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Abstract

In this work the evolution of B(E2) values in nuclei around the N = 82 shell closure
has been studied. The reduced transition strength between ground state and first
excited 2+ state is a good indicator for the collectivity in even-even nuclei. Former
experimental and theoretical investigations of the region above N = 82 indicated that
the B(E2) values might be systematically lower than expected and questioned the
current understanding of collective excitations.

Since the experimental data concerning the proposed N = 82 shell quenching for
nuclei below 132Sn is not yet conclusive, a systematic investigation of neutron-rich
nuclei both below and above this shell closure has been performed at the Radioactive
Ion Beam Facility REX-ISOLDE at CERN.

The B(E2) values of 122−126Cd (N < 82) and 138−144Xe (N > 82) have been
measured by Coulomb excitation in inverse kinematics, applying the MINIBALL γ-
detector array. The values of 124,126Cd and 138,142,144Xe have been determined for the
first time, whereas for 140Xe the ambiguity of the two contradicting published B(E2)
values has been solved. The relative uncertainty of the B(E2) value of 122Cd could
be reduced significantly. For 140,142Xe the Coulomb excitation cross section for the
2+
1 → 4+

1 transition has also been determined. Further, the deorientation effect and
the influence of the quadrupole deformation on the Coulomb excitation cross section
have been taken into account for 138−142Xe. It could be shown that the latter plays an
important role for the determination of the B(E2) values.

Assuming only a small or even vanishing quadrupole moment, all measured B(E2)
values agree with the expectations and no sign for a quenching of the N = 82 gap could
be seen.
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Zusammenfassung

In dieser Arbeit wurde die Entwicklung der B(E2)-Werte um den N = 82 Schalen-
abschluss untersucht. Die E2 Übergangswahrscheinlichkeit vom Grundzustand in den
ersten angeregten 2+ Zustand gilt als wichtiger Indikator für die Kollektivität von gg-
Kernen. Frühere experimentelle und theoretische Untersuchungen wiesen darauf hin,
dass die B(E2)-Werte für Kerne mit N > 82 systematisch niedriger sein könnten als
erwartet und stellten das bisherige Verständnis kollektiver Anregungen in Frage.

Da auch die vorgeschlagene Reduktion der Energielücke beiN = 82 für Kerne unter-
halb des doppelt-magischen 132Sn experimentell bislang noch nicht eindeutig bestätigt
oder widerlegt werden konnte, erschien eine systematische Untersuchung neutronenre-
icher Kerne um diesen Schalenabschluss notwendig.

Daher wurden die B(E2)-Werte von 122−126Cd (N < 82) und 138−144Xe (N >
82) mittels Coulombanregung in inverser Kinematik bei REX-ISOLDE am CERN
gemessen. Die dabei emittierte γ-Strahlung wurde mit dem MINIBALL Spektrometer
detektiert. Die B(E2)-Werte von 124,126Cd sowie von 138,142,144Xe wurden erstmals
gemessen und das Problem der zwei widersprüchlichen B(E2)-Werte von 140Xe in der
Literatur konnte aufgelöst werden. Der B(E2)-Wert von 122Cd wurde mit deutlich
besserer Genauigkeit bestimmt. Ausserdem konnte für 140,142Xe der Wirkungsquer-
schnitt für die 2+

1 → 4+
1 Coulombanregung bestimmt werden.

Bei der Analyse der Daten von 138−142Xe wurde darüberhinaus die anisotrope Emis-
sion der γ-Strahlung sowie der Einfluss eines nicht-verschwindenden Quadrupolmo-
ments berücksichtigt. Es zeigt sich, dass letzteres eine signifikante Rolle bei der Bes-
timmung der B(E2)-Werte spielt.

Unter der Annahme eines kleinen bzw. verschwindenden Quadrupolmoments kon-
nte gezeigt werden, dass die gemessenen B(E2)-Werte mit den Erwartungen überein-
stimmen und es keinen Hinweis auf eine Reduktion der N = 82 Energielücke gibt.
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—Die Neugier steht immer an

erster Stelle eines Problems, das

gelöst werden will.

Galileo Galilei (1564-1642)

1
The Nuclear Landscape

1.1 The Nuclear Chart

It is known since the famous scattering experiments by Geiger and Marsden (1909)
and the interpretation of its results by Rutherford (1911) that all positive charge of
the atom and almost all its mass is concentrated in its center – the nucleus – with
negatively charged electrons surrounding it. The size of the nucleus was estimated by
Geiger to about 10 fm1 which is about 104 times smaller than the typical size of an
atom. But it was not until the discovery of the neutron (Chadwick, 1932) that the
constituents of the nucleus were identified correctly. Since then the nucleus is known
to consist of positively charged protons and electrically neutral neutrons.

In order to describe this nucleus Heisenberg (1932) introduced the isospin concept:
protons and neutrons are therefore merely two different states of the same elementary
particle - the nucleon. This concept is formally similar to the concept of intrinsic spin.
The isospin of a nucleon is then T = 1/2 and its projection is Tz = +1/2 for neutrons
(n) or Tz = −1/2 for protons (p). A two-nucleon system can then have a total isospin
of T = 1 (triplet) or T = 0 (singlet). In the triplet state the projected isospin can either
have values of Tz = +1, 0 or −1 for the pp-, pn- or nn-system, respectively. However,
only the pn system can appear in the singlet state with Tz = 0, so pn has a T = 0 as
well as a T = 1 component.

The nucleus is then determined by its charge number Z (i.e. its number of protons)
and its number of neutrons N (or its mass number A = Z + N). It is usually noted
A
ZXN with X being the chemical symbol. Today, there are nearly 3000 nuclei known,
out of which less than 300 are stable. In a nuclear chart, all these nuclei are drawn
corresponding to their Z and N values. In figure 1.1 such a nuclear chart is shown
with the valley of stability indicated in black and the area of known nuclei indicated in
yellow. Also shown in this figure is the area where the existence of nuclei is assumed,

11 fm (femtometer) = 10−15 m. It is often called 1 fermi in honour of Enrico Fermi.
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2 CHAPTER 1. THE NUCLEAR LANDSCAPE

but not yet proven (the so-called terra incognita). Although there is little or nothing
known about these nuclei, neither experimentally nor theoretically, their existence is
essential for understanding the production of heavy nuclei.

Figure 1.1: The nuclear landscape with the valley of stability (black), the area of known but
unstable nuclei (yellow) and the region where the existence of nuclei is assumed (green). The
paths of two nucleosynthesis processes are indicated. The magic numbers are shown by red
lines (see text for details). Taken from the Argonne National Laboratory website.

Since in the early universe only the lightest elements like H and He were present,
the production of heavier elements (nucleosynthesis) has to be explained by several dif-
ferent nuclear processes. Only elements up to iron can be produced by fusion reactions
(burning) in stars (e.g. by the famous CNO-cycle in our sun) and later distributed to
the interstellar medium. The production of nuclei beyond iron is due to nuclear capture
reactions which have to compete with β-decays.

(i) In the slow neutron capture process (s-process) the neutron capture time τn

is larger than the corresponding β-decay time τβ, hence this process runs through or
close to the valley of stability. The abundances of s-process elements are inversely
proportional to the neutron capture cross sections which is consistent with a steady
flow of neutrons.

(ii) The rapid neutron capture process (r-process) occurs in environments with
high temperatures and extreme neutron fluxes, e.g. core-collapse supernovae. Here,
τn is much shorter than τβ. Hence, more and more neutrons are added before the
nucleus can decay and the r-process runs through the extremely neutron-rich nuclei
far from stability. It is worth mentioning here that this process stalls at nuclei with
certain (magic) neutron numbers due to their low neutron absorption cross section.
The neutron shell closure at N = 82 (see next section) is supposed to be correlated



1.1. THE NUCLEAR CHART 3

with the A ≈ 130 peak in the solar-system abundance of heavy elements.

(iii) The rapid proton capture process (rp-process) can occur especially in hydrogen-
rich environments at high temperatures (Wallace and Woosley, 1981). It is considered
to play a substantial role in the production of nuclei on the neutron-deficient side of
stability, e.g. it explains very well the observed abundances of neutron-deficient nuclei
with A . 100 (Schatz et al., 1998).

Among the most important nuclear properties for understanding and modeling these
processes are nuclear half-lives, separation energies (or masses) and neutron capture
cross sections. Since experimental data far off stability is scarce, these properties often
have to be deduced from nuclear models. The aim of nuclear structure physics is
then to improve these models by gathering further experimental data on these nuclei,
describing and interpreting nuclear properties and by probing the interaction between
nucleons.

There are two complementary approaches to describe the nucleus:

(i) a microscopic approach, where nucleons are treated as independent particles
moving in a central potential arising from the interaction of each nucleon with all other
nucleons. One of the simplest such models is the so-called Fermi gas model in which
the nucleons are considered as non-interacting particles in a 3-dimensional square well
potential. This leads to energy eigenvalues E ∝ (n/d)2 where n is the radial quantum
number and d the size of the well. The total kinetic energy of this system is then
Etot ∝ (N − Z)2 which is consistent with the stable nuclei having N ≈ Z. For A & 40
the repulsive Coulomb interaction between the protons leads to a neutron excess. This
model can be seen as predecessor of the successful shell model (see next section).

(ii) a macroscopic approach where the nucleus is treated like a macroscopic (or
geometric) object. One of the earliest nuclear models, the liquid drop model (first
described by Gamow (1930)), belongs in this category. There, the nucleus is described
similar to a drop of an incompressible liquid. The observed masses and binding energies
can be well deduced from it (von Weizsäcker, 1935). In this model the nucleus has a
surface and a shape and excitations can be described in terms of collective vibration and
rotation. These ideas are also essential in the collective model by Bohr and Mottelson
(1975).

For more details about both approaches see also Heyde (1999).

1.1.1 Properties of Nuclei and the Nuclear Force

From the fact that bound nuclei exist it can be seen that there must be an attractive
interaction between the nucleons which is stronger than the repulsive Coulomb force
between the protons – the nuclear force. On the other hand it is known from scattering
experiments that the nuclear density is nearly constant. This shows that there must be
a repulsive core at very short distances. The volume of the nucleus then has to increase
as V ∝ A, hence the mean nuclear radius can be defined as R = R0 · A1/3 with R0

being a constant between 1.2 fm and 1.3 fm.

The mass of a nucleus can be expressed as the sum of the masses of the nucleons
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minus its binding energy2

M = Z ·mp +N ·mn −Eb.

It is interesting to note that for A & 20 the binding energy per nucleon Eb/A saturates
to about 8 MeV (cf. figure 1.2). This can be explained by assuming that nucleons

Figure 1.2: Nuclear binding energy per nucleon. The saturation and its slight decrease above
iron can be seen ( c©2007 Encyclopædia Britannica, Inc.).

interact only with their nearest neighbours, i.e. the range of the nuclear force is only
of the order of 1 fm.

Related to the binding energy are the neutron (proton) separation energies Sn (Sp).
These are defined as the energies needed to remove a neutron (proton) from a nucleus
A
ZXN to infinity. Hence, they are equal to the difference in binding energies between
A
ZXN and A−1

Z XN−1 (A−1
Z−1XN ). In general, the separation energies decrease with an

increasing number of like nucleons and increase with an increasing number of unlike
nucleons (cf. figure 1.3). For certain values of Z or N the separation energies show
large and sudden drops. These values turn out to be the so-called magic numbers (see
section 1.2). This behaviour is similar to the behaviour ionizationion energies in atoms
and already hints to a certain analogy in structure. And just as a lot of knowledge
on atoms was gained by studying their excited states, a lot about nuclear structure
can be learned by studying nuclear excited states, their energies, spins and parities
(the latter are usually denoted as Jπ). As an example, the energies of the first excited
states are highest for nuclei with magic nucleon numbers and reach their minimum in
the mid-shell region which is another evidence for magicity in nuclei.

The behaviour of the separation energies shows that there is a strong attractive
p-n-interaction, whereas the residual interaction between like nucleons is repulsive.

2Masses and energies are used equivalently and factors of c2 are skipped throughout this thesis.
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Figure 1.3: Neutron separation energies near the N=82 magic number (from Casten (2000)).

However, looking closer at Sn (Sp), an oscillation between odd and even numbers of
neutrons (protons) can be seen. This hints to an attractive pairing interaction coupling
neutrons (protons) to Jπ = 0+. Hence, the ground state in even-even nuclei is always
Jπ = 0+.

More information on the nucleon-nucleon-interaction can be gained from data on
mirror nuclei. These are nuclei where the proton and neutron number exchange, e.g.
27
13Al14 and 27

14Si13. The similarity of their level schemes (energies, spins and parities of
their excited states) suggests that the nuclear force is charge independent, i.e. p-p-, p-n-
and n-n-interactions are equal. However, this is only true for triplet state (T = 1). The
T = 0 component of the nuclear interaction can be very different. With the example
of the deuteron it can be shown that the interaction of two unlike nucleons is more
attractive in the T = 0 state than in the T = 1 state (cf. Casten (2000)).

1.2 Nuclear Shell Model

The most important and successful model to describe nuclei microscopically is the
shell model. As mentioned in the section above the shell model is a development of
the independent particle model in which the nucleons are considered as non-interacting
particles moving in a central potential U(~r). The main difference to the description of
electrons in atomic physics stems from the fact that the central potential is produced
by the nucleons itself. Therefore, the basis for this potential has to be the two-body
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nucleon-nucleon interaction Vik. The resulting Hamiltonian is then:

H =
A
∑

i=1

− ~
2

2mi
∆i +

A
∑

i>k=1

Vik(~ri − ~rk). (1.1)

Since this Hamiltonian becomes practical unsolvable for increasing A it needs to be
simplified. This is done by introducing a mean field in which all nucleons move:

H =

[

A
∑

i=1

− ~
2

2mi
∆i + Ui(~r)

]

+

[

A
∑

i>k=1

Vik −
A
∑

i=1

Ui(~r)

]

= H0 +Hres. (1.2)

The central potential U(~r) is chosen such that Hres is a small perturbation compared to
H0. This can be achieved in a self-consistent approach, starting from effective nucleon-
nucleon interaction, by Hartree-Fock methods. With a reasonable nuclear potential
the solutions of the Schrödinger equation for the unperturbed Hamiltonian H0 should
reproduce the observed magic numbers:

[

A
∑

i=1

− ~
2

2mi
∆i + Ui(~r)

]

Ψ(~r) =

[

A
∑

i=1

h
(i)
0

]

Ψ(~r) = EΨ(~r). (1.3)

The single-particle equations are then given by h
(i)
0 ψi = εiψi with

Ψ(~r) =
∏

i

ψi and E =
∑

i

εi.

In spherical coordinates the equation is usually simplified by separating the wave func-
tion in its radial and angular coordinates. The resulting wave function is then given
by

ψ(~r) = Rnl(r)Ylm(θ, φ)

with −l ≤ m ≤ l and energy eigenvalues Enl (see e.g. Heyde (1999) for details).
The radial solutions of the Schrödinger equation Rnl(r) show that states with higher
n have higher energy and that – for the same n – states with higher l have higher
energies. These two effects can counterbalance and lead to the grouping of levels at
similar energies with larger gaps in-between. A reasonable first approximation for the
central potential is the harmonic oscillator potential

U(r) =
1

2
mω2r2 (1.4)

which results in energy eigenvalues

Enl =

(

2n+ l − 1

2

)

~ω =

(

N +
3

2

)

~ω (1.5)

with N = 2(n − 1) + l being the principle quantum number. The energy levels are
degenerated multiplets defined by the values of 2n+ l.

Including the intrinsic spin of the nucleons s = 1/2 the total angular momentum
quantum number can be defined as j = l ± 1/2. The number of nucleons per or-
bit is then limited to 2j + 1. The magic numbers resulting from this potential are
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2, 8, 20, 40, 70, 112 . . . which deviates from observation for A ≥ 40. Therefore, some
modifications to this potential are necessary. Since nucleons with angular momentum
experience a centrifugal force, an additional term Ucent appears in the potential

Ucent =

∫

mω2r2dr =

∫

L2

mr3
dr =

l(l + 1)~2

2mr2

which is proportional to l̂2. This term effectively flattens the potential in the center
which is quite reasonable since nucleons in the center are uniformly surrounded by other
nucleons and should feel no net force. This modification breaks some of the degeneracy
of the simple harmonic oscillator potential levels, but still does not reproduce the
observed magic numbers.

It was the ground-breaking idea of Mayer (1950) and – independently – Haxel et al.
(1950) that the potential should include a spin-orbit coupling term U l̂ŝ(r) = α(r)l̂ · ŝ.
Here, l̂ is the orbital angular momentum operator and ŝ the intrinsic spin operator.
This term stems from a quantum relativistic effect and is more difficult to describe
intuitively. However, as nucleons in the center feel no net force, the spin-orbit force
can be regarded as a surface phenomenon with α(r) = −Uls · ∂

∂rU(r). It is worth
emphasizing here that absolute strength of the spin-orbit coupling must be of the same
magnitude as the central potential itself to reproduce the correct magic numbers.

The coupling term can be rewritten using the total angular momentum operator
ĵ = l̂ + ŝ. There are then two slightly different potentials and hence different energy
eigenvalues for the different values of j:

εnlj =

{

2n+ l − 1

2

}

~ω + α

{

−l: j = l + 1/2

l + 1: j = l − 1/2
(1.6)

With this approach the resulting magic numbers are 2, 8, 20, 28, 50, 82, 126 in accor-
dance with the experimental data (see figure 1.4). However, it should be noted that
the harmonic oscillator potential is infinite and has the wrong asymptotic behaviour.
In practice, finite potentials like the more realistic Woods-Saxon potentials of the form

U(r) =
U0

1 + exp[(r −R0)/a]
+ Uls(r)

are often used.

1.2.1 Collectivity & Deformation

In practice the use of the shell model is rather limited. It works best for nuclei with
only one or a few nucleons3 outside a closed shell, i.e. valence nucleons. However, the
more valence nucleons are present the more important residual interactions become and
nuclear structure physics today concentrates a lot on the nature of these interactions
and their effects on the level scheme.

The residual interactions, described by the term Hres in eq. 1.2, can be expanded in
its multipoles. The monopole term describes the single particle energies of the nucleons
whereas the higher-order terms will be responsible for the excitation spectrum of the
nucleus. Among these excitations it is the electric quadrupole (E2)4 mode which is

3These could also be holes in this sense.
4The nomenclature used here is EL or ML for electric or magnetic transitions of multipole order 2L.
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Figure 1.4: Level scheme of the shell model: on the left for the simple harmonic oscillator
potential, in the middle modified by the l̂2 term and on the right including the spin-orbit
coupling term. Taken from Casten (2000).

of peculiar interest for this work. The low-energy E2 excitations can be interpreted
as vibrational and rotational modes of the nucleus. This oscillation in shape can be
described by a new parametrization of the nuclear radius in the intrinsic frame

Rosc = R ·
[

1 +
∑

m

αmY2m(θ, φ)

]

(1.7)

with R being the mean nuclear radius as mentioned in section 1.1, Y2m being spherical
harmonics of order 2 and m being the magnetic substates. The expansion coefficients
αm can be expressed as

α0 = β cos γ and α2 = α−2 =
1√
2
β sin γ.

The other two coefficients α±1 are zero in the intrinsic frame. Here, β represents the
quadrupole deformation and γ describes the axial asymmetry. Most nuclei are (almost)
axially symmetric, i.e. γ = 0◦.
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For mid-shell nuclei with many valence nucleons alternatives to the shell model are
inevitable. Two further developments are worth mentioning here, both involving the
concept of a nonspherical shape. In the deformed shell model (or Nilsson model) the
independent particle motion in a field of nonspherical shape is considered whereas in
the collective model the macroscopic motions and excitations of a nucleus having this
shape are described. As pointed out above the residual interactions are responsible for
the deformation from spherical shape and for the collective behaviour of the nucleus.
Among the residual interactions the pairing interaction (see section 1.1) should once
more be emphasized here: it couples like nucleons to J π = 0+ states, hence the ground-
state in all even-even nuclei is a 0+ state and the first excited state in (almost) all even-
even nuclei is a 2+ state. Therefore, the transition from the ground-state to the first
excited state (and vice versa) is an electric quadrupole (E2) transition. Since collective
effects in low-lying states are of quadrupole character the study of these transitions is
of great interest for nuclear structure physics (see also Casten (2000)).

1.3 Evolution of Nuclear Structure

When studying nuclear structure over a wide range in the nuclear chart, e.g. from
shell closures up to mid-shell regions, one studies the increasing influence of residual
interactions and collective properties become more important. The degree (and type)
of collectivity can be expressed in terms of the energy ratio of the first 4+ state to the
first 2+ state, i.e. R42 = E(4+

1 )/E(2+
1 ). This ratio is one of the key signatures for

nuclear structure and ranges from values well below 2.0 near closed shells, between 2.0
and 2.5 for nuclei with vibrational excitations and up to values at ∼ 3.33 for nuclei
with purely rotational excitations. In table 1.1 the values R42 for the isotopes that
will be studied within the framework of this thesis are summarized. Note that all can
be regarded as vibrators, with 144Xe being in the beginning of the transitional region
between vibrators and rotors. Other key observables for studying the evolution of

Energy Ratios of Nuclei of Interest

Isotope E(2+
1 ) [keV ] E(4+

1 ) [keV ] R42

122Cd 569.45 1329.15 2.33
124Cd 612.8 1385.1 2.26
126Cd 652.0 1467.0 2.25
138Xe 588.83 1072.53 1.82
140Xe 376.66 834.29 2.21
142Xe 287.2 690.7 2.40
144Xe 252.6 644.3 2.55

Table 1.1: The energies of the first excited 2+ and 4+ states and the ratio R42 of these for
the isotopes under investigation.

nuclear structure are the energy of the first excited state and the transition strength to
it. As stated above, even-even nuclei are well suited for investigating the evolution of
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collectivity. The first excited state is then the 2+
1 state and the strength of the 0+

1 → 2+
1

transition is expressed in terms of the reduced E2 matrix element (see chapter 2 for
details):

B(E2 : Ji → Jf ) =
1

2Ji + 1
|〈Ψf ||E2||Ψi〉|2. (1.8)

In figure 1.5 the B(E2) values as well as the energies of the first excited 2+
1 state for

isotopes around the neutron shell closure N = 82 are shown. As expected, the energy
of the first excited state is increasing towards the closed shell and the probability to
excite a nucleus is increasing with the number of valence nucleons available to create
the excited state. Note that two contradicting B(E2) values for 140Xe exist in the
literature. The value of B(E2) = 0.324 e2b2 has been published in Cheifetz et al.
(1980) whereas the higher value of B(E2) = 0.547 e2b2 has been determined from a
lifetime measurement by Lindroth et al. (1999). The general trend that an increasing
E(2+

1 ) is accompanied by a decreasing transition strength, i.e. B(E2) ∝ 1/E(2+
1 ),

can be derived from the liquid drop model for vibrational states (see Ring and Schuck
(2000)). The systematic behaviour of these two observables has originally been studied
by Grodzins (1962) for a wide range of even-even nuclei. Further refinement has been
done by Raman et al. (2001) and Habs et al. (2002), resulting in a phenomenological
rule that states that the product of B(E2) and E(2+

1 ) depends only on powers of
Z and A:

E(2+
1 ) · B(E2; 0+ → 2+) = 3.242 · Z2A−2/3 · [1.000 − 0.0608(N − N̄)]. (1.9)

Here, Z denotes the charge number, N the neutron number and A = Z +N the mass
number of the nucleus under investigation. The term (N − N̄) is a measure for the
neutron excess of the isotope with N̄ being the neutron number for which the nuclear
mass reaches its minimum within an isobaric chain. The parameters have been fitted
to values known for nuclei with 48 ≤ Z ≤ 70 and R42 ≥ 1.8. In this thesis eq. 1.9 will
referred to as modified Grodzins rule.

1.4 Nuclei far from Stability

When going away from stability to nuclei with extreme N/Z ratios new phenomena can
occur, either due to changes of the spin-orbit coupling or due to residual interactions
which become stronger. Among the latter, the so-called tensor force (i.e. a spin-isospin
dependent part of the nucleon-nucleon interaction) has been recognized to play a major
role for the evolution of shell structure towards exotic nuclei.

Otsuka et al. (2001) showed that the tensor force can change the shell structure sig-
nificantly for nuclei with large N/Z ratios. His calculations showed that the well-known
N = 20 shell gap at Z ≈ 14 decreases and even disappears when going to smaller charge
numbers and a new magic number N = 16 appears at Z = 8, predicting 24O to be a
doubly-magic nucleus. This has just recently been confirmed experimentally (Kanungo
et al., 2009)).

The tensor force has also been shown to modify nuclear shell structure throughout
the nuclear chart (Otsuka et al., 2005) and to cause a reduction of the spin-orbit
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Figure 1.5: Top: The B(E2) values for selected isotopes around N = 82 are shown along with
the values derived from the modified Grodzins rule (dashed lines; see text for details). Bottom:
The energies of the first excited state in the same selection of isotopes. The lines emphasize
the systematic distribution around the shell closure.
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splitting with increasing neutron excess (Otsuka et al., 2006). The latter can also be
explained by a larger surface diffusiveness in neutron-rich exotic nuclei.

Schiffer et al. (2004) have shown that the spin-orbit splitting is decreasing with
increasing neutron excess by comparing the binding energies of the last proton outside
the closed shell in Z = 51 nuclei and the binding energy of the last neutron in N = 83
isotones. The question whether this is due to the tensor force or due to a surface effect
remains open. Probing the stability of shell closures in exotic nuclei has therefore
become one of the major issues in nuclear structure physics.

As mentioned before, the nucleosynthesis processes slow down at nuclei with closed
neutron shells due to their low neutron absorption cross sections. These particular
nuclei are called waiting-point nuclei. Since the r-process involves very neutron-rich
nuclei, its modeling is very sensitive to changes in the shell structure in that region
of the nuclear chart. β- and γ-spectroscopic decay studies of the N = 82 r-process
waiting-point nucleus 130Cd performed at ISOLDE (see chapter 3) showed evidence for
the theoretical predicted N = 82 shell quenching (cf. Dillmann et al. (2003)) whereas
recent observation of the γ-decay of excited states in 130Cd at GSI did not show signs
for this shell quenching (Jungclaus et al., 2007).

The region around N = 82 has also drawn attention since the measurement of the
B(E2) values of 132,134,136Te by Radford et al. (2002). As can be seen in figure 1.5
these values deviate significantly from the prediction of the modified Grodzins rule. It
is especially the very low B(E2) value of the N = 84 nucleus 136Te that is puzzling
as its corresponding 2+

1 energy drops as much as those of the other isotopes shown.
It would be expected that a decreasing E(2+

1 ) goes along with an increasing B(E2)
value. The anomalous behaviour in the Te isotopes has been explained with a reduced
neutron pairing above the N = 82 shell closure by Terasaki et al. (2002).

In order to shed further light on the behaviour of B(E2) values around N = 82,
hence probing the stability of the shell closure and the evolution of collectivity around
it, a systematic study of B(E2) values both below and above the shell gap seems
necessary. In this thesis, the measurement of B(E2) values for 122−126Cd as well as for
138−144Xe by means of Coulomb excitation experiments is reported.

In chapter 2 the theoretical framework of Coulomb excitation along with its appli-
cation to this work is explained. The experimental setup is described in chapter 3 and
the process of data analysis for all reactions can be found in chapter 4. The results are
summarized and discussed in chapter 5.



—For knowledge, too, itself is

power.

Francis Bacon (1561-1626)

2
Coulomb Excitation

The possibility of exciting nuclei by the long-range electromagnetic interaction was
calculated and realized already in the 1930s (Weisskopf, 1938). A major impetus to
Coulomb excitation experiments occurred, however, with the suggestion of the nuclear
rotational and vibrational model by Bohr and Mottelson in 1952 (Bohr and Mottelson,
1975). Experimental evidence even preceded this suggestion, but was unrecognized
as such until repeated with several different nuclei (McClelland and Goodman, 1953).
Since then, Coulomb excitation developed into an important tool for investigating low-
lying nuclear states. In the case of pure (or safe) Coulomb excitation, the only nuclear
properties which enter into the theory are the matrix elements of the electromagnetic
multipole moments of the initial and final states involved in the transition. Hence,
one of the great advantages of Coulomb excitation is that it depends solely on the
electromagnetic coupling, which is one of the best understood phenomena in present
day physics.

2.1 Semi-Classical Treatment

In the semi-classical picture the relative motion of the nuclei is treated classically
whereas the excitation process is treated quantum mechanically. Therefore, the pro-
jectile travels along a hyperbolic orbit which can be described by the charge numbers,
the energy and the scattering angle ϑ. The distance between projectile and target for
a Center-of-Mass (CM) scattering angle ϑ is given by

b(ϑ) = a0

(

1 +
1

sin(ϑ/2)

)

(2.1)

13
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with a0 = Z1Z2e2

2ECM
and ECM = 1

2µv
2
∞ = A2

A1+A2
E1 the energy of the reaction in the CM

system1 (cf. figure 2.1). Here, the subscript 1 (2) denotes variables belonging to the
projectile (target). A sufficient requirement for ensuring that the projectile does not

Projectile
Target

b(Θ)
Θ

Figure 2.1: Coulomb Scattering in the Center-of-Mass System

penetrate the target nucleus (safe Coulomb excitation) is that its deBroglie wavelength
λ̄ is smaller than half the distance of closest approach:

b(ϑ = 180◦)

2λ̄
=
Z1Z2e

2

~v∞
=: η � 1. (2.2)

The parameter η is called Sommerfeld parameter (Sommerfeld, 1931). The differential
cross section for exciting a nucleus from an initial state |i〉 to a final state |f〉 is given
by

(

dσ

dΩ

)

if

=

(

dσ

dΩ

)

Ruth

· Pif

where Pif is the transition probability and
(

dσ
dΩ

)

Ruth
=
(

a0

2

)2
sin−4(ϑ/2) is the well-

known Rutherford cross section. The excitation process can be described with the time
dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = {H0 + V (~r(t))}|Ψ(t)〉 (2.3)

where V (~r(t)) is the operator of the electromagnetic interaction andH0 the Hamiltonian
of the free nucleus. Solving this equation with the initial condition that at t = −∞ the
nucleus is in its ground state, i.e. |Ψ(−∞)〉 = |0〉, leads to the wave function of the
nucleus after the collision:

Ψ(~r, t) =
∑

f

αif (t)Ψf (~r) =
∑

f

αif (t)|f〉. (2.4)

Here, the sum is over all possible final states and the coefficients αif are the excitation
amplitudes. The probability for a transition |i〉 → |f〉 is then

Pif = |αif |2. (2.5)

1µ is the reduced mass of the target and projectile nuclei, v∞ denotes the relative velocity of these
at large distances.
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So far the energy loss
∆E = Ef −Ei

has been neglected. For the validity of the semi-classical picture it has to be shown that
this energy loss does not modify the orbit significantly, i.e. ∆E/ECM � 1. A nucleus
can only be excited to the state |f〉 if the collision time τcol = a0/v, i.e. the time it
takes the projectile to travel the distance of closest approach, is shorter or equal to the
excitation time τexc = ~/∆E. This can be described by the adiabaticity parameter ξ:

ξ =
τcol

τexc
=
a0∆E

~v
≤ 1. (2.6)

If the collision time is longer the nucleus is able to follow the perturbation caused
by V (~r(t)) adiabatically and the excitation probability decreases exponentially with ξ.
The abovementioned energy loss can now be rewritten as

∆E/ECM = 2ξ/η.

If η � 1 and ξ ≤ 1 the usage of the semi-classical picture is reasonable. In a similar
manner it can be shown that the angular momentum transfer does not alter the orbit
significantly. The total orbital angular momentum can be written as l ≈ µva0 = ~η
and the difference before and after the collision is given by ∆l = L~ (here, L is the
multipolarity of the transition). Hence, ∆l/l � 1 is automatically fulfilled for safe
Coulomb excitation. In table 2.1 the values of the relevant parameters for the different
experiments performed in the framework of this thesis are given. Since the scattering

Coulomb Excitation Reaction Parameters

Reaction η ξ ∆min[fm] ∆E
ECM

[10−3]
108Pd(122Cd,122Cd)108Pd 206 0.36 9.1 3.5
104Pd(124Cd,124Cd)104Pd 206 0.39 10.6 3.8
96Mo(138Xe,138Xe)96Mo 212 0.39 8.9 3.6
96Mo(140Xe,140Xe)96Mo 212 0.25 8.8 2.3
96Mo(142Xe,142Xe)96Mo 212 0.19 8.6 1.8
96Mo(144Xe,144Xe)96Mo 218 0.18 11.4 1.6
64Zn(124Cd,124Cd)64Zn 135 0.34 7.3 5.1
64Zn(126Cd,126Cd)64Zn 135 0.37 7.2 5.4

Table 2.1: Relevant parameters for the experiments described in this work (see text for details).
The minimum distance ∆ for the experimental range in ϑ is given.

process is treated semi-classically the condition for safe Coulomb excitation can be
interpreted geometrically such that the nuclei should always be kept at a certain safety
distance ∆ of at least ≈ 5 fm (Wilcke et al., 1980). This is fulfilled if always

b(ϑ) ≥ R1 +R2 + ∆

with Ri = 1.25A
1/3
i fm (i=1,2). In figure 2.2 it is shown that in the experiments

described in this work the safety distance is always larger than 7 fm.
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Figure 2.2: The distance b(ϑ) and R1 +R2 for the different experiments is shown. It can be seen
that the distance ∆ is always larger than 5 fm.

2.2 First Order Perturbation Theory

The strength of the interaction potential V (~r(t)) between projectile and target can be
expressed in terms of the matrix elements of the action integral (measured in units of
~ (Alder and Winther, 1975)):

χif (ϑ) = 〈f |
∫ +∞

−∞

V (~r(t))dt|i〉

≈ 〈f |V (b(ϑ))|i〉τcol

(2.7)

which has been estimated by the value of V at closest approach and the collision time.
It is convenient to define this parameter for ϑ = π as

χif = ±
√

Pif (ϑ = π, ξ = 0).

If this parameter is small compared to unity, i.e. if the interaction V is weak, the
excitation amplitudes can be calculated using a first-order perturbation approximation.
They are then given by

αif =
1

i~

∫ +∞

−∞

〈f |V (~r(t))|i〉exp(iωt)dt (2.8)

with ∆E = ~ω. The electromagnetic interaction between target and projectile can be
decomposed in its multipole components. The monopole-monopole part leads to elas-
tic (or Rutherford) scattering whereas the monopole-multipole and multipole-multipole
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components induce inelastic scattering and hence the excitation of the nuclei. Corre-
spondingly the parameter χ can be decomposed into partial sums

χ =
∑

L

χ(L),

where each term belongs to the part of V (~r) which has multipole order L. The ex-
citation amplitudes are then factorized into a part that depends only on the matrix
elements of the multipole components and a part that depends only on the parameters
of the classical orbit. It can be shown (Alder and Winther, 1975) that

αif ∝
∑

L,M

1

2L+ 1
〈i|M(EL,M)|f〉∗REL(ϑ, ξ) (2.9)

for electric excitation. Here, the dimensionless orbital integrals REL(ϑ, ξ) have been
introduced. These depend on the adiabaticity parameter ξ and will vanish in the
adiabatic limit ξ � 1 as REL ∝ exp(−ξ). They measure the excitation probability
relative to the case of ϑ = π and ξ = 0. The matrix elements are defined generally as

M(EL,M) =

∫

ρ(~r)rLYL,M(r̂)d3r (2.10)

with ρ(~r) the charge density and YL,M the spherical harmonics. With the definition of
the reduced transition probability (see eq. 1.8)

B(EL; Ji → Jf ) =
∑

M,Mf

|〈JfMf |M(EL,M)|JiMi〉|2

=
1

2J0 + 1
|〈Jf ||M(EL)||Ji〉|2

(2.11)

the differential cross section turns out to be

dσEL =

(

Z1e

~v

)2

a−2L+2
0 B(EL)dfEL(ϑ, ξ). (2.12)

The function dfEL holds the relation dfEL ∝ R2
EL(ϑ, ξ)sin−4(ϑ/2)dΩ. The total electric

excitation cross section is then given by

σEL =

(

Z1e

~v

)2

a−2L+2
0 B(EL; Ji → Jf )fEL(ξ). (2.13)

2.3 Higher-order Perturbation Theory

If the parameter χ is larger than or comparable to unity the Coulomb excitation process
must be treated by directly solving the time dependent Schrödinger equation (eq. 2.3).
However, in practice the deviation from first-order can often be described by second
order corrections. The perturbation expansion is a series expansion in χ and is expected
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to converge for χ at most of the order of 0.5. The excitation amplitudes αif are then
given by (Alder and Winther, 1975)

αif = α
(1)
if +

∑

z

α
(2)
izf (2.14)

where the first term is the known first-order excitation amplitude and

α
(2)
izf =

(

1

i~

)2 ∫ +∞

−∞

〈f |V (~r(t))|z〉exp(iωt)dt ×
∫ t

−∞

〈z|V (~r(t′))|i〉exp(iω′t′)dt′ (2.15)

with ~ω = Ef − Ez and ~ω′ = Ez − Ei. Here, a summation over a complete set of
intermediate nucular states |z〉 is performed. Two cases of second order effects are
worth mentioning here:

Two Step Excitation

The final state |f〉 may be excited directly or through a low-lying state |z〉 (cf. fig-
ure 2.3). In practice, a two-step excitation is realized if the direct excitation |i〉 → |f〉
is small or forbidden, i.e. χif << χiz · χzf . An interesting case is that of a two-step
excitation from the 0+ ground state to a 4+ state through an intermediate 2+ state.
Since the direct excitation can only take place via an E4 transition - which is usu-
ally quite weak - the two-step excitation process strongly dominates. The excitation

probability is then P
(2)
if ∝ |χ(2)

iz |2 · |χ(2)
zf |2.

|Ji >

|Jz >

|Jf >

χzf

χiz

χif

|Ji >

|Jf >

χif

χff

Figure 2.3: Left: Schematic view of a two-step excitation through an intermediate state |z〉.
Right: If the intermediate state is identical to the final state transitions between the magnetic
substates of |f〉 are taken into account by the diagonal matrix element (see text for details).

Reorientation Effect

In cases where the intermediate state is identical to the initial or final state an in-
teraction with the quadrupole moment of that state occurs (cf. figure 2.3 (right)).
Considering the excitation of a 2+ state in an even-even nucleus the strength of this
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interaction depends on χ
(2)
2→2. This property is proportional to the intrinsic quadrupole

moment Q0 of the 2+ state:

χ
(2)
2→2 =

4

15

√

π

5

Z1e

~v

1

a2
0

〈2||M(E2)||2〉 with (2.16)

〈2||M(E2)||2〉 =

√

7

2π

5

4
eQ0. (2.17)

Note that the quadrupole moment is related to the deformation parameter β (see
section 1.2) via

eQ0 =
3√
5π
ZR2

0e
(

β + 0.16β2
)

. (2.18)

A positive deformation parameter β > 0 corresponds to prolate deformation whereas a
negative value β < 0 corresponds to oblate deformation.

The change in the angular distribution of the γ-rays resulting from the second-order
treatment is caused by transitions between different magnetic substates of the excited
state. The excitation probability in second order is then given by (Schwalm et al., 1972;
Alder and Winther, 1975)

P
(2)
02 = P

(1)
02 (1 + qK(ξ, ϑ)) (2.19)

with

q =
µ∆E

Z2
〈2||M(E2)||2〉 (2.20)

and P
(1)
02 the excitation probability in first order. For projectile excitation, Z2 has to be

replaced by Z1. The excitation energy ∆E is given in MeV, while the reduced matrix
element 〈2||M(E2)||2〉 is given in e · b. The quantity K(ξ, ϑ1) depends only slightly
on the adiabaticity parameter ξ, but increases significantly with increasing scattering
angle. Typical values for K are of the order of unity.

2.4 Application to Experiment

The aim of the experiments described in this work is to determine the B(E2) values for
the 0+

1 → 2+
1 and – in some cases – also the 2+

1 → 4+
1 transitions of the projectile nuclei.

This has been achieved by measuring the gamma yields Nγ following the corresponding
disexcitation of both the projectile and the target nucleus. This gamma yield is

N (1),(2)
γ ∝ σ(1),(2)

ce · ε(1),(2)γ · IBeam

with εγ being the total photopeak efficiency of the gamma detector array and IBeam

the beam intensity. A relative measurement of the Coulomb excitation cross section
of the projectile nucleus to the known cross section for target excitation reduces the
systematic error stemming from uncertainties in these factors. The projectile excitation
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cross section is then given by:

σ(1)
ce =

N
(1)
γ

N
(2)
γ

× ε
(2)
γ

ε
(1)
γ

× σ(2)
ce and (2.21)

∆σ
(1)
ce

σ
(1)
ce

=

√

√

√

√

(

∆N
(1)
γ

N
(1)
γ

)2

+

(

∆N
(2)
γ

N
(2)
γ

)2

+

(

∆σ
(2)
ce

σ
(2)
ce

)2

. (2.22)

The variables N
(1),(2)
γ and ε

(1),(2)
γ can be extracted from the experiment (see also sec-

tion 3.5 and chapter 4). Note that the uncertainties in the photopeak efficiency are of

the order of
∆εγ

εγ
∼ 10−3 whereas the uncertainties in σce and Nγ are 1-2 orders of mag-

nitude larger. Therefore, the contribution of (∆ε/ε)2 has been neglected here. Since

the target matrix elements - and therefore its Coulomb excitation cross section σ
(2)
ce

- are known, it is now possible to determine the projectile Coulomb excitation cross

section σ
(1)
ce . This cross section has to be reproduced by a theoretical calculation per-

formed with the code CLX (see section 2.6) depending on the matrix elements as input
parameters. Therefore, the B(E2) values of interest can be determined via linear inter-

polation between calculated cross sections σ
(1)
CLX for different matrix elements. These

calculations have to be corrected for the non-isotropic angular distribution of γ-rays
(see section 2.5). Of course, in eq. 2.21 it is assumed that only the isotope of interest is
responsible for target excitation. For possible beam contaminations the gamma yield

N
(2)
γ has to be corrected.

2.5 Angular Distribution

Since the magnetic substates of |f〉 are not populated equally in Coulomb excitation,
the emission of γ-rays is non-isotropic. A detailed discussion on the γ-ray angular
distribution can be found in Alder et al. (1956) or Alder and Winther (1975). Here,
the results concerning the experiments in this work are described. It can be shown that
the angular distribution of the emitted γ-rays can always be written in the form

W (θγ , φγ) =
∑

k,k′

A∗

kk′(ϑ)Ykk′(θγ , φγ) (2.23)

with A∗

kk′(ϑ) =
∑

κ,κ′

ρC
κκ′(ϑ)Kkk′,κκ′

and ϑ being the scattering angle of the emitting particle. Ykk′(θγ , φγ) are the spherical
harmonics, ρC

κκ′(ϑ) is a statistical tensor which is the equivalent to the density matrix
ρC

κκ′ ∝ 〈f |ρ|i〉. Kkk′,κκ′ describes the effects of unobserved γ-rays, conversion electrons
and other attenuating factors. If the particle is detected in a ring counter the angular
distribution is independent of φγ . For the case of an E2 transition the above formula
simplifies to

WE2(θγ) = 1 + a2P2(cosθγ) + a4P4(cosθγ) (2.24)

with Pn(cosθγ) being the Legendre polynomials.



2.6. COULOMB EXCITATION CALCULATIONS WITH CLX 21

Deorientation

An important phenomenon concerning the angular distribution of disexcitation γ-rays is
the nuclear deorientation effect. The initial nuclear alignment produced via Coulomb
excitation may not be retained during the lifetime of the nuclear state. Hence, an
attenuation of the angular distribution can be caused by hyperfine interactions between
the nucleus and the surrounding electron configuration. This leads to a modification
of eq. 2.24 by introducing time-dependent attenuation factors:

WE2(θγ , t) = 1 + a2G2(t)P2(cosθγ) + a4G4(t)P4(cosθγ). (2.25)

Assuming that the mean time between fluctuations of the electron configuration is
small compared to the lifetime of the nuclear state τN and small compared to the
precession time of the nuclear magnetic moment Abragam and Pound (1953) introduced
the following parametrization for these attenuation factors:

Gk(t) = exp [−λkt] and (2.26)

Gk =

∫

∞

0
e−t/τNGk(t)dt/τN =

1

1 + λkτN
. (2.27)

The integrated attenuation factors can be expressed in terms of a single relaxation time
scale

τ2 = λ−1
2 ∝ 1

g2µ2
N 〈H2〉1/2

with H being the magnetic field at the nucleus (cf. Danchev et al. (2005)). They are
then given by

G2 =
τ2

τ2 + τN
and G4 =

0.3τ2
0.3τ2 + τN

. (2.28)

In this work eq. 2.25 has been taken into account by means of the parameter λ2 as
input parameter for the coupled-channel code CLX (see section 2.6).

2.6 Coulomb Excitation Calculations with CLX

The Coulomb excitation calculations for this thesis were performed using the coupled-
channel code CLX, originally written by H. Ower, adapted by J. Gerl and further
modified by Th. Kröll. This code was used to calculate the differential and integrated
excitation cross sections of the projectile and target nuclei. It follows the nomenclature
of Alder and Winther (1975).

Its input parameters include

• the charge and mass numbers Z,A of the projectile and target nuclei

• the number of states involved in the calculation

• the spin, parity and energy for each of these states

• the beam energy

• the range in ϑp over which to integrate the cross section
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• the transitions |i〉 → |f〉 under consideration together with their matrix elements
ME(i→ f) and their multipolarities2

• the positions(s) of the gamma detector(s)

• the conversion coefficients taken from Hager and Seltzer (1968)

The output of CLX provides the user with integrated as well as differential excitation
cross sections for all transitions under consideration, possibly normalized to the cor-
responding Rutherford cross section. It is further possible to define windows in the
particle scattering range over which to integrate the Coulomb excitation cross sections.
In figure 2.4 the calculated Coulomb excitation cross section of 96Mo with respect to
ϑCM is shown. The angular range has been divided in windows of 5◦ width. The other
parameters are taken from the 96Mo(140Xe,140Xe*)96Mo* experiment (see chapter 4).

 [deg]CMθ
0 50 100 150

 [b
]

ceσ

0

0.05

0.1

Figure 2.4: The Coulomb excitation cross section for the 0+
1 → 2+

1 transition in 96Mo in the
CM system.

2The nomenclature ME(i → f) is used for the Matrix Elements |〈Jf ||M(E2)||Ji〉| in this thesis.
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3
Experimental Setup

For the investigation of nuclei far away from stability (exotic nuclei) the development
of Radioactive Ion Beams (RIBs) is necessary. The isotopes of interest are created
by nuclear reactions such as fission, fragmentation, spallation and fusion. The latter
produces proton-rich nuclei whereas the others can lead to the neutron-rich side of the
nuclear chart.

3.1 Methods of Producing RIBs

The development of RIB facilities with reaccelerated beams opened a new field of
nuclear physics since the 1990’s. Two different techniques of producing RIBs are used
in current RIB facilities: (i) the In-Flight projectile fragmentation (IF) method and
(ii) the Isotope Separation-On-Line (ISOL) method which is used for the experiments
described in this work. These techniques are very complementary regarding, e.g., their
energy range.

3.1.1 In-Flight Method

The IF method consists of a high-energy beam of heavy nuclei impinging on a thin
(∼ g/cm2) target. Part of the beam particles collide with the target nuclei which
leads to projectile fragmentation or fission and other nuclear reactions. The reaction
products basically keep the forward momentum of the primary beam. The isotope of
interest can be selected by applying electromagnetic and kinematical separators.

The advantage of this method is that the produced nuclei are available almost
instantly and without chemical selectivity. Hence, isotopes with lifetimes down to a
few µs can be investigated. The beam energy - ranging from about 10 A·MeV up to
the order of 1 A·GeV - is well suited for nuclear reaction studies, but makes studies of
low-lying nuclear structure or astrophysics experiments very difficult. The beam is also
of only modest quality concerning its beam spot size, energy precision and spread and

23
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angular divergence. Facilities which make use of the IF method are e.g. NSCL (USA),
GANIL (France), GSI (Germany) or RIKEN (Japan).

3.1.2 Isotope Separation On-Line

The ISOL method uses a light beam (e.g. protons) that impinges on a thick production
target. In principle, the same kind of nuclear reactions can take place as above, but this
time the reaction products are thermalized in the target. They diffuse out of the target
and are ionized, accelerated again and mass separated. Due to the second acceleration
a much higher beam quality can be achieved and the beam energy can be varied from
a few A·keV up to some A·MeV and higher.

This technique is especially suitable for nuclear structure and astrophysics experi-
ments. The main drawback is the slow release time from the primary target, hence one
cannot use this method for isotopes with life times τ ≤ 10 ms. The diffusion out of the
target depends also on the chemical properties of the element (e.g. refractory elements
do not come out of the source). The ISOL method is used e.g. at ISOLDE (CERN),
HRIBF (USA), ISAC (Canada) or SPIRAL (France).

3.2 The ISOLDE Facility

ISOLDE is an on-line isotope separation facility located at CERN1 with about 40 years
of experience in the production of low-energy radioactive ion beams. Today, more than
600 isotopes of more than 60 elements are available.

A beam of 1.4 GeV protons provided by the PSB2 impinges on a primary target
(e.g. UCx), where fission and spallation takes place. The reaction products diffuse out
of the target and are subsequently ionized to a 1+ state, possibly also as molecules.
Different ion sources are used, depending on the element of interest.

After extraction the beam is mass separated and distributed to the different exper-
iments in the hall (see figure 3.1).

3.2.1 The PS Booster

The PS Booster (PSB) is a stack of four small synchrotrons where protons are pre-
accelerated before injection into the CERN Proton Synchrotron (PS) (see figure 3.2).
The PSB delivers short pulses (∼ 2.4µs) of high intensity (up to 3.2 × 1013 p/pulse).
About six pulses in a PS supercycle of typically 12 pulses are available for ISOLDE
which is equivalent to a DC proton current of about 2µA. These protons are then
transfered to one of the two target zones of ISOLDE.

3.2.2 Targets and Ion Sources

For the experiments described in this work a UCx primary target has been used. During
the Cd runs, a tungsten rod has been applied close to the target. The protons, now
impinging on this so-called proton-to-neutron converter, create fast reaction neutrons

1Conseil Européen pour la Recherche Nucléaire
2Proton Synchrotron Booster
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Figure 3.1: View of the ISOLDE experiment hall after 2006 (taken from
http://isolde.web.cern.ch/isolde/).

which induce fission in the UCx target. This method helps to suppress proton-rich
isobaric spallation products and therefore improves the beam purity.

The diffusion time depends strongly on the chemical properties of the ions of interest
and on the target temperature which can be increased up to about 2000◦C. For the
subsequent ionization several different ion sources are available at ISOLDE:

Surface Ion Source: The surface ion source is the simplest setup for ionizing atoms
produced in the target. It consists only of a tube (transfer line) made of a metal
which has a higher work function than the atoms ionization potential (e.g. tan-
talum or tungsten). A more recent development is a transfer line made of quartz,
which improved the beam purity during the 124,126Cd experiments described in
section 4.2. The transfer line can be heated up to ∼ 2400◦C to avoid long sticking
times of the atoms on the surface and to ensure that ions are repelled from the
surface.

Hot Plasma Ion Source: The plasma ion source is used to ionize atoms that cannot
be surface ionized. The plasma is produced by a gas mixture (e.g. Ar and Xe)
that is ionized by impact of accelerated electrons.

Cold Plasma Ion Source: For the production of noble gas isotopes the above setup
is modified such that the transfer line between target and plasma is cooled by a
continuous water flow and therefore the isobaric contamination in the ISOLDE
ion beams is reduced. This has been used for the Xe beam experiments described
in this thesis.
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Figure 3.2: Schematic representation of the CERN accelerator complex (taken from
http://isolde.web.cern.ch/isolde/)

Laser Ion Source: A more sophisticated technique now in use is the Resonant Ionization
Laser Ion Source (RILIS). A laser beam is tuned precisely to the energy of a
strong atomic transition in the isotope of interest and a second laser beam is
used to excite an electron from that state to the continuum. Since the second
beam does not have enough energy to excite an electron from the ground state,
the RILIS can select not only a specific isotope but even isomeric states. Some-
times, as in the Cd runs described in this work, a 3-step ionization scheme is used
where the first two beams excite the isotope of interest from the ground state to
subsequently higher lying states and the third beam excites the electron to the
continuum (see figure 3.3).

It is possible to operate the RILIS in two different modes: (i) the “laser off”
mode, where only surface-ionized contaminants are seen in the beam and (ii) the
“laser on” mode, where additionally the laser-ionized isotope of interest is seen.
By comparing the data between these two modes the amount and kind of beam
contamination can be estimated.

3.2.3 The Mass Separators

After ionization the particles are extracted with typically 60 kV producing a 60 keV
beam. For selecting the ions of interest, two different mass separators are available at
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Figure 3.3: Ionization scheme for Cd and schematic view of the RILIS (taken from
http://isolde.web.cern.ch/isolde/).

ISOLDE, each with its own target. The so-called General Purpose Separator (GPS) is
designed to allow three ion beams within a mass range of ±15% and a mass resolution of
M

∆M = 2400 to be selected and delivered to the experimental hall. The High-Resolution
Separator (HRS) is designed for selecting one ion beam with a mass resolution of
M

∆M ≈ 5000.

3.3 REX-ISOLDE

The Radioactive Beam EXperiments (REX) facility was developed for bunching, charge
breeding and post accelerating the singly ionized RIBs coming from ISOLDE. In the
following, the REXTRAP, the EBIS and the REX linac are presented. A detailed de-
scription can be found in Ames et al. (2005). A schematic view of its components is
shown in figure 3.4.

3.3.1 REXTRAP

The REXTRAP is a Penning trap which was developed for accumulating, bunching and
cooling of the singly-charged ions from the separators. Accumulation and bunching
is required for the ion injection into the subsequent charge breeder. Since the trap
potential is 60 kV, the incoming ions have just enough energy to climb the first potential
threshold. Once inside the trap, the ions are slowed down by collisions with a buffer
gas (typically Argon or Neon at a pressure of ∼ 10−3 mbar). After cooling, the ions are
extracted to the EBIS in a bunch by lowering the ions potential threshold (see figure
3.5).
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Figure 3.4: Schematic view of the different parts of REX: the incoming beam is first accu-
mulated in the trap, then charge bred in the EBIS and finally reaccelerated in the linac (taken
from http://isolde.web.cern.ch/isolde/).

3.3.2 EBIS

The singly charged ions from the REXTRAP are injected into the Electron Beam Ion
Source (EBIS) in bunches. Inside the EBIS they are confined by the negative space
charge of the electrons and by potential barriers established by cylindrical electrodes.
For the injection into the linear accelerator (linac) a mass-to-charge ratio of A/q < 4.5
is required. The trapped ions will therefore undergo stepwise ionization from 1+ to
n+ via electron impact until a sufficient number of ions has reached this A/q value.
For this, a mono-energetic electron beam from an electron gun focused by a strong
magnetic field (∼ 2T) is used. The energy of this beam is adjustable between 3 - 6 kV.

For the ionization process, an excellent vacuum (∼ 10−10 mbar) inside the EBIS is
required. However, residual gas is still often seen as a contaminant in the subsequent
experiments. To obtain a high breeding efficiency, the phase space overlap of injected
ions and the electron beam has to be large. Hence, a rather low extraction emittance
from the Penning trap is needed. Unlike the trap, the potential of the EBIS platform
is pulsed between injection and extraction from 60 to about 20 kV, allowing for a fixed
ion extraction velocity independent of the A/q-value.

The total breeding time can range from a few to a couple of hundreds of milliseconds.
In table 3.1 these parameters are given for the experiments performed in the framework
of this thesis.
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Figure 3.5: Schematic view of the trapping process and picture of the REXTRAP (taken from
http://isolde.web.cern.ch/isolde/).

Experiment Parameters

Reaction q[e+] A/q τBreed[ms] EBeam[A ·MeV ]
108Pd(122Cd,122Cd)108Pd 31 3.935 153.8 2.85
104Pd(124Cd,124Cd)104Pd 30 4.133 154.0 - 158.6 2.85
96Mo(138Xe,138Xe)96Mo 34 4.059 204.1 2.86
96Mo(140Xe,140Xe)96Mo 34 4.118 204.1 2.86
96Mo(142Xe,142Xe)96Mo 34 4.176 204.1 2.86
96Mo(144Xe,144Xe)96Mo 34 4.235 204.1 2.7
64Zn(124Cd,124Cd)64Zn 30 4.133 255.1 2.84
64Zn(126Cd,126Cd)64Zn 31 4.065 255.1 2.84

Table 3.1: REX parameters for the experiments described in this work (see text for details).
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3.3.3 REX Linac

As the intensity of radioactive ions out of the EBIS is much smaller than the intensity
of residual gas ions, a mass separator prior to the linac is required. This mass separator
is of the so-called Nier-spectrometer type (Nier and Roberts, 1951) and has reached
q/A-resolutions of ∼ 150. However, there will still be contaminants from residual gas
isotopes with the same or similar A/q-values as the ion of interest in the beam. These
can typically be 14,15N,16,18O,20,22Ne,12,13C and 36,40Ar.

The linear accelerator consists of 4 different sections for stepwise accelerating the
ions extracted from the EBIS (cf. figure 3.6). The 5 A·keV ions from the EBIS are accel-
erated to 300 A·keV by a Radio Frequency Quadrupole (RFQ). The RF quadrupole
field provides transverse focussing while a modulation of the four rods bunches and
accelerates the injected beam. The following IH (Interdigital-H-type)-structure accel-
erates the ions from 0.3 A·MeV to an energy between 1.1 and 1.2 A·MeV. The output
of the IH structure is matched to the first out of three 7-gap resonators with a triplet
lens. Between the first and the second resonator there is an additional doublet lens for
focussing. The three 7-gap resonators can accelerate the ions up to 2.3 A·MeV. Until
2003 this has been the maximum beam energy at REX-ISOLDE.

These first three sections operate at 101.28 MHz, which is half the frequency of
the CERN proton linac. In spring 2004 an energy upgrade up to 3 A·MeV has been
achieved by installing an additional 9-gap resonator which operates at 202.56 MHz.
This upgrade has proven to be crucial for the ongoing Coulomb excitation experiments
with exotic nuclei, since it increases the Coulomb excitation cross section significantly
which compensates for the low beam intensities when going away from stability. The
REX linac has a very compact design with a total length of only about 12m, since
space was limited before the extension of the experimental hall in 2006.

Figure 3.6: Schematic view of the different parts of REX and the linac (taken from
http://isolde.web.cern.ch/isolde/).

3.4 The MINIBALL experiment

3.4.1 The Gamma Detector

The post-accelerated ion beam from REX is distributed to the experimental setup in-
cluding the γ-ray detector array MINIBALL (see figure 3.7). MINIBALL consists of
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Figure 3.7: Bird view on the MINIBALL experimental site. On the right the end of the linac
and the bending magnet can be seen. On the left the opened MINIBALL frame with the clusters
can be seen (taken from Niedermaier (2005)).

24 individually encapsulated HPGe3 detectors which are arranged in 8 triple clusters
(cf. Eberth et al. (2001)). These clusters are mounted on six moveable arcs (the MINI-
BALL frame) so that their position in θ and φ can be optimized with respect to solid
angle coverage or experimental specific constraints (see figure 3.8). The clusters can
also be rotated around their axis by an angle α. In the setup used for this work the
solid angle coverage was ∼ 60% of the full 4π at a target-detector distance of about 10
cm (cf. figure 3.9).

Since the beam coming from REX will have velocities up to β ∼ 0.1, the emitted γ-
rays will be Doppler shifted. Therefore, a large granularity of the detector is required
for a reasonable Doppler correction. To achieve this, each detector is electronically
6-fold segmented so that the overall granularity is 8 × 3 × 6 = 144 (cf. figure 3.10).
The electronic segmentation is achieved by shielding parts of the crystal sides during
implantation of Boron n-type impurities. In this way, only parts of the crystal are
connected and can be read out separately. The central electrode (the core), to which
the depletion voltage is applied, will always detect an interacting γ-ray. It depends on
the interaction point in the crystal which segment will detect it. It is assumed that
the first interaction is also the main interaction, i.e. the interaction in which most
of the energy is deposited. This plays a crucial role for the Doppler correction. In
the so-called addback procedure the energies which are deposited in more than one
crystal within a cluster by one γ-ray are added and linked to the position of the first

3High Purity Germanium
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Figure 3.8: The MINIBALL frame with its arms is shown (taken from
http://isolde.web.cern.ch/isolde/).

Figure 3.9: Close-up of the MINIBALL clusters surrounding the target chamber. The different
colours indicate the three crystals per cluster and the different shades of each colour indicate
the segments (taken from http://isolde.web.cern.ch/isolde/).
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Figure 3.10: Schematic view of a cut through a MINIBALL crystal. The segments are
indicated (by courtesy of Eppinger (2006)).

interaction. This increases the full energy peak efficiency, which is important when
working with low-intensity RIBs. For more details on the MINIBALL spectrometer see
also Weißhaar (2003).

Typical depletion voltages are around 2.5 - 4.5 kV. The crystals are kept at liquid
nitrogen (LN2) temperature by attaching dewars to each of the 8 clusters which are
connected with an autofill system.

3.4.2 The Particle Detector

For detecting the scattered beam particles as well as the target recoils, a Double Sided
Silicon Strip Detector (DSSSD) has been mounted in the target chamber. This so-
called CD detector consists of four quadrants, each of which is read out independently.
The front side is segmented in 16 annular strips for measuring ϑ whereas the back side
consists of 24 sector strips which were linked into pairs for measuring ϕ. The annular
strips have a width of 1.9 mm and a 2.0 mm pitch, the paired sector strips have a pitch
of 6.8◦ (cf. figure 3.11). Each quadrant covers a range in ϕ of 81.6◦ and - at a target
distance of 33 mm - the CD covers a range in ϑlab of 15◦ . ϑ . 51◦.

During the 138−142Xe experiments the inner four rings of the CD were covered by
a plug in order to prevent the CD from damage due to high count rates of elastically
scattered particles occurring at small scattering angles and to reduce the dead time of
the particle detector. In the 124,126Cd and 144Xe experiments the CD has been shielded
by a degrader foil to reduce the energy of the detected particles.



34 CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.11: Schematic view of the CD detector and its segmentation (see text) and picture
of one mounted quadrant (taken from Niedermaier (2005)).

3.4.3 Electronics and Data Acquisition

MINIBALL

The signals from the gamma detectors are integrated and amplified by the MINIBALL
preamplifiers and then fed into the XIA DGF4 modules (XIA, 2007) where they are
digitized with a sampling frequency of 40 MHz. Since each DGF has four input channels
two modules are needed per crystal (one channel for the core signal and six more
channels for the segment signals, the remaining one stays empty). The digitized signal
is further processed in an FPGA5 where digital filter operations are used to gain energy
and time information. The FPGA generates an event trigger if a useable event is
present. The pulse is then fed into the DSP6 and data read-out is forced. A detailed
description can be found in Lauer (2004).

CD Detector

For each quadrant the signals from the 16 front and 12 back strips are fed into RAL 108
preamplifiers and from there into RAL 109 shapers where both a Constant Fraction
Timing (CFT) and Gaussian-like shaping is performed. The logical OR of the timing
signals as well as the energy signals from each strip are fed into a CAEN V785 ADC7

module which generates the CD quadrant signal. The ORed timing signals are also fed
into a time stamp DGF which runs with the same 40 MHz clock as the DGF modules
used for MINIBALL. This is necessary for linking particle and gamma data, e.g. defin-
ing a time difference between the detection of particles and γ-rays (see also figure 4.10).

4X-ray Instruments Associates, Digital Gamma Finder
5Field Programmable Gate Array
6Digital Signal Processor
7Analog to Digital Converter



3.5. APPLICATION TO EXPERIMENT 35

Now for each particle event as well as for each gamma event an energy and a time
stamp is stored. During the event building process the particles and the γ-rays with
identical time stamps can be put together into one event.

Another important timing signal is the EBIS signal which marks the injection of
ions from the EBIS into the linac. This signal starts a time gate (the so-called On-
beam window) during which data is taken. The end of the On-beam window triggers
the data read-out after which a second time gate with the same length (the so-called
Off-beam window) is opened during which again data is taken. This data can be used
to determine background radiation. Note that this data has to be read out before the
next EBIS pulse.

Other timing signals that are available are the PS signal, indicating the start of a
PS supercycle, the T1 signal indicating that the proton beam impinges on the ISOLDE
target and the T2 signal indicating that the ions are allowed into the trap.

More important, for experiments which make use of the RILIS (as those performed
with Cd beams for this thesis) a Laser flag signal indicating whether the laser was ’On’
or ’Off’ is also stored.

The data acquisition is performed with Marabou which writes the raw data to .med

files (Lutter et al., 2009). This file format is based on the GSI MBS event structure. A
code developed at the MPI in Heidelberg (cf. Niedermaier (2005)) is used to transform
these into .root files containing a ROOT tree rt (see also Brun et al. (2009)).

3.5 Application to Experiment

The standard setup for all experiments described in this work consists of the MINIBALL
gamma detectors, the particle detector, a PPAC8 for beam monitoring and a beam
dump gamma detector at the end of the beam line (cf. figure 3.12). The isotope under
investigation is delivered as radioactive ion beam by REX whereas a suitable target is
chosen individually for each experiment (cf. table 3.2).

Several aspects are taken into account for this choice: (i) the target nucleus should
have a large enough and well-known Coulomb excitation cross section, (ii) the γ-energies
of the transitions involved should differ significantly from those in the projectile nucleus,
so that the resulting peaks in the γ-spectra are separable and (iii) the mass A of the
target nucleus should be chosen such that the target recoils can be separated from
the projectiles kinematically. Of course, it can be rather difficult to fulfill all of these
aspects with an available target material.

For the determination of the B(E2) values the γ-ray yields from the ejectile and
target disexcitation peaks are needed. Since these γ-rays are emitted in-flight they
have to be Doppler corrected. For the Doppler correction the energies and scattering
angles of both the emitting particle and the γ-ray are needed and the following formula
has to be applied:

E′

γ = Γ ×Eγ × {1 − β [cos (θ) cos (ϑ) + sin (θ) sin (ϑ) cos (δφ)]} . (3.1)

with δφ = ϕ−φ, Γ = 1/
√

1 − β2 and β =
√

2E/M (E being the particle energy). The
angles θ and φ belong to the γ-rays whereas ϑ and ϕ belong to the emitting particles.

8Parallel Plate Avalanche Counter
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Figure 3.12: Schematic view of the experimental setup. The detection of projectiles and target
recoils in the CD detector is indicated.

Targets of the Experiments

Beam Target Thickness [mg/cm2] ME(0 → 2) [eb]
122Cd 108Pd 2.0 0.872(13)
124Cd 104Pd 2.0 0.731(24)

124,126Cd 64Zn 1.8 0.400(19)
138−144Xe 96Mo 1.7 0.520(4)

Table 3.2: The targets chosen for the experiments described in this work along with their
thicknesses and transitional matrix elements.

3.5.1 Position Calibration of the Gamma Detector

The angles (θ, φ, α) of the MINIBALL clusters - and therefore the positions of the
crystals - are determined using the 1-neutron pick-up reaction d(22Ne,23Ne)p. In this

reaction the first excited state in 23Ne
(

Jπ = 1
2

+
)

at 1017 keV is populated. It disex-

cites in-flight while the ejectile essentially moves in beam direction. Thus, the observed
Doppler shift of the γ-ray can be used for the position calibration of the Ge detectors.
The angular coordinates are varied recursively until (i) the FWHM9 of the Doppler
corrected peak in one cluster is minimized and (ii) the Doppler corrected peaks in the
6 segments are aligned (see also van de Walle (2006)).

3.5.2 Position Calibration of the Particle Detector

In the Coulomb excitation experiments the angles of the particles can be determined
from the position sensitive CD detector. Of course, an uncertainty in this determination
remains. The uncertainty ∆ϑ in the scattering angle is of great importance for the
further analysis, since it is not only needed in the Doppler correction, but also for the

9Full Width Half Maximum
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angular range over which the CLX calculations have to be integrated and for estimating
the CD efficiency.

The position of the detected particle on the CD can be described by polar coordi-
nates (r,ϕ) where the radius r is determined from the annular strip (ring) on the front
side and the angle ϕ from the radial strip on the back side. It is then

ϑ = arctan
(r

d

)

(3.2)

∆ϑ =

√

(

∆r
r

)2
+
(

∆d
d

)2

1 +
(

r
d

)2 × r

d
(3.3)

with ∆r =
√

∆r2
ring + ∆r2

spot and d being the distance between the target and the

CD detector. The beam spot size is estimated to be ∆rspot = 1 mm, the uncertainty
due to the ring width is ∆rring = 1 mm and the uncertainty in the distance is ∆d =
1 mm. The calculated uncertainty ∆ϑ for each ring and an applied polynomial fit
are shown in figure 3.13. The angular range of the CD detector in this setup is then
ϑlab = 15(2)◦ − 51(1)◦.
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Figure 3.13: The uncertainty of the scattering angle is calculated for each ring. A polynomial fit
of order 2 has been applied.

3.5.3 Energy Calibration of Particle Detector

The other variable determined from the CD and needed for the Doppler correction is
the particle energy. The CD detector was therefore calibrated using a triple α-source,
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Figure 3.14: Particle energies for 140Xe and 96Mo as detected in the CD (left) and based
on kinematic calculations (right) vs. the corrected scattering angle in degrees. The correction
has been applied due to a shift of the beam spot with respect to the center of the CD (see
chapter 4).

consisting of 239Pu, 241Am and 244Cm with α-energies of 5.156 MeV, 5.486 MeV and
5.805 MeV, respectively. Of course, the extrapolation of these energies to energies
of the order of ∼ 102MeV (as occur in the experiments described in this work) is
problematic. This is one of the reasons why in the later analysis the scattering angle
ϑ has been used to assign the particle energy via a look-up table based on kinematic
calculations including the energy loss in the target. Another reason is that the range of
the preamplifiers of the CD detector is limited to about 200 MeV and that the degrader
foil used in later campaigns further distorts the energy signal. For the detection of
intermediate-mass and heavy ions, one has also to take care of the so-called pulse
height defect (see Knoll (1979)). This states that the charge produced by a heavy
ion in silicon is significantly less than the charge produced by a light ion depositing
the same energy and that this effect increases with the atomic number of the ion. A
comparison between the detected and the tabulated energy can be seen in figure 3.14.

3.5.4 Energy Calibration and Relative Efficiency of the Gamma De-
tectors

For the energy calibration of the MINIBALL array source measurements with 60Co
and 152Eu were used. The sources were placed at target position. First, the two
prominent lines of 60Co at 1173 keV and 1332 keV were used for a rough calibration
of the MINIBALL channels. Subsequently, the most prominent γ-lines in the 152Eu
spectrum (ranging from 122 keV to 1408 keV) have been used for a fine tuning of this
calibration.

The 152Eu source measurement has also been used to determine the relative photo-
peak efficiencies εγ of the MINIBALL spectrometer. The efficiency is defined as εγ =
Nγ/Iγ with Nγ being the yield in one line of the spectrum and Iγ their relative intensity.
Plotting these efficiencies for the most prominent lines versus the corresponding line en-
ergies shows the dependence of εγ from Eγ . For the determination of σce the efficiencies
at the energies of the transitions under investigation are needed (see eq. 2.21). These
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Figure 3.15: The γ-ray spectrum from the 152Eu source in the energy range of the most
prominent lines.

are determined by fitting a power law function10 (cf. Knoll (1979)) to the measured
efficiencies and evaluating this function at the corresponding energies. The efficiencies
εγ for the different beam times investigated in this work are summarized in table 3.3.

Note that the relative uncertainty is of the order of
∆εγ

εγ
∼ 10−3 and will therefore be

neglected in the further analysis.

10This function looks like f(x) = exp [
P

3

i=0
pix

i] with x = log
10

(Eγ). The γ-energy is given in MeV.
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Figure 3.16: The relative efficiency of MINIBALL. Note that εγ is normalized to the 122 keV
line.

Photopeak Efficiencies for the different Transitions

Isotope Transition Energy [keV ] εγ
122Cd 2+

1 → 0+
1 569.5 0.455

124Cd 2+
1 → 0+

1 613.2 0.434
108Pd 2+

1 → 0+
1 433.9 0.545

104Pd 2+
1 → 0+

1 555.8 0.464
138Xe 2+

1 → 0+
1 588.8 0.432

2+
1 → 0+

1 376.7 0.580
140Xe

4+
1 → 2+

1 457.6 0.518

2+
1 → 0+

1 287.2 0.687
142Xe

4+
1 → 2+

1 403.5 0.559
96Mo 2+

1 → 0+
1 778.2 0.361

124Cd 2+
1 → 0+

1 613.2 0.426
126Cd 2+

1 → 0+
1 652 0.409

64Zn 2+
1 → 0+

1 991.6 0.314
144Xe 2+

1 → 0+
1 252.6 0.753

96Mo 2+
1 → 0+

1 778.2 0.365

Table 3.3: The relative gamma efficiencies of MINIBALL at the energies of the transitions
analyzed in this work.
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knowledge is limited.

Albert Einstein (1879-1955)

4
Data Analysis

4.1 Analysis of the 122,124Cd Data

In this beam time the Coulomb excitation cross sections for the first excited states
in 122,124Cd have been determined via the reactions 108Pd(122Cd,122Cd*)108Pd* and
104Pd(124Cd,124Cd*)104Pd*, respectively.

4.1.1 Particle Spectra

The raw energy spectra per ring and strip for each sector are used to examine the con-
dition of the CD detector. During this campaign the CD detector was fully functional.
In figure 4.1 the detected particle energy is plotted versus the laboratory scattering an-
gle. Unfortunately the ejectile and the target recoil cannot be separated kinematically.
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Figure 4.1: The measured particle energy versus scattering angle for 122Cd is shown before
(left) and after (right) the beam shift correction. The cut on the elastically scattered projectiles
and recoils is also shown (magenta line).

Therefore, a graphical cut on both is used for the further analysis. According to the

41
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number of particles detected in this cut different types of events can be distinguished
(see table 4.1). The number of events according to its event type for the 122Cd beam

Definition of Event Types

Event Type Particle Multiplicity

0 0

1 1

2 2

3 > 2

Table 4.1: Definition of the event types (ET) according to the number of particles detected in
the graphical cut.

time is plotted in figure 4.2. Note that about 86% of all events are of type 1 whereas
only about 0.1% are of type 3, which are considered unphysical. Only events of type 1
or 2 are used in the analysis. For events of type 2 a consistency check is done by eval-
uating the difference of the azimuthal angle of both particles. For the ejectile and the
recoil this should be ∆ϕ = 180◦ which is indeed the experimental result (cf. figure 4.2).
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Figure 4.2: The number of different event types (left) and the difference in ϕ of two detected
particles (right) for the 122Cd run are shown. ∆ϕ centers at (180± 11)◦ as expected.

Beam Shift Correction

The next step of the data analysis is the determination of the shift of the beam spot
with respect to the center of the CD detector. If the beam was centered, the intensity
of elastically scattered particles in one ring, i.e. in a constant interval [ϑ,ϑ+dϑ], would
be constant. Since this is obviously not the case (cf. figure 4.3) the beam spot position
is shifted in radial steps of 1 mm and angular steps of 3.75◦ (which is half the ring
width and half the strip width) until the deviation of I(ϕ) from the mean value is
minimized. The mean value < I(ϕ) > is defined as
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Figure 4.3: The intensity of elastically scattered particles in the range 21◦ ≤ ϑ ≤ 25◦ before
(left) and after (right) correction due to the beam shift for 122Cd. The mean intensity is also
shown (red line).

< I(ϕ) >=
1

n

n
∑

j=1

Ij(ϕ) (4.1)

with n being the number of bins with non-zero content in the shown histogram. The
deviation is then defined as

∆ < I(ϕ) >=
1

n− 1

n
∑

j=1

(Ij(ϕ)− < I(ϕ) >)2 . (4.2)

The resulting beam shifts are summarized in table 4.2. Of course, these shifts are not
necessarily constant over time and they cannot be measured more accurate than the
segmentation of the CD detector allows. The corrected angles ϑcorr are then used to

Beam Shift Parameters

Beam r[mm] ϕ[◦]
122Cd 1 18.75
124Cd 1 30.0

Table 4.2: The offset of the beam spot with respect to the CD center in polar coordinates for
the 122,124Cd beams.

assign the particle energy (see section 3.5). The range of the scattering angle covered by
the CD detector and the applied cut is 15.0(23)◦ ≤ ϑcorr ≤ 50.0(13)◦ in the laboratory
system.

Beam Purity

Since there is a significant amount of isobaric contaminants in the 122,124Cd beams
the beam purity and beam composition have to be taken into account for the further
analysis. In this beam time the RILIS (cf. section 3.2.2) has been used which allows a
comparison between ’Laser On’ and ’Laser Off’ data. In the latter, only the contami-
nants reach the target chamber while in the former both the isotope of interest and the
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contaminant can react with the target. Hence, two methods are applied to estimate the
overall beam purity: (i) a comparison of the number of elastically scattered particles
in the cut (i.e. beam-like particles) during ’Laser On’ and ’Laser Off’ runs and (ii) a
comparison of the gamma yields from the target disexcitation during ’Laser On’ and
’Laser Off’ runs (cf. figure 4.4). For both it can be said that

NON = NX +NCd and NOFF = NX

with X being the sum of all contaminants. The beam purity R is then given by

R = 1 − NOFF

NON
. (4.3)

For the 122Cd beam the numbers are given in table 4.3.
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Figure 4.4: The peak from the 2+
1 → 0+

1 disexcitation of the 108Pd target in ’Laser On’ (black)
and ’Laser Off’ (red) mode can be seen at Eγ ≈ 435 keV . Note that the disexcitation peak of
122Cd (Eγ ≈ 570 keV ) vanishes in ’Laser Off’ mode as expected. The FWHM of the peaks is
9 keV and 11 keV for Pd and Cd, respectively.

For the 124Cd beam the amount of contamination is more ambiguous. Looking
closer at the single runs taken in the ’Laser On/Off’ mode (i.e. where a shutter switches
the laser periodically on and off) it can be seen that the beam purity varies between
about 7% and 70% and that there have been problems with the shutter not working
properly. Therefore, the beam purity has been determined for each run by comparing
the elastically scattered beam-like particles and a mean beam purity of R = 22(5)% has
been established. The statistics in the target deexcitation peak is too low for analyzing
in the single runs.
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Beam Purity

Method NON NOFF R[%]

(i) 14153 5602 60.4(6)

(ii) 1255 489 60(2)

Table 4.3: Determination of the beam purity R for 122Cd by comparing (i) the elastically
scattered beam-like particles and (ii) the target excitation yields during ’Laser On’ and ’Laser
Off’ runs.

Furthermore, the composition of the beam can be estimated from the γ-ray spec-
trum of the beam dump detector (cf. figure 4.5). There, the decay lines from the isotope
of interest as well as from the contaminants can be observed. Dividing the yields of
the identified lines by their relative intensities and plotting these values versus the line
energies results in a plot that can be used to estimate the amounts of the identified
isotopes in the beam. In the case of 122Cd the following decay chains have to be taken
into account:

• 122Cd
5.14s−−−→ 122In(1+)

1.5s−−→ 122Sn

• 122In(5+)
10.3s−−−→ 122Sn

• 122In(8−)
10.8s−−−→ 122Sn

• 122Cs(1+)
21.2s−−−→ 122Xe

20.1h−−−→ 122I

• 122Cs(8−)
3.70m−−−−→ 122Xe

20.1h−−−→ 122I

The values in brackets indicate the spin and parity J π of the decaying state, the values
above the arrows its half-life T1/2.

Defining

εx(Eγ) :=
Nγ(Eγ)x
Iγ(Eγ)x

as the gamma yield of a decay line at an energy Eγ belonging to the isotope x divided
by its relative gamma intensity it can be assumed that

nx

ny
∝ εx(Eγ)

εy(Eγ)
.

Here, nx(y) denotes the relative amount of the isotope x(y) in the beam and the values
εx(y) are evaluated at the same energy Eγ . In figure 4.6 the values ε are plotted
versus the γ-energy for several lines from different isotopes. One of the isotopes with a
sufficient number of identified lines can be taken as reference isotope (e.g. 122In(5+) in
the A = 122 beam). A power law function (as in section 3.5) is fitted to its graph and
evaluated at the energies of the decay lines from the other isotopes. Note that only the
energy range between 800 keV and 2200 keV has been taken into account due to the
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Figure 4.5: The γ-energy spectrum from the beam dump detector for the 122Cd run in two
energy ranges. Some of the identified decay lines are labelled corresponding to their parent
nuclei. Note that the lines at 878 keV , 1002 keV , 1122 keV and 1140 keV can stem from all
three Jπ states of 122In under consideration here. The line at 2617 keV results from the natural
background decay 208Bi → 208Pb. The observed 122Xe is the decay product of 122Cs. There
might also be a contribution of 122Xe decay in the line at 282 keV .
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Figure 4.6: The ratios of the yields to the line intensities for the identified contaminants. The
numbers in the legend correspond to the spins of the decaying states. The fit function is also
shown (see text for details). The peculiar behaviour of 122In(8−) at 282 keV can be explained
by an additional contribution from the decay of 122Xe at this energy.

reliability of the determined intensities. These fit values εfit(Eγ) are then compared to
the experimental determined values εx(Eγ) by defining

rx(Eγ) :=
εx(Eγ)

εfit(Eγ)
.

These ratios rx are averaged over all suitable decay lines from the isotope x, resulting in
mean ratios < rx >. Let x,y and z be the only isotopes present and z be the reference
isotope. It can then be shown that

nx

nz
∝ εx(E0)

εz(E0)
=

εx(E0)

εfit(E0)
=< rx > (4.4)

nx =< rx > ·nz (4.5)

nx + ny + nz = 1 (4.6)

⇒ nz = [1+ < rx > + < ry >]−1. (4.7)

With this procedure the relative amount of the isotopes in the beam can be estimated.
Note that the beam isotope also decays so that some of the decay lines in the γ-
energy spectrum of the beam dump detector do not stem from contaminants but rather
from the isotope of interest.

For the 122Cd beam the estimated beam composition is approx. 60% of 122Cd,
25% of 122In and 15% of 122Cs. This is in agreement with the overall beam purity
determined from the ’Laser On’ and ’Laser Off’ data. Note that these amounts are
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only accurate to about a factor of ∼ 1.5 due to uncertainties in the fit function as
well as in the averaged ratios. For the 124Cd beam this procedure did not result in a
consistent beam composition due to difficulties in assigning the decay lines to a certain
isotope. Hence, in the analysis of the data from the 124Cd runs only the beam purity
but not its composition has been taken into account.

Efficiency of the CD detector

For the determination of the relative efficiency of the CD detector and the applied cut
an effective Rutherford cross section for this beam composition is used. In figure 4.7 a
comparison of this effective σRuth,eff with that of a pure 122Cd beam is shown. Since
the beam components have similar charge numbers Z the difference in cross sections is
at most approx. 5%.
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Figure 4.7: The effective Rutherford cross section per ϑ interval for the projectiles (left) and
the recoils (right) in the 122Cd experiment. A pure cross section is plotted for comparison as
well as the relative contributions. Note that the cross section is much larger for Cd than for
Pd for ϑ . 40◦.

The efficiency of the CD detector and the applied cut is determined by comparing
the number of elastically scattered particles in small intervals of ϑ (cf. figure 4.9) to
the effective Rutherford cross section. Since both the projectiles and the recoils are
detected in the cut, the comparison has to be done with the sum of the corresponding
cross sections (cf. figure 4.8):

σtot
Ruth,eff = σCd

Ruth,eff + σPd
Ruth,eff .

The relative efficiency is then given by

εrel(ϑ) = Nel.(ϑ)/σtot
Ruth,eff (ϑ).

This efficiency - normalized to one - is shown in figure 4.9 for the 122Cd experiment.
Note that it drops towards smaller scattering angles. The innermost intervals are af-
fected by the beam shift and the finite beam spot leading to a fewer amount of detected
particles than expected. Also, the uncertainty in ϑ increases with decreasing scattering
angle whereas the Rutherford cross section becomes more sensitive (see figure 4.8).

The γ-ray spectra will then be weighted with these efficiencies according to the
scattering angle of the detected particle. Since the relative uncertainties are of the
order of ∆ε

ε ∼ 10−1, they have to be taken into account in the further analysis.
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Figure 4.8: The sum of the two effective Rutherford cross sections from figure 4.7. The
uncertainties ∆ε include the statistical error as well as the uncertainty in the scattering angle
ϑ.
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Figure 4.9: The number of elastically scattered particles in intervals of 5◦ ranging from
15◦ ≤ ϑ ≤ 50◦ (left) and the relative efficiency of the CD detector and the applied cut in the
122Cd run (right) is shown.

4.1.2 Gamma Ray Spectra

For the Doppler corrected γ-ray spectra the γ-rays emitted by the projectiles or recoils
have to be identified and background radiation has to be suppressed. The γ-rays are
detected with the MINIBALL spectrometer and the emitting particles are detected with
the CD detector. Plotting the time difference between the detection of particles and γ-
rays, a clear correlation between γ-rays emitted by the reaction partners (prompt peak)
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and those from random background can be seen (cf. figure 4.10). The γ-ray spectra
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Figure 4.10: Time difference between detected particles and γ-rays in the 122Cd experiment.
The prompt peak (red) corresponds to γ-rays emitted by the reaction partners whereas the
random time gate (blue) is used for background subtraction.

taken during the random time gate are then subtracted from those taken during the
prompt time peak. Note that the random time gate is much longer than the prompt
peak. The corresponding spectra will therefore be weighted with tprompt/trandom before
subtraction.

Since it is not possible to distinguish between projectiles and target recoils in the CD
detector one has to check different assumptions. For events of type 1 it can be assumed
either that the detected particle was Cd or Pd. The Doppler corrected γ-ray spectra
for both assumptions are shown in figure 4.11. Note that the difference between them
is small because both particles have similar velocities at the same scattering angle. The
Doppler correction will therefore shift the γ-energies to a sharp line if the γ-ray was
emitted by the detected particle.

It is also possible to reconstruct the angles and energy of the other particle, which
was not detected, and to Doppler correct the γ-rays with respect to this particle. For
events of type 2 it can be shown that it also makes hardly any difference which of the
two particles is assumed to be Cd and Pd for the Doppler correction (see figure 4.11).

An alternative way is to plot the Doppler corrected γ-energies in a two-dimensional
spectrum. For events of type 1 it is assumed that the detected particle was always Cd,
due to the overall larger Rutherford cross section. For the same reason the particle
with the lower scattering angle in events of type 2 is assumed to be Cd. The γ-energy
corrected with respect to the assumed Cd is then plotted along the x-axis whereas
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Figure 4.11: Left: Doppler corrected γ-ray spectrum for Event Type 1 assuming the detected
particle was 122Cd (black) or 108Pd (red). Right: The same spectrum for events of type 2
assuming the first particle to be 122Cd (black) or 108Pd (red).

the γ-energy corrected with respect to the assumed Pd is plotted along the y-axis. In
figures 4.12 and 4.13 it is shown that along both axes there are two peaks at the energies
of the 2+

1 → 0+
1 transitions of 122,124Cd and 108,104Pd, respectively. The corresponding

projections on the x- and y-axis are also shown. The advantage of this method can
clearly be seen for the 124Cd run (figure 4.13) where the peaks in the projection along
one axis have a significant overlap due to the transition energy of both ejectile and
target nuclei being very close. This makes it more difficult to integrate the gamma
yield correctly. In the two-dimensional spectrum both peaks can be separated more
clearly by applying cuts on these peaks separately for x and y as well as in total. It is

Nhit +Nrec = Ntot +Nbg (4.8)

and therefore

N ′

hit = Nhit −Nbg = Ntot −Nrec (4.9)

and N ′

rec = Ntot −Nhit (4.10)

with Nhit (Nrec) being the yield in the peaks along the x-axis (y-axis), Ntot being the
yield in the total cut and Nbg being the wrongly corrected background. This formula
is now applied to both peaks which results in three separate ways of determining the
Coulomb excitation cross section. One can apply either

(i)
N ′

hit(Cd)

N ′
rec(Pd)

, (ii)
N ′

rec(Cd)

N ′

hit(Pd)
or (iii)

Ntot(Cd)

Ntot(Pd)

in eq. 2.21. Note that for the calculation of σ
(Pd)
ce the angular range has to be adjusted

to each of these ratios. The yield from the target excitation N(Pd) has also to be
multiplied with the beam purity R before the comparison. The results for the 122,124Cd
runs are summarized in table 4.4. The resulting matrix elements are in agreement
within the uncertainties. A more thorough discussion of these results can be found in
chapter 5.

The uncertainties of the Coulomb excitation cross sections of the Cd isotopes are,
according to eq. 2.21, influenced by the statistical uncertainties of the gamma yields
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Figure 4.12: Top: the Doppler corrected γ-energies with respect to the assumed 108Pd versus
that with respect to the assumed 122Cd is shown. Bottom: projection of these energies on the
x-axis (left) and on the y-axis (right). The FWHM of the peaks are 8.6 keV at 435 keV (108Pd)
and 10 keV at 570 keV (122Cd).

(∆Nγ/Nγ = 1/
√

Nγ) and the uncertainties of the Coulomb excitation cross sections
of the target nuclei. The latter stem from (i) an uncertainty in the transitional matrix
element and (ii) the uncertainty in the range of the scattering angle.

Note that eq. 2.21 has to be modified to take into account the uncertainty of the
CD detector efficiency and of the beam purity. Especially for 124Cd the uncertainty of
the beam purity is quite large and dominates the overall uncertainty of σCd

ce . Hence,
this nucleus has been investigated again in a later beam time (see section 4.2).
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Figure 4.13: Top: the Doppler corrected γ-energies with respect to the assumed 104Pd versus
that with respect to the assumed 124Cd is shown. Bottom: projection of these energies on the
x-axis (left) and on the y-axis (right). The FWHM of the peaks are 10 keV at 557 keV (104Pd)
and 12 keV at 614 keV (124Cd)

.

4.2 Analysis of the 124,126Cd Data

In another attempt to measure Coulomb excitation cross sections for excited states in
neutron-rich Cd isotopes, the reactions 64Zn(124,126Cd,124,126Cd*)64Zn* were used.
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Results for 122,124Cd

Beam Method NCd NPd ϑCM [◦] σPd
ce [b] σCd

ce [b] ME(0 → 2) [eb]

(i) 526 2975 32 - 110 2.78(22) 0.97(10) 0.61(7)
122Cd (ii) 429 2320 80 - 150 1.59(12) 0.58(6) 0.59(7)

(iii) 718 3882 32 - 150 3.50(20) 1.28(10) 0.61(4)

(i) 467 4540 33 - 116 1.58(14) 0.80(20) 0.58(10)
124Cd (ii) 346 3453 80 - 150 0.926(81) 0.45(11) 0.55(10)

(iii) 763 5633 33 - 150 1.92(14) 1.26(31) 0.67(13)

Table 4.4: Results from the integrated gamma yields for the 122,124Cd runs. Method (i)
compares N ′

hit(Cd) with N ′

rec(Pd), method (ii) compares N ′

rec(Cd) with N ′

hit(Pd) and method
(ii) compares Ntot(Cd) with Ntot(Pd). The resulting transitional matrix elements agree with
each other. Their derivation as well as the resulting B(E2) values are discussed in chapter 5.

4.2.1 Particle Spectra

This time the back strips number 8, 9 and 10 in sector 1 and the ring number 14 in
sector 2 of the CD detector were malfunctioning1.

Furthermore, the CD was shielded with a Mylar foil of 1.6 mg/cm2 to reduce the
energy range of the detected particles such that it fits to the energy range of the
preamplifiers (see section 3.4). In figure 4.14 the detected particle energy is plotted
versus the laboratory scattering angle before and after the beam shift correction. Here,
the detected projectiles can be separated from the detected target recoils. Therefore,
two separate cuts have been applied.
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Figure 4.14: The measured particle energy versus scattering angle for 126Cd is shown before
(left) and after (right) the beam shift correction. The cuts on the elastically scattered projectiles
and recoils are also shown. The missing ring can be seen as decreased intensity at about ϑ = 20◦.

The beam shift has been determined similarly to the description in section 4.1
(cf. figure 4.15). The results are summarized in table 4.5 and the corrected angles
ϑcorr are again used to assign the particle energy (see section 3.5). The range of the
scattering angle that could be used in the analysis is 12.0(24)◦ ≤ ϑcorr ≤ 52.0(12)◦ and

1Note that the rings are numbered from 0 for the outermost ring to 15 for the innermost.
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Figure 4.15: The intensity of elastically scattered particles in 24◦ ≤ ϑ ≤ 27◦ before (left) and
after (right) correction due to the beam shift for the 124Cd beam. The mean intensity is also
shown as red line.

Beam Shift Parameters

Beam r[mm] ϕ[◦]
124Cd 2 112.5
126Cd 1 67.5

Table 4.5: The offset of the beam spot with respect to the CD center in polar coordinates for
the 124,126Cd runs.

14.0(24)◦ ≤ ϑcorr ≤ 50.0(13)◦ for 124Cd and 126Cd, respectively. The event types are
defined differently from the former Cd runs due to the two separate cuts applied here
(cf. table 4.6). The number of events per event type are shown in figure 4.16. Only
events of type 1, 2 or 3 are used in the further analysis.

Definition of Event Types

Event Type Projectile Multiplicity Recoil Multiplicity

0 0 0

1 1 0

2 0 1

3 1 1

4 > 1 > 1

Table 4.6: Different event types according to the number of particle hits in the projectile and
recoil cut, respectively.

4.2.2 Beam Purity

The RILIS has again been used as ion source for the 124,126Cd beams which allows
the determination of the beam purity by comparing ’Laser On’ and ’Laser Off’ data.
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Figure 4.16: Left: The number of events per event type for the 126Cd beam. Note that about
50% of all events are of type 1 whereas only about 4% are of type 4. Right: The difference in
the azimuthal angle in case both particles have been detected. Note that ∆ϕ = 183± 12◦.

Unfortunately, the yields from the target disexcitation are too small to be analyzed
because most of the beam time has been dedicated to pure ’Laser On’ runs. Therefore,
only the number of elastically scattered beam-like particles (i.e. particles detected in
the projectile cut) were used for the comparison (cf. table 4.7). The newly developed
quartz transfer line enhanced the beam purity significantly compared to that of the
former 122,124Cd runs.

Beam Purity

Beam NON NOFF R[%]
124Cd 4921 855 83(4)
126Cd 36732 13433 63.4(6)

Table 4.7: Determination of beam purity for 124,126Cd by comparing the elastically scattered
beam-like particles during ’Laser On’ and ’Laser Off’ runs.

4.2.3 Efficiency of the CD Detector

The relative efficiency of the CD detector has been determined for each cut this time.
Again the number of particles that have elastically been scattered into an interval
[ϑ, ϑ + dϑ] has been compared to the integrated Rutherford cross section over this
interval (cf. figures 4.17 and 4.18).

The resulting efficiencies are shown in figure 4.19. Note that the innermost interval
in ϑ is affected by the beam shift and the final beam spot size, hence it will not
be covered fully by the active area of the detector. The two innermost intervals are
additionally lowered in efficiency due to the missing ring in one sector. The outermost
interval is also affected by the beam spot size and the beam shift. This effect is stronger
for the 124Cd run due to the larger beam shift. In the middle region the separation
between Cd and Zn is not so obvious and the Zn cut gets narrower towards lower angles
which is reflected in a decreasing efficiency. The Cd efficiency at about 30◦ is affected
by the geometry of the cut which excludes the low-energetic Cd isotopes.
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Figure 4.17: The number of elastically scattered projectiles (left) and recoils (right) per ϑ
interval in the 126Cd run.
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Figure 4.18: The Rutherford cross section for 126Cd (left) and 64Zn (right) integrated over
each interval in ϑ.
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Figure 4.19: Left: The relative efficiencies of the CD detector for the Cd cut (black) and the
Zn cut (red) in the 124Cd run. The scattering angle ranges from 12◦ ≤ ϑ ≤ 52◦ in intervals of
5◦. Right: The relative efficiencies of the CD detector in the 126Cd run. The scattering angle
ϑ ranges from 14◦ to 50◦ in intervals of 6◦.
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Figure 4.20: The time difference between the detection of particles and γ-rays for the 126Cd
run. The prompt peak (red) and the random time gate (blue) are indicated.

4.2.4 Gamma Ray Spectra

As in section 4.1 the time difference between the detection of particles and γ-rays is
used to identify γ-rays emitted by the reaction partners (prompt peak) and random
background radiation (cf. figure 4.20). Since the projectiles and the target recoils
can be separated in the CD detector the γ-energies can be Doppler corrected with
respect to the corresponding particle. If only one of the reaction partners has been
detected (i.e. for event types 1 and 2) the direction and energy of the other one
could be reconstructed kinematically and the corresponding γ-energies could be Doppler
corrected as well. Depending on the scattering angle ϑ of the detected particle(s) the
Doppler corrected γ-rays are weighted with the relative CD efficiency ε1(2)(ϑ) where
the subscript 1 (2) stands for detected projectiles (recoils). The resulting γ-ray spectra
can be seen in figure 4.21. The Coulomb excitation cross sections for the first 2+ states
in 124,126Cd have been determined applying eq. 2.21. The gamma yields can be gained
by integrating the corresponding peaks in the Doppler corrected γ-ray spectra and the

Coulomb excitation cross section σ
(2)
ce of the target nucleus has been calculated using

CLX (see section 2.6 for details).

The resulting gamma yields, cross sections and transitional matrix elements for
124,126Cd are summarized in table 4.2.4.

The uncertainties of the Coulomb excitation cross sections of 124,126Cd are again
influenced by the statistical errors of the gamma yields, the uncertainties of the CD
detector efficiencies and the beam purities and by the uncertainties of σZn

ce . The latter
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Figure 4.21: The Doppler corrected γ-ray spectra for 126Cd (left) and 64Zn (right). For
comparison they are shown with (black) and without (red) efficiency weighting.

Results for 124,126Cd

Beam NCd NZn ϑCM [◦] σZn
ce [b] σCd

ce [b] ME(0 → 2) [eb]
124Cd 1007 416 36 - 156 0.31(3) 0.68(9) 0.58(2)
126Cd 965 784 42 - 152 0.31(4) 0.46(6) 0.53(1)

Table 4.8: Results from the integrated gamma yields for the 124,126Cd runs. The resulting
transitional matrix elements are also given. Their derivation as well as the resulting B(E2)
values are discussed in chapter 5.

depend on the uncertainties of the scattering angles and the transitional matrix element.

4.3 Analysis of the 138−142Xe Data

The Coulomb excitation cross sections for the first excited states of neutron-rich Xe nu-
clei withN > 82 were examined utilizing the reactions 96Mo(138−142Xe,138−142Xe*)96Mo*.

4.3.1 Particle Spectra

For this beam time the condition of the CD detector has again been examined via the
raw energy spectra per ring and strip for each sector. Only the rings number 2 and 5 in
sector 0 of the detector were malfunctioning. Furthermore the inner 4 rings were covered
by a plug to suppress the high count rates of elastically scattered particles occurring at
small scattering angles. Therefore, only the range 30.0(20)◦ ≤ ϑ ≤ 50.0(13)◦ has been
used in the analysis. Plotting the particle energy versus the scattering angle allows
to identify the projectiles and the target recoils and to apply graphical cuts on these
(cf. figure 4.22). The event types are defined according to table 4.6. The number of
events per event type is shown in figure 4.23.

The beam shift has been corrected utilizing the same method as for the Cd runs (see
section 4.1). The resulting beam shifts (cf. figure 4.24) are summarized in table 4.9.

The particle energy again can be determined from the corrected angles ϑcorr via a
kinematical look-up table. In figure 3.14 the difference between the detected and the
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Figure 4.22: The measured particle energy versus scattering angle for 140Xe is shown before
(left) and after (right) the beam shift correction. Cuts on elastically scattered projectiles and
recoils are also shown. The missing rings 2 and 5 can be seen at about 45◦ and 50◦ on the left
picture.
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Figure 4.23: Left: The number of events per event type for the 140Xe experiment. Note that
38% of all events are of type 1 whereas only 8% are of type 4 which is considered unphysical
and neglected for the further analysis. Right: The difference in ϕ in case of ET 3 centers at
(180± 10)◦.
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Figure 4.24: The measured intensity of elastically scattered projectiles (140Xe) in 35◦ ≤ ϑ ≤
37◦ before (left) and after (right) the correction for the beam shift. The mean intensity is shown
as red line.
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Beam Shift Parameters

Beam r[mm] ϕ [◦]
138Xe 1 67.5
140Xe (i) 1 45.0
140Xe (ii) 1 52.5
142Xe 1 67.5

Table 4.9: The beam shift parameters for the 138−142Xe runs in polar coordinates. Note that
there were two separate runs of 140Xe, (i) before and (ii) after the 142Xe run.

calculated energy can clearly be seen.

The efficiency of the CD detector and the applied cuts on projectiles and recoils
has also been determined by comparing the number of elastically scattered projectiles
(recoils) in small intervals of ϑ to the corresponding Rutherford cross section σRuth(ϑ)
(cf. figures 4.25 and 4.26). The resulting relative efficiencies

ε1(2)(ϑ) = N1(2)(ϑ)/σ1(2)(ϑ)

with the subscript 1 (2) standing for the cut on projectiles (recoils) and the maximum
efficiency normalized to 1 are shown in figure 4.27. One can again see a drop in efficiency
at small scattering angles which is due to the beam shift, the final beam spot size and
the inner edge of the CD detector. Note that the energetic cut-off at ∼ 200 MeV
(see figure 4.27) also reduces the efficiency for both the projectile cut and the recoil
cut at lower angles. Furthermore the missing rings affect both efficiencies at ϑ ' 44◦

and the recoil efficiency at ϑ ' 48◦.
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Figure 4.25: The Rutherford scattering cross sections for 140Xe (left) and 96Mo (right) per ϑ
interval from 30◦ to 50◦. Note that the projectiles cannot scatter into the outermost ϑ interval.

In order to check the consistency of the data the ratio of the number of elastically
scattered projectiles (1) and recoils (2) per angular range N1(2)(ϑ) is compared to the
ratio of the corresponding Rutherford cross sections σ1(2)(ϑ) for events where both the
projectile and the recoil were detected. The resulting plot (including statistical errors
for the experimental data and uncertainties in ϑ for the cross sections) shows agreement
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Figure 4.26: Number of elastically scattered projectiles (left) or recoils (right) per ϑ interval
from 30◦ to 50◦ in the case of 140Xe.
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Figure 4.27: Left: Relative efficiency per ϑ interval for 140Xe (black) and 96Mo (red). Note
that detected projectiles in the interval 42◦ ≤ ϑ ≤ 46◦ are neglected in the further analysis.
Right: Upper and lower limit of the ratio of the Rutherford cross sections (black) and ratio of
number of scattered particles (red) for 140Xe.

within the uncertainties between calculation and experimental data (cf. figure 4.27). At
lower angles the cut-off in energy for the recoils leads to a greater ratio than expected.

4.3.2 Gamma Ray Spectra

For identifying the γ-rays emitted by the projectiles or recoils correctly the time dif-
ference between the detection of particles and γ-rays is shown in figure 4.28. The
prompt peak and the random time gate are highlighted. As in the Cd runs the random
background will be subtracted from the γ-ray spectra taken during the prompt peak.
The γ-energies are Doppler corrected (see eq. 3.1) with respect to the projectile and
the recoil, respectively. If one of the two reaction partners has not been detected (i.e.
ET = 1 or 2) its direction and energy can be reconstructed kinematically.

For determining the Coulomb excitation cross section σce of the isotope the gamma
yields Nγ from the 2+

1 → 0+
1 transitions of both the projectile and the target recoil are

needed. The Doppler corrected γ-ray spectra with and without background subtraction
are shown in figures 4.29 and 4.30. Note that there is hardly any difference in the energy
range of the transitions. These spectra have been created not only for the total angular
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Figure 4.28: Time difference between detected particles and γ-rays for the 140Xe run. The
prompt peak (red) and the random time window (blue) are shown.
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Figure 4.29: The Doppler corrected peaks from the 2+
1 → 0+

1 (left) and 4+
1 → 2+

1 (right)
transition in 140Xe with (red) and without (black) background subtraction.

range but also for intervals in ϑ and weighted with the corresponding particle efficiency
ε1(2)(ϑ). Hence, it is possible to determine the angular distribution of the Coulomb
excitation cross section σce(ϑ).

In the 140,142Xe case, the peak from the 4+
1 → 2+

1 transition can also be seen.
Therefore, a determination of σ2→4

ce is possible. The properties of the peaks for all
three isotopes are summarized in table 4.10. Integrating these peaks gives the particle
efficiency corrected yields Nγ over the total angular range as well as for each interval in
ϑ. With this data the Coulomb excitation cross sections can be calculated by comparing
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Figure 4.30: The Doppler corrected peak from the 2+
1 → 0+

1 transition in 96Mo with (red)
and without (black) background subtraction.

Energy Resolutions

Isotope Transition Eγ [keV ] FWHM [keV ]
138Xe 2+

1 → 0+
1 588 11

140Xe 2+
1 → 0+

1 376 12

4+
1 → 2+

1 457 19
142Xe 2+

1 → 0+
1 286 8

4+
1 → 2+

1 403 8
96Mo 2+

1 → 0+
1 779 20

Table 4.10: Energies and widths of the Doppler corrected transition peaks of both the pro-
jectiles and recoils. Note that the 4+

1 → 2+
1 transition has been seen for 140,142Xe.

the yields in the Xe peak and the Mo peak (cf. eq. 2.21). The results from the analysis
of the data in the ϑ range from 30◦ to 50◦ are shown in table 4.11. The relative

error of σ
(Xe)
ce is consistent for each interval and in the total angular range. Note that

the gamma yield N
(Mo)
γ is only evaluated for the total range in ϑ and the Coulomb

excitation cross section σ
(Mo)
ce is calculated for this range using the Coulomb excitation

code CLX. A thorough discussion on the angular distribution of the emitted γ-rays as
well as on the resulting B(E2) values is given in chapter 5.

The uncertainties in the Coulomb excitation cross sections of 138−142Xe are influ-
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Results for 138−142Xe

Beam ϑlab [◦] N2→0
γ,Xe N4→2

γ,Xe N2→0
γ,Mo σ0→2

ce [b] σ2→4
ce [b] σ

(Mo)
ce [b]

30 - 34 1156 0.31(9)

34 - 38 1041 0.28(8)
138Xe 38 - 42 940 0.26(7)

42 - 46 894 0.24(7)

30 - 50 4030 2031 1.10(32) 0.89(25)

30 - 34 7031 0.90(27)

34 - 38 5906 0.75(23)
140Xe 38 - 42 5113 0.65(20)

42 - 46 1217 0.16(5)

30 - 50 19267 2484 4443 2.46(74) 0.317(95) 0.91(27)

30 - 34 8205 1.23(12)

34 - 38 7090 1.06(10)
142Xe 38 - 42 6322 0.95(10)

42 - 46 368 0.06(2)

30 - 50 21986 2033 3412 3.29(32) 0.36(12) 0.98(31)

Table 4.11: Gamma yields and Coulomb excitation cross sections for the 138−142Xe runs. Note
that the projectiles cannot scatter into ϑlab ≥ 46◦.

enced by the statistical error of the gamma yields, the uncertainties of the efficiencies

ε(ϑ) of the CD detector and the uncertainties of σ
(Mo)
ce . The latter are calculated in-

cluding the uncertainties in the range of ϑ, the uncertainty of the transitional matrix
element and the uncertainty of the attenuation parameter λ2 (see chapter 5). Note
that the main contribution stems from the uncertainty of the scattering angle.

4.4 Analysis of the 144Xe Data

Going even further away from the N = 82 shell closure the Coulomb excitation cross
section of the first excited state in 144Xe has been measured in another beam time.
Again a 96Mo target has been used.

4.4.1 Particle Spectra

During this beam time only ring 14 in sector 2 of the CD detector was defect. The CD
was also shielded by a degrader foil as in the 124,126Cd runs. Unfortunately, the target
recoils can not be identified by plotting the energy of the detected particles versus
their scattering angle (cf. figure 4.31). One reason for that is that the Rutherford cross
section for 96Mo is 1 - 2 orders of magnitude smaller in the range covered by the CD
detector than for larger angles ϑ. Therefore, only a cut on the projectiles has been
applied and the event types have been defined according to table 4.12. Note that about
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Figure 4.31: The detected particle energy versus the scattering angle is plotted before (left)
and after (right) beam shift correction. The applied cut on 144Xe is also shown.

56% of all events are of type 1 and only about 0.5% are of type 2 (cf. figure 4.32). Only
events of type 1 are considered for the analysis.

Definition of Event Types

Event Type Particle Multiplicity

0 0

1 1

2 > 1

Table 4.12: Different event types according to the number of particles detected in the graphical
cut.

The beam shift has been corrected using the same method as described in section 4.1
(see figure 4.33), resulting in a radial shift of r = 2 mm and an angular shift of
ϕ = 18.75◦. This results in a total angular range covered by the CD detector and the
cut of 12.0(24)◦ ≤ ϑ ≤ 36.0(18)◦ .

4.4.2 Efficiency of the CD Detector

The efficiency of the CD detector and the applied cut has again been determined by
comparing the number of elastically scattered particles within an interval [ϑ, ϑ+dϑ] with
the corresponding Rutherford cross section. Both the number of elastically scattered
beam-like particles and the Rutherford cross section is shown in figure 4.34 (top). The
resulting efficiency is also shown in figure 4.34 (bottom).

4.4.3 Gamma Ray Spectra

Since the target recoils have not been detected their energies and angles were always
reconstructed kinematically from the detected angles of the projectiles. The γ-ray
spectra were again taken during the prompt peak as well as during the random time
gate for later background subtraction (cf. figure 4.35).
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Figure 4.32: The number of events per event type. Only ET 1 is taken into account for the
analysis.
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Figure 4.33: The intensity of elastically scattered projectiles in the range 24◦ ≤ ϑ ≤ 27◦

before (left) and after (right) beam shift correction. The mean intensity is also shown (red
line).

In the resulting Doppler corrected and efficiency weighted γ-ray spectra the peak
from the 2+

1 → 0+
1 disexcitation of 96Mo can hardly be seen (see figure 4.36).

Therefore, only a lower limit of σ0→2
ce could be determined by assuming the number

of counts in the energy region from 720 keV to 840 keV to be the upper limit of the
gamma yield from the target disexcitation. The results are summarized in table 4.13.
Note that the half-live of T1/2 = 388(7) ms for 144Xe is of the same order of magnitude
as the breeding time τbreed = 204.1 ms. Therefore, the decay of 144Xe during that time
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Figure 4.34: Top: The number of elastically scattered projectiles in four intervals of 6◦ ranging
from 12◦ ≤ ϑ ≤ 36◦ (left) and the Rutherford cross section of 144Xe in this range is shown
(right). Bottom: The resulting relative efficiency of the CD detector and the applied cut. The
efficiency drops at both ends of the cut due to the beam spot size and the shift of the beam
spot position. At about 20◦ the missing ring in sector 2 affects the efficiency.

has to be taken into account, resulting in a beam purity of R = 65.8(5)% at the target.

The uncertainty of the Coulomb excitation cross section of 144Xe is mainly influ-
enced by the statistical error of the gamma yields. The uncertainties of the CD detector
efficiency, the beam purity and of σce (Mo) are also taken into account. As in the former
Xe runs, ∆σce(Mo) depends mainly on the uncertainty in ϑ, although the uncertainties
in the transitional matrix element and in λ2 (see chapter 5) are also taken into account.
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Figure 4.35: The time difference between the detection of particles and γ-rays is shown. The
prompt peak (red) and the random time gate (blue) are indicated.
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Figure 4.36: The Doppler corrected γ-ray spectrum with respect to the detected 144Xe (left)
and with respect to the reconstructed 96Mo (right) is shown with (black) and without (red)
random background subtraction. The peak from the 2+

1 → 0+
1 transition in 144Xe at 252 keV

(FWHM ∼ 6 keV ) can clearly be seen. The peak of the same disexcitation in 96Mo at about
780 keV is more ambiguous. Here the number of counts in the range from 720 keV to 840 keV
is taken as maximal gamma yield.
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Results for 144Xe

Beam ϑCM [◦] Nγ,Xe Nγ,Mo σce (Mo) [b] σce (Xe) [b] ME(0 → 2) [eb]
144Xe 30 - 98 267 39 1.16(14) 5.9(13) 0.83(17)

Table 4.13: Summary of the results from the analysis of the Doppler corrected γ-ray spectra
for 144Xe. The cross section of the target and the transition matrix element in Xe have been
determined using CLX.
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5
Results & Discussion

5.1 Results

In chapter 4 the Coulomb excitation cross sections of the nuclides under investigation
have been determined from the experimental data. The aim of this work is now to
extract the B(E2) values for these nuclides. This can be achieved by using the computer
code CLX (see section 2.6). The transitional matrix element, which is one of the input
parameters of CLX, is linked to the B(E2) value via eq. 2.11. Therefore, by varying
this input parameter until the experimentally determined Coulomb cross section is
reproduced, the corresponding B(E2) value can be determined.

5.1.1 Results for 122−126Cd

The Coulomb excitation cross sections are calculated in two different ranges of the
scattering angle ϑ, taking into account the uncertainty ∆ϑ due to the strip width, the
beam spot size and the distance between target and CD detector (see section 3.5).
In figure 5.1 the calculated Coulomb excitation cross sections for 122Cd are shown
with respect to ME(0 → 2). The experimentally determined value is also shown. The
corresponding interval of ME(0 → 2) for which the calculated and the experimental
value agree can be determined by linear interpolation. The B(E2) values are then
determined using eq. 2.11.

The same procedure has been applied to the data for 124,126Cd and the results are
summarized in table 5.1. Note that the second measurement for 124Cd significantly
reduced the relative error of the B(E2) value (see section 4.2). The agreement of
the three different methods applied for the determination of the Coulomb excitation
cross sections in the 122,124Cd beam time (see section 4.1) has already been shown in
table 4.4. Here, only the value determined for the full statistics is given.
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Figure 5.1: The dependency of the Coulomb excitation cross section σ
(Cd)
ce on the transitional

matrix element is calculated with CLX. The two graphs (black triangles) correspond to the

upper and lower limit, taking into account the uncertainties of σ
(Pd)
ce and of the scattering

angle ϑ. The upper and lower limit of the experimentally determined cross section (red dashed
lines) and the interval of ME(0 → 2) for which both agree (blue lines) is also shown.

E2 Transition Strengths of 122−126Cd

Isotope Eγ(2+
1 → 0+

g.s.)[keV ] B(E2)[e2b2] B(E2)exp/B(E2)sys

122Cd 571.6 0.37(5) 1.0(2)
124Cd 614.6 0.45(17) 1.4(6)

0.34(2) 1.1(2)
126Cd 653.3 0.28(1) 1.1(2)

Table 5.1: The transitional matrix elements and resulting B(E2) values for 122−126Cd, as-
suming β = 0. A comparison of the experimentally determined B(E2)exp values with those
derived by the modified Grodzins rule B(E2)sys is also given. The B(E2) value of 124Cd has
been measured in two independent experiments, hence both values are given here.

5.1.2 Results for 138−144Xe

In the 138−142Xe data the angular distribution of the emitted γ-rays and the deorien-
tation effect (see section 2.3) have been taken into account for the further analysis.
In 140,142Xe the γ-rays from the 4+

1 → 2+
1 transition have also been observed. This

feeding of the 2+
1 state has been taken into account for the determination of σ0→2

ce .
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The corresponding Coulomb excitation cross section σ2→4
ce could also be determined.

The CLX calculations have to reproduce both cross sections with the same set of input
parameters. Furthermore the influence of the diagonal matrix elements has also been
examined.

Angular Distribution of γ-Rays

Since the γ-rays are not emitted isotropically, their angular distribution has been ex-
amined more closely. The coincident disexcitation γ-rays have been divided into six
groups corresponding (i) to the forward and backward direction of the gamma detectors
and (ii) to three different ranges of the particle scattering angle ϑ.

The data has subsequently been normalized to the integrated gamma yield over ϕ
and plotted with respect to δφ = ϕ − φ. Here, ϕ denotes the azimuthal angle of the
detected particle whereas φ denotes that of the detected γ-ray. A theoretical angular
distribution has been calculated with CLX (see section 2.6). These calculated Coulomb
excitation cross sections have also been normalized to their integrated values over ϕ.
The influence of the deorientation effect can clearly be seen in figure 5.2.

By varying the attenuation parameter λ2 (cf. section 2.5) this distribution has then
been optimized, i.e. the χ2 value of its fit to the data has been minimized. The resulting
values of λ2 are summarized in table 5.2.

The uncertainty of the cross section for 96Mo is then influenced by three factors:
(i) the uncertainty in the range of ϑ, (ii) the uncertainty of the transitional matrix
element ME(0 → 2)= 0.520(4) eb and (iii) the uncertainty in λ2 = 0.23+0.33

−0.20 ps
−1. The

resulting total error is dominated by the first of these.

Attenuation Parameters for 138−144Xe

Isotope Eγ(2+
1 ) [keV ] λ2 [ps−1]

138Xe 588.8 0.08+1.42
−0.074

140Xe 376.7 0.046+0.354
−0.036

142Xe 287.2 0.026+0.174
−0.02

144Xe 252.6 0.015(11)

Table 5.2: The values of λ2 for the Xe isotopes as estimated from the fit of the calculated
angular distribution of emitted γ-rays to the data (see figure 5.2). Note that the value for 144Xe
is only a linear interpolation from the previous three values.

The 0+
1 → 2+

1 Transitional Matrix Element

The transitional matrix elements ME(0 → 2) for the Xe isotopes can be extracted from

the experimentally determined cross sections σ
0→2(2→4)
ce in a similar way as for the Cd

isotopes.
In figure 5.3 the dependence of the Coulomb excitation cross sections for 140Xe on

this matrix element is shown. Note that for 140,142Xe both cross sections have to be
reproduced, whereas for 138Xe only σ0→2

ce has been determined. Again, the calculations
take into account the uncertainty in the range of the scattering angle.
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Figure 5.2: The first two rows show the angular distribution of the γ-rays emitted by 140Xe
(black dots) in forward (upper row) and backward (lower row) direction compared to a theo-
retical calculation (blue line) for λ2 = 0.0 ps−1, i.e. without deorientation. The lower two rows
show the same distribution compared to a theoretical calculation for λ2 = 0.046 ps−1 (best fit).
The three columns correspond to the three intervals in ϑ ranging from 28.0◦ to 34.5◦, 34.5◦ to
41.0◦ and 41.0◦ to 47.5◦, respectively.
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Figure 5.3: The dependence of σ0→2
ce (left) and σ2→4

ce (right) on ME(0 → 2) for 140Xe is shown.
The two graphs correspond to the uncertainty in the scattering angle ϑ. The experimental values
including their uncertainties (red dashed lines) are also shown. Blue lines indicate the interval
of agreement between calculated and experimentally determined cross sections.

The diagonal matrix element ME(2 → 2), which is linked to the quadrupole defor-
mation parameter β via eq. 2.18, is set to zero (assuming a spherically shaped nucleus).
The value for ME(2 → 4)= 1.25 eb for 140Xe is taken from Lindroth et al. (1999) and
the diagonal matrix element for the 4+

1 state is set to ME(4 → 4)= 4.0 eb. An agree-
ment for both cross sections can be seen for values of ME(0 → 2) between 0.63 eb and
0.85 eb.

Influence of the Quadrupole Moment

However, the assumption of a spherical shape might not be justified for the neutron-
rich Xe isotopes. Therefore, the influence of non-vanishing quadrupole moment on
the Coulomb excitation cross sections has to be examined. In figure 5.4 the rather
strong dependence of σce for 140Xe on the deformation parameter β can be seen. The
transitional matrix element ME(0 → 2) is kept constant at 0.70 eb in agreement with
the above considerations. The values of ME(2 → 4) and ME(4 → 4) are kept constant.
The deformation parameter is varied between -0.25 and +0.25, which is a reasonable
interval since nuclei in the vicinity of shell closures are usually not strongly deformed.
Note that the cross sections agree for β & −0.06.

Higher-order Matrix Elements

For 138Xe these considerations are sufficient since σ0→2
ce does not depend on the higher

matrix elements ME(2 → 4) and ME(4 → 4). But for 140,142Xe the dependence of σ2→4
ce

on these matrix elements has been examined (cf. figure 5.5). Note that the diagonal
matrix element ME(4 → 4) in 140Xe has to be larger than 2 eb for the calculated cross
section to be in agreement with the experimental determined value. Here, β is again
chosen to be zero, ME(0 → 2) is kept at 0.70 eb and ME(2 → 4) = 1.25 eb.

These considerations show that all four input parameters to CLX (i.e. the transi-
tional matrix elements 〈J+2||M(E2)||J〉 for J = 0, 2 and the diagonal matrix elements
〈J ||M(E2)||J〉 for J = 2, 4) have to be varied within reasonable ranges and the agree-
ment of the calculated Coulomb excitation cross sections with the experimental values
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Figure 5.4: The calculated Coulomb excitation cross sections for the 0+
1 → 2+

1 (left) and 2+
1 →

4+
1 (right) transition in 140Xe versus the quadrupole deformation parameter. The experimental

values including uncertainties (red dashed lines) are also shown. The blue lines indicate the
minimal value of β needed to reproduce the experimental cross sections.
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Figure 5.5: The calculated Coulomb excitation cross sections for the 2+
1 → 4+

1 transition
in 140Xe versus the transitional (left) and versus the diagonal (right) matrix element. The
two graphs correspond to the uncertainty in the scattering angle ϑ. The experimental value
including its uncertainty (red dashed lines) is also shown. The minimal values of the matrix
elements needed for reproducing the experimental result is indicated (blue lines).

has to be checked for each combination of these. This has been done for 138−142Xe and
the paramater ranges are summarized in table 5.3.

Ranges of the Input Parameters

ME(0 → 2) [eb] ME(2 → 2) [eb] β ME(2 → 4) [eb] ME(4 → 4) [eb]

0.5 to 2.0 -5 to +5 -0.25 to +0.25 1.0 to 1.5 -6 to +6

Table 5.3: The ranges of the input parameters for the CLX calculations for 138−142Xe.

Another constraint on ME(0 → 2) and ME(2 → 2) can be found from the exper-
imentally determined Coulomb excitation cross sections σ0→2

ce within smaller ranges
of ϑ, i.e. from its angular distribution σce(ϑ). Since the experimental value has to be
reproduced in each scattering interval for the same combination of input parameters



5.1. RESULTS 77

this sets more severe limits on the matrix elements (cf. figures 5.6 to 5.8).
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Figure 5.6: The calculated cross sections σ0→2
ce for 140Xe in the range 30◦ ≤ ϑ ≤ 34◦ with

ME(0 → 2) = 0.70 eb is plotted. The intersection with the lower experimental limit is shown
as well (blue line).

Conclusion

There are now three (or two, in the case of 138Xe) independent constraints on the
quadrupole deformation parameter with respect to the transitional matrix element
ME(0 → 2) for each combination of the other two matrix elements (cf. figure 5.9). These
stem from (i) reproducing σ0→2

ce for 138−142Xe in the total angular range, (ii) reproducing
the angular distribution σ0→2

ce (ϑ) in all three Xe isotopes and (iii) reproducing σ2→4
ce

for 140,142Xe.

Merging the overlaps of these allowed regions for all combinations of ME(2 → 4) and
ME(4 → 4) under consideration gives a conclusive summary of the maximal allowed
values of the transitional matrix element ME(0 → 2) and the diagonal matrix element
ME(2 → 2) (cf. figures 5.10 to 5.12).

Evaluating these results for β = 0 gives upper and lower limits for ME(0 → 2) which
leads to B(E2) values that can now be compared to those of neighbouring isotopes
(cf. figure 5.13). It can then be shown that for 138−144Xe the measured B(E2) values
agree with the modified Grodzins rule and - for 140Xe - also with experimental data
from Lindroth et al. (1999). These results are summarized in table 5.4.
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Figure 5.7: The upper and lower limits of the experimental (red dashed lines) and calculated
cross sections σ0→2

ce versus β in the range 34◦ ≤ ϑ ≤ 38◦ are shown for 140Xe with ME(0 → 2)
= 0.70 eb. The lower limit of β for agreement between experiment and calculation is indicated
(blue line).

Results for 138−144Xe

Isotope Eγ(2+
1 → 0+

g.s.)[keV ] B(E2; 0+
g.s. → 2+

1 ) [e2b2] B(E2)exp/B(E2)sys

138Xe 588.8 0.34(8) 0.83(20)
140Xe 376.7 0.59(7) 1.0(2)
142Xe 287.2 0.66(9) 1.2(3)
144Xe 252.6 0.69(28) 1.0(2)

Table 5.4: The resulting B(E2) values for 138−142Xe and a comparison for the estimation from
the modified Grodzins rule. Here, β = 0 has been assumed.

The 4+
1 → 2+

1 Transition

Since the 4+
1 → 2+

1 transition peak has been observed in the Doppler corrected γ-energy
spectra of 140,142Xe, the Coulomb excitation cross section σ2→4

ce has been ascertained
for these nuclei.

The determination of the corresponding B(E2; 4 → 2) value is rather difficult, since
this cross section depends not only on the transitional matrix element ME(2 → 4), but
on all four parameters ME(Ji → Jf ) under investigation here.

Therefore, the range of ME(2 → 4) used in the calculations in this work is fully
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Figure 5.8: The theoretical as well as the experimental upper and lower limits of σ0→2
ce versus

β for 140Xe in the range 38◦ ≤ ϑ ≤ 42◦ are shown. The interval of agreement between both in
β is indicated (blue lines). A transitional matrix element of ME(0 → 2) = 0.70 eb is assumed.

suitable for both nuclei, depending on the choice of the other three matrix elements.
However, under certain assumptions the ratio B(E2; 4 → 2)/B(E2; 2 → 0) could be
estimated quite well (see table 5.5). Note that in the simple picture of multi-phonon ex-
citations in ideal vibrational nuclei this ratio should be exactly 2.0 (see Casten (2000)).

5.2 Discussion

In the framework of this thesis B(E2) values of neutron-rich Cd and Xe isotopes both
below and above the shell closure at N = 82 have been measured by means of low-
energy Coulomb excitation experiments. For all investigated nuclei the experimentally
determined B(E2) values are in the range of those derived via the modified Grodzins
rule, assuming a vanishing or only small quadrupole moment. Note that this assump-
tion is in agreement with the QRPA1 calculations performed by Terasaki et al. (2002)
which could reproduce the anomalous low B(E2) value of 136Te.

Analyzing the results for a larger range of deformation parameters β leads to larger
regions of possible transitional matrix elements ME(0 → 2) (cf. figures 5.10 to 5.12).
These regions are compared to the expectations from the modified Grodzins rule (see ta-
ble 5.6) or to experimental data (in the case of 140Xe). Note that a relative uncertainty

1Quasi-particle Random Phase Approximation
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Figure 5.9: The allowed regions for ME(0 → 2) versus β from all three investigations, re-
producing σ0→2

ce (yellow), σ2→4
ce (cyan) and σ0→2

ce (ϑ) (magenta). The constraints from the IBA
model (dashed lines, both) and the result from Lindroth et al. (1999) (solid lines, top) as well
as the value from a modified Grodzins rule ± 20% (red lines, bottom) are also shown. The
other two parameters are kept at ME(2 → 4)= 1.25 eb and ME(4 → 4)= 4.0 eb.
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Ratios of B(E2) values for IBA constraints

Isotope β ME(2 → 4) [eb] B(E2; 4 → 2)/B(E2; 2 → 0)

-0.15 1.50 0.70(14)

-0.10 1.50 1.18(22)

-0.05 1.50 1.77(35)*†
140Xe 0.00 1.50 2.35(52)†

0.05 1.25 1.77(37)*†
1.50 2.74(55)

0.10 1.25 2.09(46)*†
1.50 3.00(57)

0.15 1.25 2.26(49)†
1.50 3.25(60)

-0.15 1.25 0.36(16)

1.50 0.59(34)

-0.10 1.25 0.73(23)

1.50 1.08(35)*

-0.05 1.25 1.03(28)

1.50 1.48(36)*

1.00 0.76(20)
142Xe 0.00 1.25 1.31(32)*

1.50 1.88(41)*†
1.00 0.91(26)

0.05 1.25 1.50(39)*

1.50 2.16(51)*†
1.00 1.03(31)

0.10 1.25 1.63(43)*†
1.50 2.35(56)*†
1.00 1.06(32)*

0.15 1.25 1.65(43)*†
1.50 2.38(55)*†

Table 5.5: The ratio of the transition strengths B(E2) for the 4+
1 → 2+

1 and 2+
1 → 0+

1

transitions in 140,142Xe under the assumption that the two diagonal matrix elements correspond
to the constraint from the IBA model calculation in the vibrator limit. The values indicated
with an asterisk are additionally in agreement with the IBA constraints on the transitional
matrix elements. The values indicated with a dagger are in agreement with the multi-phonon
excitation picture for vibrational nuclei (see text for details).
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Figure 5.10: The maximal allowed regions for ME(0 → 2) versus the quadrupole deformation
parameter for 138Xe. The other matrix elements range from ME(2 → 4) = 1.0 to 1.5 eb and
ME(4 → 4) = -6 to +6 eb. Red lines indicate the value from the modified Grodzins rule ±
20%. The black line corresponds to β = 0 (Moeller et al., 1995).

of ±20% is taken into account for the B(E2) values derived with the modified Grodzins
rule.

Limits of β for Systematic B(E2) values

Isotope B(E2)sys[e
2b2] β

138Xe 0.41 -0.02(4)
140Xe 0.58 -0.03(9)
142Xe 0.69 0.08(5)

Table 5.6: The resulting possible values of β assuming the B(E2) value to be as estimated from
the modified Grodzins rule (± 20%) for 138−142Xe. The constraints are taken from σ0→2

ce (ϑ).

A theoretical calculation of nuclear masses and deformations has been performed
by (Moeller et al., 1995), utilizing a sophisticated macroscopic-microscopic model in-
cluding additional shape degrees of freedom and improved pairing calculations. The
shape parameters have been determined by calculating the potential-energy surfaces,
minimizing the ground-state energies and searching for the minima in the potential-
energy surfaces. Although they used a different parameterization for the nuclear shape,
the corresponding quadrupole deformation parameter β has also been obtained. These
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Figure 5.11: The maximal allowed regions for ME(0 → 2) versus the quadrupole deformation
parameter for 140Xe. The other matrix elements range from ME(2 → 4) = 1.0 to 1.5 eb and
ME(4 → 4) = -6 to +6 eb. Red lines again indicate the value from the modified Grodzins
rule ± 20%. The value determined by Lindroth et al. (1999) is in agreement with that (green
lines). The black line shows that the deformation parameter calculated by Moeller et al. (1995)
(β = 0.116) is not in agreement with these values.

theoretically derived values of β are also compared to the experimental data in this
work (see table 5.7). Note that this β value for 140Xe is not in agreement with the
experimental results from Lindroth et al. (1999).

B(E2) Limits with Respect to β

Isotope β B(E2; 0+
g.s. → 2+

1 ) [e2b2]
138Xe 0.000 0.34(8)
140Xe 0.116 0.40(3)
142Xe 0.145 0.55(13)

Table 5.7: The resulting B(E2) values for 138−142Xe assuming a quadrupole deformation
parameter as calculated in Moeller et al. (1995).

Assuming β ' 0, no deviation from Grodzins systematics could be found. This
is also true for the N = 84 nucleus 138Xe, in contrast to the B(E2) value of 136Te
measured by Radford et al. (2002). It is worth mentioning here that a new measurement
at HRIBF indicates this value to be larger by about 30% (Baktash, 2005), whereas a
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Figure 5.12: The maximal allowed regions for ME(0 → 2) versus the quadrupole deformation
parameter for 142Xe. The other matrix elements range from ME(2 → 4) = 1.0 to 1.5 eb and
ME(4 → 4) = -6 to +6 eb. Red lines indicate the value from the modified Grodzins rule ±
20%. The black line corresponds to β = 0.145 (Moeller et al., 1995).

recent lifetime measurement (Fraile, 2008) even indicates an increase of about 50%.

Measurements of Cd isotopes with N < 82 also do not show any evidence for
a weakening of the N = 82 shell gap in this region. Note that the measurements
of this isotopic chain will be extended towards the r-process waiting-point nucleus
130Cd with a Coulomb excitation experiment of a 128Cd beam at REX-ISOLDE (Kröll
et al., 2007). The trend of decreasing B(E2) values for Cd isotopes when approaching
the shell closure has been reproduced by shell model calculations (Scherillo et al.,
2004), although these values are significantly lower than expected and experimentally
determined (see figure 5.14).

For 138−142Xe the B(E2) values have been determined including the deorientation
effect in the analysis. They agree well with the modified Grodzins rule and it is also
possible to reproduce the B(E2) values of 140Xe measured by Lindroth et al. (1999).
However, assuming transitional matrix elements as in Lindroth et al. (1999) the the-
oretically calculated quadrupole deformation parameter β (Moeller et al., 1995) is no
longer consistent with the experimental data.

The experimentally determined B(E2) values are also compared to the QRPA cal-
culations (Terasaki et al., 2002) and to more recent Monte-Carlo Shell Model (MCSM)
calculations (Shimizu et al., 2006), both of which were able to reproduce the B(E2)
value of 136Te (cf. figure 5.14). It is worth emphasizing that both theoretical approaches
underestimate the experimentally determined B(E2) values.
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Figure 5.13: The B(E2) values for selected isotopes around N = 82, including the results
from the experiments discussed in this thesis assuming a vanishing quadrupole moment. The
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Additionally the data of 138−142Xe has been compared to constraints from IBA
model calculations in the U(5) limit, i.e. assuming the nuclei to be ideal vibrators.
This is a reasonable approximation regarding their R42 values (see section 1.3). It
could be shown that these constraints can be in agreement with the experimental data.

The Interacting Boson Model

Besides the geometric model (see section 1.1) and the shell model (see section 1.2),
another approach for modeling the nucleus has been established in the 1970s.

The Interacting Boson Approximation, introduced by Arima and Iachello (1975),
is an algebraic approach utilizing group theoretical methods. It effectively truncates
the shell model space by neglecting closed shells and coupling the valence nucleons
pairwise to so-called s- and d-bosons with total angular momenta of 0 and 2. The
low-lying excitations of even-even nuclei can then be described by the energies and
interactions of these bosons.

Mathematically, the s-d boson system can be described in terms of the U(6) group,
with 6 being the sum of the magnetic substates of the s (J = 0) and d (J = 2) boson.
The subgroup U(5) can then be shown to be a useful description for ideal vibrators,
which has been assumed for the calculations in this work. A basic introduction to the
IBA model can be found in Casten (2000) and references therein.

Treating 138−142Xe as ideal vibrators the IBA calculations result in constraints on
the ratios of the included matrix elements. These constraints are summarized in ta-
ble 5.8 and shown in figure 5.9.

Constraints from IBA Calculations

Isotope ME(4 → 2)/ME(2 → 0) ME(4 → 4)/ME(2 → 2)
138Xe 1.55 2.0
140Xe 1.64 2.0
142Xe 1.70 2.0

Table 5.8: The resulting constraints on the ratios of the matrix elements for 138−142Xe from
IBA calculations in the U(5) limit (see text for details).



Outlook

With the experiments described in this work, the B(E2; 0+
g.s. → 2+

1 ) values of exotic
nuclei around the N = 82 shell closure have been determined.

The study of the Z = 48 (i.e. Cd) isotopic chain below N = 82 will be continued
with a low-energy Coulomb excitation experiment of 128Cd at REX-ISOLDE (Kröll
et al., 2007). Since one possible explanation of the A ≈ 130 peak in the solar r-
abundances is a quenching of the N = 82 shell closure for spherical nuclei below 132Sn
(i.e. Z < 50 and N < 82), this measurement might shed new light on this still open
question. Another remarkable feature of 128Cd is that the energy of its first excited
state E(2+

1 ) = 645 keV is lower than in 126Cd, in contrast to the expectations when
approaching a shell closure.

For nuclei above N = 82 Terasaki et al. (2002) proposed a reduced neutron pair-
ing to explain the anomalous B(E2) value of 136Te. Hence, the investigation of
B(E2; 0+

g.s. → 2+
1 ) values described in this work will be extended towards more col-

lective nuclei with measurements of 140,148,150Ba (Kröll et al., 2006). There is already
experimental data indicating a decreasing neutron pairing gap for Ba isotopes above
N = 86, though theoretical calculations only predict a dip at N = 88 (Terasaki et al.,
2002).

For the measurement of heavy Ba isotopes at REX-ISOLDE the development of
molecular BaF+ beams is necessary. The molecules will be cracked in the EBIS, re-
sulting in a complete suppression of isobaric contaminants. However, the development
of these molecular beams is still in progress.

The heaviest Ba isotope for which a B(E2) value is published is 146Ba, although a
new measurement of 148Ba is included in figure 5.15. The value derived for 140Ba has a
relative uncertainty of about 50%. Since this nucleus is just above the N = 82 shell clo-
sure, a more precise measurement is desirable. The measurement of B(E2; 0+

g.s. → 2+
1 )

values of heavy Ba isotopes will also help to distinguish between predictions following
the phenomenological systematics established as Grodzins rule from recent Monte-Carlo
shell model calculations (see figure 5.15).

However, the data analysis described in this thesis showed that the measurement
of B(E2) values by means of Coulomb excitation experiments is hampered by (i) the
uncertainty in the scattering angle ϑ and (ii) the lack of knowledge on the quadrupole
deformation of the state under investigation.

The first difficulty can be overcome by the development of a new target chamber
where the distance between target and CD detector is about twice as large, resulting
in a far better angular resolution (Bildstein). Additionally, the barrel-shaped structure
(see figure 5.16) allows the implementation of particle detectors parallel to the beam
axis, hence covering a larger range in ϑCM . Due to a larger distance between the target
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Figure 5.15: Experimental B(E2) values for neutron-rich Ba isotopes. The solid line shows
values derived from the modified Grodzins rule, the dashed line corresponds to Monte-Carlo
shell model calculations (Shimizu et al., 2001). This plot is taken from Kröll et al. (2006).

and the MINIBALL detectors this new setup results in a reduced photopeak efficiency.
But this is more than compensated by the larger particle detection efficiency.

The second problem could - in principle - be overcome by complementary lifetime
measurements of the nuclear state investigated. However, this is only possible for life-
times τ . 1ns, because the state has to decay within the setup. It might therefore not
be suitable for low-lying states in rotational nuclei. Of course, reasonable assumptions
on the quadrupole moment based on theoretical calculations can be applied and the
variation of the results within a range of β values can be checked.

On the other hand, a better angular resolution and a larger angular coverage enables
a more precise and detailed measurement of the angular distribution of the Coulomb
excitation cross section σce(ϑ). In addition with smaller uncertainties of both the
experimentally determined and the theoretical calculated cross sections, this might pin
down the matrix elements more strictly.
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Figure 5.16: Schematic view of the new target chamber design. Note that there are two CD
detectors mounted in forward and backward direction. Additionally segmented Si detectors are
surrounding the beam axis, covering a much larger range of scattering angles (by courtesy of
Kathrin Wimmer).

It remains to be emphasized that the investigation of neutron-rich nuclei, especially
when going to more collective nuclei, will not only provide better data for nuclear struc-
ture and nucleosynthesis models, but might as well turn out to uncover new phenomena
in nuclear physics that have not been thought of so far.
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Last but not least möchte ich auch meinen Eltern danken, deren stete Unterstützung
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