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Abstract

The Large Hadron Collider (LHC) at CERN is the world’s highest energy hadron collider, providing proton-

proton collisions currently at a centre-of-mass energy
p

s = 8 TeV and Pb-Pb collisions at psNN = 2.76

TeV. This opens a new energy regime, which allows the study of QCD in elementary pp-collisions and

in the extreme environment of Pb-Pb collisions, as well as providing a discovery potential for rare and

exotic particles. ALICE is the dedicated heavy-ion experiment at the LHC. The experiment is optimised to

provide excellent tracking and particle identification capabilities, in particular at low-pt, where the bulk

of the particles is produced in heavy-ion collisions as well as in proton-proton collisions.

The production of heavy quarks is described in proton-proton collisions by next-to-leading order per-

turbative QCD (pQCD) calculations. Thus, the measurement of heavy-quark production in proton-proton

collisions serves as a test of pQCD. Measurements performed at SPS, RHIC, and Tevatron experiments

showed a good agreement with pQCD, where the data were usually at the upper limit of the prediction. In

addition, measurements in proton-proton collisions serve as reference for heavy-ion collisions, in which

heavy quarks are essential probes for parton energy loss in a deconfined medium. Heavy-quark produc-

tion can be studied either with hadronic or in semi-leptonic decay channels. The analysis presented in

this thesis is performed in the semi-electronic decay channel with the ALICE apparatus.

A crucial device for the electron selection is the Transition Radiation Detector (TRD), which provides

an important contribution to the electron-pion separation for momenta larger than 1 GeV/c. In November

2010, the first data were recorded with the experiment. The electron selection performance was studied

for the first time on real data using data-driven methods. A pion-rejection factor of 23 at a momentum

of 2 GeV/c was obtained using a likelihood method on the total charge deposit in the detector for tracks

with the maximum amount of charge deposit measurements.

The inclusive electron pt-spectrum, which contains contributions from heavy-flavour hadrons as well

as from various background sources, was measured for 0.5 GeV/c < pt < 8 GeV/c in proton-proton

collisions at
p

s = 7 TeV at midrapidity (|y| < 0.5). The contribution of background electrons was

quantified using a cocktail method, and it was subtracted from the inclusive spectrum. For the resulting

spectrum of electrons from heavy-flavour hadron decays a signal-to-background ratio of 1 was observed

at pt = 2 GeV/c. This ratio grows with increasing electron pt up to ≈5 at pt = 8 GeV/c. The pt-

differential cross section of electrons from heavy-flavour hadron decays obtained by this method is in

good agreement with fixed-order plus next-to-leading logarithm pQCD (FONLL) predictions. The total

3



charm cross section in proton-proton collisions obtained from this analysis is σc = 7.6 ± 0.3(stat) ±

2.9(sys)+3.2
−2.5(extr)± 0.3(norm)± 0.3(br) mb. Results from this analysis are published in [1].



Zusammenfassung

Im größten Hadronenkollider der Welt, dem Large Hadron Collider (LHC) am CERN, werden Protonen

bei einer Schwerpunktsenergie, welche zur Zeit
p

s = 8 TeV beträgt, und Bleikerne bei derzeitig psNN

= 2.76 TeV zur Kollision gebracht. Dadurch wird die Tür in einen neuen Energiebereich geöffnet, was

die Untersuchung der QCD in elementaren Protonenkollisionen und in der extremen Umgebung von

Schwerionenkollisionen erlaubt, und ein Endeckungspotenzial für seltene und exotische Teilchen bere-

itstellt. ALICE ist das auf Schwerionenkollisionen spezialisierte Experiment am LHC. Das Experiment

wurde auf exzellente Teilchenidentifikation und Spurrekonstruktion bei niedrigem pt optimiert, einem

Impulsbereich, in dem sowohl in Proton-Proton als auch in Schwerionenkollisionen die Mehrzahl der

Teilchen produziert wird.

Die Produktion schwerer Quarks wird in Protonenkollisionen durch perturbative Quantenchromody-

namik (pQCD) in höherer Ordnung beschrieben. Daher kann die Messung der Produktion schwerer

Quarks zur Überprüfung perturbativer QCD Rechnungen verwendet werden. Messungen bei niedrigeren

Energien am SPS, am RHIC und am Tevatron zeigten gute Übereinstimmung mit pQCD Rechnungen,

wobei die Daten typischerweise an der oberen Grenze der theoretischen Vorhersagen lagen. Des weiteren

dienen die Messungen in Protonenkollisionen als Referenzbfür Schwerionenkollisionen. Die Produktion

schwerer Quarks kann sowohl in hadronischen als auch in semi-leptonischen Zerfallskanälen untersucht

werden. Die in dieser Dissertation vorgestellte Analyse, wurde in semi-elektronischen Zerfallskanälen mit

dem ALICE Apparat durchgeführt.

Eine bedeutende Komponente zur Elektronenidentifikation ist der Übergangsstrahlungsdetektor (TRD),

der einen wichtigen Beitrag zur Elektron-Pion Separation leistet. Das Verhalten der Elektronenidentifika-

tion wurde das erste Mal an echten Daten mit einer auf Daten basierenden Methode überprüft. Der

Pionenunterdrückungsfaktor wurde mit einer Likelihoodmethode basierend auf der Ladungsdeposition

in der Kammer ermittelt. Bei einem Impuls von 2 GeV/c beträgt der gemessene Pionenunterdrückungs-

faktor 23 für Spuren mit der maximalen an Ladungsdepositionsmessungen.

Das inklusive pt-Spektrum von Elektronen, welches sowohl Beiträge aus Zerfällen von Hadronen mit

schweren Quarks als auch Beiträge aus Untergrundquellen enthält, wurde im Transversalimpulsbereich

0.5 GeV/c < pt < 8 GeV/c in Protonenkollisionen bei
p

s = 7 TeV bei zentraler Rapidität (|y| < 0.5)

gemessen. Der Anteil der Untergrundelektronen wurde mit Hilfe einer Cocktailmethode quantifiziert

und vom inklusiven Spektrum abgezogen. Für das resultierende pt-Spektrum von Elektronen aus den
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Zerfällen von Hadronen mit schweren Quarks beträgt das Signal-zu-Untergrund Verhältnis 1 bei pt =

2 GeV/c. Diese Verhältnis steigt mit dem Transversalimpuls der Elektron bis auf ≈5 bei pt = 8 GeV/c.

Der gemessene pt-differenzielle Wirkungsquerschnitt stimmt gut mit FONLL pQCD überein. Der in dieser

Analyse bestimmte totale charm Wirkungsquerschnitt beträgt σc = 7.6± 0.3(stat)± 2.9(sys)+3.2
−2.5(extr)±

0.3(norm)± 0.3(br) mb. Resultate aus dieser Dissertation wurden in [1] veröffentlicht.
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1 Introduction

1.1 Physics of high-energy nucleus-nucleus collisions

Nature is governed by four interactions, the strong interaction, the weak interaction, the electromagnetic

interaction and gravity. In the early universe, all forces are assumed to be unified in one force. During

the expansion the universe cooled down and the forces decoupled. The decoupling of the strong and the

electroweak interaction took place at a time of ≈ 10−35 seconds after the big bang [2].

The theory of strong interaction is Quantum Chromodynamics (QCD). Strongly interacting particles are

observed as hadrons, consisting of quarks and antiquarks. The interaction is mediated by the exchange of

gluons. Table 1.1 shows an overview of the different quark flavours. Hadrons are grouped into baryons

which contain three quarks or antiquarks, and mesons which contain a quark and an antiquark. A further

quantum number introduced by the theory of QCD is called “colour”. Three colours red, blue, and green

are defined. Hadrons are colour-neutral, which means for baryons each quark carries a different colour

and for mesons one quark carries a certain colour and the other one the corresponding anti-colour. An

important feature of QCD is that the gauge bosons, the gluons, carry colour themselves [4].

Table 1.1: Overview of the properties of quark flavours down (d), up (u), strange (s), charm (c), bottom
(b) and top (t). Quark flavours are grouped into generations consisting of two flavours. The
quantities are taken from [3].

d u s c b t

charge -1/3 +2/3 -1/3 +2/3 -1/3 +2/3

mass (MeV/c2) 4.1 - 5.8 1.7 - 3.3 101+29
−21 1.27+0.07

−0.09× 103 4.67+0.18
−0.06× 103 1.72+0.013

−0.009× 105

Isospin -1/2 +1/2 0 0 0 0

Strangeness 0 0 -1 0 0 0

Charm 0 0 0 1 0 0

Bottom 0 0 0 0 -1 0

Top 0 0 0 0 0 1
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A remarkable property of QCD is that the coupling constant depends on the momentum transfer q. The

coupling constant αs can be calculated [4] as

αs(q) =
4π

(11− 2
3
N f ) ln(

q2

Λ2 )
(1.1)

with the number of quark flavours N f and the QCD scale parameter Λ which is ≈ 200 MeV. At small

momentum transfer or large distance the coupling constant is large. Towards higher momentum transfer

q or smaller distances, the coupling constant decreases. In this region the coupling is weak enough

that the quarks can be considered as asymptotically free particles, such that QCD can be handled with

perturbative methods.

The state of matter can be divided into phases, depending on conditions like temperature, pressure,

chemical potential. Within a certain phase, physical properties of the material stay similar while at the

phase transition, turning from one phase into another, they might change drastically [5]. For strongly

interacting matter, QCD calculations on a discretized space-time lattice (lattice QCD) predict a phase

transition [6] from the hadronic phase to a deconfined phase, called Quark-Gluon Plasma (QGP), when

crossing a “critical temperature” Tc (≈ 160 MeV): considering the ratio of the energy density ε and T4,

shown in Figure 1.1 (left), a strong increase of ε/T4 in the region of the critical temperature is seen,

while, within the phases the increase is much weaker or the ratio stays constant. A second observable is

Figure 1.1: Energy density and chiral condensate as function of the temperature. The left plot shows the
energy density ε/T 4 as function of the temperature for different quark numbers derived from
lattice QCD calculations (figure taken from [6]). On the right plot (taken from [6]), the chiral
condensate (blue) and the chiral susceptibility (red) versus the lattice coupling β , which is
linked to the temperature, is shown. The maximum in the chiral susceptibility indicates the
phase transition.
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Color 
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Figure 1.2: Sketch of the QCD phase diagram (based on [5, 8, 9]): At low temperature T and low bary-
ochemical potential µB matter is in the hadronic phase. Increasing the temperature a phase
transition to a different phase, the Quark-Gluon Plasma, sets in. At low µB the phase transition
is expected to be a crossover transition (dashed line), which at higher µB may become a first
order phase transition with a critical point in between. At high µB and low T several color
superconducting phases are expected.

the chiral condensate, which is the order parameter for chiral symmetry breaking [7]. A non-vanishing

chiral condensate indicates chiral-symmetry breaking. The chiral condensate drops when exceeding the

critical temperature Tc, which means that chiral symmetry is restored. Chiral symmetry restoration is

indicated in Figure 1.1 (right): the chiral condensate (blue) decreases with increasing temperature, and

the slope has its maximum at the phase transition, where the chiral susceptibility, which is the partial

derivative of the chiral condensate with respect to the quark mass, is largest.

Taking the temperature and the baryochemical potential as free parameters, a phase diagram for QCD

can be drawn [5]. Figure 1.2 shows a sketch of the QCD phase diagram. At low temperature and

low µB, matter is in the hadronic phase. When increasing temperature or µB, the phase transition to

the Quark-Gluon Plasma takes place. The order of the phase transition between the hadronic and the

QGP phase depends on the number of quark flavours and the quark masses [7]: with three quarks up,

down and strange, where the masses of up and down are very small and the strange quark mass is ≈

150 MeV, the phase transition is a crossover transition at low-µB [10] and possibly a first order phase

transition at higher µB with a critical point where type of the phase transitions changes [5, 9] 1. The

1 As discussed in [5] the phase transition mentioned here is based on lattice QCD calculation which indicate a
crossover phase transition at µB = 0. Other scenarios are under discussion [8].
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search for the critical point is part of the Relativistic Heavy Ion Collider (RHIC)2 energy scan program

[11–13] as well as the CBM program at the future FAIR facility at GSI[14]. Towards higher µB several

colour-superconducting phases are expected3.

Relativistic heavy-ion collisions, in which sufficient temperatures or densities for the phase transition

can be achieved, are a unique tool to study the Quark-Gluon Plasma experimentally. The first observation

was done at the Super Proton Synchrotron (SPS)4 with the heavy-ion programme [16]. At the RHIC, this

observation was confirmed, and the first detailed studies of several signatures of the QGP were done

[17]. The studies are taken up at the Large Hadron Collider(LHC), where even higher temperatures

are reached. At the LHC also the study of harder probes (high-pt particles beyond 20 GeV/c [18], jets

[19, 20], W [21, 22] and Z [23, 24] bosons) becomes possible. In addition, the medium produced at the

LHC has a larger volume and a longer lifetime [25].

Properties of the medium produced can be studied when comparing measured observables in heavy-

ion collisions to the ones measured in proton-proton (pp) collisions at the same centre-of-mass energy.

For hard probes, which are produced at the initial stage of the collisions, results of the observables

should be a superposition of nucleon-nucleon collisions, in case there would be no medium effect. This

is called binary collision scaling. Soft processes, like low-pt particle production, are expeceted to scale

with the number of participating nucleons [26], which is related to the overlap volume. The number of

binary collisions is not directly accessible experimentally but has to be obtained using the Glauber model

[27]. For this, collisions are divided into centrality classes. Centrality classes describe the overlap of the

nuclei in the collision, with the most central collisions having the largest overlap and the most peripheral

collisions having the smallest overlap. For each centrality class the mean number of binary collisions can

be calculated using the Glauber model5. The most central collisions have the largest number of binary

collisions. As observable to quantify medium effects the nuclear modification factor RAA is defined as

RAA =
1

Ncol l

d2NAA
dptd y

d2Npp

dptd y

(1.2)

Here d2NAA/(dptd y) and d2Np/(dptd y) are the yields in A-A respectively pp collisions, and < Ncol l > is

the average number of binary collisions, which is connected to the nuclear overlap function TAB. Without

2 at Brookhaven National Laboratory (BNL)
3 for more information see [15]
4 at CERN, Geneva, Switzerland
5 for example see [28]
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Figure 1.3: Freeze-out temperature and baryochemical potential as function of the centre-of-mass energy per
nucleon

p
sNN (both plots taken from [37]): the points are derived from fits of the thermal model

to particle ratios measured at different energies. Black lines indicate a parameterisation used to
describe the

p
sNN -dependence of the temperature([38]) and the baryochemical potential([39]).

modification by the medium, RAA is expected to be 1 in the region where binary collision scaling is

applicable. For example, photons produced in initial hard scattering processes do not interact via the

strong interaction, so they are not expected to be influenced by the medium and the nuclear modification

factor is expected to be 1. This has been verified experimentally at RHIC by PHENIX6 [29] for pt < 14

GeV/c, and at LHC by CMS7 [30] for high-energy photons with Et beyond 20 GeV. In case RAA is below 1,

the effect is called suppression. Considering charged hadron production, a suppression of high-pt charged

particles is seen at RHIC [31–34] and at LHC [18, 35, 36]8. The suppression is interpreted as energy loss

of the parton travelling through the medium before hadronisation.

When the Quark-Gluon Plasma expands, it cools down until the transition to the hadronic phase is

reached (after ≈ 10−22s [40]). Due to confinement in the hadronic phase, quarks liberated in the QGP

form hadrons. The number of hadrons of a given species is determined at the chemical freeze out. At

the chemical freeze-out the inelastic collisions between particles stop so that the particle composition

is not changed anymore [5]. With the help of the statistical model [41], the freeze out temperature

6 Pioneering High Energy Nuclear Interactions eXperiment
7 Compact Muon Solenoid
8 In [36] the RC P , which compares different centrality classes, is reported instead of the RAA. The same applies

also to the ATLAS9 publications [24].
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and the baryochemical potential can be determined from measured hadron ratios. Particle ratios and

absolute yield from heavy-ion collisions were studied at the Schwerionensynchrotron (SIS)10 [42], at the

Alternating Gradient Synchrotron (AGS)11, at the SPS and at RHIC [37, 38]. Here one has to consider

that the initial temperature at SIS or AGS is possibly not high enough to provide a phase transition, even

though the baryochemical potential is larger than at SPS, RHIC, or LHC. From the study of the particle

yields a dependence of the freeze out temperature and the baryochemical potential on the centre-of-mass

energy per nucleon pair psNN is derived. This is shown in Figure 1.3. It turns out that with increasing
p

sNN the temperature increases until a saturation at ≈ 164 MeV at the top SPS energy (psNN = 17.3

GeV), and the baryochemical potential decreases. Based on the psNN dependence of T and µB, the freeze

out conditions for LHC can be predicted[43] to T ≈ 164 MeV and µB ≈ 1 MeV, which is approximately

the condition of the early universe.

1.2 Physics with heavy quarks

The charm quark was discovered in 1974 by two groups independently: as a narrow resonance at a

dielectron invariant mass of 3.1 GeV/c2 in e+e−- collisions at the Stanford Linear Accelerator (SLAC) [44],

and in a fixed target experiment with a proton beam on a beryllium target at the Brookhaven National

Laboratory (BNL)[45]. The observed resonance is a bound state of a charm and an anticharm quark,

which is called J/ψ. In 1977, the bottom quark was discovered as a narrow resonance at an invariant

mass of 9.5 GeV/c2 in the dimuon invariant mass spectrum measured in a fixed target experiment with

a proton beam on a beryllium and a platinum target at the Fermi National Laboratory (FNAL) [46]. This

resonance can be identified as a bound state of a bottom and an antibottom quark, called Υ.

The study of heavy-flavour production is of interest both in proton-proton and in heavy-ion collisions.

Due to the large mass of b and c quarks, the production of heavy flavour can be described by applying

perturbative QCD. Figure 1.4 shows the charm and bottom production cross section in pp collisions as

a function of
p

s calculated with MNR12, a next-to-leading order (NLO) perturbative QCD (pQCD) model

describing heavy quark production [47, 48]. In the calculation the masses are assumed to be 1.2 GeV/c2

for the charm quark and 4.75 GeV/c2 for the bottom quark. LHAPDF [49] is used as parton density

function and Peterson fragmentation as fragmentation function [50]. Going from RHIC to LHC energies,

for bottom a stronger increase in the cross section is visible than for charm. At 200 GeV the cross section

10 at GSI, Darmstadt, Germany
11 at Brookhaven National Laboratory (BNL)
12 The model is named according to the authors Mangano-Ridolfi-Nason.
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Figure 1.4: Calculated cross sections for charm (blue) and bottom (red) production in proton-proton
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p
s [47, 48]: at

p
s = 7 TeV the cross section for charm production is 6.9

mb and for bottom production it is 0.2 mb. The calculation is based on next-to-leading order
perturbative QCD (MNR).

for charm production is a factor ≈200 higher than for bottom, while at 7 TeV the factor is about 30. In

addition, at
p

s = 7 TeV the bottom production cross section is comparable to the charm cross section

at RHIC. More recent predictions extend NLO calculations by a resummation of logarithms of pt/m at

next-to-leading-logarithmic accuracy [51], performed in two “schemes” FONLL13 [52] and GM-VFNS14

[53].

In addition to tests of pQCD, heavy-flavour measurements in proton-proton collisions are of interest

in relation to heavy-ion collisions since they provide reference distributions for the study of the nuclear

modification factor.

In heavy-ion collisions, the study of heavy quarks can be used to test the energy loss of heavy partons

while passing through the hot and dense medium [54]. Partons propagating through the medium loose

energy by radiating gluons and by collisions with other partons. However, in forward direction in a cone

with the opening angle φ the radiation is suppressed. This is called the “dead cone effect” [55]. The

angle φ increases with increasing parton mass. For heavy quarks the cone angle would be larger and so

the radiative energy loss in the medium was predicted to be smaller than the radiative energy loss of light

13 Fixed Order plus Next-to-Leading-Logarithms
14 General-mass variable-flavour-number scheme
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Figure 1.5: Predicted differential cross section as function of pt of electrons from heavy-flavour hadron
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(≈ 10%). Contributions from charm or bottom hadron decays into electrons and the decay
from bottom hadrons into charm hadrons, which then further decay into electrons are shown
separately. In the pt region between 3 and 6 GeV/c, the bottom component is of the same order
as the charm component, and for higher pt the decays of bottom hadrons into electron become
dominant.

quarks, and the one of bottom quarks should be smaller than the one of charm quarks. This expectation

has already been challenged by PHENIX results as discussed later in this section.

Open-charm production can be studied either by fully reconstructing the decay of charmed hadrons in

hadronic channels (i.e. D0→ K−π+), or via an inclusive measurement of electrons or muons coming from

heavy-flavour hadron decays. All three methods have to deal with large background especially at low-pt,

either combinatorial background in the reconstruction of the charmed mesons or in the semi-leptonic

channels background from other electron or muon sources. Measurements in the hadronic channels al-

low a direct estimate of the charm cross section. However a measurement at low-pt which on the one

hand contains the largest part of the cross section, remains challenging due to large background, espe-

cially in heavy-ion collisions. In the semi-leptonic channels, the neutrino prevents the full reconstruction

of open heavy-flavour hadrons, so measurements have to be performed as inclusive ones over all con-

tributing channels. Figure 1.5 shows the differential cross section as function of pt of electrons from

charmed and bottom hadron decays in pp collisions at
p

s = 7 TeV predicted by FONLL. The prediction,

referred to as “central value” in the following, uses the renomalization scale µ= pt, and mc = 1.5 GeV/c2

and mb = 4.75 GeV/c2 for the charm and bottom quark mass. To obtain a systematic uncertainty, the
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renormalization scale and the charm and bottom quark mass are varied. Based on this, theoretical limits

on the differential cross section can be derived. Also, in this calculation CTEQ6.6 [57] is used as parton

density function. The uncertainty of the prediction in the low pt-range is substantial and almost reaches

a factor 2 between the central value and the limits of the prediction. In the region below 3 GeV/c, the

decay of charm hadrons into electrons is the dominating contribution. For pt between 3 and 6 GeV/c,

both charm and bottom hadron decays into electrons are of the same order, and for higher pt, due to

the harder pt-spectrum of electrons produced in semi-leptonic bottom decays, the bottom component

becomes dominating. Due to the longer lifetime of bottom hadrons (cτ ≈ 500 µm, compared to cτ ≈

100 µm for charm hadrons [3]), a separation is possible using displaced vertices to identify the bottom

component. Using single-electron channels, also heavy-flavour measurements in the pt-range below 1

GeV/c are possible.

At RHIC, heavy flavour measurements in pp collisions at
p

s = 200 GeV are mainly performed in the

semi-electronic channel at midrapidity by PHENIX [58, 59] (|η| < 0.35) and STAR 15 [60–62] (|η|

< 0.7). Figure 1.6a shows the differential cross section of electrons from heavy-flavour hadron decays

measured with PHENIX compared to FONLL [59]. For both collaborations the measurements lay at the

upper limit of the FONLL predictions, however they are still compatible with the prediction within ex-

perimental and theoretical uncertainty. Using angular correlations between electrons from heavy-flavour

hadron decays and the daughter tracks in the hadronic decay channel, STAR [62] separated the charm

and bottom contribution to the inclusive heavy-flavour electron pt spectrum. The method makes use

of differences in the angular distribution between the electrons from heavy-flavour hadron decays and

the associated hadrons for charm and bottom. This allows to obtain the relative fraction of electrons

from B-hadron decays by a simultaneous fit of template distributions derived from PYTHIA simulations

to the measured one (for more information see [64, 65]). The resulting dσ/dpt of electrons from bottom

hadron decays is compatible with the centre of the FONLL prediction. A complementary measurement

by PHENIX [66] confirms this observation, however with larger uncertainty. Instead of using angular

correlations, differences in the invariant mass distributions of the electron-hadron pair for charm and

bottom are used to disentangle the contributions. Measurements in the semi-muonic decay channels are

performed by PHENIX at forward rapidity (1.5 < η < 1.8) in the pt range 1 GeV/c < pt < 3 GeV/c [67].

In this measurement the results are above FONLL predictions, with large systematic uncertainties.

In heavy-ion collisions, both PHENIX and STAR measure heavy flavour in the semi-electronic channel.

In PHENIX the nuclear modification factor and the elliptic flow are measured for Au–Au collisions at

15 Solonoidal Tracker At RHIC
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(a) pt spectrum of electrons from heavy-
flavour hadron decays in pp colli-
sions

(b) Nuclear modification factor and el-
liptic flow ν2 of electrons from
heavy-flavour hadron decays in the
most central Au–Au collisions

Figure 1.6: PHENIX heavy-flavour measurements in the semi-electronic channels at RHIC: in Fig. (a) the
differential cross section of electrons from heavy flavour decays in pp collisions [59] is compared
to FONLL. The measured cross section is at the upper limit of the prediction. In Fig. (b) the
nuclear modification factor of electrons from heavy-flavour hadron decays in centralAu–Au
collisions and the elliptic flow ν2 in minimum bias collisions as function of pt are shown [63].
The suppression is smaller than for π0 at low-pt. The non-zero elliptic flow indicates that charm
quarks might thermalise with the medium.

p
sNN = 200 GeV [63]. Figure 1.6b shows the nuclearmodification factor in central Au–Au collisions and

the elliptic flow in minimum bias collisions as function of pt. A suppression is seen in the most central

collisions for pt above 2 GeV/c which indicates energy loss of the heavy quark in the hot dense matter.

The suppression is weaker than the one observed for π0 in the pt region between 2 and 5 GeV/c. Above

5 GeV/c the same suppression is seen as for π0.

Comparisons to models including only radiative energy loss indicate that this contribution is not

enough to explain the suppression experimentally observed. Taking into account also collisional en-

ergy loss results in a better agreement with the measured data [68]. However, in the pt-region where

the bottom becomes relevant, the results are still a challenge for the radiative and collisional energy loss

models. The nuclear modification factor RAA of electrons from heavy flavour decays could also be affected

by the modification of the baryon to meson ratio in heavy-ion collisions. Since the branching ratio of ΛC

to electrons is smaller than that of D mesons to electrons [69–71], an enhanced ΛC/D ratio would lead
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to a smaller yield of electrons from heavy flavour decays which would show up as a larger suppression.

In addition, a non-zero elliptic flow indicates that the charm quarks might thermalise with the medium.

At the Tevatron16, CDF17 measured the charm production cross section in pp collisions at
p

s = 1.96

TeV via the reconstruction of charmed hadrons in hadronic decay channels [72]. The measurement was

done in the channels D0 → K−π+, D∗+ → D0π+, D+ → K−π+π+, and D+s → Φπ
+. The data are at the

upper limit of the predictions. Tevatron experiments had a rich bottom program. In Run I, done at
p

s = 1.8 TeV, CDF measured the cross section of bottom production via the hadrons B+ (in the channel

B+→ J/ψK+) and B0 (in the channel B0→ J/ψK∗). Compared to NLO pQCD, the measured cross section

was observed to be a factor 3 higher [73]18. Also data from the D0 experiment in the dimuon channel

show an excess compared to theory [74]. In RUN II, the Tevatron experiments were upgraded by new

silicon vertex detectors which allowed to trigger on displaced vertices[75]. CDF measured the bottom

cross section via the decay of bottom hadrons into J/ψ [76]. These results are in good agreement with

the central value of the FONLL calculations.

At the LHC, the production of open charm in pp collisions is studied with ALICE (A Large Ion Collider

Experiment) via the reconstruction of the hadronic channels D0 → K−π+, D+ → K−π+π+, D∗+ → D0π+

(all [77]), and D+s → K+K−π+ [78]. Measurements of the ΛC in the channels ΛC → pK−π+ and ΛC → K̄0
S p

are in preparation [79]. Figure 1.7 (left) shows the differential cross section of D0 production in pp

collisions at
p

s = 7 TeV. Compared to FONLL, the differential cross section is at the upper limit of the

prediction, and compared to GM-VFNS the it is at the lower limit [77]. The same behaviour is observed

for the other charmed mesons. In Pb–Pb collisions at psNN = 2.76 TeV, first measurements are done for

D0, D+, and D+s [80]. The average of the RAA for the three hadron species can be compared to RAA for

charged hadrons. The RAA for the D-Mesons appears to be slightly higher than the one of the charged

hadrons. However, within the systematic uncertainties, both are still compatible over the full pt-range.

In addition, the RAA of B-Mesons, obtained from non-promt J/ψ decays by CMS [81], is slightly, but not

yet significantly, higher than the ones of charged hadrons and D meson, which is a slight indication of

the mass ordering of the RAA as discussed above. Further measurements are needed to make a conclusive

statement.

In the semi-muonic decay channel, measurements are done by ALICE at forward rapidity (-4 < η <

-2.5) in the pt-range 2 GeV/c < pt < 10 GeV/c [82] as well as by ATLAS at midrapidity (η < 2.5) in the

16 At Fermi National Laboratory, Illinois, USA
17 Collider Detector at Fermilab
18 An overview of the developments both in the experiments and on the theory to explain the excess of the bottom

hadrons can be found in [51]
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range 7 GeV/c < pt < 26 GeV/c [83]. Both measurements are in agreement with FONLL predictions. The

data from ALICE are at the upper limit of the prediction.

For the semi-electronic decay channel, ATLAS provides a measurement at midrapidity (|y| < 2 exclud-

ing 1.37 < |y| < 1.52) in the pt-range between 7 and 26 GeV/c [83]. In this pt-region, bottom gives the

dominant contribution. Data is in good agreement with the FONLL predictions. The measurement done

by ALICE extends the pt-range covered by ATLAS towards lower pt, where the dominant fraction of the

cross section, especially for charm, resides. Results of this are the subject of this thesis and are discussed

in chapter 4.

1.3 ALICE at the LHC

ALICE is one of the four large experiments at LHC besides ATLAS, CMS and LHCb19. In contrast to the

other experiments, the main focus of ALICE is the investigation of heavy-ion collisions. Therefore, ALICE

is designed to cope with high track multiplicities up to 20000 tracks per event, down to a pt of 100

MeV/c [84]. In order to be able to reconstruct low momentum tracks, the magnetic field of 0.5 T is lower

than compared to the other experiments (4 T in CMS [85], 2 T in ATLAS in the central detectors [86]).

19 LHC beauty
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Figure 1.8: Sketch of ALICE (picture taken from [84]): the experiment consists of several detectors for
triggering, tracking and particle identification. Detectors located around midrapidity are called
central barrel detectors. These detectors are inside a solenoid magnet (red) providing a field of
0.5 T. A muon spectrometer is used for muon measurements at forward rapidity (-4.0 < y <
2.5).

Particle identification in ALICE is optimized to have an excellent separation of kaons, pions, protons, and

electrons over a large pt range. A good track-to-vertex impact parameter resolution is needed to select

primary tracks. In addition, it plays an important role in the separation of the components from charm

and bottom in the heavy-flavour measurements.

Figure 1.8 shows an schematic representation of the experiment. The spectrometer is separated into a

“central barrel” (|η| < 0.9) and a muon spectrometer used for muon identification at forward rapidity

(-4.0 < y < -2.5). The main tracking detectors in ALICE are the Time Projection Chamber (TPC) and the

Inner Tracking System (ITS).

The TPC, with a volume of 90 m3 the largest gas-filled TPC in the world, is a cylindrical drift chamber

with an inner radius of 85 cm and an outer radius of 2.5 m. The TPC has a length of 5 m. The central

electrode is placed at η = 0. As drift gas a mixture of Ne (85.7%), CO2 (9.5%), and N2 (4.8%) is used

[87]. Charged particles passing the TPC ionise the drift gas and produce electron clusters which travel

through the drift field towards the cathode pad plane where the signal is amplified and read out. In total,

the TPC has 557568 readout pads [87] organised in 159 rows in radial direction. In all pad rows, space

points are reconstructed using the radial and azimuthal position of pads having a signal, and the drift

time in beam direction multiplied with the drift velocity as coordinates. These space points, called clusters
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Figure 1.9: Energy loss in the TPC as function of the momentum (Figure taken from [1]): lines indicate the
energy loss expected by the Bethe-Bloch formula [89] for electrons, pions, kaons, protons and
deuterons.

20, are used to reconstruct charged particle tracks. The number of rows providing clusters depends on

the pseudorapidity coverage: for |η| < 0.9 all rows can contribute, which leads to a maximum number

of clusters of 159. Towards higher η, the number of clusters which can be found for tracks decreases,

because the outer pad rows cannot contribute anymore. At η≈±1.5 the number of clusters for tracks is at

the minimum of 30 clusters, which is the minimum number of clusters required for track reconstruction.

The total drift time from the central electrode to the pad plane is 94 µs for a nominal drift field of 400

V/m, sampled in 1000 time steps [88]. The measurement of the ionisation energy loss is used to identify

particles, especially kaons, protons and pions [87]. Figure 1.9 shows the energy loss distribution in the

TPC. Hadron identification is possible over a large p-range. In momentum regions where the energy-

loss distributions of several species cross (indicated as the crossing of the lines showing the expected

energy loss calculated by the Bethe-Bloch formula [89]), information from other detectors is needed. As

discussed in section 3.3, the TPC energy loss is also used to separate electrons from hadrons.

The ITS is the detector in ALICE closest to the interaction point. As innermost detector the main task

is high precision tracking towards the interaction point, for which it needs high granularity in azimuthal

and in beam direction. The detector consists of six layers, divided into three subsystems, each with two

20 The signal of a space point is spread over several pads in azimuthal direction as well as several time sample.
For one space point three pads in azimuth and three time bins are used. A gaussian distribution of the charge
deposit is assumed to calculate the cluster position.
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layers: The Silicon Pixel Detector (SPD) is the innermost of the ITS subsystems. To provide a precise vertex

position, the SPD is the ITS detector with the highest granularity: the innermost of the two SPD layers

has ≈ 3.3 million pixels, the outer one ≈ 6.6 million [84]. Hits in the two SPD layers can be combined

to tracklets, which can be used to determine the primary vertex or to measure track multiplicity [90].

Surrounding the SPD, two layers of the Silicon Drift Detector (SDD) are placed, with ≈ 43k channels in

the first layer and ≈ 90k channels in the second layer [84]. The drift time is 4.3 to 6.3 µs, sampled with

a frequency of 40 MHz [91]. The outermost of the ITS detectors is the Silicon Strip Detector (SSD). The

SSD has a granularity of ≈ 1.1 million strips in the inner and 1.5 million strips in the outer layer [84].

The ITS provides particle identification for low-momentum tracks via their ionisation energy loss in the

SDD and the SSD. Charged particles passing the detector layers produce electron-hole pairs, which travel

through the electric field applied and produce a measurable current. The amount of electron-hole pairs

produced by a charged particle is dependent on the energy deposit.

Track candidates are found in the TPC and are extrapolated towards the vertex using the hits in the

six ITS layers which are associated with the tracks. The vertex is either reconstructed using tracks or

tracklets in the SPD. In addition to the track candidates already found, a stand alone algorithm in the ITS

reconstructs the trajectories of low-momentum particles which do not reach the TPC due to curling in the

magnetic field. Track candidates are then extrapolated to the outer detectors via a Kalman filter algorithm

[92], where the Transition Radiation Detector (TRD), discussed in detail in chapter 2, can contribute to

the momentum measurement, in particular at high pt. Using all central barrel detectors, a pt resolution

of 10% at 100 GeV/c can be reached [93].

Outside of the TRD, at a distance of 3.7 m from the interaction point, the Time-Of-Flight (TOF) detector

is used to separate kaons (up to 1.5 GeV/c) and protons (up to 3 GeV/c) from pions and electrons via

a time-of-flight measurement. Due to the mass difference, the heavier kaons and protons have a lower

velocity β in contrast to electrons and pions and, therefore, a larger time of flight. For this a precise time-

of-flight measurement with a resolution of ≈ 160 ps is important. With increasing momentum kaons and

protons become indistinguishable in the TOF. The measurement is done using Multigap Resistive Plate

Chambers(MRPC) [91], gas chambers with a stack of glass plates separated by gaps of 250 µm which

are operated at high voltage (HV = 13 kV [94]). Charged particles passing the chamber ionise the gas

and introduce a charge on the electrodes. Due to the gap thickness of 250 µm the drift time can be

neglected. The use of glass plates as resistors suppresses sparks between the electrodes and allows the

chamber to be operated at high efficiency. The time-of-flight is determined as the time measurement in

the TOF compared to the time of the collision which can either be determined from the tracks having a

27



TOF-signal under the assumption of the pion mass or with the T0 detector which is located close to the

collision point in beam direction. In case both methods do not provide a starting time, this information

is taken from the time information of the bunch crossing provided by the LHC.

Two electromagnetic calorimeters, the ElectroMagnetic CALorimeter (EMCAL) and the PHOton Spec-

trometer (PHOS), are used to identify photons via energy deposit and shower shape. The calorimeters

provide a limited coverage in azimuth (EMCAL: ∆φ < 107o [95], PHOS: ∆φ < 100o [96]). Also in η the

coverage is reduced with respect to the other central barrel detectors (EMCAL: |η| < 0.7, PHOS: |η| <

0.12 ). The EMCAL21 can also be used to identify electrons with p > 2 GeV/c when combining its energy

deposit measurement and the momentum information from the other central barrel detectors.

The VZERO detector is used in pp collisions to provide a minimum bias trigger and to reject background

from beam-gas collisions [90]. In Pb–Pb collisions the V0 detector is used together with the Zero Degree

Calorimeters (ZDC) to determine the event centrality.

Measurement of muons is done in the forward direction with the ALICE muon spectrometer. The

following physics topics can be addressed [93]:

• Quarkonia (J/ψ, Υ) decays into dimuons

• Single-muons from heavy-flavour hadron decays

• Low-mass vector meson decays (ρ, ω, φ) into dimuons

For these topics the ALICE muon spectrometer has a unique coverage in pt and η in Pb–Pb collisions

with respect to the other LHC experiments22. The muon spectrometer consists of a front absorber with

a length of 4.13 m placed at a distance of 90 cm from the interaction point. Electrons and a major

fraction of the hadrons are stopped in the absorber. Background surviving the absorber consists of the

fraction of primary hadrons which are not stopped, muons from weak decays of kaons and pions, and

secondary hadrons created in interactions of primary hadrons with the absorber material. Four tracking

chambers are placed behind the absorber. In order to measure the momentum of the tracks, a dipole

magnet providing a magnetic field of 0.7 T is employed. Behind the tracking chambers a second layer of

absorber material and 2 trigger chambers with a tunable pt cut are placed. The trigger threshold, applied

to each track, is determined using Monte-Carlo simulations and is set to 500 MeV/c for the measurement

of J/ψ [97] and low mass dimuons and to 2 GeV/c for the measurement of Υ and single muons from

21 The same applies in principle also to PHOS, where the energy resolution is even better than in the EMCAL. Due
to the small rapidity and φ-coverage of PHOS however it is more advantageous to use EMCAL.

22 For pp collisions LHCb covers the same pseudorapidity range for muon measurements
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heavy-flavour23 [93]. With these trigger pt thresholds the amount of muons from decays of kaons and

pions produced in the absorber, as well as the amount of hadrons which pass the absorber, is reduced

(remaining contamination: 10% at 2 GeV/c, decreasing with pt [98]).

Further detectors in ALICE which are not used in this analysis are:

• High-Momentum Particle Identification Detector (HMPID): Cherenkov Detector for hadron identifica-

tion up to 5 GeV/c

• Forward Multiplicity Detector (FMD): Detector measuring the charged particle multiplicity at for-

ward direction (-3.4 ≤ η ≤ -1.7 and 1.7 ≤ η ≤ 5.1)

• Photon Multiplicity Detector (PMD): Detector measuring the photon multiplicity at forward direction

(2.3 ≤ η ≤ 3.5)

• ALICE COsmic Ray DEtector (ACORDE): Trigger for cosmic-ray events

23 The different pt thresholds for J/ψ and Υ allow the measurement for both particles down to the lowest pt. The
threshold for the single-muon measurement sets the low-pt cutoff for this analysis.
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2 Particle identification with the ALICE Transition Radiation Detector

The TRD plays a major role in the selection of electron candidate tracks. Due to their low mass in com-

parison to other species, electrons above a momentum of 1 GeV/c produce transition radiation photons

while passing a radiator, which are absorbed by the drift gas at the entrance of the drift chamber. The

energy from absorption is deposited in addition to the energy from ionisation.

In this chapter, the electron selection with the TRD is presented. After an overview of the detector,

the stability of the detector during the data taking in 2010 is discussed. In the end of this chapter,

the strategy for electron identification is shown, and the performance in data, obtained with reference

samples of electrons and pions, is presented.

2.1 Overview of the ALICE Transition Radiation Detector

The TRD [99], surrounding the beampipe at a radius of 3 m, covers the pseudorapidity range |η| <

0.9 and will have an azimuthal acceptance of 360o. The detector is be segmented into 18 supermodules

in azimuth, which are further segmented into five stacks per supermodule in beam direction and six

layers per stack in radial direction. In total, 540 chambers will be installed. Figure 2.1a shows the

segmentation of the detector [91]. Supermodules have a height of 70 cm and a length in beam direction

between 6.4 and 7 m, symmetrically around the collision point. In azimuth, supermodules have a width

between 90 cm at the innermost layer and 118 cm at the outermost layer. The dimensions are indicated

in Figure 2.1b. A chamber itself consists of a radiator with a height of 4.8 cm and a drift chamber with a

height of 3.7 cm (see Figure 2.1c). Since transition radiation is produced at the surface of two media with

different diffractive indexes, radiators should provide a large amount of surfaces a particle passes. This

can be achieved using radiators made of foam or fibres, or as a stack of foils. On the other hand, a large

amount of material increases material budget, which affects the momentum reconstruction and increases

the conversion probability, which would especially effect the electromagnetic calorimeters, which detect

photons. For all six layers together the contribution of the radiator to the material budget should not be

more than 15% of a radiation length. The radiator used in the ALICE TRD is a combination of foam and

fibres. The outer part of the radiator consist of plates made out of Rohacell foam with the thickness of

8 mm. The inner part of the radiator is filled with polypropylene fibres [99, 100]. Each drift chamber is

divided into an amplification region with the height of 0.7 cm and a drift region with the height of 3 cm,
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(a) Segmentation of the TRD
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(b) Sketch of a TRD supermodule
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(c) Sketch of a TRD chamber

Figure 2.1: Segmentation of the TRD (a) [91]: the detector is divided into 18 supermodules. Each
supermodule consists of 5 stacks in beam direction, which are further divided into 6 layers in
radial direction (indicated in (b)). A sketch of a chamber is shown in (c): each chamber consists
of a radiator with a height of 4.8 cm and a drift chamber with a height of 3.7 cm, divided into
an amplification region with a height of 0.7 and a drift region with a height of 3 cm, separated
by the cathode wire plane. The anode wire plane is located in the centre of the amplification
region at equal distance between the cathode wire plane and the cathode pad plane.

separated by a cathode wire plane. The anode wire plane is located at equal distance to the cathode pad

plane and the cathode wire plane. A pad plane is segmented into 144 pads in azimuthal direction and

16 rows for the outer four stacks, and 12 rows for the central stack. This leads to the total amount of

1.18 million pads for the full TRD. Also the pad size increases with the distance to the beam axis, starting

from 6.35 mm in azimuth and 7.5 cm in beam direction in the innermost layer up to 7.85 mm and 9 cm

in the outermost layer. In order to improve the position resolution in beam direction, even though the

granularity is not as fine as in azimuthal direction, the pads are tilted by an angle α = 2o.

Particles passing the drift chamber produce electron clusters due to ionisation. In addition, for electrons

with a momentum above 1 GeV/c transition radiation photons are produced in the radiator and absorbed
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Figure 2.2: Average Pulse Height as function of time[102] for electrons passing a radiator (red), electrons
passing no radiator (blue) and pions (green) at a momentum of 2 GeV/c. The peak at
timebin five is produced by ionisation in the amplification region (amplification peak). For
electrons passing a radiator a second peak is visible, which is produced by absorption of
transition radiation photons in the drift gas at the entrance of the drift chamber (TR-peak). The
measurement is done with a prototype during the testbeam in 2004.

at the entrance of the drift chamber by the drift gas producing additional electrons. As drift gas a mixture

of X e(85%), providing a good photon absorption, and CO2 (15%) is used [101]. The electron clusters

travel through the drift field (0.7 kV/m) with the drift velocity vdri f t = 1.5cm/µs to the amplification

region, deflected by the Lorentz angle1 γ = 8o. In the amplification region an avalanche ionisation

created by the electron clusters produces a signal in the pad plane.

The signal in the pad plane is sampled in 30 timebins of each 100 ns. Figure 2.2 shows the dependence

of the average pulse height on the drift time for electrons and pions passing a radiator, and for electrons

in a special setup without radiator [102]. The figure is done for particles having a momentum of 2

GeV/c. A peak is visible for all cases at timebin five, which is produced by ionisation in the amplification

region (amplification peak). In the time period between 800 ns and 2.5 µs the average pulse height is

approximately constant for pions and for electrons in the setup without radiator. This will be referred

to as “plateau region”. Comparing pions and electrons without radiator, the average pulse height for

electrons is ≈ 1.5 times the one for pions over the full drift time. This is due to the higher energy loss

due to ionisation for electrons. When including also a radiator, a second peak at late time bins (around

1 Effect coming from the crossing of the electric and magnetic field
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2.5 µs) is visible. This peak is called ”TR-peak” and is produced by the absorption of transition radiation

photons at the entrance of the drift chamber.

The TRD can be used as trigger on single electrons, dielectrons and jets [103]. The trigger is based

on track segments in single chambers. For every chamber the track segments called tracklets are created

by the Local Tracking Unit (LTU) as a linear fit to the raw signals. Before applying the linear fit, the

pad signals have to be recorded and digital filters removing tails and subtracting the pedestal have to

be applied. All components are on Multi-Chip-Modules (MCM). Each MCM is connected to 18 pads in

azimuth. The Global Tracking Unit (GTU) combines tracklets to tracks, which also contain a momentum

estimate obtained from the distance of the track extrapolated to radius of the vertex and the nominal

collision point, and information to identify particles. Single- or dielectron triggers require at least one or

two tracks reconstructed as electron in the event respectively, which have a momentum above a certain

threshold. The jet trigger requires a minimum number of tracks with a momentum above a threshold per

stack in at least one stack. The trigger decision has to be provided within 6.1 µs to the ALICE central

trigger. In case a TRD trigger is required, the TPC would only be read out if the trigger is provided. A

delay of 6.1 µs is sufficient in order to not restrict the η range in the TPC. In order to keep the power

consumption low, the TRD needs a trigger input in order to wake up the electronics. This input is called

Pretrigger [104] and has to be provided 500 ns after the interaction. In case the wake up would be too

late, the first time bins of the pulse height spectrum would be removed2. As input for the pretrigger the

fast detectors V0, T0 , and TOF as well as the bunch crossing information from the LHC is used. At the

MCM, raw signals are streamed in parallel to the LTU and to an event buffer. From the event buffer the

raw data are further streamed to disk or to the High-Level Trigger (HLT), a large computing cluster [106].

At the HLT more sophisticated triggers including other detectors can be applied. In addition, the HLT is

also used to calibrate the detector.

2.2 Track reconstruction in the ALICE Transition Radiation Detector

The first step towards particle identification with the TRD is the reconstruction of the trajectories of

charged particles. The reconstruction can be done propagating outwards tracks found by the TPC (global

tracking [93]) or based on track candidates found inside the TRD (stand alone tracking [105, 107, 108]).

The global tracking is based on a Kalman Filter, which has the advantage that it can include a correction

for the energy loss of a particle passing the detector material. In the stand alone tracking a helix fit,

which is adapted to the detector structure, is used.
2 Examples for this can be found in [105], recorded during the cosmics data taking 2008
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Figure 2.3: Cluster finding in the TRD. The charge deposited by a charged particle passing the drift chamber
is shown on the left side. Based on the charge measurement in the different pads, clusters are
created. The reconstructed position is shown on the right side.

Charged particles passing a chamber produce electron clusters due to ionisation and TR-absorption

which drift in the drift field to the cathode pad plane where a charge deposit is measured in 30 time

bins. The signal is spread over several pads, typically three, in a column, steered by the pad response

function which can be considered as Gaussian. In time the signal is also not a sharp signal, but has a

shape called time response 3, which comes from the response in the electronics and the mobility of the

ions in the amplification region. The time response leads to tails in the charge distribution as function of

time, which causes the signal to be distributed over several time bins. These tails have to be removed by

a tail cancellation mechanism which deconvolutes the contribution from several time bins.

From the raw signals after tail cancellation, clusters are created. These clusters store position and

charge deposit information for a given time bin. The position of the cluster is calculated in azimuth taking

the centre-of- gravity of the three pad charges and in radial direction from the drift time multiplied by the

drift velocity. To minimise the amount of clusters created due to detector noise, the charge in the central

pad and the ones in the neighbouring pads as well as the sum of the three pad charges have to exceed

different thresholds. Figure 2.3 gives an example of the clusters reconstructed for a charged particle

passing the detector. In z- direction the pad centre is used as approximation for the cluster position. The

cluster position is further corrected for the time offset and the Lorentz- angle. Clusters have a resolution

of ≈ 300 µm in azimuthal direction. Summing up the pad charges of the three central pads, the total

charge of the cluster is calculated. In the addition to the total charge, the charge of the central pad and

the three neighbouring pads in each direction are stored in the cluster.

3 The time response was measured using a 55Fe source irradiating a prototype chamber
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For further discussion the ALICE tracking coordinate system [107] is used. In this coordinate system

the x-coordinate is along the radius, the z-coordinate the beam direction and, the y-coordinate the φ

direction. The origin is at the nominal collision point. φ is split in 18 sectors adapted to the segmentation

of the central barrel detectors (i. e. TRD). The origin in azimuth is in the middle of a given sector. To

change to a different sector, the coordinate system needs to be rotated to the new sector. For neighbouring

sectors, the x and y coordinate are rotated by the angle α= 0.35, which is the angular coverage of a sector.

Clusters in a chamber, produced by a charged particle passing the detector, can be combined to track

segments, called tracklets. Due to the small radial size of the drift chamber, tracklets can be considered

as linear. In order to create the tracklets, a reference position and a reference inclination is needed. The

reference position is obtained using either the extrapolation of trajectories reconstructed in the inner

detectors TPC and ITS, which is done using a Kalman Filter, or track candidates found in the TRD with

a stand alone tracking algorithm. Tracks candidates from the stand alone algorithm are based on space

points which are the centres of gravity of the cluster positions projected to the y-z plane (parallel to the

readout plane). These space points are considered as likely produced by a tracklet [108]. Based on

the reference position and the inclination, clusters are attached to the tracklet. Appropriate clusters are

required to be within a maximum distance to the expected position, where the maximum depends on the

uncertainty of both the cluster and the track extrapolation. In certain cases, for example if the particle

passes the outer part of a row or the track is very inclined in z-direction, also the neighbouring pad row

can contain a part of the signal. For this, also clusters in the neighbouring pad row can be attached to

the tracklet. A linear fit to the clusters is performed to obtain a reference position, which is used in the

Kalman filter as further space point. At least eight associated clusters are required to accept the tracklet.

After updating the Kalman filter, the track is extrapolated to the next chamber. Base on the track fit, a

momentum estimation is available for each tracklet. Due to energy loss in the material the momentum

can be lower than at the vertex. The track resolution is dependent on the inclination of the track in the

xy-plane. The best resolution, which is 120 µm, is obtained at the φ = 8o, which is the Lorentz angle.

In the stand alone tracking the difference in the inclination between tracklet and track can be used to

reject fake tracks. On the other side, due to decalibration of the drift velocity, the tracklet can be inclined

with respect to the track, which prevents a too strict cut. The track model fit is done in the stand alone

tracking to clusters in the tracklets attached. At least four tracklets are needed for a full track fit. The

tilting of the pad is used to improve the position in z-direction. For this the helix model which is used in

the fit is adapted (see [105]). The adapted model contains the assumption that the tracks are originating

from the nominal collision point.

36



Figure 2.4: Geometry of the central barrel in 2010: seven out of 18 supermodules are installed. Numbers
indicate the position of the supermodules in azimuthal direction. A coordinate system indicates
the direction of the z-axis. Not shown in this setup are the detectors EMCAL and PHOS, which
also were partially installed in 2010.

2.3 The ALICE Transition Radiation Detector in the proton-proton data taking in 2010

The LHC was commissioned in fall 2009. Before the first beams were injected into the collider, a period

of cosmic ray data taking took place, starting in August 2009. During this period, the detectors were

commissioned and tested. In addition, the data was used to calibrate and align the detector, and to test

the status of the software. The TRD participated in this data taking with 7 supermodules. A special

trigger setup was used to select events: a fast signal (≈ 250 µs) was provided by TOF requiring hits in

opposite sectors of the spectrometer, which indicated a particle passing the detector. In addition, TRD

provided a trigger requiring a charge measurement over threshold in at least four layers of a stack. In the

first part of the data taking (August to October), a mixture of Ar and CO2 was used as drift gas, where

X e replaced Ar at the end of October 2009. Events were collected without magnetic field. These events

were used to align the detector [109], both chambers within a stack and full stacks relative to the TPC.

In case the TRD was running without the other central barrel detectors, the events were only be used for

internal alignment.
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Table 2.1: Overview over the data taking periods. Shown is the number of minimum bias events for each
period

Period Number of events

LHC10b 28M

LHC10c 100M

LHC10d 178M

LHC10e 164M

In parallel to the cosmic ray data taking, 83mKr was injected into the TRD gas system. The metastable

krypton was obtained by β-decay of 83Rb and decayed itself into stable 83Kr with emission of a photon.

The photon has a characteristic energy spectrum with peaks at 9.4, 12.6, 19.6, 29 and 41.6 keV. Due to

absorption of the photon in the drift gas, the energy is deposited in the chamber and can be read out. For

the read out a random trigger is used. The measurement of the decay spectrum of 83mKr compared to

the known peak positions was used to obtain pad-gain calibration [110].

On November 23rd, 2009, the first collisions were provided by the LHC. In this run, only the SPD and

the V0 detectors participated. The regular data taking started on December 6th, 2009. During this period,

the beam energy was still the injection energy of 450 GeV provided by the SPS. In total, 492000 events

were collected. First checks of the tracking and electron identification performance of the TRD were

done, indicating that the detector is in operation and behaves stable [111]. The statistics accumulated

does not allow the usage for physics analysis.

In 2010, the proton-proton data taking started in March and lasted until October 2010. It was divided

into several data taking periods. The centre- of-mass energy was 7 TeV, with a short interruption having

beams at the injection energy. Table 2.1 shows the number of minimum bias events collected in each of

the data taking periods. Each data taking period itself consists of several runs. As in 2009, seven out of

18 supermodules were installed. The installed supermodules were situated in the sectors 0, 1, 7, 8, 9,

10 and 17. Altogether the geometrical acceptance in φ was 0.38, covering 340o < φ < 40o and 140o

< φ < 220o. Figure 2.4 indicates the setup available in 2010. Due to problems with the drift voltage

several chambers had to be excluded from the analysis. These chambers are listed in Table 2.2. The

problems happened at different times, partially even during a run. To guarantee a constant acceptance

over a full period, the chambers are excluded from the analysis for all runs available in a periods. For

this, the number of tracks above pt = 2 GeV/c having a tracklet in a given layer was compared to the

number of selected TPC tracks as function of η and φ. With the help of η and φ, stacks and sectors can

be identified. In case the chamber was operational over the whole period, this ratio should be close to
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Table 2.2: Chambers with high-voltage problems in different sectors (18 out of 210). Out of the 35 stacks
installed in 2010, four stacks have four good chambers, 14 stacks have five good chambers, and
17 stacks have six good chambers.

sector chamber number

0 5, 15, 16, 27

1 32, 50

7 212, 227, 228, 231

8 265

9 287

10 318

17 520, 524, 532, 533, 539

the tracking efficiency in the TRD in the centre of the chamber. A significant deviation indicates problems

with the chamber, and the chamber has to be excluded from the analysis. In order to exclude tracklets in

problematic chambers from the analysis, the chamber number has to be calculated for each tracklet. For

this, tracks are extrapolated to the TRD layers, and the azimuthal angle is recalculated. Based on cuts on

η and φ, the chamber number is identified. In case the chamber is in the list of those to be excluded, the

charge information is set to 0 and the number of tracklets is lowered by one. The procedure to calculate

the chamber number is checked with tracks which contain additional reconstruction information, among

them the chamber number. It turns out that the method works reliably for pt above 700 MeV/c with

an efficiency of close to 100%. Below 700 MeV, the efficiency drops. In the low-pt region, where tracks

are stronger curved, the extrapolation is less precise due to energy loss correction. Consequently, this

procedure is applied only for tracks with pt above 700 MeV/c. The same procedure is applied to the

dedicated Monte-Carlo samples used for efficiency correction. Due to this, when requiring a certain

minimum number of tracklets for a track, the acceptance is further reduced.

Before data analysis, the Transition Radiation Detector has to be calibrated and aligned to the TPC

[109]. As discussed above, one source for the alignment procedure was the cosmic ray data taking in

2009. In addition, in spring 2010, for a short period the magnetic field was switched off. This provided

a high statistics sample of straight tracks from collisions which are preferentially used in the alignment

procedure. In addition, each chamber has to be calibrated for variations in the drift velocity, the starting

time of the signal and the chamber gain factor. These quantities are calibrated run-by-run using tracks

[111, 112]. This means, that in order to obtain the calibration constants, events have to be reconstructed

first, either with default calibration constants, or with those from the previous run. In a second recon-

struction, the calibration parameters can be applied. The start time of the signal can be directly obtained
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from the time bin of the amplification peak. Several methods are available for the calibration of the

drift velocity: either the pulse height spectrum can be used measuring the time duration of the plateau

structure after the amplification peak, or the drift velocity can be obtained from the difference between

track and tracklet angle. As third option, also a GOOFIE4 provides a drift velocity measurement, which is

already available during the run, however useful only for monitoring purposes. Chamber gain factors are

derived from the charge deposit distribution assuming the dominating contribution is from pions. This

assumption is especially problematic in case the events triggered either by the TRD or by the EMCAL

enhancing electrons in the sample, which implies the necessity of minimum bias events for calibration

purpose. Alternatively the chamber gain factor can be obtained from the pulse height spectrum, which is

however connected to the drift velocity.

During the data taking in 2010, the trigger capabilities of TRD as discussed in section 2.1 were not

applied. The commissioning of the trigger was performed in 2011 [103] and will be applied during the

data taking periods in 2012, where also more supermodules are available (10 in 2011, 13 in 2012). The

analysis discussed here was performed using minimum bias events.

2.4 Performance of the Transition Radiation Detector in proton-proton collisions

To assure a good data quality the behaviour of the TRD during the data taking was monitored run-by-run.

The monitoring is done in the AliRoot (ALIce ROOT) Software package PWG1. Several quantities are

monitored run-by-run.

• Tracking efficiency for positive and negative charged particles with respect to the number of TPC

tracks

• Tracklet charge for single layers

• Average pulse height versus drift time

• Number of tracklets/track

• Number of clusters/track

• Sum of the cluster charges

These variables are sensitive to the calibration of the TRD. Distributions of the trending variables are

combined to four summary figures which are discussed in the following.
4 A GOOFIE (Gas prOportional cOunter For drIfting Electrons) contains an α source and a detection mechanism.

From the time difference the drift velocity can be determined. For more information see[113]
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Figure 2.5: Matching efficiency between TPC and TRD for positive charged tracks and negative charged
tracks for run 126088 (LHC10d) for tracks having at least 1 tracklet: Left and middle plots
show the η-φ profile of the matching efficiency. Red lines indicate the detector segmentation,
where sector 0 starts at 0 in φ. The white area is due to missing supermodules. The right plot
shows the matching efficiency versus the transverse momentum. Deviation from 1 results from
the definition of the acceptance area.

Figure 2.5 shows the TPC-TRD matching efficiency for run 126088 from period LHC10d. Reference

tracks in the TPC have to fulfil the following conditions:

• Refitted in the TPC

• Have at least 100 TPC clusters

• Distance of closest approach (DCA) to the primary vertex

– in xy: < 40 cm

– in z: < 15 cm

In the left and middle plot the dependence of the matching efficiency on η and φ is shown integrated over

all transverse momenta above 0.3 GeV/c for tracks having at least one TRD tracklet. Red lines indicate

the segmentation of the TRD. The white area is due to supermodules which were not installed yet. The

matching efficiency is highest with ≈ 0.9 in the centre of a chamber and drops towards the chamber

borders. On the right side the matching efficiency is shown as function of the transverse momentum for

tracks in the acceptance. The acceptance is defined as the area in η and φ, where above a pt of 1 GeV/c

counts in the TRD are registered. The granularity of the binning5 chosen resulted in an overlap of active

5 Due to technical reasons a finer binning could not be chosen
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Figure 2.6: Charge deposit as function of η and φ for the 6 TRD layers for run 126088. Red lines indicate
sector borders. White areas are due to inactive area (missing supermodules) or masked half
chambers.

area with dead area (chamber borders, not installed sectors). This leads to a slightly lower efficiency

(0.8) shown in here with respect to the chamber centres.

Figure 2.6 shows the charge deposit as function of η and φ for run 126088. This quantity is sensitive

to chamber and pad gain. After calibration a uniform distribution is expected. Chambers with too low or

too high gain would be visible as outliers in the charge distribution. Decalibration in the pad gain would

be visible as a non-uniform structure within a chamber. Apart from one halfchamber (layer 3, sector 0,

stack 2) and one full chamber (layer 3, sector 7, stack 3) with a too high gain one can see that the charge

deposit is uniform over the detector within 15%.

Figure 2.7 shows the average pulse height as function of the drift time. On the left side it is shown as

a function of time bin. The amplification peak has its maximum in the third time bin, with an average

pulse high approximately twice the average pulse height of the plateau region (timebins 10 to 15). The

different time bin of the amplification peak compared to Figure 2.2 results from adjustments in the

pretrigger timing which were done before the data taking. On the right side the pulse height distribution

is shown versus time. The pulse height distribution for a single timebin has the shape of a Landau

distribution, as shown in Figure 2.8. This is reflected by the white markers which indicate the most

probable value of a Landau fit to the pulse height distribution within one time bin.
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Figure 2.7: Average pulse height (left) as function of the drift time for run 126088. Red lines indicate time
slices. On the right side the pulse height distribution is shown versus the drift time. The white
markers indicate the most probable value derived from a fit of a Landau function to the pulse
height distribution of a single timebin.

Figure 2.9 gives an overview over further track quality variables. In the top left plot the distribution

of the number of tracklets integrated over all momenta is shown. Tracks with few tracklets are tracks

leaving a sector towards a dead area. These are mostly low-momentum tracks which are curved. For

high-momentum particles which are straight at the TRD level, tracks are expected to have a high number

of tracklets. This can be seen in the top middle figure where the momentum dependence of the number

of tracklets is shown. In the low-momentum region, tracks in average have few tracklets. At 500 MeV/c

tracks are expected to have 5 or 6 tracklets. For tracks passing chambers which are not operational or

excluded, the number of tracklets is lower by the amount of excluded layers passed by the particle. The

distribution of the number of clusters per tracklet is shown in the top right plot. As can be seen from

the pulse height spectrum, the length of the signal is 24 timebins. For this the peak of the distribution is

expected at 24 clusters. Thresholds during the cluster finding can lead to the fact that for certain tracks

fewer clusters are reconstructed. This is the reason for the tail towards lower number of clusters per

tracklet. The tail towards high number of clusters per tracklets is produced by tracks crossing pad rows

where clusters are reconstructed for more than one pad row. In the bottom left plot the distribution of the

number of clusters per track is show. This distribution is a convolution of the distribution of the number

of clusters per tracklet and the number of tracklets per track. The distribution of the cluster charge and
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Figure 2.8: Charge deposit distribution in a time bin. The charge deposit follows a Landau distribution.
This is indicated by a fit of a Landau function, shown in blue.

the sum of the cluster charges are shown in the bottom middle and right plots. Both distributions have

the shape of a Landau function.

From the distributions discussed above, trending variables are derived, which are monitored versus the

run number. These trending variables are:

• Timebin of the amplification peak

• Plateau value of the average pulse height derived from a linear fit to the timebins 10 to 15

• Mean number of clusters per tracklet

• Mean number of tracklets per track

• Average sum of the cluster charges

Figure 2.10 gives an overview of the trending variables for period LHC10d. The plateau height (a) is

stable around 100, variations are within 10%. The timebin of the amplification peak, defined as timebin

where the average pulse height has its maximum, is stable at 3. Also the mean number of clusters and

mean number of tracklets are stable at 24 and at 4, respectively. For the mean of the sum of the cluster

charges fluctuations can be seen towards the end of the period. These fluctuations are within 10% of the

mean value of the sum of the cluster charges.
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Figure 2.9: Track quality monitoring for run 126088: Shown are the distributions of the number of tracklets
(top left), the pt dependence of the number of tracklets (top middle), the distributions of the
number of clusters per tracklet (top right) and per track (bottom left), the distributions of the
cluster charge (bottom middle) and the sum of the cluster charges (bottom right).

2.5 Particle identification strategy

Particles are identified using a Bayesian approach: for every tracklet the probability to be of a given

particle species is calculated, where the species are electrons, muons, pions, kaons, and protons. Several

methods to obtain the probability for a single tracklet can be applied:

• 1D Likelihood method [93]

• 2D Likelihood method [93]

• Neural Network method [114, 115]

Here the 1D Likelihood method, which is discussed in detail in the following sections, is applied to data

from pp collisions. The performance is slightly inferior to that of the other two methods. However it is

more robust, since it does not depend on the quality of the drift velocity and the time offset calibration.
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Figure 2.10: Overview of the trending variables in the TRD versus the run number for period LHC10d.
Shown are the plateau height (a), the timebin of the amplification value (b), the mean number
of clusters per tracklet (c), the mean number of tracklets per track (d), and the mean sum of
the cluster charges (e).
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Based on the probabilities obtained in each tracklet individually with one of the methods listed above,

the probability for a track to be of a certain particle species is calculated via the Bayesian formula

P(i) =

6
∏

j=1

Pj(i)

∑

k∈e,µ,π,k,p

6
∏

j=1

Pj(k)

, i ∈ e,µ,π, k, p (2.1)

where Pj(i) is the probability obtained in layer j to be of species i. The method is assuming independent

measurements Pj(i) in the different chambers. However energy loss leads to a reduction of the momen-

tum. This is especially important for electrons which have a higher energy loss. Due to this, Pj(i) is

obtained for the momentum reconstructed in chamber j.

2.5.1 Charge deposit in a tracklet

Charge deposit in the TRD is measured as a function of the drift time as discussed in section 2.1. The

charge is divided into 8 slices, as indicated in Figure 2.7, according to the drift length:

Qsl ice =

∑

i qi

d x ∗
q

1+ d y
d x

2
+ dz

d x

2
(2.2)

where qi are the clusters within the drift length segment of the slice. The normalisation takes into account

differences in the tracklet length due to the tracklet inclination: this leads to higher charge deposit for

tracks with stronger inclination. These slices serve as input for the neural network method. The total

charge used for the 1D-Likelihood method is calculated as the sum of slices.

Reference charge deposit distributions are derived using a clean sample of electrons from γ conversions,

pions from K0
S - and protons from Λ-decays. The criteria to obtain these samples are listed in Table 2.3

[116]. Additionally a cut on the Armenteros variables is applied (see Appendix D). For γ-conversion

candidates, a cut on the angle Ψpair is applied. Ψpair is defined as:

Ψpair = sin−1 ∆Θ
ξ

(2.3)
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Table 2.3: Overview of the selection criteria used to obtain the reference samples of electrons, pions and
protons[116]. Listed are the topological cuts used to identify the mother species. The χ2/NDF
is taken from a Kalman fit of the secondary vertex by the two daughter tracks constraining the
mother track to originate from the primary vertex.

γ K0
S Λ

cos of the pointing angle [0,0.03] [0,0.03] [0,0.03]

Ψpair [0,0.05] – –

DCA between daughter tracks (cm) [0,0.25] [0,0.02] [0,0.02]

Radius of the secondary vertex (cm) [3,80] [2,30] [2,30]

Max. χ2/NDF from the Kalman fit 7 5 5

Invariant mass (GeV/c2) <0.05 [0.486,0.508] [1.11,1.12]

where Θ is the difference of the polar angles between the daughter tracks, and ξ is the angle between

the momentum vectors of the daughter tracks. This cut was introduced by PHENIX [117] and makes

use of the fact that the magnetic field only affects the opening angle in the plane perpendicular to the

magnetic field, not the polar angle component. So for γ-conversions, where the daughters are emitted

under a small opening angle, Ψpair should be close to 0, while for other decays (i. e. Dalitz decays) a

flat distribution is expected. In order to further clean up the electron sample, a cut on the TPC dE/dx,

expressed as difference to the expected dE/dx for electrons at the given momentum normalised to the

dE/dx-resolution is applied. Electron candidate tracks are required to have a dE/dx within [-1.43, 2.57]σ.

The asymmetric range accounts for a shift in the mean dE/dx from 0 which was observed for electrons

from γ conversions. The shift results from daughter tracks which are not separated enough at the entrance

of the TPC. In this case, the charge distribution produced by the two tracks, which is read out, overlaps,

and shared clusters containing contributions from both tracks are produced. Since the dE/dx calculation

in the TPC is based on the truncated mean, the resulting dE/dx is biased by the shared clusters. This

happens for γ conversions in the outer ITS layers or the entrance of the TPC. The shift is not observed for

tracks requiring a hit in the SPD.

Figure 2.11 shows the charge deposit of electrons from conversions and from pions from K0
S -decays as

explained above. The distributions are obtained for tracks with a momentum of 2 GeV/c at the TRD. A

good agreement to testbeam measurements from 2004 can be seen.

The stability of the charge deposit in the TRD as function of time is checked using the most probable

value and the width of the energy loss distribution for pions having a momentum of 2 GeV/c. The amount

of pions is high enough that the charge deposit can be studied run-by-run, which especially for short runs

having only up to 10000 events is not possible for electrons due to limited statistics. Figure 2.12 shows
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Figure 2.11: Charge deposit for electrons (red) and pions (blue) at a momentum of 2 GeV/c (taken from
[118]). Lines indicate the charge distributions measured in the testbeam 2004.

the time dependence of the most probable value and the width of the charge deposit distribution. For

comparison also the mean and the RMS are shown. Run numbers below 127000 are from period LHC10d

while runs with higher run numbers are from period LHC10e. As can be seen from the figure, both most

probable value and width are stable in time for LHC10d. Variations are below 10%. In period LHC10e a

slight increase in the most probable value with the run number is visible while the width is stable in time.

2.5.2 Reference distributions from the testbeam in 2004

In 2004 tests with a prototype stack of the ALICE TRD were performed using a testbeam provided by

the CERN6 Proton Synchrotron (PS)7 [119]. A beam consisting of electrons and pions was directed to

the stack for momenta from 1 to 10 GeV/c in integer momentum steps, with an additional step at 1.5

GeV/c. Electrons and pions were identified using a combination of a Cherenkov detector and a lead

glass calorimeter. Only events containing one track were considered. For both species the charge deposit

distribution in a TRD chamber was obtained at each given momentum value.

Figure 2.13 shows the comparison of the charge deposit distribution for electrons and pions between

pp collisions and the testbeam. In pp collisions electrons are taken from γ conversions and pions are

taken from K0
S -decays. The charge deposit distributions from pp collisions were rescaled by a common

6 European Organisation for Nuclear Research
7 at CERN, Geneva, Switzerland
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Figure 2.12: Time stability of the charge deposit in the TRD, studied using the most probable value and
the width of the charge deposit distribution of pions having a momentum of 2 GeV/c. For
comparison also the mean and the RMS are shown.

scaling factor which is obtained by comparing the maximum of the charge deposit distribution in data

and testbeam for pions at a momentum of 1 GeV/c. This is done in order to account for differences in

the absolute normalisation between the two samples.

The charge deposit distributions obtained in the testbeam are fitted with a convolution of a Landau

function times an exponential, and a Gauss function:

f (x) = A

∫ ∞

0

L(x − ξ, M PV,Γ) ∗ e−λ∗(x−ξ)g(x ,ξ,σ)dξ (2.4)

with the normalisation constant A, the slope parameter λ, the most probable value MPV. L represents the

Landau function, G the Gauss function. Results of the fit are shown in Appendix C in Figure C.1. A good

agreement can be seen.

Reference distributions for protons and kaons are derived via a scaling method. For this the charge

deposit as function of γ is used. Figure 2.14 shows the most probable value of the charge deposit dis-

tribution as function of γ. The values are expressed relative to the most probable charge deposit for

minimum ionising particles (MIP) , obtained here from pions at a momentum of 500 MeV/c. The black

line shows the energy loss spectrum from GEANT3 with a modified Fermi plateau derived in [101]. Since
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Figure 2.13: Comparison of the charge distribution between testbeam 2004 and pp data for electrons (red)
and pions (blue) for the momentum steps from 1 to 4 GeV/c. Lines show the distributions from
testbeam. In pp collisions electrons are taken from γ conversions and pions from K0

S -decays.
The distributions are normalised to the integral. A global scale factor is applied to account for
differences in the overall normalisation of the charge deposit.

this spectrum contains only energy loss from ionisation, it saturates at the Fermi plateau and the contri-

bution from transition radiation is not visible. This spectrum is compared to the most probable value of

the charge deposit distributions for electrons from γ conversions, pions from K0
S decays and protons from

Λ decays at different momentum values. Due to the different masses of the species, the distributions

cover different γ-ranges. For electrons additionally to the energy loss, the energy deposit due to absorp-

tion of transition radiation photons can be seen. The most probable energy loss values for hadrons are

in agreement with the energy loss parameterisation from GEANT3. For the scaling, the charge deposit

distribution for pions at 1 GeV/c was used. The MPV and γ are scaled with

scale(Γ) =
dE/d x(Γ)

dE/d x(Γre f )
(2.5)

Using the parameterisations derived by this method, reference histograms for the 5 different species and

11 momentum values are created.
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Figure 2.14: Energy loss in the TRD as function of γ for electrons (red) from γ conversions, pions (blue)
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the energy loss spectrum from GEANT4 [122]. In addition to ionisational energy loss, energy
deposit due to the absorption of transition radiation photons in the drift gas is included in
the total energy deposit for electrons, which is shown in the difference of the electron most
probable value to the energy loss parameterisation.

2.5.3 Verification of the particle identification performance

The performance of the particle identification is checked using reference samples of electrons from γ-

conversions and pions from K0
S -decays as discussed in Section 2.5.1. For tracks passing the TRD, likeli-

hood values are calculated via the Bayesian formula using the references from the testbeam 2004 and

renormalised to the sum of the likelihood values for electrons and pions. Only tracks with at least four

tracklets are considered in this analysis. The likelihood values of those tracks are monitored as function

of the momentum, separately for tracks with four, five and six tracklets. In order to select electron can-

didates, a minimum cut (threshold) on the electron likelihood is applied. Thresholds are determined in

a way that the efficiency of the electron selection stays constant for all momenta. The determination is

done using the electron likelihood distribution of the reference electrons. Efficiency values which are

foreseen are 70%, 75%, 80%, 85%, 90% and 95%. Since the electron selection performance strongly

depends on the number of tracklets, thresholds are calculated for each case separately. For example, a

if threshold calculated for tracks with four tracklets is applied to tracks with six tracklets, the efficiency

would be significantly underestimated. Also a threshold calculated for a minimum number of tracklets

can lead to an under or overestimated efficiency in case the relative abundance of tracks with four, five

and six tracklets is different in different samples. So for every number of tracklets, separate thresholds

are provided. In order to evaluate the rejection performance, the thresholds obtained from the electron
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Figure 2.15: Performance of the TRD determined using reference samples from γ conversions and decays
of neutral particles for the electron efficiency steps 70%, 80% and 90% for tracks having
6 tracklets: Pion (blue) and proton (red) efficiency are derived using the given thresholds
(black)

reference sample are applied to the pion reference sample. The pion efficiency can be calculated as the

fraction of pions having an electron likelihood value larger than the threshold value. Figure 2.15 shows

the pion and proton efficiency for the electron efficiency steps 70%, 80% and 90% , for tracks having 6

tracklets. The pion efficiency is lowest at p = 1.2 GeV/c and increases towards higher momenta. This

results from the fact that electrons are at the Fermi plateau and additional charge deposit due to transi-

tion radiation saturates, however the pions are at the relativistic rise and charge deposit is approaching

the charge deposit for electrons. The proton efficiency is highest at momenta below 1 GeV/c. At these

momenta protons are below the MIP region and therefore have a high charge deposit in the detector.

Since the pion probability is almost 0 in this charge deposit region, this leads to a high electron likeli-

hood. When approaching the MIP region, which is at a higher momentum for protons than for pions due

to the higher mass, the electron likelihood becomes lower and the pion efficiency decreases. Above MIP,

the behaviour is similar to the one of pions above MIP.

The threshold is parameterised as function of the momentum by fitting the following formula to values

obtained:

f (p) = 1− a1− a2p− a3e−a4p (2.6)

where a1...a4 are free parameters. The shape of the function has its maximum at the momentum where

the separation is highest. For lower momenta the threshold rises due to the improved separation due
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Figure 2.16: TPC dE/dx spectrum before (red) and after (blue) particle identification in the TRD for tracks
having at least four (a), five (b) and six (c) tracklets at a momentum of 2 GeV/c. Pion and
electron efficiency can be derived by comparing the integrals of fits of Gaussian functions for
electrons and pions to the TPC dE/dx spectrum before and after particle identification in the
TRD.

to the onset of transition radiation, for higher momenta the thresholds decrease since pions are at the

relativistic rise.

The performance of the particle identification can also be checked by comparing the TPC dE/dx spec-

trum for a given momentum slice before and after selection in the TRD. This method works with all

electron and pion candidates after TOF selection8 and does not depend on reference samples. However

thresholds for the electron selection have to be available. Figure 2.16 shows the TPC dE/dx spectrum for

8 Selection of electron candidates is used in TOF is applied before electron selection in the TRD to reject
contributions of kaons and protons for momenta where the energy loss of these particles is similar to the one of
electrons, and the species become indistinguishable. The rejection of kaons and protons with TOF is discussed
in section 3.3
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tracks having at least four (a), five (b) and six (c) tracklets at a momentum of 2 GeV/c. A sum of two

Gaussian functions is fitted to the TPC dE/dx spectrum. Of these two Gaussian functions one contains

the contribution from electrons and the other one contains the contribution from hadrons. Since the

spectrum is taken after rejection of protons and kaons in the TOF detector, the hadrons are mainly pions.

Using the fit results, the electron efficiency can be calculated as

εel =

∫∞
−∞ gel,a(x ,µel ,σel)d x
∫∞
−∞ gel,b(x ,µel ,σel)d x

(2.7)

with the Gaussian functions containing the electron contribution before gel,b and after gel,a particle iden-

tification in the TRD. Mean and width of the Gaussian function for electrons were kept as free parameters

during the fits. The pion rejection factor, the inverse of the pion efficiency, is calculated via

ε−1
π =

∫∞
−∞ gπ,b(x ,µpi,b,σπ,b)d x
∫∞
−∞ gπ,a(x ,µpi,a,σπ,a)d x

(2.8)

with the Gaussian functions containing the pion contribution before gπ,b and after gπ,a particle identifi-

cation in the TRD. Mean and width of the pion contribution were kept as free fit parameters as for the

electrons. As can be seen from Figure 2.16, the rejection power of the TRD is strongly dependent on

the number of tracklets available. Figure 2.17 (left) shows the pion rejection factor as function of the

minimum number of tracklets for tracks with a momentum of 2 GeV/c. As can be seen in the figure,

the rejection power increases with the number of tracklets. Since every tracklet includes additional in-

formation, the separation is improved when having more tracklets. On the other side, due to dead or

bad chambers which are not used in the PID, the acceptance gets reduced when requiring more tracklets

(Figure 2.17 right). Therefore, a cut on the number of tracklets needs to be a compromise between high

purity and good statistics. A good compromise can be the request of at least five tracklets and a stronger

cut on the electron efficiency (i. e. 80%).
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3 Measurement of electrons from heavy-flavour decays

As discussed in section 1.2, the measurement of the pt-spectrum of electrons from the decays of heavy-

flavour hadrons is a complementary way to measure the open-charm cross section with respect to the

measurement in the hadronic channels and the muon channels, and for the bottom cross section with

respect to the measurement of non-prompt J/ψ. The branching ratios into electrons are known to be ≈

10.3% for charm hadron decays, ≈ 10.8% for electrons directly produced in bottom hadron decays, and

≈ 9.6% for electrons from bottom hadrons decaying into charm hadrons which decay semi-electronically

[123]. The measured inclusive electron spectrum contains the contributions from heavy-flavours as well

as components from background sources. After subtraction of the background electrons, the remaining

pt-spectrum contains electrons from both charm and bottom. The bottom component can be quantified

via several methods (selection of electron candidate tracks with a large distance to the primary vertex

[124], electron-hadron correlations [64]) and subtracted so that the charm component remains.

The main steps in the analysis are:

• Selection of events and tracks

• Identification of electrons

• Subtraction of the residual hadronic background due to misidentification

• Correction for acceptance and efficiency

• Evaluation of the systematic error on the inclusive electron spectrum

• Subtraction of the electron background via the cocktail method

These steps will be discussed in the following sections.

The analysis is done for two cases, i. e. with and without the requirement of TRD electron identification.

The two cases are called “TPC-TRD-TOF” when requiring the TRD, and “TPC-TOF” without TRD require-

ment. Both methods overlap in the pt region between 1 and 4 GeV/c. In the analysis including the TRD,

the effect of the momentum cutoff below 1 GeV/c implied by the reference distributions becomes visible.

On the other hand, in the analysis without the TRD, additional rejection power is needed at higher pt

where the electron and pion dE/dx-bands overlap in the TPC. As it will be discussed in section 3.6, the
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use of the TRD increases the systematic uncertainty significantly, so it is advantageous to waive the addi-

tional rejection power of the TRD in the pt region where the separation using TOF and TPC is sufficient.

The final inclusive electron spectrum is obtained combining the two analyses, where below 4 GeV/c only

the measured points from the TPC-TOF are used, while above 4 GeV/c only those from the TPC-TRD-TOF

analysis are taken.

3.1 Analysis Software

The analysis software, called HFE, is part of AliRoot, the ALICE analysis and reconstruction framework.

It makes use of the ALICE Correction Framework (CORRFW) [125]. The software package contains

• the track selection module

• the electron selection module

• container classes

• a class containing the code to correct the inclusive electron spectrum [126]

• utility classes

• the analysis task

The analysis tasks AliAnalysisTaskHFE selects electron candidate tracks and fills a multi-

dimensional histogram for every selection step. For this a container class AliHFEcontainer, which

is based on the existing container class AliCFContainer, is used. The container provides histograms

for all track selection and electron identification steps and for all Monte-Carlo true electrons. For the

filling the class AliHFEvarManager is used, which ensures that the container is filled with the same

quantities in every part of the code. The histogram has five dimension, filled with the variables (pt, η,

φ, Z, mother), where mother is the mother species of the electron and Z is the charge number. The

information on the mother species is only filled when analysing Monte-Carlo samples.

For the efficiency correction, the container is also filled with Monte-Carlo information for electron

tracks created within a radius of 3 cm from the interaction point in the xy-plane in case Monte-Carlo

information is available.

The track selection module uses the track selection classes implemented in the Correction Frame-

work. Criteria which are not defined in the Correction Framework are implemented in a separate

class AliHFEextraCuts. Cuts are arranged in different selection steps. A Correction Framework
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Manager is used to filter tracks and select candidate tracks. All cut values applied are stored in an object

of the class AliHFEcuts.

The electron identification module is designed in a way to allow combinations of different detectors

or methods for the electron identification. For this an abstract base class AliHFEpidBase defines an

interface which all detector PID classes have to implement. Two functions are important: Initialise

contains possible initialisation code, IsSelected contains the electron identification code and returns

the PDG1 code for electrons in case the track could be an electron candidate. All detector PID classes

are treated as independent. The class AliHFEpid does the steering of the electron selection by calling

the functions Initialise for the initialisation and IsSelected for the candidate selection. The

selection is applied in consecutive order as requested for the analysis so that candidates which are rejected

by one detector are not taken into account in the following ones. The following detectors provide a

electron selection class:

• TPC(AliHFEpidTPC)

• TRD(AlIHFEpidTRD)

• TOF(AliHFEpidTOF)

• EMCAL(AliHFEpidEMCAL) [127]

The use of a combined PID based on the bayesian approach is in preparation [128]. However, in order to

study the behaviour of the different detectors in the electron selection on the first data, a combination of

individual detectors as described above was chosen for this analysis.

In order to check the detector response, a quality assurance class containing histograms with basic

information is implemented for every detector. The histograms are filled before the candidate selection

in the detector and for selected tracks.

3.2 Selection of events and tracks

The analysis in proton-proton collisions at
p

s = 7 TeV is based on a dataset collected in summer 2010.

This dataset consists of 185M minimum bias triggers. As trigger condition called "CINT1B", at least one

hit in the SPD or in any of the V0 scintillators is required [90]. In addition, to reject background, the

time measured for particles crossing the V0 detectors with respect to the nominal bunch crossing time

1 Particle Data Group

59



 (cm)z Vertex
-20 -15 -10 -5 0 5 10 15 20

 Y
ie

ld
/E

ve
nt

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Data

Simulation

 Number of contributors
0 10 20 30 40 50 60 70 80

 (
cm

)
z

 M
ea

n 
V

er
te

x

-3

-2

-1

0

1

2

3

Data
Simulation

Figure 3.1: The distribution of the z-position of the primary vertex for data (red) and PYTHIA simulation
(blue) is shown on the left side. Events are selected if the primary vertex is within |z|< 10cm.
The right plot shows the mean position of the vertex in z-direction as function of the number of
contributors to the vertex fit in data (red) and simulation (blue).

is requested to be positive. Events not fulfilling this condition are rejected. In total 125M events are

selected.

For the remaining events further requirements are applied: pileup events, which contain more than

one collision per event, are identified by the SPD and rejected in the analysis. A primary vertex must

have been reconstructed, either with global tracks or with ITS tracklets with at least one contributor. Fig.

3.1 shows the distribution of the z-position of the primary vertex for Data and PYTHIA simulation. As

can be seen from the plot, the measured distribution is reasonably well described in simulations. The

distribution has a Gaussian shape, where the mean is slightly shifted by 1 cm from the centre of the

experiment. Considering the mean of the distribution as function of the number of contributors to the

vertex, a trend can be observed, which is also visible in simulations. The width of the distributions slightly

differ (data: 6.22 cm, simulation: 6.02 cm). Events are selected if the z-position of the primary vertex is

within |z| < 10 cm around the nominal collision point. This cut combined with the different width of the

distributions result in slightly different event selection efficiencies in data and simulation. The fraction

of events with a primary vertex selected by this cut is 88.6% in data and 89.7% in simulation.

Tracks are required to fulfil a set of selection criteria assuring a good track quality. These cuts are

combined into selection steps. Cut steps making restrictions to particle identification detectors are applied

only in case the detector is used in the analysis. The cut steps are:

• Basic track cuts in the ITS and the TPC:

– Track is refitted in the TPC and the ITS

– χ2/T PCcluster < 3.5
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– At least 3 clusters in the ITS

– At least 70 clusters in the TPC

• Rejection of kink tracks. Electrons are stable particles, so they are not expected to produce kink

tracks2. In some rare cases tracks are misidentified as kinks. In order to avoid double counting,

kink daughter tracks are excluded. In case of misidentified kinks the kink mother contains only a

fraction of the true number of TPC clusters. Since this has an impact on the electron identification,

kink mother tracks are also excluded.

• DCA to the primary vertex. Tracks with a large DCA to the primary vertex in the order of one cm

are not considered as a possible source of signal. Among those tracks could be fake tracks or cosmic

ray particles passing the detector while an event is recorded. The DCA cut has to be loose enough

so that it does not affect the signal. In this analysis tracks are required to have a maximum a DCA

to the primary vertex of 1 cm in the in the radial plane and 2 cm in longitudinal direction.

• Requirement of a hit in the SPD. The requirement of a hit in the SPD has an influence on the

amount of background electrons from γ-conversions in the detector material. If a hit in the first

SPD layer is required, only electrons from photon conversions in the beampipe and a fraction of

γ-conversions in the first layer where the daughter tracks produce a hit in this layer are selected. In

case the requirement is a hit in the second or in any of the two SPD layers, then also electrons from

γ-conversions in the first SPD layer and a fraction γ-conversions in the second layer are selected. In

order to keep the amount of background electrons as low as possible, a hit in the first SPD layer is

required.

• Requirement of a minimum number of tracklets in the TRD. As discussed in section 2.5 the perfor-

mance of the pion rejection in the TRD depends on the number of tracklets assigned to a track. For

the analysis including TRD, only tracks having at least four tracklets are considered.

Figure 3.2 shows the distribution of positively charged tracks with pt > 2 GeV/c as function of η and

φ for the selection steps RecKineITSTPC (basic track quality cuts), Primary (rejection of kink tracks),

HFEITS (requirement of the first SPD pixel) and HFETOF (acceptance in TOF). The distribution for

negatively charged tracks looks similarly, however shifted in φ-direction by ∆φ ≈ 0.1 due to the bending

of tracks in the magnetic field. After the track quality cuts the sector structure of ALICE is visible showing

2 When passing material, in particular the beampipe and the ITS, electrons emit bremsstrahlung, which could
lead to kinks. Kinks however are reconstructed in the TPC, so a bremsstrahlung emission which happens before
the TPC will not be reconstructed as a kink
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Figure 3.2: Distribution of tracks as function of η and φ after the selection steps RecKineITSTPC (basic
track quality cuts), Primary (rejection of kink tracks), HFEITS (requirement of the first SPD
pixel) and HFETOF (acceptance in TOF) for tracks with positive charge and pt > 2 GeV/c.

fewer selected tracks in the sector borders. Dead areas are visible after the requirement on the first SPD

pixel, where the total fraction of inactive pixels in this layer is 20% in 2010. One of the areas with

inactive pixels is in front of an active TRD sector, namely number 17, which covers 5.93 < φ < 6.28.

Figure 3.3 shows the distribution of positive charged tracks with pt > 2 GeV/c for tracks with four, five

and six tracklets after the previous track selection cuts. As can be seen from the plot, only few track in

sector 17 (azimuthal coverage: ∆φ < 0.05) at the sector border contribute to the measurement. In the

remaining acceptance, tracks with six tracklets are most abundant in the inner three stacks while in the

outer two stacks the dominant fraction tracks have five tracklets.

3.3 Identification of electron tracks

After selecting candidate tracks which fulfil the selection criteria discussed above, electron candidates

are selected using the ALICE central barrel detectors TPC, TRD and TOF. The detectors cover different

momentum regions in which they are used for hadron rejection or electron selection.
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Figure 3.3: Distribution of tracks with positive charge and pt > 2 GeV/c in the TRD for four, five and six
tracklets after the previous selection steps. Sector borders are indicated as black lines. White
areas indicate holes, either sectors where TRD supermodules are not yet installed, or stacks
where one or more chambers are inactive.

As a first step, TOF is used for the rejection of kaons and protons in the low-momentum region. This is

important since their dE/dx bands cross the dE/dx band for electrons in the TPC and the TRD, making

kaons and protons indistinguishable from electrons in the respective momentum regions. The crossing in

the TPC happens for kaons at p ≈ 0.7 GeV/c and for protons at p ≈ 1 GeV/c.

The time-of-flight is measured for particles reaching TOF with a precision better than 100 ps. From this

measurement the start time of the event t0 has to be subtracted. The t0, as described in section 1.3, is

either obtained from the T0 detector or, if no information from the T0 detector is available, is calculated

using the time-of-flight information from the tracks itself. In case neither of the two methods provide

a measurement, t0 is taken from the bunch crossing time provided by the LHC. The resolution of the

t0 determination has to be included in the time-of-flight resolution. For the selected data sample, the

time-of-flight resolution is ≈ 160 ps [77]. The resulting time-of-flight tTOF can be compared to the

time-of-flight hypothesis tex p for the different particle types electron, pion3, proton and kaon, which is

calculated based on the track length obtained in the reconstruction. The distribution of tTOF − tex p for

tracks from a given species has a Gaussian shape around 0, in case tex p for the corresponding particle

species is used [93].

3 A time-of-flight hypothesis is also calculated for muons. Due to the similar mass, it is indistinguishable from the
time-of-flight hypothesis for pions.
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Figure 3.4: Time-of-flight signal expressed in numbers of σ to the time-of-flight hypothesis for electrons
before (left) and after (right) cut (taken from [1]): lines indicate contributions from elec-
trons+pions, kaons and protons. A 3σ-cut around the time-of-flight hypothesis for electrons is
applied to derive the right plot.

For the rejection of protons and kaons a cut on the time-of-flight signal expressed in numbers of σTOF

from the time-of-flight hypothesis for electrons is applied, where σTOF is the time-of-flight resolution.

Figure 3.4 (left) shows the time-of-flight spectrum as function of the momentum. Due to the larger

mass, kaons and protons have a larger time-of-flight than electrons at the same momentum and can

be discriminated by the larger number of σs to the time-of-flight hypothesis for electrons. However,

as soon as they become relativistic, they become indistinguishable from electrons by the time-of-flight

measurement. This happens for kaons above a momentum of ≈ 1.5 GeV/c and for protons above ≈

3 GeV/c. Pions become indistinguishable from electrons already at a very low momentum. A 3σ cut

around the electron hypothesis is applied to select electron candidates. The time-of-flight distribution for

selected tracks is shown in Figure 3.4 (right).

For tracks selected by TOF, the TRD electron likelihood calculated as described in section 2.5 renor-

malised to the sum of the electron and pion likelihood is used to reject a considerable fraction of pions.

Figure 3.5 (left) shows the TRD electron likelihood for tracks having six tracklets as example. A cut

providing an electron efficiency of 80% (see section 2.5.3) is applied to select electron candidates. The

sample of selected electrons is shown in Figure 3.5 (right). Similar cuts are applied to tracks with four or

five tracklets.

The final selection of electrons is done in the TPC. Figure 3.6 shows the energy loss in the TPC with

respect to the electron hypothesis, normalised to the energy loss resolution σTPC−dE/dx. Due to the pion

rejection provided by the TRD, electrons and pions are separated up to the highest momenta considered

in the analysis. A cut on TPC dE/dx , which is defined as the mean of the dE/dx distribution of electrons,

is applied. This cut, called “top-half TPC dE/dx cut”, is indicated as lower black line in the plot. The
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Figure 3.7: η-dependence of the energy loss in the TPC for electron tracks with a momentum between 1
and 2 GeV/c.

cut is verified to be stable with the momentum and obtained from a multi-Gaussian fit performed in the

pt-range between 1 and 2 GeV/c [129]. The upper cut is defined to be at a distance of 3σ from the lower

cut, indicated as the upper black line. Also the σ is derived from the multi-Gaussian fit. Particles with an

energy loss within this band are finally selected as electrons.

Figure 3.7 shows the dependence of the energy loss in the TPC for electrons on η in the momentum

range between 1 and 2 GeV/c for data. The energy loss for electrons is larger at larger η. This has an

effect on the electron selection in the TRD: In case the whole η-range (|η| < 0.8) would be used in this

analysis, then the mean of the dE/dx-distribution is moved to a higher value compared to using only a

more central η-range (like |η| < 0.5). Consequently a dE/dx-cut as described above, which is tuned

for the full η-range, prefers tracks at a larger η where the mean energy loss is larger. Since the outer

stacks have a larger amount of bad chambers than central stacks, the relative abundance of tracks with 5

tracklets is increased by the cut on the TPC dE/dx . In order to avoid this effect, the analysis is restricted

to |η| < 0.5. A correction of the dependence of dE/dx on η is in development [130].

The mean of the energy loss distribution for electrons in the TPC depends on the number of clusters

used in the energy loss calculation for a given track [131]: the cluster charge in the TPC follows a Landau

distribution. Out of the cluster charges for a single track, the energy loss is calculated using a truncated

mean, using the lowest 60% of the clusters charges [132]. This cut removes the tail of the distribution

and leads to a Gaussian dE/dx shape. In the energy loss calculation, clusters which are at the sector

borders are not taken into account. They are only used for track reconstruction. Clusters can also be
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energy loss calculation: in the left plot the mean of the energy loss distribution for electrons is
shown as function of the minimum number of clusters used in the energy loss calculation. The
width of the energy loss distribution is shown in the right plot. Mean and width are derived
from a fit of a Gaussian function to the energy loss distribution in the momentum interval
between 1 and 2 GeV/c.

missed in the reconstruction if the charge is below a given threshold. In this case for a given pad row a

cluster is assumed to be produced if the neighbouring pad rows themselves contain clusters. A cluster is

then created for this pad row with the charge of the threshold. These clusters are used only in the energy

loss calculation and not in the tracking. When having fewer clusters available for the calculation of the

truncated mean, the truncation artificially shifts the dE/dx to lower values [133].

Figure 3.8 shows the dependence of the mean energy loss for electrons in the TPC with |η| < 0.5 on

the minimum number of clusters used for the energy loss calculation. Mean and σ are extracted from

a fit of a single Gaussian function in the momentum interval between 1 and 2 GeV/c. As can be seen

from the figure, the mean energy loss is increasing with the number of clusters used for the energy loss

calculation until a saturation is reached.

A correlation between the number of clusters in the TPC and a requirement on the number of tracklets

in the TRD has been observed. For momenta above 1 GeV/c, the curvature of tracks is small enough that

tracks can be considered as straight. In this case, a requirement on the TRD prefers tracks which are in

the centre of the sector, which have a higher number of clusters for dE/dx calculation than those at the

sector borders. So the amount of tracks at the sector borders is reduced in this case compared to not
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Figure 3.9: Dependence of the mean TPC dE/dx for electrons, obtained from a single-Gaussian fit of the
TPC dE/dx in the pt region between 1 and 1.5 GeV/c, on the run number.

applying requirements on the TRD [134]. This effect produces a difference in the energy loss distribution

for electrons which shifts the mean. To have comparable energy loss distributions, tracks are required to

have at least 80 clusters used for the energy loss calculation. With this cut, mean and width have been

found to be compatible for the analysis with and without TRD.

The time-stability of the TPC dE/dx was checked for the sample used in this analysis in the momentum

region between 1 and 1.5 GeV/c. Figure 3.9 shows the mean of the TPC dE/dx-distribution, obtained

from a single Gaussian fit to the TPC dE/dx in the given momentum region, as function of the run

number. A low-momentum region was chosen in order to have enough statistics to perform a good fit of

the electron Gaussian on a run-by-run basis. The fit range for the single Gaussian fit was set to the range

from -2.5σ up to 2.5σ. As can be seen from the plots, the points scatter around -0.3. Apart from the first

run (122374), where the mean of the electron Gaussian is 3 σ away from the mean of the other runs, all

runs are compatible within the errors.

The remaining hadron contamination is estimated from a fit of a function containing the dE/dx-

contribution of different species to the dE/dx-spectrum. The electron component is described by a

Gaussian function. Also for the kaon and proton component a good description by a Gaussian func-

tion is observed. For the sum of the pion and muon component, a Landau function multiplied with an

exponential function was found to provide the best description of the tail in the dE/dx-distribution of
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Figure 3.10: Example fit used to determine the hadron contamination (taken from [1]): the black line
shows the combined fit. Contributions from the single components are indicated as shaded
areas.

pions, which is the dominant component of hadronic background. Figure 3.10 shows an example of the

fit applied to the momentum range 3 GeV/c < p < 4 GeV/c. As can be seen from the plot, the dE/dx

distribution is well described by the combined fit, from which the single components are extracted. The

hadron contamination is calculated as the ratio of the integral over the sum of all background compo-

nents in the dE/dx-region used for the electron selection to the integral over the sum of all components

in the same integration range. With the cuts applied in this analysis, the contamination is observed to

be less than 2% up to 8 GeV/c [1]. For momenta above, the amount of candidate tracks is too small to

derive a contamination value. In the further analysis, contamination is not subtracted.

3.4 Efficiency evaluation

We need to determine the efficiency of the track selection and the efficiency of the electron identification.

The evaluation of the track selection efficiency including the electron identification with TOF is based

on Monte-Carlo simulations. Two Monte-Carlo samples were used for the efficiency evaluation: a pp

minimum bias sample and a signal-enhanced pp sample. Both samples are produced with the PYTHIA

[135] event generator (version 6.421) using the tune Perugia0 [136]. The detector simulation is done

using GEANT3 (version 1.12). The signal-enhanced sample contains pp events where in addition to the
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Figure 3.11: pt distribution (generated electron-pt) of true electrons in the minimum bias left and the
signal-enhanced sample (right) based on Monte-Carlo information. pt distributions are shown
for electrons from open charmed and bottom hadron decays, γ conversions, other non-heavy-
flavour background coming from sources described in section 3.8, quarkonia (J/ψ, Υ) and
other background.

minimum bias condition one heavy-flavour quark pair (either charm or bottom) is produced, and where

after the fragmentation at least one heavy-flavour hadron decays into an electron within |y| < 1.2. The

advantage of the signal-enhanced sample is that it provides a high-statistics electron sample up to the

highest pt bins used in the analysis with a relatively small number of events (5.3 million events, compared

to 153 million events in the minimum bias sample).

The efficiency is calculated as the number of selected electrons in a pt-bin divided by the number of

true electrons in the pt-bin. Due to the short lifetime of heavy-flavour hadrons (cτ≈ 300µm for charmed

hadrons and ≈ 500µm for bottom hadrons), electrons from heavy-flavour sources can be considered

as primary. However, the electron sample also contains electrons from background sources which are

eventually subtracted. These have to be included in the number of true electrons. Due to the requirement

of the SPD first pixel, the production vertex of the electron has to be within 3 cm in radial direction from

the primary vertex. Reconstructed tracks are only used in the efficiency calculation if the associated

Monte-Carlo tracks fulfil the same conditions. Figure 3.11 shows the pt-distribution of true electrons

from various sources in the minimum bias sample (left) and the signal-enhanced sample (right). Electron

sources are separated into open charm hadrons, open bottom hadrons, γ conversions, other non-heavy-

flavour sources containing the Dalitz decays of π0, η, η′ and the dielectron decays of ρ, ω, φ (see

Section 3.8), J/ψ, Υ and other electron sources, which are mainly decays of neutral and charged kaons,

called Ke3 (see Section 3.8). The enhancement of electrons from charm and bottom hadron decays can

be seen in the signal-enhanced sample.
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Figure 3.12: Track selection efficiency after the cut step for track quality, kink rejection, SPD pixel require-
ment and matching and electron selection in TOF. The efficiency is always expressed with
respect to the number of true primary electrons based on the primary selection criterion. The
left plot shows the efficiency derived from the minimum bias sample, the right plot the one
from the signal-enhanced sample

Figure 3.12 shows the electron selection efficiency as described above for several cut steps for the

minimum bias sample (left) and for the signal-enhanced sample (right). The cut steps are the basic track

quality cuts, kink rejection, requirement of the first SPD pixel and the electron identification with TOF. At

every selection step, the reconstructed pt is taken for reconstructed tracks while for Monte-Carlo tracks

the true pt is taken. Electrons, however, loose energy due to Bremsstrahlung when passing detector

material, in particular in the beam pipe and in the ITS, which leads to a measured pt which on average

is lower than the pt with which the electrons are produced. As a consequence, the efficiency is higher

at lower momenta since the number of reconstructed electrons in lower pt bins also contains electrons

produced with a higher momentum than actually measured. This can be seen from Figure 3.13. Here the

ratio of the number of electrons in a given pt bin with the reconstructed pt over the amount of electrons

with the true pt in the same pt bin is shown for the minimum bias and the signal-enhanced sample. Above

1 GeV/c the ratio is below 1, and it is increasing with decreasing pt, which means that a certain amount

of electrons produced with a given pt is reconstructed in a lower pt bin. In order to correct for this effect,

the unfolding procedure described in section 3.5 has been applied. Comparing the two samples it can

be seen that the shape of the distribution is different between the two samples, especially in the region

between 1 and 3 GeV/c. The difference is coming from the different pt shape of the minimum bias and

the signal-enhanced sample. Due to the enhancement of electrons from the signal sources, the amount of

electrons with higher pt is larger in the signal-enhanced sample than in the minimum bias sample, which

leads to a slight increase of electrons in the measured-pt region around 1 GeV/c. Since the pt-distribution

is not known a-priori, this effect is included in the systematic error.
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Figure 3.13: Influence of pt reconstruction on the efficiency: shown is the ratio of the number of electrons
with a given reconstructed pt to the number of electrons with the true pt for a given pt bin for
the minimum bias sample (left) and the signal-enhanced sample (right) for different selection
steps.

When the TRD information is used, the efficiency for the cut on the number of TRD tracklets has to

be included. Figure 3.14 shows the fraction of electron tracks selected in the previous steps (basic track

cuts, kink rejection and SPD cluster requirement), which have four, five or six TRD tracklets, obtained

from the minimum bias Monte-Carlo sample. This quantity can be interpreted as the efficiency of the cut

on the number of TRD tracklets.

The efficiency of the electron identification is taken from data itself. As described in section 3.3, the

TRD electron identification cut is tuned using electrons from γ-conversions so that the cut provides a flat

efficiency versus pt. We choose 80%. For the electron selection in the TPC the selection cuts are chosen

to be the mean of the electron dE/dx distribution and +3σ, where σ is taken from a fit of a Gaussian

function to the electron dE/dx distribution. From this an efficiency of 0.495 for the electron selection in

the TPC is obtained. This leads to a total fixed electron selection efficiency of 0.396 which is used in the

efficiency correction.

3.5 Correction of the inclusive electron spectrum

The pt-differential invariant yield of inclusive electrons is calculated as

1

2πpt

d2N

dptd y
=

1

NMB

1

2πpcent
t ∆pt

1

Nch

Nel(pt)
εreco

(3.1)
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where Nch = 2 (number of charges), Nel(pt) is the raw number of electrons in a given pt bin, εreco is the

reconstruction efficiency, which includes the acceptance, and NMB is the number of minimum bias events.

The efficiency is estimated as described in section 3.4. The total efficiency is the product of track

selection and electron identification efficiency. In addition to the correction for efficiency, an unfolding

procedure has to be applied because electrons loose energy in the detector material due to Bremsstahlung

(section 3.4) The unfolding is based on the Bayesian theorem [137] and is done in an iterative approach.

One starts with an arbitrary pt-spectrum as a guess for the true pt-spectrum. In this analysis, the true

electron pt-spectrum from simulation is used. A correlation matrix describes the correlation between

measured and true pt. Figure 3.15 shows the correlation matrix obtained with the minimum bias Monte-

Carlo sample. The correlation matrix is created for true electrons before the electron identification step.

Besides the diagonal elements describing tracks where the reconstructed pt is in the same pt bin as the

true pt, off-diagonal elements describing tracks where the measured pt is in a lower or a higher4 pt bin

4 Due to the detector pt resolution the measured pt can also be slightly higher for a fraction of tracks. These tracks
contribute to the neighbouring bins of the diagonal elements.
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than the true pt are visible too. Using the correlation matrix, the pt spectrum in the next iteration step

can be calculated as [137]

nt,i+1(pt,k) =
npt
∑

j=1

nm(pt,j) ∗
C(pt,j, pt,k)nt,i(pt,k)
∑npt

l C(pt,j, pt,l)nt,i(pt,l)
(3.2)

Here nt,i(pt,k) is the true number of electrons in the kth pt bin in iteration step i, nm(pt,k) is the measured

number of electrons in the corresponding pt bin and C(pt,l, pt,m) is the correlation between the measured

pt in bin l and the true pt in bin m. The case i = 0 refers to the input pt spectrum. After 10 iterations the

procedure is stopped. In this analysis, this happens after five iteration steps. The unfolding procedure is

implemented in the Correction Framework [138].

In the TPC-TRD-TOF analysis, the corrected inclusive electron pt spectrum is produced for tracks with

four, five and six tracklets separately. The final inclusive electron spectrum is obtained from the three

independent spectra using an error-weighted mean.

In order to obtain the pt-differential cross section of electrons from heavy-flavour hadron decays, the

invariant yield of inclusive electrons after subtraction of the background has to be scaled with the mini-

mum bias cross section. The minimum bias cross section was measured in a van der Meer scan in autumn

2010 [139, 140]. In a van der Meer scan [141] the luminosity is measured via the rate R of a reference
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process as function of the separation of the two beams in x- and y- direction. The cross section of the

reference process can be obtained via

σR =
R(0,0)

L
(3.3)

As reference process a hit in both V0 detectors is required (V0AND). The cross section for the reference

process σV0AN D is determined to be 54.34 ± 1.9 (sys.) mb [142]. The minimum bias cross section is

calculated via

σMB =
NMB

NV0AN D
σV0AN D (3.4)

where NMB is the number of minimum bias events and NVOAN D is the number of events for the reference

process. The number of events has to be corrected for the event selection efficiency. After event selection

cuts, 146M events are selected for the analysis. Out of these events, 125M events fulfil the V0AND

condition. The event selection efficiency due to the restriction of the z-range of the vertex is 0.8814.

Events which do not fulfil the V0AND condition do not have a reconstructed vertex. Therefore, the

number is not corrected for the restriction in the z-range. The corrected number of minimum bias events

is 159M, out of which 142M fulfil the V0AND condition. From this one obtains for the minimum bias

cross section σMB = 62.2 mb.

3.6 Estimation of the systematic uncertainty

In order to estimate the systematic uncertainty on the inclusive electron spectrum, several cuts are mod-

ified with respect to the default configuration as described in section 3.2 and section 3.3. The spectra

derived from this are corrected as described in section 3.5. For the correction the signal-enhanced Monte-

Carlo sample is used. In the TPC-TRD-TOF analysis, apart from the electron selection in the TRD, the

studies are done only for tracks with six tracklets.

Table 3.1 shows the cut variations applied in the TPC-TRD-TOF analysis. For the TPC, the lower cut

on the dE/dx is chosen in a way that certain efficiency values (60%, 55%, 45%, 40%) are provided. The

upper dE/dx cut is adapted as well. The results after cut variation are compared to the reference cut. As

example, the comparison for the TRD electron identification cut is shown in Figure 3.16. In the left plot

the comparison of all inclusive electron spectra including the reference spectrum is shown, in the right

plot the ratios of the spectra with varied cuts to the reference spectrum is shown. As can be seen, the
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Table 3.1: Cut variation for the determination of the systematic uncertainty: each cut is varied compared
to the default configuration.

Selection criterion Default cut Lower cut Upper cut

Number of clusters in the ITS 4 3 5

Number of clusters in the TPC 120 100 140

Number of clusters for TPC dE/dx calculation 80 80 100, 120

DCA in radial direction (mm) 1 0.3, 0.5 2

DCA in z-direction (mm) 2 0.5, 1 4

TOF electron identification (nσ) 3 2 4

TPC electron identification lower cut (nσ) -0.21 -0.45, -0.33 -0.09, 0.02

TRD electron efficiency cut 80% 75% 85%
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Figure 3.16: Comparison of the inclusive electron spectra using different TRD electron selection cuts to the
reference spectrum: in the left plot the comparison of the corrected inclusive electron spectra
is shown. The reference cut provides an electron efficiency of 80%. In the right plot the ratios
of the spectra with the modified cut to the reference cut are shown.

spectra agree within 5% which is taken as systematic uncertainty of the cut. Ratios for the other selection

criteria are shown in the appendix in section B.

The systematic uncertainties assigned to the selection criteria are listed in Table 3.2. For the one of

the electron selection in the TPC a linear increase within 4 and 8 GeV/c is assumed. In Table 3.2 only

the upper and lower value for this uncertainty is listed. In order to get a systematic uncertainty for the

η range and the charge, the sample is split into two parts (positive and negative) for both cases. The

resulting spectra are then compared to the reference spectrum done in the full η-range containing both

positive and negative charge tracks. From this, a systematic uncertainty of 10% for both η and charge

is deduced. A systematic uncertainty of 5% is assigned to the unfolding procedure. The total systematic

uncertainty is calculated as the quadratic sum of the single components and is within 20% at 4 GeV/c
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Table 3.2: Systematic uncertainties assigned to the selection criteria in the TPC-TRD-TOF analysis:

Selection Criterion Systematic uncertainty (%)

Matching between TPC and ITS 2%

Number of clusters in the TPC pt < 6 GeV/c 5

pt > 6 GeV/c 10

Number of clusters for TPC dE/dx calculation < 1

Number of hits in the ITS 5

DCA to the primary vertex in xy (z) < 1

TOF electron identification 5

TPC electron identification pt = 4 GeV/c 10

pt = 8 GeV/c 16.7

TRD electron identification 5

Charge 10

η 10

Unfolding 5

Total: pt = 4 GeV/c 20

pt = 8 GeV/c 26

and 26% at 8 GeV/c. Since the final inclusive spectrum is combined from the TPC-TRD-TOF and the

TPC-TOF spectrum, the systematic uncertainties from the TPC-TRD-TOF analysis are taken into account

only in the pt-range where TRD is applied in addition to TPC and TOF, which is within 4 and 8 GeV/c.

The same analysis is done for the TPC-TOF analysis in the pt-range between 0.5 and 4 GeV/c [143].

Table 3.3 lists the uncertainties obtained. A total systematic uncertainty of 13% is obtained.

In addition to the systematic uncertainty on the inclusive electron spectrum, a systematic uncertainty

of 3.5% [142] on the minimum bias cross section which is used in the normalisation has to be taken into

account. Sources of the systematic uncertainty as described in [139] are the beam intensity, which is the

dominant source of uncertainty, the beam separation in the luminosity determination, and the stability

of the cross section of the reference process with respect to the bunch crossing index. This uncertainty is

not included in the total systematic uncertainty for both analyses.

3.7 Invariant yield of inclusive electrons

The yield of inclusive electrons obtained after correction and normalisation (section 3.5) is shown for

the TPC-TOF analysis in the pt-range 0.5 GeV/c < pt < 4 GeV/c and for the TPC-TRD-TOF analysis in
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Table 3.3: Systematic uncertainties from the TPC-TOF analysis: The uncertainties are determined in the
same way as done in the TPC-TRD-TOF analysis

Selection Criterion Systematic uncertainty (%)

Matching between TPC and ITS 2

Number of clusters in the TPC pt < 0.7 GeV/c -6,+3

pt > 0.7 GeV/c 3

Number of clusters for TPC dE/dx calculation < 3

Number of hits in the ITS pt < 1 GeV/c -2,+4

pt > 1 GeV/c 2

DCA to the primary vertex in xy (z) pt < 0.6 GeV/c -2,+0.5

pt > 0.6 GeV/c 0.5

TOF electron identification 5

TPC electron identification 4

Charge negligible

η negligible

Unfolding 3

Total ≈ 8.5

the pt-range 1 GeV/c < pt < 8 GeV/c in Figure 3.17. The two spectra agree within the uncertainties in

the pt-range where the analyses overlap. The final pt-differential invariant yield of inclusive electrons

is constructed based on the two analyses, using the results from the TPC-TOF analysis in the pt-range

0.5 GeV/c < pt < 4 GeV/c and the ones from the TPC-TRD-TOF analysis in the pt-range 4 GeV/c < pt <

8 GeV/c.

3.8 Electrons from background sources

In addition to the electrons from heavy-flavour hadron decays, the inclusive electron spectrum contains

electrons from other sources. These electron sources are:

• Dalitz-decays (π0, η, η′)

• Dielectron decays of light vector mesons (φ, ω, ρ)

• Dielectron decays of heavy vector mesons (J/ψ, Υ)

• Conversion of decay photons

• Conversion of real and virtual direct photons
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Figure 3.17: pt-differential yield of inclusive electrons, shown for the TPC-TOF (black) and the TPC-TRD-
TOF analysis (red). The yield of inclusive electrons contains contributions from heavy-flavour
hadron decays and from various background sources.

• Semi-electronic decay of the kaon

The amount of background electrons is determined with a statistical method. For this, a cocktail, which

includes electrons from all the background sources mentioned above, is generated [144]. The cocktail

generator is implemented within the AliRoot framework. Particles of each species are generated based

on given pt and y parameterisations. Parameterisations for pt are discussed in this section, for y a flat dis-

tribution is assumed. Generated particles are decayed into electrons and other products by PYTHIA. Each

electron track is weighted with the pt-integrated cross section of the particle species. The pt-spectrum

of each component is normalised by the number of generated mother particles and divided by σ = 62.2

mb, which is the minimum bias cross section, to convert the pt-differential invariant cross section into

pt-invariant inclusive yields. After generation, the cocktail of background electrons is subtracted from the

inclusive electron spectrum to derive the heavy-flavour electron spectrum. The method is described in

[1]. Figure 3.18 shows the multiplicity of background electrons as function of pt. The contributions from
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Table 3.4: Decay channels of light mesons included in the cocktail: the channels are sorted into dielectron
decays, Dalitz decays and four-body decays. Branching ratios are quoted in brackets [3].

species dielectron decay Dalitz-decay four-body decay

π0 – π0→ γe+e− (1.17%) –

η – η→ γe+e− (7× 10−3) η→ π+π−e+e− (2.68× 10−3)

η′ – – η′→ π+π−e+e− (2.4× 10−3)

ω ω→ e+e− (7.28× 10−5) ω→ π0e+e− (7.7× 10−4) –

φ φ→ e+e− (3× 10−4) φ→ ηe+e− (1.15× 10−4) –

ρ ρ→ e+e− (4.72× 10−5) – –

different sources, which are indicated as coloured lines, are discussed below.

For light mesons the cocktail is based on the π0 pt-spectrum measured with ALICE [145] in the decay

channel π0→ γγ. The measurement is done either using the electromagnetic calorimeter PHOS to detect

the photons or reconstructing γ-conversions in the detector material with charged particle tracks in the

TPC. The second method is especially important at low-pt where calorimetry is difficult. With this a wide

pt-range from 0 up to 25 GeV/c is covered. The π0 pt-spectrum is fitted with a Tsallis-function [146]:

E
d3σ

dp3 =
σpp

2π

dN

d y

(n− 1)(n− 2)
nT (nT +m(n− 2))

(1+
mt−m

nT
)−n (3.5)

with the free fit parameters n, T and dN/dy. mt is the transverse mass defined as mt =
p

m2
0+ p2

t , where

m0 is the rest mass of the π0. The pt-spectrum of the η-meson measured with ALICE [145] is treated in

the same way. In order to include other light mesons (η′, ω, φ, ρ) into the cocktail, mt-scaling [147]

is used. Table 3.4 gives an overview of the decay channels of the light mesons included in the cocktail.

In the parameterisation obtained for the π0 the mass m0 is replaced by the mass of the meson. The

pt-spectra for the different mesons are normalised in the way that at 5 GeV/c the following ratios are

obtained:

• ρ/π0: 1.0 ± 0.3 [3]

• η′/π0: 0.25 ± 0.075 [3]

• ω/π0: 0.9 ± 0.27 [148]

• φ/π0: 0.4 ± 0.12 [149]
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Figure 3.18: Contribution of the different sources to the total electron background (taken from [1]):
coloured lines show the yield of electrons from the various background sources, which are
included in the cocktail, as function of pt. The black line shows the sum of all background
sources.

The ratios ω/π0 and φ/π0 are measured by PHENIX at
p

s = 200 GeV, the ratios ρ/π0 and η′/π0 are not

measured in high-energy pp-collisions but are taken from jet fragmentation under the assumption that

the particle ratios are the same also in pp-collisions at high-pt. The main contribution from light mesons

to the cocktail, as can be seen from Figure 3.18, is the π0 input.

In addition to electrons from dielectron-, Dalitz- and four-body decays, light mesons also contribute

to the cocktail via conversions of photons from the diphoton-decays. Compared to other decay channels,

the branching ratio into two photons is large (π0: 98.82%, η: 39.3% [3]). However, the conversion

probability depends on the material budget relevant for the analysis. The material budget is studied

using γ-conversions reconstructed with TPC tracks. Comparisons between conversions reconstructed in

data and in Monte-Carlo simulations show that the detector material is well described in simulations,

where the agreement is on a level of 4.5% [145]. Due to the requirement of the first pixel in the analysis,

only γ-conversions in the beam pipe and part of the first SPD-layer contribute to the inclusive electron
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spectrum. The fraction of the first SPD layer material contributing to the relevant material budget is

obtained from a Monte-Carlo simulation to be 45%. The effective thickness of the first ITS layer is

determined to be X/X0 = 1.14%, so an effective thickness of 0.513% is included into the converter

material relevant for this analysis. The effective thickness of the beampipe is X/X0 = 0.26%. This leads

to a total effective thickness of (0.77 ± 0.07)%.

The amount of electrons from photon conversions for a given meson is determined by the ratio

Conv

Dali tz
=

BRγγ× 2× (1− e
7
9

X
X0 )× 2

BRDali tz × 2
(3.6)

where BRγγ and BRDali tz are the branching ratios for the diphoton and the Dalitz decay, respectively, and

1− e
7
9

X
X0 is the conversion probability. The electron pt-spectra from the contributing background sources

(π0, η, η′) are scaled based on this formula.

In order to include the contribution from heavy-flavour quarkonia to the cocktail, the J/ψ pt-spectrum

measured by ALICE [97] and the Υ pt-spectrum measured by CMS [150] are fitted with equation 3.5 and

the parameterisation is included into the cocktail.

Direct photons, produced in hard scattering processes are not yet measured with any of the LHC

experiments in the low-pt region5. A parameterisation is motivated by NLO calculations [153]. The

points derived are fitted with equation 3.5. The obtained parameterisation is included into the cocktail.

Weak decays of charged kaons (K → π0νee), and neutral kaons (K0
L → π

±e∓νe), called Ke3, are a minor

contributor to the background cocktail and only relevant in the low-pt region below 1 GeV/c. Due to the

lifetime of the kaon (cτ ≈ 3.7 m for charged kaons, ≈ 15.34 m for K0
L [3]) and the requirement of the first

SPD layer in the analysis, only a little fraction of the decays give a contribution to the electron background.

A parameterisation is obtained from a full Monte-Carlo simulation, including also the reconstruction.

In order to evaluate the systematic uncertainty of the cocktail, the points of the π0-spectrum, which is

also the dominant contributor to the uncertainty, are shifted up and down by its systematic error. The

shifted spectra are fitted with equation 3.5. The parameterisations for J/ψ, Υ are treated in the same

way. For the light mesons the ratios used for the normalisation are shifted by the systematic errors of the

ratio. The systematic uncertainty of the conversions is based on the uncertainty of the material budget,

5 CMS provides a measurement of direct photons for pt > 20 GeV/c [151, 152]. Results are compatible with NLO
pQCD calculations in this pt region.
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Table 3.5: Systematic error at a momentum of 5 GeV/c for different cocktail inputs.

Source lower error upper error (%)

γ-conversions -3.5 3.5

π0 -6 5.5

η -2.8 3.2

η′ -0.8 0.8

ω 0.9 0.9

φ -0.5 0.5

ρ -0.2 0.2

J/ψ -2.1 2.1

Υ -0.4 0.4

direct photons -1.9 1.9

Ke3 ≈ 0 ≈ 0

total -8 7.9

which is directly propagated into the cocktail. A systematic error of 100% is assigned to the Ke3. For

direct photons a systematic error of 50% is assigned.

After every variation, the cocktail is compared to the reference cocktail. The systematic errors for

each ingredient are added in quadrature as done for the inclusive electron spectrum. Table 3.5 gives

an overview of the systematic error of the different cocktail ingredients. As can be seen, the major

contribution to the systematic error comes from the π0 input spectrum. The total systematic error at this

pt region is ≈ 8%. Below 1 GeV/c the systematic error is largest and reaches ≈ 20%.
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4 Results

4.1 Inclusive electron spectrum

As described in chapter 3 the inclusive electron spectrum is measured in pp collisions at
p

s = 7 TeV.

In the low-pt region up to 4 GeV/c the measurement is done with the “TPC-TOF” strategy while above

4 GeV/c the “TPC-TRD-TOF” analysis is used. Altogether a pt-range from 500 MeV/c up to 8 GeV/c is

covered. The spectrum contains contributions from electrons from heavy-flavour hadron decays as well

as contributions from electrons from various background sources, calculated as described in section 3.8.

Figure 4.1 shows the comparison of the inclusive electron spectrum with the various cocktail sources.

As can be seen from the plot, the dominant contribution at low-pt comes from the π0 Dalitz-decay and

the photon conversions. Other contributions are so low in yield that they practically do not affect the

inclusive electron spectrum. Towards higher pt the dielectron decay of the J/ψ becomes important, too.

The measured inclusive electron spectrum exceeds the background cocktail as expected. The excess

originates from the semi-electronic decay of heavy-flavour hadrons. In the lower panel the ratio inclusive

electrons over cocktail is shown. Towards low pt this ratio approaches unity, meaning that the signal is

small compared to the background. The ratio is increasing with pt. At pt ≈ 2 GeV/c signal and background

are of the same order, at higher pt the contribution from signal is dominating. The systematic uncertainty

of the ratio is calculated as quadratic sum of the relative systematic uncertainties of the inclusive electron

measurement and the background in the given pt-bin. The increase of the systematic uncertainty at 4

GeV/c is due to different systematic uncertainties of the TPC-TOF and the TPC-TRD-TOF analysis.

In order to obtain the pt-differential cross section of electrons from heavy-flavour hadron decays, the

background yield is subtracted from the yield of inclusive electrons. The systematic uncertainties of

the yield of inclusive electrons and of the background cocktail are added in quadrature. The resulting

invariant yield of electrons from heavy-flavour hadron decays is multiplied with the minimum bias cross

section. Figure 4.2 shows the pt-differential cross section of electrons from heavy-flavour hadron decays

from this analysis (red).

In a separate analysis, called “TPC-EMCAL” the heavy-flavour electron spectrum is obtained using the

detectors TPC and EMCAL for electron identification. The measurement is performed in the pt-range

3 GeV/c < pt < 7 GeV/c and in the rapidity range |y| < 0.6. In 2010, four out of ten EMCAL super-
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Figure 4.1: Inclusive electron spectrum from the TPC-TOF/TPC-TRD-TOF analysis compared to the cocktail
of various background sources. Boxes indicate the systematic uncertainty on the inclusive
electron measurement. Contributions from background sources are shown as lines. The ratio of
inclusive electrons over the cocktail is shown in the lower panel.
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modules in two sectors were installed, leading to a coverage in φ of 40o. Since in front of the EMCAL a

large fraction of pixels in the first SPD layer is inactive, a hit in either the first or the second pixel layer is

required. This leads to a larger electron background from γ conversion due to the larger material budget

which in this case includes the full first SPD layer and most of the second SPD layer. As done in the

TPC-TOF/TPC-TRD-TOF analysis, the pt-differential cross section of electrons from heavy-flavour hadron

decays is obtained by the subtraction of the electron cocktail, adapted to the increased material budget,

from the yield of inclusive electrons. The comparison between “TPC-EMCAL” analysis and the analysis

described in detail in this thesis is shown in Figure 4.2. Both spectra agree within the uncertainties.

4.2 Comparison to the FONLL prediction

The pt-differential cross section of electrons from heavy-flavour hadron decays is compared to a FONLL

prediction [52, 154, 155]. The FONLL prediction is the sum of the predictions for charm quarks fragment-

ing into D-hadrons which subsequently decay semi-electronically (c → e), bottom quarks fragmenting
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into B-hadrons which decay semi-electronically (b→ e), and bottom quarks fragmenting into B-hadrons

decaying into D-hadrons with a subsequent semi-electronic decay (b→ c→ e). The calculation is done in

the pt range 0.5 GeV/c < pt < 30 GeV/c and in the rapidity range |y| < 0.5. As set of parton distribution

functions (PDF) CTEQ6.6 [57] is used. The fragmentation of bottom quarks into hadrons is based on the

non-perturbative fragmentation function from Kartvelishvili [155–157]. For charm quarks the fragmen-

tation function into D0 or D+ is model based on the fragmentation function into D∗ [155, 158]. Based on

the D+/D0 ratio measured by ALICE [77], the contribution from D0 is 67.5% and the contribution from

D+ is 32.5%, where both D0 and D+ include contribution from D∗ [158]. Contributions from Ds and Λc

are not included [155]. The decay of hadrons containing a heavy quark into electrons is based on mea-

sured decay electron spectra [159]. The branching ratios are assumed to be 10.3% for D → e, 10.86%

for B→ e, and 9.6% for B→ D→ e [123]. The renormalisation and factorisation scales are set to µr, f =

µ0 with µ0 =
p

m2+ p2
t . As default values for the heavy quark masses, 1.5 GeV/c2 is taken for the charm

quark and 4.75 GeV/c2 is taken for the bottom quark mass. In order to get a systematic uncertainty of

the prediction, the renormalisation and factorisation scales and the quark masses are varied: as limits

for the renormalisation and factorisation scales 1/2µ0 and 2µ0 with the constraint 1/2 < µR/µ f < 2 are

chosen. For the heavy quark masses, the limits are 1.3 and 1.7 GeV/c2 for the charm quark and 4.5 and

5 GeV/c2 for the bottom quark.

The electron measurement is done with pt bins of variable size. However, the FONLL prediction is

a continuous function, evaluated at discrete steps. In order to be able to compare measurement and

prediction, the prediction has to be converted into the binning applied for the measurement. To calculate

values for FONLL in the binning applied, a parameterisation for the central prediction and the upper and

lower limit was obtained. This is done by fitting a Tsallis function as shown in equation 3.5 to the central

value of the FONLL prediction at µ= µ0, the lower limit of the prediction at µ= µ0/2 and the upper limit

of the prediction at µ = 2 µ0. Figure 4.3 shows a comparison of the Tsallis fit to the FONLL prediction.

The upper and central values of the prediction are described very well by the Tsallis fit over the full pt

range, with deviations of 5% at maximum. For the lower limit of the prediction, deviations up to 10%

for pt > 0.4 GeV/c have be observed, below 0.4 GeV/c the deviations become even larger, so that in this

pt-region the fit values are not reliable anymore. In case a modified Hagedorn function is used for the fit,

the deviations are larger in all three cases, especially for pt below 1 GeV/c.
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Figure 4.3: Comparison of the Tsallis fit to the FONLL prediction. Errors are assumed to be 1% of the value.
The fit is done separately for the upper, lower and central value of the prediction. In the lower
panel the ratio FONLL/Fit is shown for the three cases.

The bin value of the prediction at a given bin centre pc
t for a binwidth ∆pt is calculated as

f i =
1

∆ptpc
t

∫ pmax
t

pmin
t

pt g(pt)dpt (4.1)

where the integration limits pmin
t and pmax

t are the pt-limits of the bin and g(pt) is the result of the Tsallis

fit. The bin error is calculated as the difference between upper respectively lower limit and the central

value of the prediction.

Figure 4.4 shows the comparison between the measured pt-differential cross section and the prediction

from FONLL. The lower panel of the plot shows the ratio between the measurement and the prediction.

Here the systematic uncertainty does not contain the uncertainty of the FONLL prediction, which is

shown as a band around one. A good agreement of the prediction with the data is observed. At pt > 4

the systematic uncertainty of the measurement is of the same size as the one of the FONLL prediction.

From the ratio plot it can be seen that at low-pt the measurement tends to be at the upper limit of the

prediction.
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The pt-differential cross section of muons from heavy-flavour hadron decays was measured by ALICE

at forward rapidity (2.5 < y < 4, five rapidity bins) [82]. The pt-range of the muon measurement is

2 GeV/c < pt < 12 GeV/c, where the lower limit is implied by the muon trigger requirement the mea-

surement (see section 1.3). In order to calculate y-differential cross sections of electrons or muons from

semi-leptonic heavy-flavour decays in the pt-range where the analyses overlap (2 GeV/c < pt < 8 GeV/c),

the pt-spectra of both measurements are integrated in the corresponding pt-range and normalised by the

width of the rapidity intervals. Figure 4.5 shows dσ/dy for the 3 rapidity bins from the two measure-

ments, where the bin at -4 < y < -2.5 is obtained by reflecting the bin at positive rapidity with respect to

0. In the given pt-range the rapidity distributions from FONLL and from this analysis are in agreement.

In order to get the total charm cross section, the visible cross section at midrapidity, in the pt-range

0.5 GeV/c < pt < 8 GeV/c, obtained from this analysis has to be extrapolated in the pt down to 0 GeV/c

and in rapidity. The visible cross section is
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dσv is(HF → e)
d y

= 37.7± 3.2(stat)+13.3
14.4 (sys)± 1.3(norm)µb

The extrapolation was done using the pt- and y-shape from FONLL. The FONLL curves for the central

prediction and the mass, scale, and PDF variations were fitted using a Tsallis parameterisation. The

parameterisations obtained were then fitted to the measured pt-spectrum in the range 0.5 GeV/c < pt <

6 GeV/c to get the normalisation. The fit was repeated for the central value after shifting the data points

by the systematical uncertainty. The measured pt-spectrum was integrated in the pt-range 0.5 GeV/c <

pt < 8 GeV/c, while the parameterisation was integrated in the pt-range 0 GeV/c < pt < 0.5 GeV/c. The

cross section of electrons from heavy-flavour hadron decays was found to be

dσ(HF → e)
d y

= 93± 3.2(stat)+30.5
−30.1(sys)+31.6

−11.5(extr)± 3.3(norm)µb

The uncertainty of the extrapolation is obtained from the variation of the parameterisations of mass,

scale and PDF. Since the parameterisation of the FONLL shape using µ f = 0.5 and µr = 1 was found

not to be in good agreement with the data, it was not included in the calculation of the uncertainty from
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scale variation. The uncertainty obtained from shifting the data points by the systematical uncertainty

was added linearly to the systematical uncertainty of the midrapidity cross section. In the same way the

cross section of electron from bottom hadron decays was determined to be [160]

dσ(HB → e)
d y

= 8.5± 0.3(stat)± 2.2(sys)+0.5
−0.7(extr)± 0.3(norm)µb

After subtraction of the bottom component from the cross section of electrons from heavy-flavour

hadron decays, the cross section of electron from charm hadron decays at midrapidity is found to be

dσ(HC → e)
d y

= 84.5± 3.5(stat)+32.7
−32.2(sys)+32.0

−12.2(extr)± 3.0(norm)µb

According to eq. 29 in [161] the midrapidity charm cross section obtained is

dσc

d y
= 889.2± 36.9(stat)+344.3

−339.2(sys)+337
−127.8(extr)± 31.1(norm)± 36.7(BR)µb

Here the branching ratio (br) used is (9.6± 0.4)% [162]. The kinematical correction factor was deter-

mined via a PYTHIA simulation to be 0.982 [160]. For the extrapolation in y, the total cross section of

FONLL was scaled by the ratio of the midrapidity charm cross section obtained in this analysis to the one

obtained from FONLL. In order to obtain the uncertainty of the y-extrapolation on the total charm cross

section, the upper and lower limits of the prediction were scaled in the same way. The uncertainty of the

y-extrapolation is added linearly to the uncertainty of the pt-extrapolation. After extrapolation in y, the

total charm cross section is found to be

σc = 7.6± 0.3(stat)± 2.9(sys)+3.2
−2.5(extr)± 0.3(norm)± 0.3(br)mb

The total charm cross section extracted in this analysis is in agreement with the total charm cross

section obtained by ALICE in the hadronic decay channel (8.5+4.2
−2.5 mb) [163], ATLAS (7.1+4.0

−2.2) [164] and

LHCb (6.1± 0.9) [165], as well as the one predicted by FONLL (4.8+6.4
−3.3 mb).

The pt spectrum from heavy-flavour hadron decays is measured by ATLAS in the pt range 7 GeV/c <

pt < 26 GeV/c and the rapidity range |y| < 2 excluding 1.37 < |y| < 1.52 [83]. ATLAS points are
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Figure 4.6: Heavy-flavour electron pt spectrum combined from this analysis and the ATLAS measurement
[83]. ATLAS points are scaled to match the ALICE rapidity coverage. Bands indicate the FONLL
prediction. In the pt region covered by ATLAS the prediction is treated in the same way as the
measured points from ATLAS.

published as y-integrated differential cross section, dσ/dpt, while the points from this analysis are shown

as invariant cross section 1/(2πpt)d2σ/(d ydpt). In order to compare the two measurements, the ATLAS

points are scaled by 1/(2πpc
t ). To normalise to unit rapidity, the average over the ATLAS y-range is

used. Since the rapidity distribution of electrons is not expected to be flat, in particular not towards

large absolute values of rapidity, the scaled ATLAS cross sections are expected to be smaller than the

cross sections from this analysis. Based on FONLL calculations the difference is estimated to be ≈7%

for electrons from bottom hadron decays and ≈3% for electrons from charm hadron decays. Figure 4.6

shows the combination of the heavy-flavour electron spectrum from this analysis and the scaled ATLAS

measurement. Only in the pt bin between 7 and 8 GeV/c a cross section has been measured both with

ATLAS and this analysis. In this pt bin the measurements agree within the uncertainties, with the ATLAS

point slightly lower than the point from this analysis. As mentioned above this is expected due to the

different rapidity coverages of the two measurements. Combining the two measurements, the pt-range
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from 0.5 to 30 GeV/c is covered. A good agreement with FONLL is observed over the full momentum

region covered by the two experiments.

4.3 Comparison to POWHEG predictions

A second prediction which is used for comparison is POWHEG (Positive Weight Hardest Emission Genera-

tor) [166–168]. POWHEG is a Monte-Carlo code which simulates hard processes based on NLO pQCD

calculations, but does not perform the fragmentation of quarks into hadrons and the decays into elec-

trons. In this analysis the hvq package [169] from POWHEG-BOX version 1.0 is used. The simulation

generates heavy quark-antiquark pairs, which are imported into PYTHIA (v6.4.21) or HERWIG (Hadron

Emission Reactions With Interfering Gluons) [170] (v6.510) which are responsible for the simulation of

parton showers, fragmentation and decays. As PDF the set CTEQ6.6m [57] from LHAPDF (Les Houches

Accord PDF Interface) v5.8.8b1 [49] is used. PYTHIA and HERWIG use the default configuration, how-

ever for PYTHIA also the tunes ATLAS CSC (tune 306) [171] and ATLAS MC09 (tune 330)1 [172] are

checked. For the central prediction, the masses of the heavy quarks are assumed to be 1.5 GeV/c2 for

the charm quark and 4.75 GeV/c2 for the bottom quark. For both factoristation and renormalisation the

scale µr, f = mt is used. In order to obtain a systematic uncertainty, masses, factorisation- and renormal-

isation scales are varied. The charm quark mass is varied by 0.2 GeV/c2 and the bottom quark mass by

0.25 GeV/c2. Both scales are varied from 0.5mt to 2mt . An example configuration file for the central

prediction for bottom production can be found in appendix F.

The analysis is done both on POWHEG events to obtain the quark-pt distribution and after fragmenta-

tion with PYTHIA/ HERWIG. In contrast to FONLL, the POWHEG prediction contains also contributions

from Ds and Λc. The cross section is directly obtained from POWHEG. Figure 4.7 shows the quark-pt

distribution for charm and bottom quarks from POWHEG compared to FONLL. The distributions contain

only one quark charge. As can be seen from the plot, for bottom production the pt-spectrum predicted

by POWHEG is slightly harder than the one predicted by FONLL. Within the uncertainties, however, both

predictions are in agreement. For charm however, POWHEG predicts a cross section in the pt-region

between 5 and 10 GeV/c which is approximately a factor 2 lower than the one predicted by FONLL. For

quark-pt above 20 GeV/c the prediction from POWHEG is above the one from FONLL both for charm and

bottom quarks.

1 ATLAS MC09 is not implemented in the PYTHIA version used for this studies. The PYTHIA parameters for this
tune were set in the steering program
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Figure 4.7: Quark-pt distribution from POWHEG compared to FONLL. Dashed lines indicate the uncertainty
bands from POWHEG. Lower panels show the ratio between POWHEG and FONLL for both
flavours.

Figure 4.8 shows the comparison of the pt-spectrum of electrons from semi-electronic heavy-flavour

hadron decays between POWHEG and FONLL, including the three components D → e, B → e and

B → D → e. The left plot shows the prediction when using PYTHIA as shower generator, while in

the right plot HERWIG is used. As on the quark level, the prediction for bottom directly decaying into

electrons is still compatible with FONLL within the uncertainty. The charm prediction is a factor 2 lower

for POWHEG than for FONLL for pt above 1 GeV/c, which then is also propagated into the prediction for

the sum of the two flavour. The observation is similar for both shower simulations. It is interesting to

note that the predictions for bottom hadrons decaying into electrons via charm hadrons is very different

between PYTHIA and HERWIG although the contribution from these channels are small. For PYTHIA,

results with the ATLAS CSC tune are compatible with the ones obtained using the default settings.

The comparison between between the pt-spectra of electrons from semi-electronic heavy-flavour

hadron decays from POWHEG, which is interfaced to either PYTHIA or HERWIG, and from this anal-

ysis is shown in Figure 4.9 (left) for different tunes of PYTHIA. Predictions from the POWHEG +PYTHIA
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Figure 4.8: pt-spectrum of electrons from heavy-flavour hadron decays obtained from POWHEG simulations.
Contributions from the different sources D→ e, B→ e and B→ D→ e are shown separately.
Bands indicate the FONLL prediction, lines the one from POWHEG. Dashed lines indicate the
systematic uncertainty of the POWHEG prediction. In the left plot POWHEG is interfaced to
PYTHIA, in the right plot to HERWIG.

with the PYTHIA tunes default and ATLAS CSC are similar, while using the tune ATLAS MC09 a larger

cross section is obtained. Below 4 GeV/c all predictions are below the data by a factor 2 to 4. In this

pt region the contribution from charm is dominating, which already was found to be lower by a factor

of 2 when comparing to FONLL. A non-negligible dependence on the PYTHIA tunes was also reported

in [155], where predictions for D+ production where compared for POWHEG interfaced to PYTHIA with

the tunes default, Perugia0 (tune 320) and AMBT1 (tune 340). As can be seen from the right plot, which

shows a comparison of the measurement to FONLL and POWHEG +PYTHIA using ATLAS MC09 tune, in

this pt region agreement is found to FONLL but not any of the POWHEG predictions used for compari-

son. When going to higher pt, where the contribution from bottom becomes important, the deviations

between the predictions and data become smaller. Comparing data to POWHEG+PYTHIA with the tune

ATLAS MC09, an agreement within the uncertainties can be observed.
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Figure 4.9: Comparison to POWHEG predictions: in the left plot the measured pt-differential cross section
of electrons from heavy-flavour hadron decays is shown in comparison to in comparison to the
predictions from POWHEG+HEREIG (red) and POWHEG+PYTHIA for different PYTHIA tunes
default (blue), ATLAS CSC (orange) and ATLAS MC09 (green). Boxes indicate the systematic
uncertainty on the measurement. The ratio of the prediction to data is shown in the lower
panel. In the right plot the measurement is shown in comparison to the FONLL (red band)
prediction and to the POWHEG+PYTHIA prediction which uses the PYTHIA tune ATLAS MC09
(blue). Dashed lines indicate the upper and lower limit of the POWHEG+PYTHIA prediction.
The ratio of the predictions to the measurement is shown in the lower panel.
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5 Outlook: Measurement of electrons from heavy-flavour hadron decays in Pb–Pb

collisions atpsNN = 2.76 TeV

As discussed in section 1.2, studies of heavy-flavour production in heavy-ion collisions provide insights

into the properties of the hot dense medium created. A comparison of the nuclear modification factor

for heavy-flavour hadrons and light hadrons can provide information about the energy loss mechanism

in the medium as a function of the parton mass.

In fall 2010 ALICE collected a sample of 14 million minimum bias Pb–Pb events at psNN = 2.76 TeV.

For the determination of the collision centrality the V0 detector is used [35].

The reference spectrum from pp collisions used for the nuclear modification factor is obtained from

the measured one at
p

s = 7 TeV. In order to derive a reference at the Pb–Pb centre-of-mass energy, the

reference was scaled with the help of FONLL [173]. As discussed in chapter 4 the ALICE measurement

and the FONLL prediction are in good agreement. The analysis in Pb–Pb collisions is done separately

for the different centrality classes, using the detectors TOF and TPC for the candidate selection. The

procedure is the same as applied to pp collisions. However, due to contamination from hadrons in the

pt-range where the electron line and the proton and kaon line cross in the TPC, due to mismatches in

TOF, the measurement currently is performed for pt > 1.5GeV/c. For the efficiency correction, a HIJING1

[174] minimum bias MC sample is used. The cocktail describing electrons from background source is

obtained in a similar way as the one obtained in pp collisions. The input is based on the charged pion

measurement with ALICE [175] assuming π0 = (π+ + π−)/2. Since there are no pt spectra available

for J/ψ and Υ, the two sources are not included in the cocktail. As input for direct photons the pQCD

prediction for pp collisions [153] is used and scaled with the number of binary collisions.

Comparisons of the inclusive electron spectrum to the background cocktail in different centrality

classes have shown an excess of the inclusive electron yield with respect to the cocktail in the pt-range

1.5 GeV/c < pt < 3 GeV/c, where the signal-to-background ratio is still low. The excess increases with

centrality [176, 177]. In pp collisions this excess is not observed. A reason for this excess could be ther-

mal radiation. Thermal radiation was observed with PHENIX [178], however at RHIC the temperature

reached in Au–Au collisions is not sufficiently high to generate a significant direct radiation contribution

1 Heavy Ion Jet INteraction Generator
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Figure 5.1: Nuclear modification factor of electrons from heavy-flavour hadron decays (Figure taken from
[177]). In (a) the nuclear modification factor is shown for as function of pt for central (black)
and peripheral collisions (red). Boxes indicate the systematical uncertainty. In (b) the nuclear
modification factor integrated in the pt-region 4.5 GeV/c < pt < 6 GeV/c is shown versus the
centrality.

to the single electron cocktail. At LHC, with a larger initial temperature the contribution from thermal

radiation will be larger, however no measurement is available yet.

First preliminary results indicate a suppression of electrons from heavy-flavour hadron decays in most

central collisions [177]. The suppression increases when going to more central collisions. Figure 5.1

shows the nuclear modification factor RAA for electrons from heavy-flavour hadron decays. On the left

plot (Figure 5.1a) the RAA is shown as function of pt for central and peripheral collisions, indicating the

suppression in the most central collisions. Results however have large systematic uncertainties. Work

is ongoing to improve the systematic uncertainty. On the right plot (Figure 5.1b), the RAA is shown

integrated in the pt-region 4.5 GeV/c < pt < 6 GeV/c as function of the centrality, indicating the increase

of the suppression with increasing centrality.

A separation of the nuclear modification factors of electrons from charm and bottom hadron decays is

in preparation. As for pp collisions, the separation is based on the distance of the electron to the primary

vertex.
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6 Conclusions

The measurement of the pt-differential cross section of electrons from heavy-flavour hadron decays in

proton-proton collisions at
p

s = 7 TeV is presented. The measurement, performed at midrapidity (|y| <

0.5) in the pt-region 0.5 GeV/c < pt < 8 GeV/c, uses the central barrel detectors ITS, TPC, TRD and TOF

of the ALICE apparatus.

A major contribution to the electron selection is provided by the TRD, which is used for the first time for

electron identification in data. For this, the quality of the data collected in 2010 is studied. As outcome

of the calibration, the TRD signal is observed to be stable in time for the data taking period used for

this analysis. The pion rejection power is verified using a data-driven method based on electron and pion

reference samples obtained from K0
S -decays and γ-conversions. A pion rejection factor of 30 was achieved

for tracks having six tracklets with a likelihood method based on the total charge deposit in a chamber.

The heavy-flavour cross section extracted from electrons is well described by perturbative QCD cal-

culations. However, in case the results are compared to predictions from the POWHEG Monte-Carlo

program, which is interfaced either to PYTHIA or to HERWIG for parton shower generation, fragmen-

tation and decays, the data are above the prediction for both Monte-Carlo generators by up to a factor

of 2. Our measurement complements the one performed by the ATLAS collaboration in the pt-region

7 GeV/c < pt < 26 GeV/c. The pt-region covered by our analysis contains the dominant fraction of the

charm as well as the bottom production cross section. By using the distance to the primary vertex as

additional selection criterion, the contributions from charm and bottom hadron decays will be separated.

The presented measurement also serves as a reference for studies done in Pb–Pb collisions. First results

of the measurement of the nuclear modification factor show a suppression of cocktail-subtracted inclusive

electrons for pt > 3 GeV/c, which is increasing with centrality, however the uncertainties are still large.

Work on improving this measurement is ongoing.
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A Differential cross section of heavy-flavour hadron decay electron production

Table A.1: Double-differential cross section of electron production is several pt-bins measured with ALICE.
The uncertainty of the cross section normalisation (3.5%) is not included in the systematical
uncertainty.

pt (GeV/c) 1
2πpt

d2σ

dptd y
± stat. ± sys. (µb/GeV/c2)

0.50 - 0.60 41.94± 21.85+26.32
−28.28

0.60 - 0.70 20.11± 9.76+13.36
−14.46

0.70 - 0.80 11.79± 4.97+7.61
−8.32

0.80 - 0.90 12.13± 2.86+4.72
−5.20

0.90 - 1.00 8.23± 1.65+2.97
−3.29

1.00 - 1.10 5.18± 0.95+1.71
−2.03

1.10 - 1.20 3.61± 0.61+1.17
−1.22

1.20 - 1.30 2.75± 0.40+0.79
−0.82

1.30 - 1.40 2.12± 0.27+0.56
−0.58

1.40 - 1.50 1.60± 0.20+0.41
−0.43

1.50 - 1.75 0.92± 0.21+0.24
−0.25

1.75 - 2.00 0.67± 0.10+0.13
−0.15

2.00 - 2.25 0.32± 0.05+0.067
−0.069

2.25 - 2.50 0.26± 0.03+0.043
−0.045

2.50 - 2.75 0.17± 0.019+0.027
−0.027

2.75 - 3.00 0.12± 0.013+0.018
−0.018

3.00 - 3.50 0.067± 0.0093+0.0094
−0.0096

3.50 - 4.00 0.033± 0.0043+0.0044
−0.0045

4.00 - 4.50 0.017± 0.0027+0.0054
−0.0054

4.50 - 5.00 0.0092± 0.0019+0.0029
−0.0029

5.00 - 5.50 0.0041± 0.0013+0.0015
−0.0015

5.50 - 6.00 0.0045± 0.0011+0.0013
−0.0013

6.00 - 7.00 0.0022± 0.0006+0.0007
−0.0007

7.00 - 8.00 0.0015± 0.0004+0.0005
−0.0005
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B Cut variation studies for the estimation of the systematic uncertainty of the

pt-differential invariant yield of the inclusive electron spectrum
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Figure B.1: Overview of the cut variation studies: shown is the ratio of the corrected invariant yield of
inclusive electrons after cut variation with respect to the reference spectrum for the cuts on the
number of clusters in the TPC (a), the number of clusters used for the TPC dE/dx calculation
(b), the number of clusters in the ITS (c), the DCA to the primary vertex (d), the TOF electron
identification (e), and the TPC electron identification (f).
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(e) Electron identification in the TOF
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Figure B.1: Overview of the cut variation studies: shown is the ratio of the corrected invariant yield of
inclusive electrons after cut variation with respect to the reference spectrum for the cuts on the
number of clusters in the TPC (a), the number of clusters used for the TPC dE/dx calculation
(b), the number of clusters in the ITS (c), the DCA to the primary vertex (d), the TOF electron
identification (e), and the TPC electron identification (f).
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C Fits to the charge distributions from the testbeam 2004

Figure C.1: Fits of the model in eq. 2.4 to the measure charge distribution for electrons (red) and pions
(blue) to the charge distributions obtained from the testbeam 2004.
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D Armenteros cuts used in the creation of the reference samples

Figure D.1: Cuts applied to the Armenteros variables Qt and α in order to create the reference samples for
electrons from γ-conversions(black square), pions from K0

S (red box) and protons from Λ (blue
box) respectively anti-Λ (green box)[116]
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E List of runs at
p

s = 7 TeV

Table E.1: List of runs in period LHC10d declared as good. Also shown is the number of min. bias events
per run

Run number Number of min. bias events Run number Number of min. bias events

122374 4243325 126008 1055555

122375 777367 126073 2753462

124751 371347 126078 5772669

125023 107975 126081 1887091

125085 5688313 126082 5961263

125097 4404112 126088 8084783

125100 395721 126090 7527753

125101 2494468 126097 1523169

125133 694319 126158 7811415

125134 3606871 126160 2046317

125139 6853300 126168 2224048

125140 2356763 126283 1463878

125156 215407 126284 7998200

125186 1658185 126285 297783

125296 6061566 126351 4427060

125628 3299193 126352 2240812

125630 2130626 126359 1377823

125632 3012186 126403 488043

125633 997631 126404 5979917

125842 2689629 126405 332506
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Table E.1: List of runs in period LHC10d declared as good. Also shown is the number of min. bias events
per run

Run number Number of min. bias events Run number Number of min. bias events

125843 419241 126406 4851280

125844 177395 126407 5179710

125847 682019 126408 2624310

125848 753284 126409 1645111

125849 2131877 126422 4352831

125850 2446627 126424 7967680

125851 1810293 126425 1542525

125855 2773005 126432 8379629

126004 626203 126437 1888926

126007 4287397
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F Example configuration file used in the POWHEG simulation

Table F.1: Example of a POWHEG cofiguration file for bottom production. Values are shown for the central
configuration. In order to obtain a systematical uncertainty, the mass (qmass) is varied by 0.25
GeV/c and the scales (facscfact and renscfact) from 0.5 to 2. For charm quarks the mass in the
central prediction is chosen to be 1.5 GeV/c2 and varied by 0.2GeV/c2.

key value

ih1 1 ID of hadron 1 (proton)

ih2 1 ID of hadron 2 (proton)

lhans1 10550 LHAPDFcode of CTEQ6.6m used for hadron 1

lhans2 10550 LHAPDFcode of CTEQ6.6m used for hadron 2

ebeam1 3500 energy of beam 1 (GeV)

ebeam2 3500 energy of beam 2 (GeV)

qmass 4.75 mass of heavy quark in GeV/c2

facscfact 1 factorization scale factor: µ f = µ0 ∗ f acsc f act

renscfact 1 renormalization scale factor: µr = µ0 ∗ rensc f act

ncall1 10000 number of calls for initializing the

integration grid

itmx1 5 number of iterations for initializing the

integration grid

ncall2 100000 number of calls for computing the

integral and finding upper bound

itmx2 5 number of iterations for computing the

integral and finding upper

bound foldcsi 2 number of folds on x integration

foldy 5 number of folds on y integration

foldphi 1 number of folds on phi integration

nubound 500000 number of bbarra calls to setup

norm of upper bounding function

iymax 1 normalization of upper bounding function

ixmax 1 normalization of upper bounding function

xupbound 2 upper bound for radiation generation
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Glossary

ACORDE ALICE COsmic Ray DEtector

AGS Alternating Gradient Synchrotron

ALICE A Large Ion Collider Experiment

AliRoot ALIce ROOT

ATLAS A Toroidal LHC ApparatuS

ATLAS CSC A tune of PYTHIA

Au–Au gold-gold

BNL Brookhaven National Laboratory

CDF Collider Detector at Fermilab

CERN European Organisation for Nuclear Research

CMS Compact Muon Solenoid

CORRFW ALICE Correction Framework

D0 D0 Experiment

DCA Distance of closest approach

EMCAL ElectroMagnetic CALorimeter

FMD Forward Multiplicity Detector

FNAL Fermi National Laboratory
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FONLL Fixed Order plus Next-to-Leading-Logarithms pQCD

GEANT3 Detector Simulation

GEANT4 Detector Simulation

GM-VFNS General-mass variable-flavour-number scheme

HERWIG Software for event generation and particle decays (Hadron

Emission Reactions With Interfering Gluons)

HLT High-Level Trigger

HMPID High-Momentum Particle Identification Detector

ITS Inner Tracking System

LHAPDF Les Houches Accord PDF Interface

LHC Large Hadron Collider

LHCb LHC beauty

MIP Minimum Ionising Particles

MRPC Multi-gap Resistive Plate Chambers

NLO Next-to-leading order

Pb-Pb lead-lead

PDF Parton Distribution Function

PDG Particle Data Group
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Perugia0 A tune of PYTHIA

PHENIX Pioneering High Energy Nuclear Interactions eXperiment

PHOS PHOton Spectrometer

PMD Photon Multiplicity Detector

POWHEG Positive Weight Hardest Emission Generator

pp proton-proton

pQCD perturbative QCD

PS Proton Synchrotron

PYTHIA Software for event generation and particle decays

QCD Quantum Chromodynamics

QGP Quark-Gluon Plasma

RAA Nuclear Modification Factor

RHIC Relativistic Heavy Ion Collider

SDD Silicon Drift Detector

SIS Schwerionensynchrotron

SLAC Stanford Linear Accelerator

SPD Silicon Pixel Detector

SPS Super Proton Synchrotron

SSD Silicon Strip Detector

STAR Solonoidal Tracker At RHIC
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T0 T0 detector

TOF Time-Of-Flight detector

TPC Time Projection Chamber

TRD Transition Radiation Detector

VZERO VZERO detector

ZDC Zero Degree Calorimeters
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