PROPOSAL TO MEASURE POSSIBLE SPIN DEPENDENT EFFECT IN $(\pi^+ - p)$ SCATTERING AT HIGH ENERGIES USING A POLARIZED TARGET

G. Coignet*), L. Dick, L. di Lella and P. Macq**)
CERN, Geneva

Recent experimental results have shown that it is difficult to interpret the high energy ($\stackrel{>}{\sim}$ 7 GeV/c) π^{\pm} p scattering at small momentum transfers (0.05 $\frac{1}{2}$ | $\frac{1}{2}$ 0.5 (GeV/c) without the presence of a real part in the scattering amplitude.

In order to have a more complete description of the scattering amplitude, it is essential to know the behaviour of the spin dependent term as a function of both the energy and the momentum transfer.

If the incoming particles have spin 0, and the target has spin $\frac{1}{2}$, the scattering matrix has the form

$$M = a(s,t) + b(s,t) \overrightarrow{\sigma} \cdot \overrightarrow{n}$$
 (1)

where a and b are complex functions of the total energy s and the momentum transfer t; n is a unit vector perpendicular to the scattering plane.

In the case of $(\pi^{+} p)$ scattering from an unpolarized target, the presence of the spin dependent term b gives rise to a non vanishing polarization of the recoil proton, \overrightarrow{P}_{0} , through the relation

$$\overrightarrow{P}_{0} = \frac{2 \operatorname{Re} (a*b)}{\left|a\right|^{2} + \left|b\right|^{2}} \overrightarrow{n} \tag{2}$$

^{*)} on leave from Institut du Radium, Orsay (S.et O.) France.

^{**)}University of Louvain, Belgium.

asymmetry in the elastic scattering is related to \vec{P}_o by the relation

$$\boldsymbol{\epsilon} = \overrightarrow{P}_{o} \cdot \overrightarrow{P}_{T} \tag{3}$$

where $\overrightarrow{P}_{\eta}$ is the target polarization.

We propose to measure \overrightarrow{F}_0 for both π^+ and π^- , from ~5 to ~15 GeV/c, in the momentum transfer interval from ~0.090 to ~0.500 (GeV/c)^2, using a polarized target. The apparatus will be substantially the same as recently proposed for a p-p scattering experiment²⁾. The only modification will be an increase of the azimuthal acceptance by a factor of 10, using 10 horizontal scintillation counters, each subtending an azimuthal angle $\triangle \phi \sim 2^0$, to detect the recoil protons. Another similar set of counters will be also used in the scattered π detector, to define the scattering plane. The relevant experimental quantities which characterize this experiment are shown in Table I.

The apparatus will measure \overrightarrow{P}_{o} simultaneously at 8 values of the momentum transfer t, for a given value of the incoming beam momentum. The absolute error obtained on will increase with increasing |t|, and will be in any case <3%.

The most important source of background is quasi-elastic scattering of the pions on the complex nuclei of the target crystal. Such background will be recorded and subtracted in the way described in ref.²⁾. According to the results of other π - p^3 and p- p^4) scattering experiments, performed at values of t similar to the ones we propose, a factor ~ 4 should be expected for the ratio of hydrogen to non-hydrogen events.

MACHINE TIME REQUEST

Two weeks of parasitic time will be needed to set up the beam and test the detectors. If the beam intensity is $\gtrsim 10^5 \pi/P.S.$ burst, two weeks will be necessary to perform the measurement of P_o at 4 different energies for a given sign of the pion charge. This includes running with a dummy target.

REFERENCES

- 1) K.J. Foley, S.J. Lindenbaum, W.A. Love, S. Osaki, J.J. Russell and L.C.L. Yuon, Phys. Rev. Letters, 11, 425 (1963).
- 2) M. Borghini, P. Roubeau, C. Ryter, G. Coignet, L. Dick, V. Kaftanov, L. di Lella, P. Macq and C. Rubbia. Proposal to measure possible spin dependent effects in (p.p) scattering at high energies using a polarized target (CERN, 7 December 1964).
- 3) C.H. Schultz (Thesis) UCRL 11149.
- 4) M. Borghini, M. Odhenal, P. Roubeau, C. Ryter, G. Coignet, L. Dick, L. di Lella, Proc. of the Dubna Conference (1964) to be published.
- 5) H. Steiner et al, UCRL 11440 and also Proc. of the Dubna Conference (1964).

TABLE I

Beam momentum (GeV/c)	$\triangle \Theta_{\pi}^{\text{lab}}$ (mrad)	$\triangle \theta_{\pi}^{\text{c.m.}}$ (degrees)		△ ⊖ lab (MeV)	∆t (GeV/c) ²	Number of events elastically scattered from H ₂ /day in the interval 1t*
5.0	61 - 146	12 - 28	65 - 79	50-265	0.09-0.5	67 500
8.0	39 - 89	9.5-21.5	66-79.5	50-265	0.09-0.5	58 500
10.0	31 - 71	8.5-19.0	₅ 67 - 79.5	50-265	0.09-0.5	56 000
12.0	25 - 60	7.5-17.5	67.5-80	50-265	0.09-0.5	54 000
15.0	19 - 47	6.3-15.5	68 - 80	50-265	0.09-0.5	52 000
			,			

* The following values are assumed :

Target length: 4.5 cm

Beam intensity: $10^5 \pi/\text{machine burst}$

Azimuthal acceptance: 20°

l day = 3 x 10⁴ machine bursts

65/372/5