters to avoid
local minima. At ↵ = 0 the region of allowed ✓ momenta can be determined approximately; an
initial guess in this region is as good as can be approximated.

The Newton-Raphson method is an iterative algorithm which reduces the parameters x by an
amount ¢x until a root has been found. ¢x is defined as

¢x =
µ

⇤22

⇤x2

∂↵1 µ

⇤2

⇤x

∂

=
°

H T W H
¢↵1

H T W (m ↵h(x)) (3.12)

Here H is the derivative matrix of the description of the system to its parameters [35]. To
ensure convergence an extra term is added to the correction ¢x. This term is based on the
method of gradient descent and used in addition to the Newton-Raphson method in the
Levenberg-Marquardt algorithm. The correction becomes

¢x =
°

H T W H +�diag
°

H T W H
¢¢↵1

H T W (m ↵h(x)) (3.13)

The value of � determines the influence of this extra term. Starting with �= 0, if the Newton-
Raphson method does not converge, the value of � is increased and the method of gradient
descent takes over. Its convergence is slower than that of the Newton-Raphson method, but
it is guaranteed (up to a local minimum). There is no predefined value for the increase of �,
but the best value can be determined after a convergence study. In this chapter ��= 1 ·10↵6

is used. Each time the parameters are recalculated as x +¢x and the 2 is obtained. The
algorithm is terminated when a set maximum of iterations has been reached or when the 2

changes less than 0.1% in 5 consecutive iterations.

When the best values of the measurables are found, the second solution can be calculated
analytically.

3.2.4 Decay time distributions

The decay time distributions of the correct and incorrect ✓ momentum solutions, separated
based on known MC truth information, show a small systematic difference, depicted in Figure
3.8. However, based on a single ✓ reconstruction it is not possible to separate the true solutions
from the fake solutions.

As the decay time distributions are practically indistinguishable for the correct and incorrect
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Figure 3.8: (a) The decay time distribution of the set of correct ✓ momentum solutions with
✓✓ = (2.978±0.009) ·10↵13 s. (b) The decay time distribution of the set of incorrect ✓ momen-

tum solutions which gives ✓✓ = (3.037±0.011) ·10↵13 s.

momentum solutions based on generated quantities, it is unnecessary to differentiate between
them. Decay time measurements can be weighed depending on the number of momentum
solutions found in each event in order not to bias the distribution with a selection.

3.3 Z0 �⌅+⌅↵ reconstruction without mass cut

The Drell-Yan process of ⌥�/Z0 � ✓+✓↵ is the prime example of a ✓ pair produced at a known
vertex, i.e. the primary vertex. Even though this reconstruction channel contains two neutri-
nos, no upper limit cut needs to be made on the mass of the mother particle. This means that
the mass window can be widened to allow the search for heavier gauge bosons. A wide range
of models predict extra neutral gauge bosons. Current experimental lower limits on the mass
of the Z⌅ boson are derived from searches using high-mass ✓ pairs at the Tevatron experiments
and are set to 400 GeV at 95% confidence level [36]. If such a heavier neutral boson exists
then its decay through ✓ leptons may be the ideal reconstruction channel, due to the favoured
coupling to the ✓ mass for certain New Physics models.

In Section 3.2 it has been shown that the ✓ particle can be fully reconstructed when it originates
and decays at a measurable point in space. The limitation is that there are two kinematically
valid momentum candidates and without additional information from the event, it is impossi-
ble to distinguish between them. To analytically reconstruct the Z0 � ✓+✓↵ decay, the single ✓

reconstruction is performed twice with a common production vertex for the two ✓ leptons. It
follows that there are four possible momentum solutions for the Z0 particle. Due to the width
of the Z0 mass peak, it is unfavourable to fix this mass in order to constrain the event, but
better to use the invariant mass distributions of the four combinations. Figure 3.9 depicts
the analytically calculated ⌥�/Z0 mass distributions using generated quantities for the four
combinations of the possible two ✓ momenta.
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Figure 3.9: The mass distribution of the combined ✓-pair momentum solutions with: two
correct reconstructions (black), one correct reconstruction (blue and green) and two incorrect
reconstructions (red) based on the analytical reconstruction of generated quantities.

For reconstructed quantities, the efficiency of calculating the momentum of a ✓ lepton pair
analytically is ⌘8%, the efficiency of a single ✓ lepton reconstruction squared. It is there-
fore paramount to improve reconstruction efficiencies by using a computational method to
determine the ✓ lepton momenta.

3.3.1 Constrained fit

The constrained fit of a ✓ lepton pair from a known vertex is equivalent to the method of
reconstructing a single ✓ lepton, as described in 3.2.3. However, the input parameters and
the description of the system are adjusted. As the two tau leptons share the same production
vertex, the problem expands to a 17 dimensional system: the primary vertex and two times the
7 parameters related to the reconstructed pions. The description of the system is thus given by

h(x) = {pV ,dV1,~p13✏ ,m2
13✏ ,dV2,~p23✏ ,m2

23✏} (3.14)

and its parameters

x = {pV ,~p1✓,~p1�,L1✓,~p2✓,~p2�,L2✓} (3.15)

3.3.2 Reconstruction efficiency and accuracy

To determine the accuracy of the constrained fit, the calculated ✓ momenta are compared to
the generated ✓ momenta. For each decay, only the correct ✓ momentum which best matches
the MC truth is considered. Figures 3.10(a) and (b) depict the ✓ momentum asymmetry dis-
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tributions for the analytically obtained momentum solutions and for those solutions where
a computational method was necessary, respectively. In this last distribution, the decays for
which an analytical momentum solution exist are thus omitted. A tail to the left of the asymme-
try distribution is visible, which indicates a systematic underestimation of the ✓ momentum.
The FWHM (Full Width Half Maximum) of 0.042 corresponds to an error of ⌘8%, whereas
an FWHM of 0.036 corresponds to an error of ⌘7%. When there is no analytical solution
possible due to inaccurate measurement values, an increase in ✓ momentum asymmetry error
is expected.
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Figure 3.10: The distribution of the |~p✓| asymmetry between the generated momenta and (a)
the analytically reconstructed momenta and (b) the computationally reconstructed momen-
tum solutions (excluding those with an analytical solution).

If the ✓ momentum is not analytically calculable, then the angle between the reconstructed ✓

vertices and the 3✏ momentum vector is too large. To estimate the ✓ momentum, the angle can
be set to its maximum allowed value. In order to demonstrate the advantage of a constrained
fit of the decay over such an estimation, the momentum asymmetry between the estimated
momenta and the generated momenta is shown in Figure 3.11. A large tail of underestimated
✓ momenta is visible in addition to an increased FWHM value of 0.071, which corresponds to
an error of ⌘13%.

The efficiency of the analytical solution is ⌘8%, whereas the efficiency of the constrained fit
when cut at 2 < 10 is ⌘80%. These efficiencies can improve after selection cuts.

3.3.3 di-⌅ invariant mass distribution

The ✓ pair invariant mass, where all the four di-✓ combinations are added, results in a clear sig-
nature mass distribution, peaking at the Z0 mass. Figure 3.12 shows the di-✓ mass distributions
of the differently reconstructed momenta. An MC data sample corresponding to ⌘200 pb↵1

is used to produce the reconstructed di-✓ invariant mass distributions. When the generated
values are taken for the ✓ vertices and 3✏ momenta, a clear signal peak is seen at the Z0 mass.
Combining the computationally reconstructed momenta results in a signal peak left of the Z0
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Figure 3.11: The distribution of the |~p✓| asymmetry between the generated momenta and the
estimated momenta, where the angle between the ✓ and 3✏ momenta is maximal.

mass. This is consistent with the tail observed in the |~p✓| asymmetry distribution. The peak
is less defined than the MC signal peak due to measurement error. When only selecting the
analytic solutions, there is not enough data available to distinguish a peak. Setting a maximum
angle between the ✓ and 3✏ momentum vectors further spreads the signal peak and pulls it to
the left of the known Z0 mass peak.

3.3.4 Conclusion

Although it is unfavourable to fix the Z0 mass to constrain the decay due to its width, the di-✓
invariant mass distribution is shown to peak at the established Z0 mass value. The open mass
window allows for the search of heavier New Physics bosons, which favour a coupling to the
heavy ✓ lepton mass. Is has been shown that by fitting the decay with constraints and allowing
for measurement error, the reconstruction efficiency improves by a factor ⌘10. Although a ✓

momentum estimation is possible by selecting the maximally allowed angle between the ✓

and 3✏ momenta, its accuracy after a decay fit is improved by approximately 38%.

3.4 Ideas on B0
s �⌅+⌅↵ reconstruction

A principal goal for LHCb is the measurement of the branching fraction of the decay B0
s �µ+µ↵.

This decay is rare in the Standard Model as it occurs only via helicity suppressed loop diagrams.
Its branching fraction can be significantly different in many New Physics models, especially
with an extended Higgs sector. Therefore, the search for this decay provides a sensitive probe
of physics beyond the Standard Model.

The decay rates of B0
s � ⌅+⌅↵ are suppressed by a factor (m

⌅
/mB )2. The suppression is

therefore smallest for B0
s � ✓+✓↵, due to the large ✓ mass.

Reconstructing B0
s � ✓+✓↵ is a challenge and it is not clear that the Standard Model branching
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Figure 3.12: The mass distribution of the combined ✓-pair momentum solution of (a) the gen-
erated values, (b) the computationally reconstructed values, (c) the analytically reconstructed
values and (d) the estimated values where a maximum angle between the ✓ and 3✏ momenta
is assumed. The red lines indicate the value of the Z0 mass.

fraction can be measured within the lifetime of LHCb or its upgrade. However, the New
Physics contribution may be considerable and it is well worth establishing an upper limit on
the branching fraction of this decay.

3.4.1 Analytical calculation

The measurable variables of the B0
s � ✓+✓↵ decay with ✓↵ �✏+✏↵✏↵�✓ are

• the B production vertex (primary vertex): pV ,

• the two ✓ decay vertices: dV1 and dV2,

• the 4-momenta of the two three-prongs: p13✏ and p23✏ .

The unknown quantities are

• the decay vertex of the B meson: bV ,
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• the momentum of the B meson: ~pB,

• the momenta of the two ✓ leptons: ~p1✓ and ~p2✓,

• the momenta of the two neutrinos: ~p1� and ~p2�.

The masses of the B meson, ✓ leptons and neutrinos are fixed to their experimentally deter-
mined values.

When two ✓ leptons come from an unknown vertex, the reconstruction of their momenta
is challenging. It is not possible to calculate the ✓ momentum without knowing the angle
between the ✓ and 3✏ momenta vectors [37] and it is not possible to calculate the B decay
vertex without knowing the direction of the ✓ momenta. A more convenient parameterization
of the problem must therefore be found.

The B decay vertex must lie within the plane spanned by the three vertices pV , dV1 and dV2.
The vectors between the primary vertex and the first or second decay vertex are denoted by
~v and ~w respectively. The B and ✓ momentum vectors are colinear with the spatial vectors
between their production and decay vertices. Scale factors, L1✓, L2✓ and LB, are used to relate
the topological direction vectors to the particle momenta. The basic geometry of the plane in
which the B and ✓ momenta lie is depicted in Figure 3.13.

pV

dV1

dV2

bVLB(~p1✓+~p2✓)

L1✓~p1✓

L2✓~p2✓

~v

~w

Figure 3.13: Geometry of the plane containing the B and both ✓ momentum vectors.

The three relations linking the directional vectors to the momenta using scale factors are

dV1 ↵bV = L1✓~p1✓ (3.16)

dV2 ↵bV = L2✓~p2✓ (3.17)

bV ↵ pV = LB(~p1✓+~p2✓) (3.18)
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These relations can be rewritten to a single formula, eliminating the factors L1✓, L2✓ and LB,
as

~v �~p1✓ =↵~w �~p2✓ (3.19)

The second relation occurs through the fixing of the B mass: (p1✓+p2✓)2 = m2
B

E1✓E2✓ ↵~p1✓ ·~p2✓ =
1
2

m2
B ↵m2

✓ (3.20)

And finally two relations due to the fixing of the neutrino mass

(p1✓ ↵ p13✏)2 = (p2✓ ↵ p23✏)2 = 0 (3.21)

and two from fixing the ✓ mass

p2
1✓ = p2

2✓ = m2
✓ (3.22)

The system to be solved thus consists of 8 equations and 8 unknowns, which are the two ✓

4-momenta {p1✓, p2✓}. To simplify the algebra, the coordinate system is rotated such that
the plane of the B decay lies on the x y-plane. By doing this the z-components of the two ✓

momenta as well as the vectors ~v and ~w are set to 0. From this point onwards this will be
assumed to be the case.

In 2D space the system reduces to 6 equations with 6 unknowns {E1✓, p1✓x , p1✓y ,E2✓, p2✓x , p2✓y }.
For a better overview Equations 3.19-3.22 can be rewritten with in 2D space with substituted
variables as

x2
1 + y2

1 ↵ z2
1 =↵1 (3.23)

a1x1 + y1 +b1z1 = c1 (3.24)

x2
2 + y2

2 ↵ z2
2 =↵1 (3.25)

a2x2 + y2 +b2z2 = c2 (3.26)

kx1 + l y1 = mx2 + y2 (3.27)

x1x2 + y1 y2 ↵ z1z2 = d (3.28)

Here x1 = p1✓x /m✓, y1 = p1✓y /m✓ and z1 = E1✓/m✓. Thus a1 = p13✏x /p13✏y , b1 =↵E13✏/p13✏y

and c1 = (↵m2
✓ ↵ m2

13✏)/(2m✓p13✏y ). The variables x2, y2, z2 and measurables a2,b2,c2 are
defined similarly for the second ✓ lepton. From Equation 3.20 it can be derived that d =
(2m2

✓ ↵ m2
B)/(2m2

✓) and from Equation 3.19 that k = vy /wx , l = ↵vx /wx and m = ↵wy /wx .
Note that the space can still be conveniently rotated to set for instance m = 0 or k = l ; here we
will proceed without extra rotations applied.

Equation 3.23 represents a quadric surface: a hyperboloid of two sheets. Equation 3.24 is
a plane. Together these two equations represent an ellipse in 3D space. This ellipse can be
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parameterized using one single variable, chosen to be t . To start the parameterization a point
(x0, y0, z0) on the ellipse is chosen. For a given value of z0, x0 is expressed as

x0 =
a1(c1 +b1z0)±

q

(a2
1 +1↵b2

1)z2
0 +2b1c1z0 ↵ a2

1 ↵b2
1

1+a2
1

(3.29)

Therefore there exists a solution for x0 if

(a2
1 +1↵b2

1)z2
0 +2b1c1z0 ↵ a2

1 ↵b2
1 ⇣ 0 (3.30)

As a2
1 +1↵b2

1 < 0 (the two components of the momentum squared are never larger than the
energy squared), this represents a parabola which opens downward. It is therefore a safe
choice to take

z0 =
↵b1c1

a2
1 +1↵b2

1

(3.31)

as the starting value for z0.

A pencil of planes, orthogonal to the xz-plane and crossing coordinate (x0, y0, z0), can be
chosen as

x1 = x0 ↵ t (z1 ↵ z0) (3.32)

where t is the new parameter in which the ellipse is parameterized. Substituting the variable x1

of Equation 3.24 by the relation given in Equation 3.32, the new expression can be combined
with Equation 3.23 to give a quadratic solution for z1 expressed in terms of t . One of the
solutions for z1 is known to be z0. Discarding this known solution leaves a general algebraic
expression for z1 in terms of t .

z1 =
°

z0a2
1 + z0

¢

t 2 +2
°

x0 ↵ a1c1 +a2
1x0

¢

t +2b1 y0 +b2
1z0 + z0

°

a2
1 +1

¢

t 2 ↵2a1b1t +b2
1 ↵1

(3.33)

It follows that x1 and y1 can be expressed in terms of t as

x1 =
°

x0a2
1 ↵ x0 +2a1 y0

¢

t 2 +2
°

b1c1 +b2
1z0 ↵ z0

¢

t +b2
1x0 ↵ x0

°

a2
1 +1

¢

t 2 ↵2a1b1t +b2
1 ↵1

, (3.34)

y1 =
°

↵y0a2
1 + y0 +2a1x0

¢

t 2 +2
°

a1z0 ↵b1x0 +a1b1 y0
¢

t ↵b2
1 y0 ↵ y0 ↵2b1z0

°

a2
1 +1

¢

t 2 ↵2a1b1t +b2
1 ↵1

(3.35)

Both the numerator and the denominator are of order 2 in t for x1, y1 and z1. In addition, the
three variables share the same denominator. These expressions will be denoted by

x1 =
tx

tn
, y1 =

ty

tn
and z1 =

tz

tn
(3.36)
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to retain the general overview.

Equations 3.26-3.28 are now used to express x2, y2 and z2 in terms of t . The result for each
variable is a fraction with both the numerator and denominator of order 4 in t .

x2 =
(ktx + l ty )(↵tz ↵b2ty )+ tn(c2tz +b2d tn)

tn(a2tz ↵mtz +b2tx ↵mb2ty )
(3.37)

y2 =
(ktx + l ty )(b2tx +a2tz )↵mtn(c2tz +b2d tn)

tn(a2tz ↵mtz +b2tx ↵mb2ty )
(3.38)

z2 =
(ktx + l ty )(a2ty ↵ tx )+ tn(c2tx ↵ c2mty ↵ a2d tn +md tn)

tn(a2tz ↵mtz +b2tx ↵mb2ty )
(3.39)

Equation 3.25 is so far unused and substituting the expressions of x2, y2 and z2 in terms of t

into this relation leaves a single polynomial of order 8 in t . This polynomial will be referred to
by p0(t ).

Polynomial solutions The polynomial cannot be solved analytically. However, it has the
advantage that parameter t is limited to an interval of approximately (↵1,1). The distribution
of t is depicted in Figure 3.14. Algorithms exist, like the algorithm of Sturm [38], that determine

t
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

100
200
300
400
500
600
700
800
900
1000

Figure 3.14: The distribution of parameter t as calculated from the generated 4-vectors of
25,000 B0

s � ✓+✓↵ events.

the number of roots within a certain interval. In order to apply Sturm’s theorem the polynomial
has to be expressed in its monomial basis. However, the values of the roots of p0(t) are
highly sensitive to perturbations in the coefficients of the polynomial. Expressing p0(t ) in its
monomial basis changes the location of its roots significantly. Figure 3.15 shows the outcome
of p0(t ) before and after bracket expansion. The true solution of the polynomial is lost after
expansion. The problem is thus ill-conditioned (similar to Wilkinson’s polynomial [39]). The
solutions of p0(t ) = 0 will therefore have to be located by scanning over a specified interval in
small enough steps to result into the required roots.
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Figure 3.15: The outcome of the polynomial p0 as a function of t for a given event, depicted
by (a) the value of p0(t ) and (b) the value of log10(|p0(t )|). In black the original unexpanded
outcome and in red the outcome after expanding to a monomial basis. The blue line represents
the true value of parameter t .

Although it is an 8th order polynomial, it has usually 2 or 4 roots, with one of them correspond-
ing to the true solution. Whether it is possible to distinguish between these solutions depends
on the B0

s � ✓+✓↵ decay specific kinematic and topological distributions. In section 3.4.1 the
decay time distribution is discussed.

Additional space rotations As mentioned in the previous section, an additional space rota-
tion in the x y-plane can be made to simplify the problem. The space can be rotated such that
k = l or m = 0 for instance. This does not change the general outcome of the problem; there is
still an 8th order polynomial to solve. But it simplifies the formulas and affects the distribution
of parameter t .

The distributions of t , for the cases k = l and m = 0, are depicted in Figure 3.16. For both cases,
the interval of possible t solutions has decreased compared to the case where no extra rotation
is made.

Accuracy and efficiency

The accuracy and efficiency of the solutions found by solving p0(t) = 0 are dependent of
the step size, �t , which is used to scan over the pre-defined interval [tmin, tmax] = [↵2,2] of
possible solutions. For different step sizes, the calculation efficiency,  cal, and the average
number of roots found are given in Table 3.1. The efficiency is given by the percentage of
decays for which at least one solution can be found for p0(t ) = 0, i.e. more than one solution
per decay does not increase the efficiency. As shown in Table 3.1, the efficiency increases as
the step size decreases. At the same time, the average number of roots increases. Additional
real roots are found, but also duplicate roots are calculated as the value of p0(t ) may fluctuate
around zero due to rounding errors, when there is only one true root.
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Figure 3.16: The t distribution after the x y-plane is rotated such that (a) k = l and (b) m = 0.

step size �t efficiency  cal average number of roots
0.01 72.7% 2.529

0.005 80.5% 2.638
0.002 87.6% 2.749
0.001 90.7% 2.806

0.0005 92.4% 2.847
0.0002 93.5% 2.893
0.0001 93.9% 2.943

0.00005 94.1% 3.042
0.00002 94.1% 3.350

Table 3.1: The calculation efficiency,  cal, and the average number of roots found for different
values of �t .

Figure 3.17 depicts the difference between the true value of t and the calculated value of t

which is closest to the truth (referred to as the best calculated value). To better illustrate the
resolution, the logarithm of the absolute value of the difference is taken. For larger step sizes,
the resolution is dominated by the step size. This results in the sharp peak structures in Figure
3.17. For �t = 0.00002, this sharp peak structure does not show and for �t = 0.00005 it has
completely saturated.

However, it is also important to keep in mind the speed of the program. As the efficiency
does not increase much for step sizes smaller than 0.0001 and as the effect on the resolution
is limited, it is chosen to continue this study with �t = 0.0001. The plots shown and results
quoted hereafter are thus based on the solutions found when using �t = 0.0001.

Although the parameter interval [tmin, tmax] after an extra space rotation is significantly re-
duced, it is not necessarily advantageous to do so. As the same number of solutions occur
on a smaller interval, there are more fluctuations around zero. In the case of the extra space
rotation such that m = 0, the average number of roots found for �t = 0.0002 is 1.7, whereas
for �t = 0.00002 it is 14.3. Although it is a route which can be explored further, no extra space
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Figure 3.17: The difference between the true value of t and the best calculated value of t for
step sizes �t = 0.01 to �t = 0.00002 (as in Table 3.1) ranging in colour from dark blue to light
orange.

rotations are made to obtain the results in this thesis.

With generated quantities

By solving p0(t) = 0 possible ✓ lepton momenta, B momentum and B decay vertices are
determined that satisfy all topological and kinematic constraints. However, only one of the
solutions corresponds best to the truth. The solution which corresponds best to the truth
based on the t resolution (referred to as the best solution) is chosen to determine the accuracy
with which the variables |~p✓|, |~pB| and bV can be calculated. Here, the generated values of the
momenta and vertices are used to calculate the solutions.

Figure 3.18 shows the asymmetry distributions of the ✓ and B momenta. An FWHM of 2.0·10↵4

for the ✓ momentum and 2.9 ·10↵4 for the B momentum corresponds to a relative error of
0.04% and 0.06% respectively.

In Figure 3.19 the resolutions of the B decay vertex are depicted. Note that only the x-
component, bVx , and y-component, bVy , are depicted, as the coordinate system has been
rotated such that the z-component of the B decay vertex is equal to the z-component of the
primary vertex and is therefore fixed. These x and y-components are thus not the conven-
tional x and y-components of the LHCb frame. Resolutions of 0.30 µm in x and 0.42 µm in y

are obtained.

With reconstructed quantities

In this section, reconstructed particles that match to the signal decay are selected. Before
the efficiency of the calculation can be determined, the reconstruction efficiency needs to be
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Figure 3.18: The (a) |~p✓| and (b) |~pB| asymmetries between the best calculated momentum
and the true momentum.
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Figure 3.19: The (a) bVx and (b) bVy resolution between the best calculated vertex and the
true vertex.

considered. The reconstruction efficiency is the percentage of decays for which all six final
state pions are reconstructed in LHCb. The MC data sample solely contains events for which
all decay daughters travel within 400 mrad of the beam axis. Of these events approximately
5.7% is fully reconstructed in LHCb. No cuts on the reconstructed particles have been made.

When the six pions are fully reconstructed, 47% of decays can be formulated by the polynomial
p0(t). The likelihood of finding a solution is approximately 33%. That means, in 33% of the
events, one or more roots of the polynomial p0(t ) can be determined. The remaining 14% of
decays results in a valid polynomial, but no roots are found. For the other 53% of the cases,
either the system of Equations 3.23 and 3.24 or of Equations 3.25 and 3.26 does not have an
analytical solution. The plane of possible ✓ momenta that obey the ✓ mass constraint does
not intersect the hyperboloid of possible momenta that obey the neutrino mass constraint.
Therefore an ellipse cannot be constructed nor parameterized.

Figure 3.20 shows the asymmetries ⌘(|~p✓|) and ⌘(|~pB|) of the reconstructed ✓ and B momenta.
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The FWHM of the distributions are 0.07 and 0.06, which corresponds to a relative error of 15%
and 13% respectively.
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Figure 3.20: The (a) |~p✓| and (b) |~pB| asymmetries between the best reconstructed momentum
and the true momentum.

In Figure 3.21 the resolutions of the B decay vertex are depicted. Resolutions of 1.4 mm in x

and 1.8 mm in y are obtained.
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Figure 3.21: The (a) bVx and (b) bVy resolution between the best reconstructed vertex and the
true vertex.

The calculation efficiency and selection efficiency are not uncorrelated. It is likely that in
any selection only decay vertices are selected which are sufficiently distant from the primary
vertex. Figure 3.22 shows the different vertex distance distributions of the decays with and
without a successfully calculated solution. It is shows that for small distances between the
primary vertex and either of the ✓ decay vertices, it is less likely to find a solution. When
a cut is made at |dVz ↵ pVz | > 4 mm for both vertices in the LHCb coordinate system, the
calculation efficiency for the remaining candidates goes up from 33% to 42%. The momentum
asymmetries are not notably affected by this cut. Additional selection cuts may improve the
calculation efficiency further.
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Figure 3.22: The distances between the primary vertex and the (a) ✓1 decay vertex and the
(b) ✓2 decay vertex. In black the distances of the decays for which a solution was successfully
calculated and in red the distances of the decays for which no solution was found.

Decay time distributions

Generally there are 2 or 4 possible B vertices, of which only one matches the true vertex.
Whether it is possible to distinguish between correct and incorrect solutions will be dependent
on the decay specific distributions of kinematic and topological variables. In this section, only
the decay time distributions of the ✓ lepton and B meson are discussed. The ✓ lifetime value is
✓✓ = (2.906±0.010) ·10↵13 s, whereas the B lifetime is ✓B = (1.452±0.041) ·10↵12 s [5].

In Figures 3.23 and 3.24 the ✓ and B distributions of the calculated decay time determined with
the generated quantities are depicted. The figures show the ✓ and B decay time distributions
of (a) the best calculated solutions and of (b) the remaining solutions. The best calculated
solutions correspond to those of which parameter t differs least from its true value. Figure 3.25
shows (left) the ✓ and (right) the B decay time distribution of the reconstructed particles for the
best calculated solutions in black and for the remaining solutions in blue (scaled). Although
there are differences between the distributions, they are not large enough to distinguish
between solutions and are negligible for reconstructed data.

It can be concluded that the decay time distributions of the best and remaining reconstructed
particles are indistinguishable. To model the decay time distribution, it is therefore unnec-
essary to determine the correct solution. The different decay times found per event can be
weighted according to the number of solutions found. The result will be the same decay time
distribution.

3.4.2 Constrained fit

A constrained fit as discussed in Section 3.2.3 can also be applied here. However, an appropri-
ate new description of the system and corresponding parameters need to be chosen carefully
to ensure convergence to a minimum 2 value. The standard measured quantities are the
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Figure 3.23: The decay time distribution of (a) the set of best ✓ momentum solutions which
gives ✓✓ = (2.826±0.020) ·10↵13 s and (b) the set of remaining ✓ momentum solutions calcu-
lated on generation level with ✓✓ = (2.934±0.016) ·10↵13 s. In red the exponential functions
fitted to the data.
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Figure 3.24: The decay time distribution of (a) the set of best B momentum solutions which give
✓B = (1.451±0.010) ·10↵12 s and (b) the set of remaining B momentum solutions calculated

on generation level with ✓B = (1.510±0.008) ·10↵12 s. In red the exponential functions fitted
to the data.

primary vertex, pV , and for both ✓ leptons the decay vertex, dV , and the 3✏ 4-momentum,
(E3✏ ,~p3✏). In addition, the combined momentum of the 6 pions, (E6✏ ,~p6✏), is calculated.
A small variation of the 3✏ energy and its momentum can lead to a negative 3✏ mass. It
is therefore more stable to use the 3✏ mass in the description rather than its energy and a
convenient choice of variable is m2

3✏ . The same holds for the 6✏ mass. The chosen description
of the system consists of the following 21 quantities

h(x) =
n

pV ,dV1,~p13✏ ,m2
13✏ ,dV2,~p23✏ ,m2

23✏ ,~p6✏ ,m2
6✏

o

(3.40)

The value of m6✏ is needed to constrain the B mass in the description of the model. It can be
used because it is not a linear combination of the other variables. The 6✏ momentum is fully
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Figure 3.25: The decay time distributions of (a) the ✓ momentum solutions and (b) the B
momentum solutions calculated on reconstruction level. The decay time distribution of the
set of best calculated momenta is drawn in black and the decay time distribution of the set of
remaining momenta in blue (scaled).

determined by the addition of momenta of the two 3✏ pairs. However, the 6✏ momentum
is included because a momentum covariance matrix is assigned to each combined particle.
The full covariance matrix consists of the individual particle covariance matrices, which do
not relate the two 3✏ momenta to the combined 6✏ momentum. The matrix is therefore still
invertable to obtain a well-defined weight matrix. If the value of m6✏ is linked to the individual
3✏ momenta, it is possible to take the redundant values of ~p6✏ out of the equation.

The Jacobian matrix is applied to the covariance matrix in order to make it compatible with
the change of variable. The vertices and momenta of the measured variables together with
their components in the covariance matrix are rotated such that the z-components of the B
and ✓ momenta are 0.

The free parameters which are chosen to describe the system are the primary vertex, pV , the
three scale factors, L1✓, L2✓ and LB, the ✓ momenta, ~p1✓ and ~p2✓ and the neutrino momenta
~p1� and ~p2�. There are thus 16 parameters.

x =
n

pV ,L1✓,L2✓,LB, p1✓x,y ,~p1�, p2✓x,y ,~p2�

o

(3.41)

The ✓ masses are fixed by defining E✓ =
q

m2
✓+|~p✓|2. The relation used to describe the 3✏

mass

m2
3✏ = m2

✓ ↵2E✓|~p�|+2~p✓ ·~p� (3.42)

fixes the neutrino masses to 0. The 6✏ mass is used to then fix the B mass through the following
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relation:

m2
6✏ = m2

B ↵2|~p1�|
q

m2
B +|~p1✓+~p2✓|2 +2~p1� · (~p1✓+~p2✓)

↵2|~p2�|
q

m2
B +|~p1✓+~p2✓|2 +2~p2� · (~p1✓+~p2✓)

+2|~p1�||~p2�|↵2~p1� ·~p2� (3.43)

The topological constraints are given by

dV1 = pV +LB(~p1✓+~p2✓)+L1✓~p1✓ (3.44)

dV2 = pV +LB(~p1✓+~p2✓)+L2✓~p2✓ (3.45)

Two methods of minimisation are considered. The first uses TMinuit [40], a pre-programmed
minimisation algorithm. The second is the Newton-Raphson method, which tries to find the
root of the 2 derivative. Both methods rely on well chosen initial values of the parameters to
avoid getting stuck in local minima.

Fit result and efficiency

The fit methods are used consecutively; i.e. if the problem does not converge with one of the
methods, the other method is applied. These results are thus based on the best combined
result of the two fit methods. TMinuit has the advantage that lower and upper limits can be
set for each variable.

For 24 degrees of freedom, the 2 distribution theoretically obeys the following proportions

90% 95% 99%
2 33.2 36.4 42.0

In this study, for a 2 < 33.2, the fit efficiency is 43%. The 2 of many decays does therefore not
reach its global minimum, which must be due to an insufficient initial values. The solutions of
the decays which have converged to the smallest 2 must be verified to be valid solutions.

Figure 3.26 depicts the true distributions of scale factors LB and L1✓ (which is equivalent to
the distribution of L2✓). Based on this distribution, the lower and upper limits of the TMinuit
constraints for all scale factors have been set to 10↵7 and 10↵3 respectively. The solution is
expected within these limits.

Figure 3.27 shows that LB often converges to zero during the fitting process. The same is true
for the L1✓ and L2✓ scale factors. The 2 value in this case can be sufficiently low, but represents
a faulty solution. As can be seen in Figure 3.27(b), the decay time then also approaches zero.
These solutions should therefore not be taken into account when calculating the fit efficiency.
When a scale factor tends to zero, the topological constraint on either the B or on one of the ✓
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Figure 3.26: The generated values of the scale factors LB (orange) and L1✓ (black).

momenta disappears and the particles ‘decouple’, which results in an invalid solution with a
low 2.
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Figure 3.27: (a) The value of log10(2) versus the scale factor value log10(LB). (b) The decay
time distribution of the B momenta obtained by fitting the signal decay using constraints.

Eliminating the fit solutions where one of the scale factors has decreased below 10↵6 leaves a
fit efficiency of 33%. This is equivalent to the efficiency of the analytical calculation method.

It is possible that the zero decay time solutions can still be used in analyses when solely the ✓

momentum obtained in the fit is considered. This possibility needs to be further investigated.
Chapter 4 discusses the ✓ momentum solutions that correspond to zero decay time solutions.

3.4.3 Conclusion

The B0
s � ✓+✓↵ decay with ✓↵ � ✏+✏↵✏↵�✓ is theoretically reconstructable. In order to find

the B and ✓ momenta solutions, the roots of an 8th order polynomial need to be determined.
These roots are limited to a specified interval and can be calculated by scanning this interval
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Chapter 3. Studies of ⌅ reconstruction using simulated events

in a certain number of steps.

The efficiency of this calculation is approximately 33%. However, no selection cuts are made
prior to the calculation. It has been shown that the calculation efficiency and the selection
efficiency are not uncorrelated. Therefore the final calculation efficiency cannot be determined
until a selection has been established.

Albeit an 8th order polynomial, it generally has either 2 or 4 roots. Only one of these roots
matches the truth. Whether it is possible to distinguish between the solutions is dependent on
the decay specific topological and kinematic characteristics. The decay time distributions for
all solutions are very similar and do not give any usable information on which solution best
matches the truth. As the distributions are practically indistinguishable, it is not necessary to
chose one of the solutions. The decay time solutions can be weighted according to the number
of roots found for the decay.

Exploiting the errors on the measured quantities by using a fit method has not been beneficial
to the overall efficiency. Perhaps it is possible to avoid the tendency of the scale factors to
reduce to zero by formulating the system differently. There may also be a better educated
initial guess that can be used by the fit programs, which does not use the calculation described
in Section 3.4.1.

Reconstructing B0
s � ✓+✓↵ remains a challenge, but is not impossible. Further study needs

to be performed in order to fully understand the possibilities and restrictions of the signal
reconstruction, in addition to its efficiency on background reduction.

The Standard Model predicts a branching fraction of B(B0
s � ✓+✓↵) = 8.9�10↵7 [41]. This

is two orders of magnitude larger than the B0
s � µ+µ↵ branching fraction, due to helicity

suppression. Taking into account that both tau leptons have to decay into three pions and a
neutrino reduces the benefit to a factor 2.3. At LHCb the trigger efficiency can be estimated to
be ⌘20% and the reconstruction efficiency is approximately 5.7%. This reduces the number
of relevant B0

s � ✓+✓↵ events reconstructed in LHCb to be 2.6% of the B0
s � µ+µ↵ events,

before the selection process starts. However, New Physics contributions could enhance the
B0

s � ✓+✓↵ branching fraction more than its muonic counterpart.

3.5 Further event reconstruction possibilities including a ⌅ lepton

Although the study of B0
s � ✓+✓↵ is interesting, its reconstruction is the most complicated.

There are other decay channels, which reconstruction is simplified by an additional track or
vertex, that also deserve consideration. In this section the reconstruction possibilities of the
rare decays B0

(s) �µ+✓↵, B+ � K+✓+✓↵ and B0 � K�✓+✓↵ are discussed.
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3.5. Further event reconstruction possibilities including a ⌅ lepton

3.5.1 The lepton flavour violating decay B0
(s) �µ+⌅↵

As it has been established that the neutrino is not massless, it is conceivable that the lepton
flavour violating decay of B0

(s) � µ+✓↵ could occur through a box diagram involving an ex-
change of a neutrino. However, with the expected neutrino mass below the eV range, this decay
is suppressed to the extend that it is unmeasurable at the LHC experiments. The observation
of this decay would therefore be evidence of New Physics. The current best measured limit
is B(B0 � µ+✓↵) < 2.2 ·10↵5 by the BaBar collaboration [42]. No limit has been set on the
B0

s �µ+✓↵ decay channel.

Topologically, this decay is a simplification of the B0
s � ✓+✓↵ decay, as one of the ✓ leptons is

replaced by a fully reconstructable track. The reconstruction plane of the B0
(s) �µ+✓↵ decay

is defined by the production vertex of B (the primary vertex) and the µ momentum vector.
Rotating the coordinate system such that these vectors lie solely in the xz-plane, transforms
the decay into a 2D planar problem.

The reconstruction process can be simplified by choosing a transformation such that the
reconstructed µ track coincides with the z-axis. In this case, the equations above simplify by
using the fact that pµz = |~pµ|. In addition, it follows that the x-component of the production
vertex, bVx , of the ✓ lepton is a constant chosen to be 0.

The relations between the known vertices and the momenta are given by

dV ↵bV = L✓~p✓ (3.46)

bV ↵ pV = LB(~p✓+~pµ) (3.47)

From its x and z-components it follows that

p✓z =
pVz ↵dVz

pVx ↵dVx
p✓x ↵

pVx |~pµ|
pVx ↵dVx

= ap✓x +b (3.48)

Although the ✓ momentum solution can be parameterized using the ✓ mass and neutrino
mass constraints, as demonstrated in Section 3.4.1, the simpler solution is obtained directly
through substitution. The neutrino mass constraint of Equation 3.1 allows the ✓ energy to be
expressed linearly in terms of p✓x as

E✓ =
p3✏x +ap3✏z

E3✏
p✓x +

m2
✓+m2

3✏ +2bp3✏z

2E3✏
= cp✓x +d (3.49)

In addition, the ✓ mass constraint of Equation 3.2 limits the relation between ✓ energy and
p✓x quadratically as

E 2
✓ =

°

1+a2¢p2
✓x +2abp✓x +m2

✓+b2 = ep2
✓x + f p✓x + g (3.50)
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Combining these relation results in the single equation

0 = (e ↵ c2)p2
✓x + ( f ↵2cd)p✓x + (g ↵d 2) (3.51)

with the two solutions for p✓x given by

p✓x = ↵( f ↵2cd)±
p

( f ↵2cd)2 ↵4(e ↵ c2)(g ↵d 2)
2(e ↵ c2)

(3.52)

Figures 3.28(a) and (b) show the analytical B mass results created with generated quantities
and with MC truth matched reconstructed data, respectively. The distribution which is based
on the ✓ momenta which match the true values best is depicted in black, the distribution
obtained by the other solutions in blue. Using generated values for the reconstruction a
FWHM of 4 MeV is obtained for the B mass resolution. Performing the same calculation with
reconstructed quantities increases the width to approximately 120 MeV. Due to the quadratic
nature of the solution, the ✓ momentum can be calculated in 47% of the cases.
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Figure 3.28: Analytically calculated B mass distribution for (a) generated data and (b) MC truth
matched reconstructed data. The MC truth matching distribution is depicted in black, the
other solutions are shown in blue. The red line indicates the theoretical value of the B mass.

Fitting the decay improves both the B mass width and the reconstruction efficiency. As mea-
sured particles the 3✏ 4-momentum is available as well as the combined 3✏-µ 4-momentum.
In addition, the primary vertex, pV , is measured. The description of the system used for the
constrained fit thus becomes:

h(x) = {pV ,dV ,~p3✏ ,m2
3✏ ,~p3✏-µ,m2

3✏-µ} (3.53)

The chosen parameters are

x = {pV ,L✓,LB,~p✓,~p�,~pµ} (3.54)
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3.5. Further event reconstruction possibilities including a ⌅ lepton

For the fitting of the decay TMinuit is used. A total of 98% of the events were reconstructed
with a 2 < 10. The result on the B mass is shown in Figure 3.29. The constrained fit reduces
the FWHM of the B mass to 24 MeV.
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Figure 3.29: Computationally calculated B mass distribution of MC truth matched recon-
structed data. The red line indicates the theoretical value of the B mass.

It is possible to fix the mass of the B meson by requiring the relation

m2
B = (p✓+pµ)2 = m2

✓+m2
µ+2E✓Eµ↵2p✓z |~pµ| (3.55)

to hold. This equation gives another linear relation between E✓ and p✓x , resulting in a unique
solution for the ✓ momentum. However, the B mass can then no longer be used to evaluate
any background contributions.

3.5.2 An extra track: B+ � K+⌅+⌅↵

The B+ � K+✓+✓↵ decay is a rare B± decay that is induced by flavour changing neutral currents
(FCNC). This process is forbidden at tree level and must occur via higher order diagrams. It is
therefore sensitive to New Physics contributions. In the case of b � s⌅+⌅↵, where the lepton
is a muon or electron, the neutral Higgs boson effects (NHB) can be neglected. However, in
the case of a ✓ lepton, the predicted contributions are sizable. The SM prediction is B(B+ �
K+✓+✓↵) ⌘ 4.3 ·10↵7. A measured branching fraction higher (or lower) than this would imply
New Physics.

Due to the extra track compared to the B0
s � ✓+✓↵ decay, the B-vertex will no longer lie in

the space spanned by the vectors between the primary vertex and the ✓ decay vertices. It is
therefore impossible to make this a 2D problem. What is known is that the B-vertex lies along
the kaon track. Therefore, by rotating the coordinate system such that the K momentum lies
on the z-axis, the x and y-components of the B-vertex are equal to 0.

Although the B+ � K+✓+✓↵ decay mode contains two neutrinos, one from each ✓ particle, it is
stronger constrained than the B0

(s) � µ+✓↵ mode. The known primary and ✓ decay vertices
are used to linearly relate the two ✓ momentum components. Including the extra track, the
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relations between the vertices and the momenta are given by

dV1 ↵bV = L1✓~p1✓ (3.56)

dV2 ↵bV = L2✓~p2✓ (3.57)

pV ↵bV = LB (~p1✓+~p2✓+~pK ) (3.58)

Eliminating the scale factors, L1✓, L2✓ and LB , the relations between the different components
of the same particle are given to be

pi✓y =
dVi y

dVi x
pi✓x = ai pi✓x (3.59)

with i = 1,2 for the two ✓ particles. The cross components are proportionally related as

p2✓x =
a1pVx ↵ pVy

↵a2pVx +pVy
p1✓x = d p1✓x (3.60)

By expressing the x and y-components of both ✓ particles solely in terms of p1✓x , the z-
component of the scale factor equations gives the relation between the p1✓x and the z-
component of the momentum. Using the intermediate step that

p2✓z =
↵dV1z +dV2z

dV2x
d p1✓x +

dV1x

dV2x
d p1✓z = ep1✓x + f p1✓z (3.61)

is follows that

p1✓z =
(d +1)(pVz ↵dV1z )↵ pVx e

↵(d +1)dV1x +pvx ( f +1)
p1✓x +

↵pVx |~pK|
↵(d +1)dV1x +pvx ( f +1)

= b1p1✓x +c1 (3.62)

and

p2✓z = (e f b1)p1✓x + ( f c1) = g p1✓x +h (3.63)

Note that due to the rotation pKz = |~pK|. Using the available scale factor relations, all momen-
tum components of both ✓ particles are expressed in terms of the single variable p1✓x .

Equations 3.1 and 3.2 reduce to a single relation by eliminating the E✓ term which occurs
in both equations. The unknown variables in the resulting equations are the ✓ momentum
components. Each of these components can be written in terms of p1✓x . This relation holds
for both ✓ particles, and thus results in two quadratic equations is terms of p1✓x .
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These two equations combined lead to the final expression of

p1✓x = r n ↵ l k

l j ↵ r s
(3.66)

There is a single possible ✓ momentum solution when using all the information available to
rebuilt a B+ � K+✓+✓↵ event. In addition, there is always a solution because the final relation
is not quadratic. The B mass is not used as a constraint in this procedure and can therefore be
used to extract the signal.

Figure 3.30 shows the analytical results on the B mass using (a) generated quantities and (b)
reconstructed quantities matched to the MC truth.

The result based on reconstructed data does not show a B mass peak. The calculation assumes
the scale factors (L1✓, L2✓ and LB) to be equal for all momentum components. Although for
reconstructed values this must also be true, some components are better measured than
others, resulting in different central values and measurement errors. Due to the different
central values, this calculation already proves insufficient at Equation 3.59. It is however
possible to fit the decay by exploiting its measurement errors and requiring the scale factors to
be equal for all momentum components. As measured particles the two 3✏ combinations are
available as well as the 6✏-K combination. In addition, the primary vertex, pV , is measured.
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Figure 3.30: Analytically calculated B mass distribution using (a) generated quantities and (b)
reconstructed data. The red line indicates the theoretical value of the B mass.

The description of the system thus becomes:

h(x) = {pV ,dV1,~p13✏ ,m2
13✏ ,dV2,~p23✏ ,m2

23✏ ,~p6✏-K,m2
6✏-K} (3.67)

The chosen parameters are

x = {pV ,L1✓,L2✓,LB,~p1✓,~p1�,~p2✓,~p2�,~pK} (3.68)

TMinuit is used to fit the decay. 95% of the events were rebuilt with a 2 < 10. The result of the
B mass distribution is shown in Figure 3.31. A clear mass peak is visible, with its mean value
consistent with the theoretical B mass.
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Figure 3.31: Computationally calculated B mass distribution of MC truth matched recon-
structed data. The red line indicates the theoretical value of the B± mass.

The FWHM of the mass peak based on MC data is 4 MeV. After the constrained fit of the decay,
the mass width based on reconstructed data is approximately 45 MeV and exhibits large tails.
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3.5. Further event reconstruction possibilities including a ⌅ lepton

3.5.3 An extra vertex: B0 � K�⌅+⌅↵

The B0 � K�✓+✓↵ decay process also occurs through flavour changing neutral currents. This
decay is an important candidate among rare B decays, due to its relatively large SM predicted
branching fraction which is approximately 3 times the B+ � K+✓+✓↵ branching fraction.

Due to the fact that K� � ✏↵K+, the K� vertex, which is also the ✓ production vertex, is fully
reconstructable. In the B0 � K�✓+✓↵ decay a ✓ pair thus originates at a known vertex. Whereas
in the reconstruction of the Z0 � ✓+✓↵ decay this resulted in four possible ✓ momentum
solutions, the B0 � K�✓+✓↵ decays offers extra information in the form of the known direction
of the B particle. This extra constraint pins down the correct ✓ momentum solution without
the necessity to fix the B to its theoretical mass. In addition, and as shown in the previous
section, the final result is not quadratic and therefore a solution is always found.

The relations between the known vertices and the momenta are given by Equations 3.56-3.58,
where in this case ~pK = ~pK� represents the momentum of the K� particle. In contrast to Section
3.5.2, all bV components are known.

Separating the first of these relations into components, allows the p1✓y and p1✓z components
to be expressed in terms of p1✓x as follows

p1✓y =
dV1y ↵bVy

dV1x ↵bVx
p1✓x = a1p1✓x (3.69)

p1✓z =
dV1z ↵bVz

dV1x ↵bVx
p1✓x = b1p1✓x (3.70)

Equivalently, for the second ✓ particle, the relations p2✓y = a2p2✓x and p2✓z = b2p2✓x hold.
Using the components of Equation 3.58, the momentum of the second ✓ particle can be
expressed in terms of the first particle as

p2✓x = ↵(bVz ↵ pVz )+b1(bVx ↵ pVx )
(bVz ↵ pVz )↵b2(bVx ↵ pVx )

p1✓x +
(bVx ↵ pVx )pK�z ↵ (bVz ↵ pVz )pK�x

(bVz ↵ pVz )↵b2(bVx ↵ pVx )
(3.71)

= cp1✓x +d (3.72)

Fixing the neutrino and ✓ masses, for each ✓ lepton, Equations 3.1 and 3.2 hold. Combining
both relations can eliminate the unknown ✓ energy from the equation. Expressing p1✓y and
p1✓z in terms of p1✓x leaves a single quadratic equation, in which p1✓x is the only unknown.
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Equivalently for the second ✓ lepton the relation 0 = e2p2
2✓x+ f2p2✓x+g2 holds. In combination

with Equation 3.72, this relation becomes

0 =
°

e2c2¢p2
1✓x +

°

2e2cd + f2c
¢

p1✓x +e2d 2 + f2d + g2 (3.75)

Equations 3.74 and 3.75 are quadratic relations, dependent of the single unknown p1✓x . Elim-
inating the quadratic term leaves a single linear relation, which expresses p1✓x in terms of
known variables as

p1✓x = e2c2g1 ↵e1e2d 2 ↵e1 f2d ↵e1g2

2e1e2cd +e1 f2c ↵e2 f1c2 (3.76)

The values of the remaining unknowns follow directly from this solution.

The system is overconstrained. As shown in Section 3.5.2, the K� vertex is an unnecessary
bonus. This fact can however be used to extend the reconstruction by allowing one of the ✓

leptons to decay as ✓↵ �✏↵�✓. This replaces a known vertex by a track and can also be fully
reconstructed.

Figure 3.32 shows the analytical results on the B mass, using (a) generated quantities and (b)
reconstructed quantities matching the MC truth.
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Figure 3.32: Analytically calculated B mass distribution using (a) generated quantities and (b)
reconstructed data. The red line indicates the theoretical value of the B mass.

As in the previous section, the mass FWHM of the distribution based on generated quantities is
approximately 4 MeV, whereas the calculation based on reconstructed data does not produce
a clear signal peak. Therefore a constrained fit is applied with the description of the system
given by

h(x) = {pV ,dV1,~p13✏ ,m2
13✏ ,dV2,~p23✏ ,m2

23✏ ,bV ,~pK�,m2
K�} (3.77)
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3.5. Further event reconstruction possibilities including a ⌅ lepton

Where bV is the actual K� and thus ✓ production vertex. The chosen parameters are

x = {pV ,L1✓,L2✓,LB,~p1✓,~p1�,~p2✓,~p2�,~pK�,mK�} (3.78)

The fit was successful for 73% of the events with a 2 < 10 using a TMinuit fit. As there are
more constraints available, there is less freedom to find a fitting result. The result of the B0

mass distribution is shown in Figure 3.33.
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Figure 3.33: Computationally calculated B mass distribution of MC truth matched recon-
structed quantities. The red line indicates the theoretical value of the B mass.

The result is reminiscent of the di-✓ mass result from Z0 � ✓+✓↵ decays, as shown in figure
3.12. In both cases the production vertex is fully constrained and the resulting mass peak leans
to the low side of the theoretical mass value. The mass FWHM obtained is approximately 200
MeV, which is much more than seen in previous and less constrained reconstructions.

3.5.4 Conclusion

There are many possibilities of event reconstructions that include ✓ leptons. The missing
energy caused by the undetected neutrino does not automatically mean that the event cannot
be fully or exclusively reconstructed. It is however possible that due to measurement errors,
the analytical solution is insufficient and does not produce the required result. In this case, a
full constrained fit of the decay in which topological and kinematic relations are forced to be
fulfilled within measurement errors, may be a solution. If the decay is not fully constrained,
there is a lot of freedom to find a solution which matches all requirements well within mea-
surement errors. However, the more a problem becomes constrained, the less freedom there
is within the boundaries. This causes the constrained fit to pull on the established boundaries
and to produce inexact results. This phenomenon is demonstrated by the number of events
which can be reconstructed within a fit performance value (2 < 10), the improvement on the
width of the reconstructed mother mass and its (shifted) mean.

However, less constraints also mean that more a viable solutions will be found in background
events that fit the requirements. A full background study is necessary to access the difficulty
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Chapter 3. Studies of ⌅ reconstruction using simulated events

of its suppression and the advantages versus the disadvantages of dealing with a not fully
constrained problem. If the reconstructed values are not used to model the decay, the goodness
of the fit can still be used as a mean of background suppression. In Chapter 4, the fit 2 is used
as a selection cut to suppress background to extract the signal decay of B0 � D�↵✓+�✓.
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4 The study of B0 � D�↵⌅+⇥⌅

In this chapter the exclusive ✓ reconstruction is applied in an attempt to extract the signal
decay of B0 � D�↵✓+�✓ from real data. The study is based on 0.37 fb↵1 of 2011 data.

The method of exclusive decay reconstruction is discussed. Following the structure of Chap-
ter 3, the proof of principle and the results which are shown are based on simulation data.

The next step involves the pre-selection of real data candidates. The goal of the pre-selection
is to maintain as much of the signal candidates, while discarding the vast majority of combina-
toric and physics backgrounds. Once the initial candidates are selected, the full reconstruction
of the B and ✓ momenta is performed. The goodness of the constrained fit is used as an offline
selection tool. In addition, the candidate selection is improved by requirements that were not
applied in the initial pre-selection.

The final selection of candidates consists of signal, physics background and combinatoric
candidates. The distribution of the 3✏ invariant mass is used to distinguish between real ✓
candidates and fake ones. After the data is corrected for the combinatoric background, the
real D� candidates are selected and a model of the 3✏ invariant mass is created. This model is
solely based on the simulation models of the signal and the physics background components.

4.1 Final state reconstruction

The reconstruction of the B0 � D�↵✓+�✓ decay is complicated by the presence of neutrinos. In
Chapter 3 the reconstruction method of different decays including one or two ✓ leptons was
discussed. The B0 � D�↵✓+�✓ decay can be rebuilt in a similar manner. Despite fixing the B
mass to its established value, there are up to four possible ✓ momentum solutions due to the
fact that there are two neutrinos in the decay.

Because one of the neutrinos originates from the B particle, it is not possible to linearly
relate the ✓ momentum to the B momentum. The decay channel can be separated into two
equivalent parts.
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Chapter 4. The study of B0 � D�↵⌅+⇥⌅

• The decay ✓+ � (✏+✏+✏↵)�✓ from a known vertex

• The decay B0 � (D�↵✓+)�✓ from a known vertex

The brackets are used to indicate the part of the decay which is directly measurable. The first of
these can be reconstructed as described in Section 3.2. The result gives two valid ✓ momentum
solutions. For each reconstructed ✓ momentum, the B0 � (D�↵✓+)�✓ then equivalently has
two B momentum solutions. This means that there are four solutions in general. However,
when the calculated invariant mass of one of the D� and ✓ combinations exceeds the B mass,
the number of solutions is reduced to two. A schematic representation of the decay chain is
given in Figure 4.1.

D�
✏D0

�✓

✏

K

↵✓B0

3✏

�✓

Figure 4.1: A schematic representation of B0 � D�↵✓+�✓ with D�↵ � ✏↵(D0 � K+✏↵) and
✓+ �✏+✏+✏↵�✓.

There is a large error on the D� vertex measurement, due to the slow pion (low transverse
momentum) coming from its decay. Good vertex reconstruction accuracy is important to allow
the analytical calculation of the ✓ and B momenta. Before any selection the reconstruction
efficiency is approximately 9%.

This efficiency can be improved by performing a constrained fit on the decay, as described
in Section 3.2.3. The complete decay chain is fitted simultaneously, with the advantage that
the D� vertex is constrained as the B decay vertex as well as the ✓ production vertex. The
description of the system is given by

h(x) = {pV ,dV ,~p3✏ ,m2
3✏ ,bV ,~pD�,m2

D�} (4.1)

The chosen parameters are

x = {pV ,~p✓,~p1�✓,L,~pB,~p2�✓,LB} (4.2)

Here the momentum of the ✓-neutrino that originated from the ✓ particle is denoted by p�✓,
whereas the momentum of the ✓-neutrino that originated from the B particle is denoted by
p2�✓. The ✓ mass is fixed through the determination of the m3✏ value described by Equation
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4.1. Final state reconstruction

3.10. The calculation of the D� mass is used to fix the B mass to its established value as

m2
D� = m2

B +m2
✓ ↵2(EBE✓+EBE2�✓ ↵E✓E2�✓)+2(~pB ·~p✓+~pB ·~p2�✓ ↵~p✓ ·~p2�✓) (4.3)

with

E2�✓ = |~p2�✓| and EB =
q

m2
B +|~pB|2 (4.4)

The parameters that describe the system with the smallest error are selected. Using the fitted
values, the multiple solutions for the ✓ and B momenta are calculated.

In this section, the results of the decay reconstruction are demonstrated using simulated
signal data. The decay time distribution from the obtained result is shown in Figure 4.2(a).
The distribution peaks significantly close to zero decay time. The decay time values for which
the distance between vertices is smaller than 0.07 mm are shown in red. This is similar to the
fitted ✓ decay time from the B0

s � ✓+✓↵ decay, as depicted in Figure 3.27. However, when solely
considering the reconstructed ✓ momentum values, the p✓ asymmetry as defined in Equation
3.5, does not exhibit the same behaviour. The momentum asymmetries of those decays where
the distance between vertices is small are of the same magnitude as the others, as shown in
Figure 4.2(b).
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Figure 4.2: (a) The decay time distribution and (b) p✓ asymmetry distribution of reconstructed
✓ particles, which best match the MC truth value for |dV ↵bV | < 0.07 mm in red and |dV ↵
bV | > 0.07 mm in black.

It is possible to use the reconstructed ✓ momentum and the measured vertices (not obtained
by the decay fit) to determine a decay time distribution. The result is shown in Figure 4.3(a).
A negative component of the decay time is obtained. In addition, the average decay time is
much larger than the known ✓ decay time. This is due to the fact that the average measured
distance between vertices is larger than the generated distances, as shown in Figure 4.3(b).
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Figure 4.3: (a) The decay time distribution of reconstructed ✓ particles, which best match the
MC truth value for |dV ↵bV | < 0.07 mm in red and |dV ↵bV | > 0.07 mm in black, based on
the measured vertices and (b) the log10(|dV ↵bV |) distribution of the measured vertices in
blue and generated vertices in green.

4.2 Event pre-selection

At LHCb, after successfully passing the trigger, events of interest are collected and partially
reconstructed for further processing. Each physics channel is analysed with its own pre-
selection algorithms, called stripping lines. If an event has been selected by a stripping line, it
is fully re-reconstructed and written to the stripping line specific output location.

As the B0 � D�↵✓+�✓ decay channel had not been studied before, a new dedicated stripping
line was created and named ’Bd2DstarTauNu’. The study performed in this thesis is based
on 0.37 fb↵1 of 2011 data, which corresponds to stripping version 13b. The performance of
each stripping line is tested by its retention rate and its CPU timing. The required figures are a
retention rate less than 0.05% within 0.5 ms per event.

The ’Bd2DstarTauNu’ stripping line selects D��✓± combinations, as well as same-sign D�±✓±

pairs. The reconstructed right-sign (RS) D��✓± combinations includes the signal decay mode
as well as physics backgrounds. The reconstruction of same-sign or wrong-sign (WS) D�±✓±

pairs is included to study the shape and number of the combinatoric background. The
different background components considered in this analysis are described in Section 4.4.

In order to reconstruct a B0 � D�↵✓+�✓ decay, six hadrons need to be combined. With an
abundance of pions and kaons in the detector, this can be a time consuming task. To speed
up the process, D� particle candidates made with loose requirements are selected. The
additional cuts on the D� particle are chosen to coincide with the cuts used in the B0 �
D�↵µ+�µ stripping line. Although not subject of this thesis, this is a convenient choice for
the possible normalisation to the semi-muonic decay. The application of the cuts on the D�

meson eliminates 98.5% of events before the reconstruction of the ✓ particle is performed.

The cuts on the individual pions considered for the ✓ reconstruction significantly reduce the
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4.2. Event pre-selection

combinatorics involved in the ✓ creation process. The reconstruction of the ✓ particle is split
into two steps, as it is significantly faster to combine two particles than it is to combine three.
First a di-✏ particle is created. This pion pair is subject to the strongest cuts to reduce the
number of possibilities. It is found that the mass of the di-✏ combination with the highest
mass is highly correlated to the 3✏ mass. It is therefore possible to apply a strong cut in order
to reduce the background while maintaining the signal events. The di-✏ mass cut chosen is
750 MeV < m2✏ < 1500 MeV. Approximately 18% of the events are excluded by the cuts on the
di-✏ combination. An additional cut of 1200 MeV < m3✏ < 1780 MeV is made on the 3✏ mass.
Figure 4.4 depicts the combined mass distributions and indicates the area of selected values.
Applying the 3✏ combination cuts, a further 44% of the events is excluded. The final cuts on
the creation of the B particle exclude a final 90%.

The complete set of selection cuts is given in Section 4.2.1. This method of reconstruction
allows the same three pions to be selected in different order to form an identical 3✏ combi-
nation. However, during the offline selection only one 3✏ combination is selected per event
which is described in Section 4.3
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Figure 4.4: MC distribution of the maximum di-✏ mass as a function of the 3✏ mass. Black
lines enclose the selected values in Stripping 13b.

Even though the signal decay channel suffers from missing energy, the cut on the reconstructed
B mass is chosen above its nominal value. This allows the possibility to normalise the measured
signal to the B0 � D�↵✏↵✏+✏+ decay mode. This channel has the exact same final state as the
signal mode, but is fully reconstructable. To allow for its selection in the same stripping line
simplifies its normalisation, as the effect of different selection cuts is nullified.

4.2.1 Stripping Cuts

The pre-selection cuts performed in the ’Bd2DstarTauNu’ stripping line with the aim to select
B0 � D�↵✓+�✓ events are given in Table 4.1. The D� particle is required to decay through the
D�↵ � (D0 � K+✏↵)✏↵ mode. The ✏ particle originating from the D� meson is referred to as
the slow pion.
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✓ stripping cuts D� stripping cuts
pion parameters Kaon parameters
pT > 150 MeV pT > 350 MeV
min IP 2 > 4 long track true
track 2/dof < 5 track 2/dof < 8
PIDK < 8 min IP > 0.04 mm
di-pion parameters min IP 2 > 4
pT > 600 MeV PIDK > -5
m > 750 MeV pion parameters
m < 1500 MeV pT > 350 MeV
vertex 2/dof < 9 long track true
DIRA > 0.99 track 2/dof < 8
min IP 2 > 5 min IP > 0.04 mm
min IP 2 for ✏1 or ✏2 > 20 min IP 2 > 4
✓-resonance parameters D0-resonance parameters
pT > 800 MeV pT > 1600 MeV
m > 1200 MeV |m ↵mD0| < 40 MeV
m < 1780 MeV (D0 vertex - PV)2 > 50
vertex 2/dof < 9 vertex 2/dof < 10
DIRA > 0.99 Slow pion parameters
min IP 2 > 5 pT > 110 MeV

long track true
B0 stripping cuts track 2/dof < 8

B0-resonance parameters min IP > 0.04 mm
m ↵mB0 > -1279 MeV D�-resonance parameters
m ↵mB0 < 300 MeV vertex 2/dof < 20
DIRA > 0.99 m ↵mD0 < 160 MeV
(✓ vertex - D� vertex) > -3.0 mm pT > 1250 MeV
(D0 vertex - B0 vertex)z > -3.0 mm |m ↵mD�| < 50 MeV
(B0 vertex - PV)z > -5.0 mm

Table 4.1: Cuts made in the designated ’Bd2DstarTauNu’ stripping line with the aim to select
B0 � D�↵✓+�✓ events.

The variables used to discriminate between signal and background are defined as

• pT : the transverse energy of a reconstructed particle.

• m: the measured mass of a combined particle.

• mA : the theoretical mass of particle A.

• vertex 2/dof: the 2 of the fit to the decay vertex of a reconstructed particle divided by
the number of degrees of freedom.

• track 2/dof: the 2 of the fit of a reconstructed track divided by the number of degrees
of freedom.
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4.3. Offline selection

• (A vertex - B vertex): the signed distance between the decay vertices of particles A and
B . One of the vertices can also relate to the primary vertex, denoted by PV.

• (A vertex - PV)2: gives the 2 of the fit to the vertex of particle A assuming it coincides
with the primary vertex.

• min IP: the minimum distance of a particle’s trajectory to each reconstructed primary
vertex.

• min IP 2: returns the minimum 2 distance of a particles’ trajectory to each recon-
structed primary vertex.

• DIRA: the cosine of the angle between the reconstructed momentum of a particle and
its reconstructed flight direction, based on the best matching primary vertex as its
production vertex.

• long track: a track that is reconstructed from hits in the VELO and the TT as well as the
IT or OT.

• PIDK: the delta-log-likelihood for the kaon PID hypothesis with respect to the pion,
given by ¢ logLK ↵✏.

4.2.2 Results

A stripping line with a retention rate of 0.0456 within 0.576 ms per event is obtained and
approved. The rate corresponds to 21 accepted reconstructed particles in 50,000 events. No
slow events are flagged.

Determined from simulation, the reconstruction efficiency of the B0 � D�↵✓+�✓ decay is
approximately 6.7%. Of these reconstructable candidates, 0.9% pass the strong pre-selection
cuts, resulting in a total efficiency of 0.06%.

After applying the stripping cuts, only 2.9% of all selected signal candidates can be recon-
structed analytically. This shows the importance of the constrained fit to include more candi-
dates.

4.3 Offline selection

For the selection of the signal decay, the invariant mass is of the combined D� and 3✏ system
is cut at mD�+3✏ < 5000 MeV.

4.3.1 The value of 2 as a selection cut

Despite the strong pre-selection cuts, more than one B candidate can be selected in each
event. The 2 value of the constrained fit is chosen to quantify the goodness of the candidates.
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The candidate with the lowest 2 value per event is selected, while all others are discarded.

As much as 91% of the selected candidates exhibit a 2 value smaller than 10. The cut 2 < 10
thus maintains most of the signal events. Only 16% of candidates reconstructed from real data
are kept after the cut on the 2.

Figure 4.5 shows the log10(2) distributions of the simulated signal and the reconstructed
candidates in real data.
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Figure 4.5: The log10(2) distributions corresponding to the performance of the decay fit of (a)
the MC signal decay B0 � D�↵✓+�✓ and (b) real data combinations. The dotted line represents
the shape of the 2 distribution for 2 > 10. The red line indicates the applied offline selection
cut.

4.3.2 Tuning of the selection criteria

Due to the strong selection cuts needed for a six-particle hadronic decay to satisfy the stripping
requirements and due to the strong selection cut provided by the constrained fit 2, only little
additional background rejection is required. Four additional cuts are implemented which
lead to the final selected data set. For each of these cuts, the given efficiency is determined
independently of the other three cuts.

• mD�+✓ < 5000 MeV: In the decay fit the mass of the B meson is fixed. As all decays must
satisfy this requirement, the invariant mass of the D� plus ✓ system must be smaller
than the fixed B mass. In the case that this is not a favorable solution, the invariant
mass is forced to its maximum allowed value. This effect is shown in Figure 4.6. A hard
cut is made on the invariant mass to, in addition, eliminate all fully reconstructable
background. The chosen cut keeps 91% of signal candidates, whereas it keeps 79% of
real data candidates.

• vertex 2/dof < 2: The value of the 3✏ vertex 2/dof was already required to be smaller
than 9 by the online stripping selection. However, as shown in Figure 4.7 this cut can be
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Figure 4.6: The invariant D� ✓ mass distributions of (a) MC signal and (b) real data
candidates. The red line depicts the chosen cut value.

tightened in order to reduce the background significantly, while a large fraction of signal
candidates is kept. Requiring the vertex 2/dof to be smaller than 2 keeps 76% of the
signal candidates. The real data candidates are reduced to 27%.

2!vertex 
0 2 4 6 8 100

5

10

15

20

25

30

35

(a)

2!vertex 
0 2 4 6 8 100

200
400
600
800

1000
1200
1400
1600
1800

(b)

Figure 4.7: The 3✏ vertex 2/dof distributions of (a) MC signal and (b) real data candi-
dates. The red line depicts the chosen cut value.

• isolation > 1.5: The isolation cut requires the three pions to be the only particles coming
from the same vertex. For all other particles in the event, the value of the vertex 2

is considered when this particle plus the reconstructed 3✏ particle are combined to
originate from one vertex. This new value, denoted by vertex 2

i , must be large for
all particles to ensure no other track originated from the 3✏ vertex. The isolation cut
is defined as the minimum value of log10(vertex 2

i ↵2), where i = 1. . .number of
particles. This cut selects 85% percent of the signal candidates and 79% of the real data
candidates, as is depicted in Figure 4.8.

• PIDK < -6: The strongest cut is applied on the PIDK value of the three pions coming
from the ✓ particle. Each pion has to have a PIDK value smaller than -6. This strong
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Figure 4.8: The distribution of the mini log10(vertex 2
i ↵2) vertex isolation value,

where i = 1. . .number of particles for (a) MC signal and (b) real data candidates. The
red line depicts the chosen cut value.

cut is needed to eliminated kaonic backgrounds. Although this cut only selects 53% of
signal events, it efficiently reduces the real data candidates to 6%.
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Figure 4.9: The distribution of the maximum PIDK value of the pions from the recon-
structed 3✏ particle for (a) MC signal and (b) real data candidates. The red line depicts
the chosen cut value.

4.3.3 Results

The simulated signal is reconstructed with a total efficiency of 0.0145%. The mD� ↵mD0 and
m3✏ signal distributions are shown in Figure 4.10. These distributions are chosen for their
distinguishable signal and background shapes. The first is used to extract real D� particles,
whereas the 3✏ invariant mass distribution is used to extract real ✓ leptons. The m3✏ shape
is modeled using a RooKeysPdf which is a one-dimensional kernel estimation model based
on the superposition of Gaussian kernels [43]. A Gaussian shape is used to represent the
mD� ↵mD0 distribution for demonstration purposes. The m3✏ distribution is independent of
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the constrained fit, which is only used as an effective selection tool.

The 0.37 fb↵1 data set is reduced to 3517 events. Figure 4.11 shows clear background com-
ponents in both the mD� ↵mD0 and m3✏ distributions. In Section 4.4 different background
contributions are considered to explain the shape of the data distributions.

 (MeV)D0-mD*m
140 145 150 155 160

Ev
en

ts
 / 

( 0
.5

 M
eV

 )

0

10

20

30

40

50

60

 (MeV)D0-mD*m
140 145 150 155 160

Ev
en

ts
 / 

( 0
.5

 M
eV

 )

0

10

20

30

40

50

60

(a)

 (MeV)!3m
1200 1300 1400 1500 1600 1700

Ev
en

ts
 / 

( 5
8 

M
eV

 )
0

5
10
15
20
25
30
35
40

 (MeV)!3m
1200 1300 1400 1500 1600 1700

Ev
en

ts
 / 

( 5
8 

M
eV

 )
0

5
10
15
20
25
30
35
40

(b)

Figure 4.10: The simulated (a) mD� ↵mD0 and (b) m3✏ distributions belonging to the real D�

and ✓ particles from the signal decay after all selection cuts are applied. A fixed Gaussian shape
is used to represent the mD� ↵mD0 signal shape, whereas the m3✏ distribution is modeled
using a RooKeysPdf.
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Figure 4.11: The (a) mD� ↵mD0 and (b) m3✏ distributions obtained from real data after the
complete selection process.

As shown in Section 4.3.2, strong offline cuts were made on the pion PID values and the 3✏

vertex 2. The m3✏ distribution is chosen to model and extract the signal ✓ leptons, but this
distribution suffers from strong cuts at stripping level. It is feasible that the selection can be
improved by stronger online PID and vertex cuts in favour of a lower m3✏ cut.
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4.4 Background contributions

Contributions from combinatoric and physics backgrounds are considered. The number
of combinatoric events and their shapes are determined by selecting D�±✓± events. As the
combined particles have the same charge these are physically impossible combinations when
reconstructing a B particle and are therefore addressed as wrong-sign (WS) combinations.
These combinations do not come from one decay chain and are therefore considered combi-
natoric background. The obtained distributions are depicted in Figure 4.12.
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Figure 4.12: The (a) mD� ↵mD0 and (b) m3✏ distributions obtained from WS combinatoric
background that has passed all selection cuts.

The considered physics background contributions can be split into four categories:

• Decays with a real D� particle, but no ✓ particle: The inclusive MC samples of Bd �
DX, Bu � DX, Bs � DX and §b � DX decays are considered as potential background
contributions. These samples do not include ✓ leptons and the signal decay is therefore
not included. Due to an incomplete decay description, the contribution of the B0 �
D�✏✏✏✏0 decay is considered separately.

• Decays with no D� particle, but with a real ✓ particle: Candidates from the exclusive
decays of B0 � D0✏↵✓+�✓ and B0 � D↵✓+�✓, with D↵ � K↵✏↵✏+ are considered the
most likely background contributions.

• Decays with no D� particle and with no ✓ particle: As no ✓ is present, the inclusive
B � DX samples also cover the fake D� and fake ✓ candidates.

• Decays with a real D� particle and a real ✓ particle: If the real ✓ particle does not
originate from the B particle, the decay is considered background. The main contributor
is thought to be B0 � D�↵D(�)+

s with D+
s � ✓+�✓. This decay has exactly the same final

state as the signal decay. Decay chains in which the ✓ lepton decays into three pions, a
neutrino and additional neutral particles is also considered a main background source.
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4.5. Signal extraction

The distributions of all physics background models are based on MC information. For the
inclusive Bd � DX and Bu � DX decays, MC samples of 40M events are used. The Bs � DX
and§b � DX decays are modeled based on a 10M event sample each. To model the exclusive
contributions, a sample of 1M events is used for each decay.

The main background source of fake ✓ leptons is found to come from inclusive b � cX events.
The obtained mD�↵mD0 and m3✏ distribution shapes from the main components are depicted
in Figure 4.13. The background sources of Bs � DX and §b � DX are neglected, as the
number of candidates that pass all selection cuts is not sufficient to create a model and their
contribution is small compared to that of their Bd � DX and Bu � DX counterparts. The
contribution of the B0 � D�↵✏↵✏+✏+✏0 decay mode is considered individually, however it is
technically part of the Bd � DX contribution.

Of the considered fake D� sources of B0 � D0✏↵✓+�✓ and B0 � D↵✓+�✓ only a couple of events
pass the selection. As these are not sufficient to base a model upon and as their branching
fractions are not exceptionally large, these background contributions are neglected.

The second main background contribution comes from a source of real D� mesons and real
✓ lepton. The decay of B0 � D�↵D(�)+

s with D+
s � ✓+�✓ has exactly the same final state as

the signal decay and due to the elongated Ds plus ✓ lifetime, its trigger efficiency is higher.
Besides those decays in which ✓+ �✏+✏+✏↵�✓ which is the required mode by the constrained
fit, ✓ lepton decays with extra missing energy are also considered. The real ✓ background
contributions are depicted in Figure 4.14. Interestingly, the decay chains with an extra neutral
pion have a higher total selection efficiency. Although the selection cuts are based on a single
missing neutrino, the B0 � D�↵✓+�✓ decay with ✓+ �✏+✏+✏↵�✓✏

0 arguably also classifies as
signal B0 � D�↵✓+�✓ and both come from a real ✓ source.

4.5 Signal extraction

In order to extract the signal, the combinatoric background is treated first. Under the assump-
tion that the number of combinatoric candidates is the same for the WS and RS combinations,
the mD� ↵mD0 and m3✏ distributions of the WS candidates are subtracted from the RS data
distributions. The subtraction is performed by adding the two data sets while assigning nega-
tive weights to the values of the WS candidates. The resulting distributions are depicted in
Figure 4.15.

As depicted in Section 4.4, any fake D� combination is highly suppressed in the physics
backgrounds. It is therefore chosen not to model this background component, but to use a
RooFit SPlot [44] in order to extract the mD� ↵mD0 signal component. The SPlot technique
unfolds distributions of different sources based on a likelihood fit. The mD� ↵ mD0 data
distribution is fitted with a double Gaussian to represent the real D� particles. The predefined
RooDstD0BG distribution shape is used to model the fake D� particles. In figure 4.16 these
signal and background distributions are depicted. The fake D� particle component is shown
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MC B0 � D�↵✏↵✏+✏+✏0
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Figure 4.13: The (left) mD� ↵mD0 and (right) m3✏ distributions from the (top) MC Bd � DX,

(middle) MC Bu � DX and (bottom) MC B0 � D�↵✏↵✏+✏+✏0 samples after all selection cuts
are applied. A fixed Gaussian shape is used to represent the mD� ↵mD0 signal shape, whereas
the m3✏ distribution is modeled using a RooKeysPdf.

with a dashed line.

By reweighing the data set with SPlot weights, the m3✏ distribution that corresponds to the real
D� particles is singled out. In order for this to work the two distributions must be uncorrelated.
The resulting 3✏ invariant mass distribution is shown in Figure 4.17. These remaining events
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4.5. Signal extraction
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Figure 4.14: The (left) mD�↵mD0 and (right) m3✏ distributions from the (top) MC B0 � D�↵✓+�✓
with ✓+ �✏+✏+✏↵�✓✏

0, (middle) MC B0 � D�↵D(�)+
s with D+

s � ✓+�✓ and ✓+ �✏+✏+✏↵�✓ and
(bottom) MC B0 � D�↵D(�)+

s with D+
s � ✓+�✓ and ✓+ �✏+✏+✏↵�✓✏

0 samples after all selection
cuts are applied. A fixed Gaussian shape is used to represent the mD� ↵ mD0 signal shape,
whereas the m3✏ distribution is modeled using a RooKeysPdf.

must be modeled by the distributions of the signal decay and those of the physics backgrounds.

By letting all yields float, except for the intrinsic ✓+ � ✏+✏+✏↵�✓ and ✓+ � ✏+✏+✏↵�✓✏
0

components, whose ratio is fixed, the result depicted in Figure 4.18 is obtained.
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(b)

Figure 4.15: The (a) mD� ↵ mD0 and (b) m3✏ distributions obtained from the complete RS
and WS data sets, in which the WS combinatoric background candidates have been assigned
negative weights.
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Figure 4.16: The mD� ↵mD0 real data distribution (combinatorics subtracted). The real D�

distribution is modeled by a double Gaussian, whereas the fake D� component is modeled
using a RooDstD0BG distribution, which is depicted by the dashed line.
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Figure 4.17: The m3✏ real data distribution in which its candidates have been SPlot reweighed
in order to correspond to the real D� particle distribution component.

The distributions corresponding to a real ✓ lepton contribution increase for a low 3✏ invariant
mass. Those that corresponds to a fake ✓ lepton contribution increase for higher 3✏ invariant
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Figure 4.18: The m3✏ real data distribution modeled by the signal distribution and the con-
sidered background distributions. From top to bottom, the model consists of the signal
decay (red), the signal decay but with ✓+ � ✏+✏+✏↵�✓✏

0 (red hashed), the B0 � D�↵D(�)+
s

with D+
s � ✓+�✓ and ✓+ �✏+✏+✏↵�✓ decay (orange), the B0 � D�↵D(�)+

s with D+
s � ✓+�✓ and

✓+ �✏+✏+✏↵�✓✏
0 decay (orange hashed), the Bu � DX inclusive hadronic component (green),

the exclusive B0 � D�↵✏↵✏+✏+✏0 contribution (blue) and the remaining Bd � DX inclusive

hadronic component (gray). The yield ratio of the ✓+ � ✏+✏+✏↵�✓ and ✓+ � ✏+✏+✏↵�✓✏
0

components is fixed.

mass. However, the shapes of the individual contributions within the real ✓ and fake ✓ con-
tributions are difficult to distinguish. The error on the individual components is therefore
large, whereas the error on the total real ✓ and fake ✓ lepton contributions is smaller. The real
✓ contribution is found to consists of

598±94 events.

The components for which there is an extra ✏0 in the ✓ decay, are dependent on the compo-
nents without ✏0 particle. There are therefore no errors available for these contributions. All
numbers of the fit result are given in Table 4.2.

The dominant systematic error is caused by the errors induced by fixing all distribution shapes
and the fixed yields. The error is estimated by creating binned data sets of all distributions. To
each bin of the produced histograms a statistical error is automatically assigned. A random
fluctuation to the value of each bin is assigned by taking its mean value and adding a random
Gaussian correction to it. The standard deviation of this Gaussian correction is chosen to be
the bin error. Each time a binned fit is performed, random contributions are applied to all
bins simultaneously. The variation of models used is depicted in Figure 4.19 for 200 iterations.
In addition, the two fixed yields are varied with a deviation of 10%. The error on the real ✓
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Chapter 4. The study of B0 � D�↵⌅+⇥⌅

Component number of events
Real taus 598 ±±± 94

Signal 377±310
B0 � D�↵D(�)+

s 15±916
Signal (with ✏0) 194
B0 � D�↵D(�)+

s (with ✏0) 12
Fake taus 1010 ±±± 97

B0 � D�✏✏✏✏0 503±270
Bd � DX 252±157
Bu � DX 254±263

Table 4.2: Fit results.

contribution stabilizes to a systematic error of

±88 events.

The likelihood of there being a real ✓ component is depicted in Figure 4.20. The red curve
represents the statistical error, whereas the blue curve also takes the systematic error into
consideration. The likelihood of a low m3✏ component in addition to the modeled hadronic
inclusive b � cX is 5.7 ⌘.

4.6 Discussion

Figure 4.18 and the likelihood curve in Figure 4.20 demonstrate that it is difficult to model
the m3✏ distribution with inclusive hadronic models. A 3✏ invariant mass distribution that is
higher at low m3✏ values is needed to complete the model. The invariant mass distribution of
the three pions coming from a ✓ particle satisfies this requirement. However, due to the similar
distribution shapes, it is difficult to distinguish between different ✓ sources based on the m3✏

values alone. The considered real ✓ contributions are estimated to cover at most a third of the
extracted number of events, based on the relative known or predicted branching fractions and
the reconstruction and selection efficiencies with respect to the hadronic background modes.
It is expected that there is a missing background component. The decay time distribution
indicates a underestimated short-lived contribution. This distribution could also shed light on
the different ✓ sources. A larger m3✏ window could determine whether the missing component
concerns a real ✓ or a different background contribution. More statistics is needed to obtain
an accurate model that will result in an definitive outcome. With more statistics and better
distribution models, it is possible to apply more selection cuts which will better single out the
signal distribution.

For a future study, this analysis would benefit from more exclusive background models. For
instance, the source of the neglected Bs � DX candidates can be determined and their dis-
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4.6. Discussion

tributions modeled. To sufficiently decrease the statistical error, more is needed than just
an increase in data available. A 2D simultaneous fit (for instance of the 3✏ invariant mass
and the ✓ lepton life time) can be used to constrain the fit in order to reduce the statistical
error. A larger 3✏ invariant mass window would allow the distribution shapes to be better de-
fined. More accurate distribution shapes will reduce the systematic uncertainty if the physics
background remains to be modeled with fixed shapes.

Once a confident measurement is made, the measured number of signal events must be
normalised to the measured number of events coming from a decay mode with a well known
branching fraction. There are three likely normalisation modes. The muonic counterpart of
the signal decay is one choice. The advantage of this choice is that this ratio is directly sensitive
to new physics contributions. A disadvantage is the differences between reconstruction and
trigger efficiencies of the muon track and the three pion tracks originating from the ✓ particle.
The second choice is to normalise to the hadronic B0 � D�↵✏↵✏+✏+ decay. This channel has
the same final state as the signal channel, but without missing energy. The branching fraction
is well measured and recently improved by LHCb. Apart from the inclusion of the B mass,
the same initial selection can be applied to this decay channel. Thirdly, B0 � D�↵D(�)+

s with
D+

s � ✓+�✓ can be used as a normalisation channel. This component is already modeled as a
background contribution and no changes need to be made to the selection. However, trigger
differences need to be understood.

In 2009, the result obtained by Belle was based on just 25 ± 7 events [45]. For their latest result,
the BaBar collaboration collected 245 ± 27 signal events [46]. The BaBar result is competitive
with what LHCb can collect with current data. However, as the size of the LHCb dataset rapidly
increases, a statistically superior measurement can be made within its lifetime. To obtain a
competitive measurement of the ratio of the muonic and tauonic branching fractions, the total
statistical error has to be reduced to less than 10% and the systematical error to less than 9%.
These errors include the errors of the normalisation channel and those of the B0 � D�↵µ+�µ
branching fraction.

This analysis is based on exclusive ✓ reconstruction. Although this study is statistically limited,
the goodness of the constrained fit has served as a useful selection requirement. The possibility
of exclusive ✓ reconstruction has been demonstrated and can be used for either selection
purposes or to model decay time or momentum distributions in future analyses.
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Figure 4.19: The variations on the binned m3✏ MC distributions of the signal decay (red), the

signal decay but with ✓+ �✏+✏+✏↵�✓✏
0 (red dashed), the B0 � D�↵D(�)+

s with D+
s � ✓+�✓ and

✓+ � ✏+✏+✏↵�✓ decay (orange), the B0 � D�↵D(�)+
s with D+

s � ✓+�✓ and ✓+ � ✏+✏+✏↵�✓✏
0

decay (orange dashed), the Bu � DX inclusive hadronic component (green), the exclusive

B0 � D�↵✏↵✏+✏+✏0 contribution (blue) and the remaining Bd � DX hadronic component
(gray).
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Figure 4.20: (left) the ¢(log) distribution of the likelihood and (right) the likelihood. The red
line is based on statistical error, where the points represent likelihood measurements. The
blue line includes the systematic error.
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Summary

The work on which this thesis is based started in 2007. At this stage the LHCb detector was in
its final state of commissioning. An offline emulator was developed for the testing of the FPGA
algorithms implemented in the readout electronics as an essential part of the commissioning
of the LHCb Silicon Tracker. After many iterations of improving both the emulator and the
firmware, perfection was achieved when the emulation was tested on real data in 2010.

The magnetic field parameterization, as described in this thesis, was finalised in 2009. From
this moment a single parameterization has been used to accurately describe both the upward
and downward polarities with a simple sign inversion. This description of the magnetic field
has been used for the reconstruction of LHCb data since the beginning of 2010. In 2011
additional magnetic field measurements were taken to confirm the map’s accuracy. As a
result of the study based on the new measurements, which is beyond the scope of this thesis,
improvements were made to the existing field map.

My study on exclusive ✓ reconstruction was performed on simulated data, while LHCb data
slowly accumulated real data at 7 TeV throughout 2010. The reconstruction of many different
decay modes including a ✓ lepton were considered. Most notably, the full reconstruction
of the B0

s � ✓+✓↵ was provided in terms of a mathematical parameterization. In all cases
considered, an exclusive reconstruction of the ✓ lepton has been achieved up to a certain
ambiguity. Constrained fits were introduced to improve the performance of the analytical
reconstructions. The accuracies achieved were found to be inversely dependent on the number
of constraints used in the decay reconstruction. The B0

s � ✓+�✓ decay mode was not included,
as there are not enough measured values to constrain it.

With real data, the exclusive reconstruction of B0 � D�↵✓+�✓ is performed. An initial study
was done based on data taken in 2010. The full study, as described in this thesis, was based on
0.37 fb↵1 of data from the 2011 data taking. It is demonstrated that it is possible to reconstruct
the B0 � D�↵✓+�✓ decay exclusively with the method developed in this thesis. The number
of signal events collected from current data is competitive with those collected at other
experiments. However, within the lifetime of LHCb a statistically superior measurement can
be made due to its fastly increasing dataset. With higher statistics, this method could be
used to obtain the ratio of B0 � D�↵✓+�✓ over B0 � D�↵µ+�µ, which might indicate a possible
contribution by a charged Higgs boson in the semileptonic decays of B mesons.
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A The b � c�⇥� decay rate

The general expression for the differential decay rate of a particle of energy E is given by
Fermi’s ‘Golden Rule’:

d°= 1
2E

�|M |2 d© (A.1)

where d© denotes the phase space which depends on the masses and the momenta of the
particles in the initial and final states. The details of the interactions of the particles via the
various forces are encoded in the matrix element M , which can be expressed as

M = gw⌦
2
|Vcb |

µ

�̄c⌥µ
1
2

°

1↵⌥5¢�b

∂

· 1

m2
W

· gw⌦
2

µ

�̄⌅⌥
µ 1

2

°

1↵⌥5¢��

∂

(A.2)

In order to square the matrix element and sum it over all spin states, the Casimir trick is used:

X

spins

°

�̄1°�2
¢°

�̄1°�2
¢� = Tr{°( /p2 +m2)°̄( /p1 +m1)} (A.3)

where /p = ⌥µpµ in Feynman slash notation. The result is that �|M |2 can be expressed as the
product of two traces (neglecting any neutrino mass)

�|M |2 = 1
2

X

spins
|M |2 (A.4)

= 1
2

√

g 2
w

8m2
W

!2

|Vcb |2 ·Tr{⌥µ(1↵⌥5)( /pc +mc)⌥�(1↵⌥5)( /pb +mb)}

·Tr{⌥µ(1↵⌥5)( /p⌅+m⌅)⌥�(1↵⌥5)( /p�)} (A.5)

The trace theorem

Tr{⌥µ(1↵⌥5)( /p1)⌥�(1↵⌥5)( /p2)} ·Tr{⌥µ(1↵⌥5)( /p3)⌥�(1↵⌥5)( /p4)}

= 256(p1 ·p3)(p2 ·p4) (A.6)

105



Appendix A. The b � c�⇥
�

decay rate

plus the fact that °µ°� = 0 and that the trace of any expression of an odd number of gamma
matrices is 0, reduces the expression to

�|M |2 = 64G2
F |Vcb |2(pc ·p⌅)(p� ·pb) (A.7)

with

GF⌦
2
=

g 2
w

8m2
W

(A.8)

The matrix element is determined in the b-quark rest frame. In this frame where ~pb = 0, the
inner product between the bottom quark and the neutrino is given by

(p� ·pb) = mbE� (A.9)

As momentum conservation enforces that pb ↵p� = pc +p⌅, the inner product between the
charm quark and the lepton can be written as

(pc ·p⌅) = 1
2

≥

(pc +p⌅)2 ↵ p2
c ↵ p2

⌅

¥

= 1
2

≥

(pb ↵ p�)2 ↵ p2
c ↵ p2

⌅

¥

= 1
2

≥

p2
b +p2

� ↵2(p� ·pb)↵ p2
c ↵ p2

⌅

¥

= 1
2

≥

m2
b ↵2mbE� ↵m2

c ↵m2
⌅

¥

(A.10)

The matrix element can thus solely be expressed in terms of E�

�|M |2 = 64G2
F |Vcb |2

1
2

≥

m2
b ↵2mbE� ↵m2

c ↵m2
⌅

¥

mbE� (A.11)

The differential decay rate becomes

d°= 1
2E

�|M |2 d©=
16G2

F

mb
|Vcb |2

≥

m2
b ↵2mbE� ↵m2

c ↵m2
⌅

¥

mbE�d© (A.12)

with E = mb in the b rest frame. In order to obtain the total decay rate, the integration over
the phase space is performed. The integrand only depends on the neutrino energy, which in
its turn depends on the lepton energy. Therefore, as a first step the integral over the c-quark
momentum is performed. The integral over the �-function gives 1 for the integral over pc.

Z

d©= 1
8(2✏)5

Z

�(mb ↵Ec ↵E⌅ ↵E�)�3(~pc ↵~p⌅ ↵~p�)
d 3~pc

Ec

d 3~p⌅

E⌅

d 3~p�

E�
(A.13)

= 1
8(2✏)5

Z

�(mb ↵Ec ↵E⌅ ↵E�)
1

Ec

d 3~p⌅

E⌅

d 3~p�

E�
(A.14)
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The term d 3~p⌅ can be written in terms of energies, such that the second delta-function can be
eliminated from the integral. In order to do this the relation

d |~p⌅| =
E⌅

|~p⌅|
dE⌅ (A.15)

is used. It follows that

d 3~p⌅ = |~p⌅|2 sin↵d |~p⌅|d↵d◆ (A.16)

= |~p⌅|E⌅ sin↵dE⌅d↵d◆ (A.17)

If the lepton momentum is chosen such that it points along the z-axis and the angle between
the lepton and neutrino is given by ↵, the c-quark energy can be expressed as

Ec =
q

m2
c +~p2

c =
q

m2
c + (~p⌅+~p�)2 (A.18)

=
q

m2
c +|~p⌅|2 +E 2

�+2|~p⌅|E� cos↵ (A.19)

This implies that

d↵ =
↵Ec

|~p⌅|E� sin↵
dEc (A.20)

Combining equations A.17 and A.20 leads to

d 3~p⌅ = E⌅

↵Ec

E�
dE⌅dEcd◆ (A.21)

The integral expression A.14 becomes

Z

d©=↵ 1
8(2✏)5

Z

�(mb ↵Ec ↵E⌅ ↵E�)
d 3~p�

E 2
�

dE⌅dEcd◆ (A.22)

=↵ 1
8(2✏)4

Z

�(mb ↵Ec ↵E⌅ ↵E�)
d 3~p�

E 2
�

dE⌅dEc (A.23)

= 1
8(2✏)4

Z d 3~p�

E 2
�

dE⌅ (A.24)

(A.25)

where integration over d◆ gives a factor 2✏ and integration over dEc gives 1 because of the
�-function. Equivalently to equation A.16, for the neutrino momentum

d 3~p� = E 2
� sin↵⌅dE�d↵⌅d◆⌅ (A.26)
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holds, such that
Z

d 3~p� = 4✏
Z

E 2
�dE� (A.27)

and the integral over the phase space reduces to

Z

d©= 1
4(2✏)3

Z

dE�dE⌅ (A.28)

The expression of the total decay rate becomes

°=
4G2

F

(2✏)3 |Vcb |2
Z

≥

m2
b ↵2mbE� ↵m2

c ↵m2
⌅

¥

E�dE�dE⌅ (A.29)

Before integrating over E� and E⌅ their limits need to be determined. First the integration over
E� will be performed. Therefore the integration limits of E� need to be expressed in terms of
E⌅. For E⌅ an absolute maximum and minimum will be calculated afterwards. First E� will be
expressed in terms of E⌅. Equivalently to Equation A.10, it follows that

(pc ·p�) = 1
2

(m2
b ↵2mbE⌅ ↵m2

c +m2
⌅) (A.30)

The b-quark mass can be written as the invariant mass of the c-quark, the lepton and neutrino

0 = m2
c⌅� ↵m2

b = (pc +p⌅+p�)2 ↵m2
b (A.31)

= m2
c +m2

⌅+2(pc ·p⌅)+2(pc ·p�)+2(p⌅ ·p�)↵m2
b (A.32)

= m2
b ↵m2

c +m2
⌅ ↵2mbE⌅ ↵2mbE�+2E⌅E� ↵2

q

E 2
⌅
↵m2

⌅
E� cos↵ (A.33)

Hence

E� =
m2

b ↵m2
c +m2

⌅
↵2mbE⌅

2mb ↵2E⌅+2
q

E 2
⌅
↵m2

⌅
cos↵

(A.34)

The maximum value of E� occurs when cos↵ =↵1, its minimum when cos↵ =+1. Thus

E min
� =

m2
b ↵m2

c +m2
⌅
↵2mbE⌅

2mb ↵2E⌅+2
q

E 2
⌅
↵m2

⌅

and E max
� =

m2
b ↵m2

c +m2
⌅
↵2mbE⌅

2mb ↵2E⌅ ↵2
q

E 2
⌅
↵m2

⌅

(A.35)

For the limits of E⌅ the absolute values are calculated. In order to do this, first the invariant
mass of the neutrino and c-quark is considered.

m2
c� = (pc +p�)2 = m2

c +2(pc ·p�) (A.36)
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Equivalently to the derivation of equation A.10 it follows that

m2
c� = m2

b +m2
⌅ ↵2mbE⌅ (A.37)

and hence

E⌅ =
m2

b +m2
⌅
↵m2

c�

2mb
(A.38)

The minimal value of the invariant mass mc⌅ is mc +m⌅, where the particle momenta are
colinear. The minimal value of the energy of a particle is its mass, when it’s at rest. The lower
and upper limits on the possible value of the lepton energy thus become

E min
⌅ = m⌅ and E max

⌅ =
m2

b +m2
⌅
↵m2

c

2mb
(A.39)

Before the integration it suffices to make a coordinate change. The coordinate change

x =
mbE⌅

2
(A.40)

is chosen. In addition

y =
mc

mb
and z =

m⌅

mb
(A.41)

are used. The integration limits become

E min
� = mb

↵1+x + y2 ↵ z2

↵2+x +
⌦

x2 ↵4z2
and E max

� =↵mb
↵1+x + y2 ↵ z2

2↵ x +
⌦

x2 ↵4z2
(A.42)

After the coordinate change this becomes

xmin = mbz and xmax = 1
2

mb(1↵ y2 + z2) (A.43)

The decay rate reduces to

°=
4G2

F mb

(2✏)3 |Vcb |2
Zxmax

xmin

ZE max
�

E min
�

(mb(↵1+ y2 + z2)+2E�)E�dE�d x (A.44)

=
G2

F m4
b

6(2✏)3 |Vcb |2
Zxmax

xmin
w(x, y, z)d x (A.45)
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with

w(x, y, z) =
⌦

x2 ↵4z2(↵1+x + y2 ↵ z2)2

(↵1+x ↵ z2)3 ·
h

x(3↵5x +2x2 ↵ (↵3+x)y2)+

(↵4+10x ↵5x2 + (↵8+3x)y2)z2 + (↵4+3x)z4
i

(A.46)

The total decay rate, after integration over x, results in

°=
G2

F m5
b

192✏3 |Vcb |2 fps (A.47)

with the phase space factor fps

fps =s + y6s ↵7z2s + z6s + y2(↵7+12z2 ↵7z4)s↵
z4(7s +24log2)+ y4(↵7s ↵7z2s +12z4 log4)+

12
h

2y4(↵1+ z4) log y +2(↵1+ y4)z4 log z↵

(y4 + (↵2+ y4)z4) log
°

1↵ y2 + z2 + s
¢

↵

y4(↵1+ z4) log
°

↵y2(1+ z2)↵ (↵1+ z2)(1↵ z2 + s)
¢

i

(A.48)

where

s =
q

(↵1+ y2)2 ↵2(1+ y2)z2 + z4 (A.49)
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